LTM2882IY-5#PBF [Linear]

LTM2882 - Dual Isolated RS232 uModule Transceiver + Power; Package: BGA; Pins: 32; Temperature Range: -40°C to 85°C;
LTM2882IY-5#PBF
型号: LTM2882IY-5#PBF
厂家: Linear    Linear
描述:

LTM2882 - Dual Isolated RS232 uModule Transceiver + Power; Package: BGA; Pins: 32; Temperature Range: -40°C to 85°C

驱动 接口集成电路 驱动器
文件: 总22页 (文件大小:670K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM2882  
Dual Isolated RS232  
µModule Transceiver + Power  
DESCRIPTION  
FEATURES  
The LTM®2882 is a complete galvanically isolated dual  
RS232 µModule® (micromodule)transceiver. No external  
components are required. A single 3.3V or 5V supply  
powers both sides of the interface through an integrated,  
isolated DC/DC converter. A logic supply pin allows easy  
interfacing with different logic levels from 1.62V to 5.5V,  
independent of the main supply.  
n
RS232 Transceiver: 2500V  
for 1 Minute  
RMS  
File #E151738  
n
UL-CSA Recognized  
n
CSA Component Acceptance Notice 5A  
Isolated DC Power: 5V at Up to 200mA  
No External Components Required  
1.62V to 5.5V Logic Supply for Flexible Digital  
Interfacing  
n
n
n
n
High Speed Operation  
Coupled inductors and an isolation power transformer  
1Mbps for 250pF/3kΩ Load  
250kbps for 1nF/3kΩ Load  
provide2500V  
ofisolationbetweenthelinetransceiver  
RMS  
and the logic interface. This device is ideal for systems  
with different grounds, allowing for large common mode  
voltages. Uninterrupted communication is guaranteed for  
common mode transients greater than 30kV/μs.  
100kbps for 2.5nF/3kΩ TIA/EIA-232-F Load  
3.3V (LTM2882-3) or 5V (LTM2882-5) Operation  
No Damage or Latchup to 10kV ꢀHM ESD on  
Isolated RS232 Interface or Across Isolation Harrier  
ꢀigh Common Mode Transient Immunity: 30kV/μs  
n
n
n
n
n
n
This part is compatible with the TIA/EIA-232-F standard.  
Driver outputs are protected from overload and can be  
shorted to ground or up to 15V without damage. An  
auxiliary isolated digital channel is available. This channel  
allows configuration for half-duplex operation by control-  
ling the DE pin.  
Maximum Continuous Working Voltage: 560V  
True RS232 Compliant Output Levels  
15mm × 11.25mm HGA and LGA Packages  
PEAK  
APPLICATIONS  
n
Isolated RS232 Interface  
Enhanced ESD protection allows this part to withstand up  
to 10kV(humanbodymodel)onthetransceiverinterface  
pins to isolated supplies and across the isolation barrier  
to logic supplies without latchup or damage.  
n
Industrial Communication  
n
Test and Measurement Equipment  
Hreaking RS232 Ground Loops  
n
All registered trademarks and trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Isolated Dual RS232 µModule Transceiver  
1Mbps Operation  
ꢉ.ꢉꢊ ꢋLTM2882ꢌꢉꢍ  
ꢎꢊ ꢋLTM2882ꢌꢎꢍ  
Tꢄꢍ  
ꢐꢅ/ꢃꢄꢅ  
ꢏꢏ  
LTM2882  
L
ꢎꢊ  
ꢏꢏ2  
ꢅꢓ  
ꢀꢊꢀꢆLꢀꢒLꢓ ꢏꢈꢇꢇꢓꢄTꢔ  
ꢂꢎꢁmꢀ ꢋLTM2882ꢌꢎꢍ  
ꢂꢁꢁmꢀ ꢋLTM2882ꢌꢉꢍ  
ꢃFF ꢃꢄ  
ꢃꢄ  
TꢓꢈꢉT/ꢆꢓꢄꢍ  
ꢓꢁꢅ/ꢃꢄꢅ  
ꢅꢆꢄ  
ꢅꢃꢈT  
TꢂꢃꢈT  
ꢇꢂꢆꢄ  
T2ꢈꢉT/ꢆ2ꢄꢍ  
Tꢂꢆꢄ  
ꢆꢓꢈꢉT  
ꢐꢅ/ꢃꢄꢅ  
ꢆ2ꢈꢉT  
ꢇꢂꢃꢈT  
T2ꢆꢄ  
T2ꢃꢈT  
ꢇ2ꢆꢄ  
2882 Tꢎꢁꢓꢔ  
ꢀꢁꢁnꢂ/ꢃꢄꢅ  
ꢇ2ꢃꢈT  
ꢃꢆꢄꢅꢇꢆ ꢈꢉTꢊꢉTꢋ Tꢄꢇꢃ Tꢈ ꢆꢇꢌꢇꢄꢅꢇꢆ ꢄꢍꢊꢉTꢋ  
TꢈꢉT Lꢈꢎꢃ ꢏ 2ꢐꢁꢑF ꢒ ꢆꢄꢍ  
ꢆꢈꢉT Lꢈꢎꢃ ꢏ ꢓꢐꢁꢑF  
ꢐꢄꢅ  
ꢐꢄꢅ2  
2882 Tꢀꢁꢂa  
2882fh  
1
For more information www.linear.com/LTM2882  
LTM2882  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
Tꢠꢒ ꢀꢉꢇꢛ  
V
to GND .................................................. –0.3V to 6V  
CC  
2
8
V to GND .................................................... –0.3V to 6V  
L
ꢁꢁ  
ꢡ2ꢠꢢT  
T2ꢉꢃ ꢡꢌꢠꢢT  
Tꢌꢉꢃ ꢄꢉꢃ ꢠꢃ  
L
V
CC2  
to GND2............................................... –0.3V to 6V  
F
Logic Inputs  
T1IN, T2IN, ON, DIN to GND........–0.3V to (V + 0.3V)  
L
CC2  
ꢂꢃꢄ  
DE to GND2.............................–0.3V to (V  
Logic Outputs  
+ 0.3V)  
R1OUT, R2OUT to GND...............–0.3V to (V + 0.3V)  
L
CC2  
DOUT to GND2........................–0.3V to (V  
Driver Output Voltage  
T1OUT, T2OUT to GND2...........................–15V to 15V  
Receiver Input Voltage  
R1IN, R2IN to GND2 ............................... –25V to 25V  
Operating Temperature Range (Note 4)  
+ 0.3V)  
LTM2882C .........................................0°C ≤ T ≤ 70°C  
A
ꢂꢃꢄ2  
L
LTM2882I ..................................... –40°C ≤ T ≤ 85°C  
A
LTM2882.................................. –40°C ≤ T ≤ 105°C  
A
Maximum Internal Operating Temperature............ 125°C  
Storage Temperature Range .................. –40°C to 125°C  
Peak Package Hody Reflow Temperature .............. 245°C  
ꢡ2ꢉꢃ  
ꢁꢁ2  
T2ꢠꢢT ꢡꢌꢉꢃ TꢌꢠꢢT ꢄꢠꢢT ꢄꢇ  
ꢆꢂꢅ ꢒꢅꢁꢋꢅꢂꢇ  
ꢍ2ꢓꢒꢉꢃ ꢔꢌꢏmm × ꢌꢌ.2ꢏmm × ꢍ.ꢎ2mmꢕ  
ꢗ ꢌ2ꢏꢘꢁꢙ  
Lꢂꢅ ꢒꢅꢁꢋꢅꢂꢇ  
ꢍ2ꢓꢒꢉꢃ ꢔꢌꢏmm × ꢌꢌ.2ꢏmm × 2.8mmꢕ  
T
T
ꢗ ꢌ2ꢏꢘꢁꢙ  
ꢊMꢅꢖ  
ꢊMꢅꢖ  
θ
ꢗ ꢍꢟꢘꢁ/θ  
ꢗ 2ꢑ.8ꢘꢁ/ꢙ  
θ
ꢊꢅ  
ꢗ 2ꢚꢘꢁ/θ  
ꢗ 2ꢑ.ꢚꢘꢁ/ꢙ  
ꢊꢁtoꢜ  
ꢊꢅ  
ꢊꢁtoꢜ  
θ
ꢗ ꢌꢚ.ꢍꢘꢁ/θ ꢗ 2ꢎꢘꢁ/ꢙ  
θ
ꢗ ꢌ8ꢘꢁ/θ ꢗ 22.ꢑꢘꢁ/ꢙ  
ꢛꢇꢉꢂꢈT ꢗ ꢌ.ꢌꢞ  
ꢊꢁꢝottom  
ꢊꢆ  
ꢊꢁꢝottom  
ꢊꢆ  
ꢛꢇꢉꢂꢈT ꢗ ꢌ.ꢌꢞ  
2882fh  
2
For more information www.linear.com/LTM2882  
LTM2882  
ORDER INFORMATION  
http://www.linear.com/product/LTM2882#orderinfo  
PART MARKING  
INPUT  
VOLTAGE  
PAD OR BALL  
FINISH  
PACKAGE  
TYPE  
MSL  
RATING  
PART NUMBER  
DEVICE  
FINISH CODE  
TEMPERATURE RANGE  
0°C to 70°C  
LTM2882CY-3#PHF  
LTM2882IY-3#PHF  
LTM2882ꢀY-3#PHF  
LTM2882CY-5#PHF  
LTM2882IY-5#PHF  
LTM2882ꢀY-5#PHF  
LTM2882CV-3#PHF  
LTM2882IV-3#PHF  
LTM2882CV-5#PHF  
LTM2882IV-5#PHF  
3V to 3.6V  
LTM2882Y-3  
LTM2882Y-5  
–40°C to 85°C  
–40°C to 105°C  
0°C to 70°C  
SAC305  
(RoꢀS)  
e1  
HGA  
LGA  
4.5V to 5.5V  
–40°C to 85°C  
–40°C to 105°C  
0°C to 70°C  
3
3V to 3.6V  
LTM2882V-3  
LTM2882V-5  
–40°C to 85°C  
0°C to 70°C  
Au (RoꢀS)  
e4  
4.5V to 5.5V  
–40°C to 85°C  
• Device temperature grade is indicated by a label on the shipping  
container.  
• Recommended HGA and LGA PCH Assembly and Manufacturing  
Procedures: www.linear.com/umodule/pcbassembly  
• Pad or ball finish code is per IPC/JEDEC J-STD-609.  
• Terminal Finish Part Marking: www.linear.com/leadfree  
• LGA and HGA Package and Tray Drawings: www.linear.com/packaging  
• This product is moisture sensitive. For more information, go to:  
www.linear.com/umodule/pcbassembly  
• This product is not recommended for second side reflow. For more  
information, go to: www.linear.com/HGA-assy  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2882-3 VCC = 3.3V, LTM2882-5 VCC = 5.0V, VL = VCC, and GND =  
GND2 = 0V, ON = VL unless otherwise noted.  
SYMBOL  
Supplies  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
V
Input Supply Range  
LTM2882-3  
LTM2882-5  
3.0  
4.5  
3.3  
5.0  
3.6  
5.5  
5.5  
10  
V
V
CC  
V
Logic Supply Range  
Input Supply Current  
1.62  
V
L
I
ON = 0V  
0
µA  
mA  
CC  
LTM2882-3, No Load  
LTM2882-5, No Load  
24  
17  
30  
l
25  
mA  
l
l
V
V
Regulated Output Voltage, Loaded  
LTM2882-3 DE = 0V, I  
LTM2882-5 DE = 0V, I  
DE = 0, No Load  
= 100mA  
= 150mA  
4.7  
4.7  
4.8  
5.0  
5.0  
5.0  
65  
V
V
CC2  
LOAD  
LOAD  
Regulated Output Voltage, No Load  
Efficiency  
5.35  
V
CC2(NOLOAD)  
I
= 100mA, LTM2882-5 (Note 2)  
%
CC2  
I
Output Supply Short-Circuit Current  
200  
mA  
CC2  
Driver  
l
l
l
l
V
Driver Output Voltage Low  
Driver Output Voltage ꢀigh  
Driver Short-Circuit Current  
R = 3kΩ  
–5  
5
–5.7  
6.2  
35  
V
V
OLD  
OꢀD  
OSD  
OZD  
L
V
R = 3kΩ  
L
I
I
V
, V  
= 0V, V  
= 5.5V  
15V  
70  
10  
mA  
µA  
T1OUT T2OUT  
CC2  
Driver Three-State (ꢀigh Impedance)  
Output Current  
DE = 0V, V  
, V  
=
0.1  
T1OUT T2OUT  
2882fh  
3
For more information www.linear.com/LTM2882  
LTM2882  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2882-3 VCC = 3.3V, LTM2882-5 VCC = 5.0V, VL = VCC, and GND =  
GND2 = 0V, ON = VL unless otherwise noted.  
SYMBOL  
Receiver  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
Receiver Input Threshold  
Input Low  
Input ꢀigh  
0.8  
1.3  
1.7  
0.4  
V
V
V
IR  
2.5  
1.0  
V
ꢀYSR  
Receiver Input ꢀysteresis  
Receiver Input Resistance  
0.1  
3
l
R
–15V ≤ (V  
, V ) ≤ 15V  
5
7
kΩ  
IN  
R1IN R2IN  
Logic  
l
l
l
l
V
Logic Input Threshold Voltage  
ON, T1IN, T2IN, DIN = 1.62V ≤ V < 2.35V  
0.25•V  
0.4  
0.75•V  
V
V
ITꢀ  
L
L
L
ON, T1IN, T2IN, DIN = 2.35V ≤ V ≤ 5.5V  
0.67•V  
L
L
DE  
0.4  
0.67•V  
1
V
CC2  
I
Logic Input Current  
µA  
mV  
INL  
V
V
Logic Input ꢀysteresis  
Logic Output ꢀigh Voltage  
T1IN, T2IN, DIN (Note 2)  
R1OUT, R2OUT  
150  
ꢀYS  
Oꢀ  
l
l
I
I
= –1mA (Sourcing), 1.62V ≤ V < 3.0V  
V – 0.4  
V
V
LOAD  
LOAD  
L
L
= –4mA (Sourcing), 3.0V ≤ V ≤ 5.5V  
V – 0.4  
L
L
l
DOUT, I  
= –4mA (Sourcing)  
V
– 0.4  
CC2  
V
LOAD  
V
Logic Output Low Voltage  
R1OUT, R2OUT  
OL  
l
l
I
I
= 1mA (Sinking), 1.62V ≤ V < 3.0V  
0.4  
0.4  
V
V
LOAD  
LOAD  
L
= 4mA (Sinking), 3.0V ≤ V ≤ 5.5V  
L
l
DOUT, I  
= 4mA (Sinking)  
0.4  
V
LOAD  
ESD (HBM) (Note 2)  
RS232 Driver and Receiver Protection  
(T1OUT, T2OUT, R1IN, R2IN) to (V , GND2)  
10  
10  
10  
kV  
kV  
kV  
CC2  
(T1OUT, T2OUT, R1IN, R2IN) to (V , V , GND)  
CC  
L
Isolation Houndary  
(V , GND2) to (V , V , GND)  
CC2 CC L  
SWITCHING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2882-3 VCC = 3.3V, LTM2882-5 VCC = 5.0V, VL = VCC, and GND =  
GND2 = 0V, ON = VL unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
R = 3kΩ, C = 2.5nF (Note 3)  
MIN  
100  
250  
1000  
10  
TYP  
MAX  
UNITS  
kbps  
l
l
l
l
Maximum Data Rate  
(T1IN to T1OUT, T2IN to T2OUT)  
L
L
R = 3kΩ, C = 1nF (Note 3)  
kbps  
L
L
R = 3kΩ, C = 250pF (Note 3)  
kbps  
L
L
Maximum Data Rate (DIN to DOUT)  
C = 15pF (Note 3)  
L
Mbps  
Driver  
l
l
Driver Slew Rate (6V/t  
or t  
)
TLꢀ  
R = 3kΩ, C = 50pF (Figure 1)  
150  
0.5  
V/µs  
µs  
TꢀL  
L
L
t
t
t
t
, t  
Driver Propagation Delay  
Driver Skew |t – t  
R = 3kΩ, C = 50pF (Figure 1)  
0.2  
40  
PꢀLD PLꢀD  
L
L
|
R = 3kΩ, C = 50pF (Figure 1)  
ns  
SKEWD  
PꢀLD  
PLꢀD  
L
L
l
l
, t  
Driver Output Enable Time  
Driver Output Disable Time  
DE = , R = 3kΩ, C = 50pF (Figure 2)  
0.6  
0.3  
2
2
µs  
PZꢀD PZLD  
L
L
, t  
DE = , R = 3kΩ, C = 50pF (Figure 2)  
µs  
PꢀZD PLZD  
L
L
2882fh  
4
For more information www.linear.com/LTM2882  
LTM2882  
SWITCHING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2882-3 VCC = 3.3V, LTM2882-5 VCC = 5.0V, VL = VCC, and GND =  
GND2 = 0V, ON = VL unless otherwise noted.  
SYMBOL  
Receiver  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
0.4  
UNITS  
l
l
t
t
t
, t  
Receiver Propagation Delay  
C = 150pF (Figure 3)  
L
0.2  
40  
60  
µs  
ns  
ns  
PꢀLR PLꢀR  
Receiver Skew |t  
– t  
PLꢀR  
|
C = 150pF (Figure 3)  
L
SKEWR  
PꢀLR  
, t  
Receiver Rise or Fall Time  
C = 150pF (Figure 3)  
L
200  
RR FR  
Auxiliary Channel  
l
l
t
, t  
Propagation Delay  
Rise or Fall Time  
C = 15pF, t and t < 4ns (Figure 4)  
60  
60  
100  
200  
ns  
ns  
PꢀLL PLꢀL  
L
R
F
t
, t  
C = 150pF (Figure 4)  
L
RL FL  
Power Supply  
l
Power-Up Time  
ON = to V  
0.2  
2
ms  
CC2(MIN)  
ISOLATION CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2882-3 VCC = 3.3V, LTM2882-5 VCC = 5.0V, VL = VCC, and GND =  
GND2 = 0V, ON = VL unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
2500  
4400  
30  
TYP  
MAX  
UNITS  
V
ISO  
Rated Dielectric Insulation Voltage  
1 Minute, Derived from 1 Second Test  
1 Second (Notes 5, 6)  
V
RMS  
V
Common Mode Transient Immunity  
Maximum Working Insulation Voltage  
V = ON = 3.3V, V = 1kV, ∆t = 33ns (Note 2)  
L
kV/µs  
CM  
V
IORM  
(Notes 2, 5)  
560  
400  
V
PEAK  
V
RMS  
Partial Discharge  
V
PR  
= 1050 V  
(Notes 2, 5)  
5
pC  
PEAK  
CTI  
DTI  
Comparative Tracking Index  
Depth of Erosion  
Distance Through Insulation  
IEC 60112 (Note 2)  
IEC 60112 (Note 2)  
(Note 2)  
600  
V
RMS  
0.017  
0.06  
mm  
mm  
9
Input to Output Resistance  
Input to Output Capacitance  
Creepage Distance  
(Notes 2, 5)  
(Notes 2, 5)  
(Notes 2, 5)  
10  
Ω
6
pF  
9.48  
mm  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: This device includes over-temperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above specified maximum operating junction  
temperature may result in device degradation or failure.  
Note 2: Guaranteed by design and not subject to production test.  
Note 5: Tests performed from GND to GND2, all pins shorted each side of  
isolation barrier.  
Note 3: Maximum Data Rate is guaranteed by other measured parameters  
and is not tested directly.  
Note 6: The rated dielectric insulation voltage should not be interpreted as  
a continuous voltage rating.  
2882fh  
5
For more information www.linear.com/LTM2882  
LTM2882  
TA = 25°C, LTM2882-3 VCC = 3.3V, LTM2882-5  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCC = 5V, VL = 3.3V, and GND = GND2 = 0V, ON = VL unless otherwise noted.  
VCC Supply Current vs Load  
Capacitance (Dual Transceiver)  
ꢎꢊꢊ  
VCC Supply Current  
vs Temperature  
VCC Supply Current  
vs Temperature  
ꢎꢋ  
2ꢊ  
2ꢋ  
ꢏꢊ  
ꢏꢋ  
ꢎꢋ  
ꢏꢊ  
ꢏꢋ  
ꢊꢊ  
ꢊꢋ  
ꢐꢊ  
ꢐꢋ  
ꢑꢊ  
ꢑꢋ  
ꢍꢒ Lꢒꢃꢓ  
ꢗꢊ  
ꢔ ꢎ.ꢎꢌ  
ꢇꢇ  
LTM2882ꢕꢎ  
2ꢏꢊꢐꢑꢒꢓꢔ LTM2882ꢕꢖ  
ꢗ ꢑ.ꢑꢌ  
ꢇꢇ  
8ꢊ  
ꢙꢊ  
ꢚꢊ  
ꢏꢊ  
ꢘꢊ  
ꢖꢊ  
2ꢊ  
LTM2882ꢝꢑ  
ꢎꢊꢊꢐꢑꢒꢓꢔ LTM2882ꢕꢖ  
ꢎꢗ.2ꢐꢑꢒꢓꢔ LTM2882ꢕꢖ  
ꢔ ꢊ.ꢋꢌ  
ꢇꢇ  
LTM2882ꢕꢊ  
ꢗ ꢊ.ꢋꢌ  
ꢇꢇ  
2ꢏꢊꢐꢑꢒꢓꢔ LTM2882ꢕꢏ  
ꢎꢊꢊꢐꢑꢒꢓꢔ LTM2882ꢕꢏ  
ꢎꢗ.2ꢐꢑꢒꢓꢔ LTM2882ꢕꢏ  
LTM2882ꢝꢊ  
TꢒꢔꢄT ꢃꢍꢕ T2ꢔꢄT  
ꢖꢃꢄꢕ ꢗ ꢒꢋꢋꢘꢙꢚꢛ  
L
ꢗ ꢑꢘꢜ ꢇ ꢗ 2.ꢊnF  
L
ꢉꢊꢋ ꢉ2ꢊ  
2ꢊ  
ꢊꢋ  
ꢑꢊ ꢏꢋꢋ ꢏ2ꢊ  
ꢉꢊꢋ ꢉ2ꢊ  
2ꢊ  
ꢊꢋ  
ꢎꢊ ꢒꢋꢋ ꢒ2ꢊ  
ꢊ.ꢏ  
ꢎ.ꢏ  
2
2.ꢏ  
TꢀMꢁꢀꢂꢃTꢄꢂꢀ ꢅꢆꢇꢈ  
TꢀMꢁꢀꢂꢃTꢄꢂꢀ ꢅꢆꢇꢈ  
Lꢀꢁꢂ ꢃꢁꢄꢁꢃꢅTꢁꢆꢃꢇ ꢈnFꢉ  
2882 ꢐꢋꢏ  
2882 ꢓꢋ2  
2882 ꢛꢊꢖ  
Receiver Input Threshold  
vs Temperature  
V
CC Supply Current vs Data Rate  
Driver Slew Rate  
(Dual Transceiver)  
vs Load Capacitance  
ꢒ.ꢋ  
2.ꢊ  
2.ꢋ  
ꢓ.ꢊ  
ꢓ.ꢋ  
ꢋ.ꢊ  
ꢏꢐꢊ  
ꢏ2ꢊ  
ꢏꢊꢊ  
8ꢊ  
ꢑꢊ  
ꢕꢊ  
ꢒꢊ  
ꢔꢊ  
ꢖꢊ  
2ꢊ  
ꢓꢊ  
ꢕ.ꢕꢋ ꢌ ꢔ ꢏnF  
L
ꢔꢕꢁꢄT ꢌꢔꢑꢌ  
ꢕ.ꢕꢋ ꢌ ꢔ 2ꢓꢊꢇF  
L
ꢔꢕꢁꢄT Lꢎꢖ  
FꢁLLꢅꢆꢗ  
ꢍꢅꢋꢅꢆꢗ  
ꢑꢊ  
ꢓ.ꢊꢋ ꢌ ꢔ ꢏnF  
L
ꢐꢊ  
ꢓ.ꢊꢋ ꢌ ꢔ 2ꢓꢊꢇF  
L
2ꢊ  
ꢉꢊꢋ ꢉ2ꢊ  
2ꢊ  
ꢊꢋ  
ꢗꢊ ꢓꢋꢋ ꢓ2ꢊ  
2ꢊꢊ  
ꢐꢊꢊ  
ꢑꢊꢊ  
8ꢊꢊ  
ꢏꢊꢊꢊ  
2
TꢀMꢁꢀꢂꢃTꢄꢂꢀ ꢅꢆꢇꢈ  
ꢀꢁTꢁ ꢂꢁTꢃ ꢄꢅꢆꢇꢈꢉ  
Lꢀꢁꢂ ꢃꢁꢄꢁꢃꢅTꢁꢆꢃꢇ ꢈnFꢉ  
2882 ꢑꢋꢊ  
2882 ꢒꢊꢐ  
2882 ꢗꢊꢕ  
Driver Disabled Leakage Current  
vs Temperature at 15V  
Driver Short-Circuit Current  
vs Temperature  
Receiver Output Voltage  
vs Load Current  
ꢊꢋ  
ꢒꢊ  
ꢒꢋ  
ꢔꢊ  
ꢔꢋ  
2ꢊ  
2ꢋ  
ꢓꢊ  
ꢓꢋ  
ꢏꢋꢋꢋ  
ꢏꢋꢋ  
ꢏꢋ  
2
ꢓ ꢏꢊꢑ  
TꢒꢄT  
ꢔ ꢑ.ꢑꢌ  
L
L
L
ꢔ ꢒ.ꢒꢌ  
ꢔ ꢏ.ꢎ2ꢌ  
ꢌꢐꢑꢗꢐꢑꢖ  
ꢌꢎꢄꢂꢇꢐꢑꢖ  
ꢋ.ꢏ  
ꢋ.ꢋꢏ  
ꢋ.ꢋꢋꢏ  
ꢉꢊꢋ ꢉ2ꢊ  
2ꢊ  
ꢊꢋ  
ꢕꢊ ꢓꢋꢋ ꢓ2ꢊ  
ꢉꢊꢋ ꢉ2ꢊ  
2ꢊ  
ꢊꢋ  
ꢐꢊ ꢏꢋꢋ ꢏ2ꢊ  
2
8
ꢏꢊ  
TꢀMꢁꢀꢂꢃTꢄꢂꢀ ꢅꢆꢇꢈ  
TꢀMꢁꢀꢂꢃTꢄꢂꢀ ꢅꢆꢇꢈ  
Lꢀꢁꢂ ꢃꢄꢅꢅꢆꢇTꢈmꢁꢉ  
2882 ꢖꢋꢕ  
2882 ꢍꢋ8  
2882 ꢍꢊꢓ  
2882fh  
6
For more information www.linear.com/LTM2882  
LTM2882  
TA = 25°C, LTM2882-3 VCC = 3.3V, LTM2882-5  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCC = 5V, VL = 3.3V, and GND = GND2 = 0V, ON = VL unless otherwise noted.  
Logic Input Threshold  
vs VL Supply Voltage  
VCC2 Output Voltage  
vs Load Current  
ꢏ.ꢐ  
ꢏ.ꢋ  
2.ꢐ  
2.ꢋ  
ꢑ.ꢐ  
ꢑ.ꢋ  
ꢋ.ꢐ  
ꢍ.2  
ꢍ.ꢒ  
ꢍ.ꢊ  
ꢎ.ꢑ  
ꢎ.8  
ꢎ.ꢐ  
ꢎ.ꢏ  
ꢎ.ꢍ  
ꢃꢃ  
ꢃꢃ  
ꢔ ꢓ.ꢊꢋ Tꢀ ꢓ.ꢏ ꢕ LTM2882ꢖꢓ  
ꢔ ꢎ.ꢍꢋ Tꢀ ꢍ.ꢍ ꢕ LTM2882ꢖꢍ  
5.5V  
ꢔꢕꢃꢂT ꢌꢔꢇꢌ  
ꢔꢕꢃꢂT Lꢅꢖ  
5.0V  
3.3V  
ꢓ.ꢊꢋ  
3.6V  
4.5V  
2
ꢍꢊ  
ꢒꢊꢊ  
ꢒꢍꢊ  
2ꢊꢊ  
2ꢍꢊ  
ꢓꢊꢊ  
ꢁꢂꢃꢃLLTꢇꢈ ꢉꢀꢊ  
Lꢀꢁꢂ ꢃꢄꢅꢅꢆꢇT ꢈmꢁꢉ  
L
2882 ꢇꢑꢋ  
2882 ꢌꢒꢒ  
Driver Outputs Exiting Shutdown  
Driver Outputs Enable/Disable  
ꢈꢊ  
TꢀꢈꢉT  
ꢄꢌ ꢍ ꢄꢈꢉ ꢏ  
2ꢄ/ꢂꢃꢄ  
ꢅꢄ/ꢂꢃꢄ  
ꢂꢋ  
ꢍ ꢆ  
ꢅꢊ  
L
ꢇꢆ/ꢄꢅꢆ  
TꢆꢇꢈT  
T2ꢈꢉT  
TꢀꢈꢉT  
ꢄꢌ ꢍ ꢆ  
T2ꢇꢈT  
ꢎꢎ2  
T2ꢈꢉT  
2882 ꢋꢀ2  
2882 ꢉꢆꢊ  
ꢀꢁꢁꢂꢃ/ꢄꢅꢆ  
2ꢀꢁ/ꢂꢃꢄ  
Operating Through 35kV/µs  
Common Mode Transients  
Tꢆꢄꢇ  
TꢆꢉꢊT ꢔ ꢈꢆꢄꢇ  
ꢈꢆꢉꢊT  
2ꢅ/ꢃꢄꢅ  
2ꢅ/ꢃꢄꢅ  
ꢀꢁꢁꢅ/ꢃꢄꢅ  
2882 ꢒꢆꢓ  
ꢀꢁnꢂ/ꢃꢄꢅ  
ꢋ MꢊLTꢄꢌLꢍ ꢎꢏꢍꢍꢌꢎ ꢉF  
ꢐꢉMMꢉꢇ Mꢉꢃꢍ TꢈꢑꢇꢎꢄꢍꢇTꢎ  
2882fh  
7
For more information www.linear.com/LTM2882  
LTM2882  
TA = 25°C, LTM2882-3 VCC = 3.3V, LTM2882-5  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCC = 5V, VL = 3.3V, and GND = GND2 = 0V, ON = VL unless otherwise noted.  
VCC2 Surplus Current  
vs Temperature  
V
CC2 Power Efficiency  
ꢎꢋꢋ  
2ꢊꢋ  
2ꢋꢋ  
ꢏꢊꢋ  
ꢏꢋꢋ  
ꢊꢋ  
ꢑꢊ  
ꢒꢊ  
ꢔꢊ  
ꢕꢊ  
ꢓꢊ  
2ꢊ  
ꢖꢊ  
ꢖ.2  
ꢖ.ꢊ  
LTM2882ꢘꢔ  
ꢕ ꢊ.ꢋꢌ  
ꢇꢇ  
LTM2882ꢜꢊ  
ꢊ.8  
LTM2882ꢘꢓ  
ꢊ.ꢒ  
ꢊ.ꢕ  
ꢊ.2  
ꢕ ꢎ.ꢎꢌ  
LTM2882ꢜꢎ  
ꢇꢇ  
TꢏꢒꢄT ꢃꢍꢓ T2ꢒꢄT  
ꢔꢃꢄꢓ ꢕ ꢏꢋꢋꢖꢗꢘꢙ  
ꢕ ꢎꢖꢚ ꢇ ꢕ 2.ꢊnF  
L
ꢇꢇ2  
L
ꢕ ꢛ.8ꢌ  
T
ꢙ 2ꢔꢚꢃ  
ꢉꢊꢋ ꢉ2ꢊ  
2ꢊ  
ꢊꢋ  
ꢑꢊ ꢏꢋꢋ ꢏ2ꢊ  
ꢔꢊ  
ꢖꢊꢊ  
ꢖꢔꢊ  
2ꢊꢊ  
2ꢔꢊ  
ꢓꢊꢊ  
TꢀMꢁꢀꢂꢃTꢄꢂꢀ ꢅꢆꢇꢈ  
Lꢀꢁꢂ ꢃꢄꢅꢅꢆꢇT ꢈmꢁꢉ  
2882 ꢐꢏꢊ  
2882 ꢗꢖꢒ  
VCC2 Load Step Response  
VCC2 Ripple and Noise  
2ꢁꢁmꢆ/ꢄꢅꢆ  
ꢇꢁmꢈ/ꢄꢅꢆ  
ꢀꢁꢁmꢆ/ꢄꢅꢆ  
Tꢀꢅꢉ ꢊ 2ꢋꢁꢌꢍꢎꢃ  
Tꢀꢏꢐ ꢑ T2ꢏꢐ ꢑ ꢒ ꢊ ꢓꢌ  
L
2882 ꢇꢀꢈ  
2882 ꢉꢀ8  
ꢀꢁꢂꢃ/ꢄꢅꢆ  
ꢀꢁꢁꢂꢃ/ꢄꢅꢆ  
2882fh  
8
For more information www.linear.com/LTM2882  
LTM2882  
TEST CIRCUITS  
V
L
TIN  
½V  
L
0V  
TOUT  
t
t
PHLD  
PLHD  
C
TIN  
R
L
V
L
OHD  
3V  
TOUT  
0V  
–3V  
V
OLD  
t , t ≤ 40ns  
f
t
t
r
THL  
TLH  
2882 F01  
Figure 1. Driver Slew Rate and Timing Measurement  
V
CC2  
0V  
DE  
TOUT  
TOUT  
½V  
CC2  
t
t
PHZD  
PZHD  
V
OHD  
0 OR V  
TOUT  
L
5V  
V
V
– 0.5V  
– 0.5V  
OHD  
OLD  
C
R
L
L
0V  
0V  
t
t
PLZD  
DE  
PZLD  
t , t ≤ 40ns  
r
f
–5V  
V
OLD  
2882 F02  
Figure 2. Driver Enable/Disable Times  
3V  
RIN  
1.5V  
ROUT  
–3V  
t
t
PLHR  
PHLR  
C
RIN  
t , t ≤ 40ns  
L
V
OH  
10%  
90%  
10%  
ROUT  
½V  
L
r
f
90%  
V
OL  
t
FR  
t
RR  
2882 F03  
Figure 3. Receiver Timing Measurement  
L
ꢂꢃꢄ  
ꢎꢏ  
L
ꢀꢏ  
ꢂꢅꢆT  
t
t
ꢈꢉLL  
ꢈLꢉL  
ꢂꢃꢄ  
L
ꢅꢉ  
ꢍꢀꢌ  
ꢋꢀꢌ  
ꢋꢀꢌ  
ꢍꢀꢌ  
ꢂꢅꢆT  
ꢎꢏ  
ꢇꢇ2  
ꢅL  
t
ꢊL  
t
FL  
2882 Fꢀꢁ  
Figure 4. Auxiliary Channel Timing Measurement  
2882fh  
9
For more information www.linear.com/LTM2882  
LTM2882  
PIN FUNCTIONS  
LOGIC SIDE  
ISOLATED SIDE  
R2OUT (Pin A1): Channel 2 RS232 Inverting Receiver  
Output. Controlled through isolation barrier from receiver  
input R2IN. Under the condition of an isolation communi-  
cation failure R2OUT is in a high impedance state.  
GND2 (Pins K1-K7): Isolated Side Circuit Ground. These  
pads should be connected to the isolated ground and/or  
cable shield.  
V
(PinsK8,L7-L8):IsolatedSupplyVoltageOutput.In-  
CC2  
T2IN (Pin A2): Channel 2 RS232 Inverting Driver Input.  
A logic low on this input generates a high on isolated  
output T2OUT. A logic high on this input generates a low  
on isolated output T2OUT. Do not float.  
ternallygeneratedfromV byanisolatedDC/DCconverter  
CC  
and regulated to 5V. Supply voltage for pins R1IN, R2IN,  
DE, and DOUT. Internally bypassed to GND2 with 2.2µF.  
R2IN (Pin L1): Channel 2 RS232 Inverting Receiver Input.  
A low on isolated input R2IN generates a logic high on  
R2OUT. A high on isolated input R2IN generates a logic  
low on R2OUT. Impedance is nominally 5kΩ in receive  
mode or unpowered.  
R1OUT (Pin A3): Channel 1 RS232 Inverting Receiver  
Output. Controlled through isolation barrier from receiver  
input R1IN. Under the condition of an isolation communi-  
cation failure R1OUT is in a high impedance state.  
T1IN (Pin A4): Channel 1 RS232 Inverting Driver Input.  
A logic low on this input generates a high on isolated  
output T1OUT. A logic high on this input generates a low  
on isolated output T1OUT. Do not float.  
T2OUT (Pin L2): Channel 2 RS232 Inverting Driver  
Output. Controlled through isolation barrier from driver  
input T2IN. ꢀigh impedance when the driver is disabled  
(DE pin is low).  
DIN (Pin A5): General Purpose Non-Inverting Logic Input.  
A logic high on DIN generates a logic high on isolated  
output DOUT. A logic low on DIN generates a logic low  
on isolated output DOUT. Do not float.  
R1IN (Pin L3): Channel 1 RS232 Inverting Receiver Input.  
A low on isolated input R1IN generates a logic high on  
R1OUT. A high on isolated input R1IN generates a logic  
low on R1OUT. Impedance is nominally 5kΩ in receive  
mode or unpowered.  
ON(PinA6):Enable. Enablespoweranddatacommunica-  
tion through the isolation barrier. If ON is high the part is  
enabled and power and communications are functional to  
the isolated side. If ON is low the logic side is held in reset  
and the isolated side is unpowered. Do not float.  
T1OUT (Pin L4): Channel 1 RS232 Inverting Driver  
Output. Controlled through isolation barrier from driver  
input T1IN. ꢀigh impedance when the driver is disabled  
(DE pin is low).  
V (PinA7):LogicSupply.Interfacesupplyvoltageforpins  
DOUT (Pin L5): General Purpose Non-Inverting Logic  
Output. Logic output connected through isolation barrier  
to DIN.  
L
DIN,R2OUT,T2IN,R1OUT,T1IN,andON.Operatingvoltage  
is 1.62V to 5.5V. Internally bypassed to GND with 2.2µF.  
V
(Pins A8, B7-B8): Supply Voltage. Operating volt-  
DE (Pin L6): Driver Output Enable. A low input forces  
both RS232 driver outputs, T1OUTand T2OUT, into a high  
impedance state. A high input enables both RS232 driver  
outputs. Do not float.  
CC  
age is 3.0V to 3.6V for LTM2882-3, and 4.5V to 5.5V for  
LTM2882-5. Internally bypassed to GND with 2.2µF.  
GND (Pins B1-B6): Circuit Ground.  
2882fh  
10  
For more information www.linear.com/LTM2882  
LTM2882  
BLOCK DIAGRAM  
ꢐꢃ  
ꢋꢇꢅ  
ꢄꢄ2  
ꢄꢄ  
2.2ꢂF  
2.2ꢂF  
ꢅꢆꢁ2  
ꢁꢇ  
L
2.2ꢂF  
ꢅꢆꢁ  
ꢁꢈꢉT  
ꢁꢁ  
ꢁꢄ/ꢁꢄ  
ꢄꢈꢆꢃꢇꢋTꢇꢋ  
ꢇꢇ  
ꢈꢆ  
ꢁꢌꢆ  
ꢁꢁ  
TꢊꢈꢉT  
ꢋꢊꢌꢆ  
Tꢊꢌꢆ  
ꢋꢊꢈꢉT  
T2ꢌꢆ  
ꢌꢍꢈLꢎTꢇꢁ  
ꢄꢈMMꢉꢆꢌꢏ  
ꢄꢎTꢌꢈꢆꢍ  
ꢌꢍꢈLꢎTꢇꢁ  
ꢄꢈMMꢉꢆꢌꢏ  
ꢄꢎTꢌꢈꢆꢍ  
ꢇꢇ  
ꢐꢑ  
ꢐꢑ  
ꢌꢆTꢇꢋFꢎꢄꢇ  
ꢌꢆTꢇꢋFꢎꢄꢇ  
ꢁꢁ  
T2ꢈꢉT  
ꢋ2ꢌꢆ  
ꢇꢇ  
ꢋ2ꢈꢉT  
2882 ꢀꢁ  
2882fh  
11  
For more information www.linear.com/LTM2882  
LTM2882  
APPLICATIONS INFORMATION  
Overview  
ꢏ.ꢀꢌ Tꢂ ꢏ.ꢎꢌ LTM2882ꢐꢏ  
ꢑ.ꢁꢌ Tꢂ ꢁ.ꢁꢌ LTM2882ꢐꢁ  
ꢊꢃꢋ ꢌꢂLTꢍꢉ FꢇꢂM  
ꢆ.ꢎ2ꢌ Tꢂ ꢁ.ꢁꢌ  
TheLTM2882µModuletransceiverprovidesagalvanically-  
isolatedrobustRS232interface,poweredbyanintegrated,  
regulated DC/DC converter, complete with decoupling  
capacitors. The LTM2882 is ideal for use in networks  
where grounds can take on different voltages. Isolation in  
the LTM2882 blocks high voltage differences, eliminates  
ground loops and is extremely tolerant of common mode  
transients between grounds. Error-free operation is main-  
tained through common mode events greater than 30kV/  
μs providing excellent noise isolation.  
ꢓꢓ  
LTM2882  
L
ꢓꢓ2  
ꢄꢉ  
ꢂꢃ  
ꢄꢅꢃ  
ꢄꢂꢈT  
TꢆꢂꢈT  
ꢇꢆꢅꢃ  
Tꢆꢅꢃ  
ꢉꢒTꢉꢇꢃꢊL  
ꢄꢉꢌꢅꢓꢉ  
ꢇꢆꢂꢈT  
T2ꢅꢃ  
T2ꢂꢈT  
ꢇ2ꢅꢃ  
ꢇ2ꢂꢈT  
ꢍꢃꢄ  
ꢍꢃꢄ2  
µModule Technology  
2882 Fꢀꢁ  
The LTM2882 utilizes isolator µModule technology to  
translate signals and power across an isolation barrier.  
Signalsoneithersideofthebarrierareencodedintopulses  
and translated across the isolation boundary using core-  
less transformers formed in the µModule substrate. This  
system, complete with data refresh, error checking, safe  
shutdown on fail, and extremely high common mode im-  
munity, provides a robust solution for bidirectional signal  
isolation. The µModule technology provides the means  
to combine the isolated signaling with our advanced dual  
RS232transceiverandpowerfulisolatedDC/DCconverter  
in one small package.  
Figure 5. VCC and VL Are Independent  
The internal power solution is sufficient to support the  
transceiver interface at its maximum specified load and  
data rate, and has the capacity to provide additional 5V  
power on the isolated side V  
and GND2 pins. V and  
CC2  
CC  
V
are each bypassed internally with 2.2µF ceramic  
CC2  
capacitors.  
V Logic Supply  
L
A separate logic supply pin V allows the LTM2882 to in-  
L
terface with any logic signal from 1.62V to 5.5V as shown  
DC/DC Converter  
in Figure 5. Simply connect the desired logic supply to V .  
L
The LTM2882 contains a fully integrated isolated DC/DC  
converter, including the transformer, so that no external  
components are necessary. The logic side contains a full-  
bridge driver, running at about 2Mꢀz, and is AC-coupled  
to a single transformer primary. A series DC blocking  
capacitor prevents transformer saturation due to driver  
duty cycle imbalance. The transformer scales the primary  
voltage, and is rectified by a full-wave voltage doubler.  
This topology eliminates transformer saturation caused  
by secondary imbalances.  
There is no interdependency between V and V ; they  
CC  
L
may simultaneously operate at any voltage within their  
specified operating ranges and sequence in any order. V  
is bypassed internally by a 2.2µF capacitor.  
L
Hot Plugging Safely  
Caution must be exercised in applications where power is  
plugged into the LTM2882’s power supplies, V or V ,  
CC  
L
due to the integrated ceramic decoupling capacitors. The  
parasitic cable inductance along with the high Q char-  
acteristics of ceramic capacitors can cause substantial  
ringing which could exceed the maximum voltage ratings  
and damage the LTM2882. Refer to Analog Devices Ap-  
plication Note 88, entitled “Ceramic Input Capacitors Can  
Cause Overvoltage Transients” for a detailed discussion  
and mitigation of this phenomenon.  
TheDC/DCconverterisconnectedtoalowdropoutregulator  
(LDO) to provide a regulated low noise 5V output, V  
.
CC2  
An integrated boost converter generates a 7V V supply  
DD  
andachargepumped–6.3VV supply.V andV power  
EE  
DD  
EE  
the output stage of the RS232 drivers and are regulated  
to levels that guarantee greater than 5V output swing.  
2882fh  
12  
For more information www.linear.com/LTM2882  
LTM2882  
APPLICATIONS INFORMATION  
Channel Timing Uncertainty  
Driver Overvoltage and Overcurrent Protection  
Multiplechannelsaresupportedacrosstheisolationbound-  
ary by encoding and decoding of the inputs and outputs.  
ThetechniqueusedassignsT1IN/R1INthehighestpriority  
such that there is no jitter on the associated output chan-  
nels T1OUT/R1OUT, only delay. This preemptive scheme  
will produce a certain amount of uncertainty on T2IN/  
R2IN to T2OUT/R2OUT and DIN to DOUT. The resulting  
pulse width uncertainty on these low priority channels is  
typically 6ns, but may vary up to about 40ns.  
The driver outputs are protected from short-circuits to  
any voltage within the absolute maximum range of 15V  
relative to GND2. The maximum current is limited to no  
more than 70mA to maintain a safe power dissipation and  
prevent damaging the LTM2882.  
Receiver Overvoltage and Open Circuit  
The receiver inputs are protected from common mode  
voltages of 25V relative to GND2.  
Eachreceiverinput hasanominalinput impedanceof 5kΩ  
relative to GND2. An open circuit condition will generate a  
logic high on each receiver’s respective output pin.  
Half-Duplex Operation  
The DE pin serves as a low-latency driver enable for half-  
duplex operation. The DE pin can be easily driven from  
the logic side by using the uncommitted auxiliary digital  
channel, DIN to DOUT. Each driver is enabled and disabled  
in lessthan2µs, while each receiverremains continuously  
active. This mode of operation is illustrated in Figure 6.  
RF, Magnetic Field Immunity  
The LTM2882 has been independently evaluated and has  
successfully passed the RF and magnetic field immunity  
testing requirements per European Standard EN 55024,  
in accordance with the following test standards:  
ꢊ.ꢊꢋ ꢌLTM2882ꢍꢊꢎ  
ꢏꢋ ꢌLTM2882ꢍꢏꢎ  
ꢂꢃ  
LTM2882  
L
ꢐꢐ  
ꢐꢐ2  
ꢄꢉ  
EN 61000-4-3  
EN 61000-4-8  
EN 61000-4-9  
Radiated, Radio-Frequency,  
Electromagnetic Field Immunity  
ꢄꢅꢃ  
ꢄꢂꢈT  
TꢆꢂꢈT  
ꢇꢆꢅꢃ  
T
Power Frequency  
Magnetic Field Immunity  
Tꢆꢅꢃ  
ꢇꢆꢂꢈT  
T2ꢅꢃ  
Pulsed Magnetic Field Immunity  
T2ꢂꢈT  
ꢇ2ꢅꢃ  
Tests were performed using an unshielded test card de-  
signed per the data sheet PCH layout recommendations.  
Specific limits per test are detailed in Table 1.  
ꢇ2ꢂꢈT  
ꢑꢃꢄ  
ꢑꢃꢄ2  
2882 Fꢀꢁ  
Table 1  
Figure 6. Half-Duplex Configuration Using DOUT to Drive DE  
TEST  
FREQUENCY  
80Mꢀz to 1Gꢀz  
1.4Mꢀz to 2Gꢀz  
2Gꢀz to 2.7Gꢀz  
50ꢀz and 60ꢀz  
60ꢀz  
FIELD STRENGTH  
10V/m  
EN 61000-4-3, Annex D  
3V/m  
1V/m  
EN 61000-4-8, Level 4  
EN 61000-4-8, Level 5  
EN 61000-4-9, Level 5  
*Non IEC Method  
30A/m  
100A/m*  
1000A/m  
Pulse  
2882fh  
13  
For more information www.linear.com/LTM2882  
LTM2882  
APPLICATIONS INFORMATION  
PCB Layout  
antennastructurewhichcanradiatedifferentialvoltages  
formed between GND and GND2. If ground planes are  
used it is recommended to minimize their area, and  
use contiguous planes as any openings or splits can  
exacerbate RF emissions.  
The high integration of the LTM2882 makes PCH layout  
very simple. ꢀowever, to optimize its electrical isolation  
characteristics, EMI, and thermal performance, some  
layout considerations are necessary.  
• For large ground planes a small capacitance (≤ 330pF)  
from GND to GND2, either discrete or embedded within  
the substrate, provides a low impedance current return  
path for the module parasitic capacitance, minimizing  
anyhighfrequencydifferentialvoltagesandsubstantially  
reducing radiated emissions. Discrete capacitance will  
notbeaseffectiveduetoparasiticESL.Inaddition,volt-  
age rating, leakage, and clearance must be considered  
for component selection. Embedding the capacitance  
withinthePCHsubstrateprovidesanearidealcapacitor  
and eliminates component selection issues; however,  
the PCH must be 4 layers. Care must be exercised in  
applying either technique to insure the voltage rating  
of the barrier is not compromised.  
• Under heavily loaded conditions V and GND current  
CC  
can exceed 300mA. Sufficient copper must be used  
on the PCH to insure resistive losses do not cause the  
supply voltage to drop below the minimum allowed  
level. Similarly, the V  
and GND2 conductors must  
CC2  
be sized to support any external load current. These  
heavy copper traces will also help to reduce thermal  
stress and improve the thermal conductivity.  
• InputandOutputdecouplingisnotrequired,sincethese  
components are integrated within the package. An ad-  
ditional bulk capacitor with a value of 6.8µF to 22µF is  
recommended. The high ESR of this capacitor reduces  
boardresonancesandminimizesvoltagespikescaused  
by hot plugging of the supply voltage. For EMI sensitive  
applications,anadditionallowESLceramiccapacitorof  
1µF to 4.7µF, placed as close to the power and ground  
terminalsaspossible, isrecommended. Alternatively, a  
numberofsmallervalueparallelcapacitorsmaybeused  
to reduce ESL and achieve the same net capacitance.  
The PCH layout in Figures 7a to 7e show the low EMI  
demo board for the LTM2882. The demo board uses a  
combination of EMI mitigation techniques, including both  
embedded PCH bridge capacitance and discrete GND to  
GND2 capacitors. Two safety rated type Y2 capacitors  
are used in series, manufactured by Murata, part number  
GA342QR7GF471KW01L. The embedded capacitor ef-  
fectively suppresses emissions above 400Mꢀz, whereas  
the discrete capacitors are more effective below 400Mꢀz.  
• Do not place copper on the PCH between the inner col-  
umnsofpads. Thisareamustremainopentowithstand  
the rated isolation voltage.  
• The use of solid ground planes for GND and GND2  
is recommended for non-EMI critical applications to  
optimize signal fidelity, thermal performance, and to  
minimize RF emissions due to uncoupled PCH trace  
conduction. The drawback of using ground planes,  
where EMI is of concern, is the creation of a dipole  
EMI performance is shown in Figure 8, measured using  
a Gigahertz Transverse Electromagnetic (GTEM) cell and  
method detailed in IEC 61000-4-20, “Testing and Mea-  
surement Techniques – Emission and Immunity Testing  
in Transverse Electromagnetic Waveguides.”  
2882fh  
14  
For more information www.linear.com/LTM2882  
LTM2882  
APPLICATIONS INFORMATION  
TECHNOLOGY  
Figure 7a. Low EMI Demo Board Layout  
Figure 7b. Low EMI Demo Board Layout (DC1747A), Top Layer  
Figure 7c. Low EMI Demo Board Layout (DC1747A), Inner Layer 1  
2882fh  
15  
For more information www.linear.com/LTM2882  
LTM2882  
APPLICATIONS INFORMATION  
Figure 7d. Low EMI Demo Board Layout (DC1747A), Inner Layer 2  
Figure 7e. Low EMI Demo Board Layout (DC1747A), Bottom Layer  
ꢐꢋ  
ꢘꢁTꢁꢅTꢙꢀ ꢚ ꢂꢛaꢜiꢝeaꢞ  
ꢚ ꢕ2ꢋꢞꢈꢉ  
ꢚ ꢓꢋꢋꢞꢈꢉ  
ꢍꢟ  
ꢍꢟ  
ꢑꢋ  
ꢒꢋ  
ꢠꢟꢁꢁꢝ TꢡMꢁ ꢚ ꢕꢖꢜec  
ꢓꢋ  
2ꢋ  
ꢕꢋ  
ꢔꢕꢋ  
ꢔ2ꢋ  
ꢔꢓꢋ  
ꢘꢅꢕꢖꢒꢖꢢꢣꢢ  
ꢘꢅꢕꢖꢒꢖꢢꢣꢍ  
ꢅꢡꢠꢝꢀ 22 ꢅLꢢꢠꢠ 8 LꢡMꢡT  
ꢕꢋꢋ 2ꢋꢋ ꢓꢋꢋ ꢒꢋꢋ ꢑꢋꢋ ꢐꢋꢋ ꢖꢋꢋ 8ꢋꢋ ꢗꢋꢋꢋꢋ  
Fꢀꢁꢂꢃꢁꢄꢅꢆ ꢇMꢈꢉꢊ  
2882 Fꢋ8  
Figure 8. Low EMI Demo Board Emissions  
2882fh  
16  
For more information www.linear.com/LTM2882  
LTM2882  
TYPICAL APPLICATIONS  
ꢊ.ꢊꢋ ꢌLTM2882ꢍꢊꢎ  
ꢏꢋ ꢌLTM2882ꢍꢏꢎ  
ꢐꢐ  
LTM2882  
L
ꢂꢃ  
ꢄꢉ  
ꢄꢅꢃ  
ꢄꢂꢈT  
T
Tꢆꢅꢃ  
TꢆꢂꢈT  
ꢇꢆꢅꢃ  
ꢊ.ꢊꢒ  
ꢊ.ꢊꢒ  
ꢇꢆꢂꢈT  
T2ꢅꢃ  
T2ꢂꢈT  
ꢇ2ꢅꢃ  
ꢇ2ꢂꢈT  
ꢑꢃꢄ  
ꢑꢃꢄ2  
2882 Fꢀꢁ  
Figure 9. Single Line Dual Half-Duplex  
Isolated Transceiver  
ꢉ.ꢉꢊ ꢋLTM2882ꢌꢉꢍ  
ꢎꢊ ꢋLTM2882ꢌꢎꢍ  
L
ꢏꢏ  
LTM2882  
ꢂꢃ  
ꢄꢈ  
ꢄꢅꢃ  
ꢄꢂꢇT  
Tꢀꢅꢃ  
TꢀꢂꢇT  
ꢆꢀꢅꢃ  
ꢆꢀꢂꢇT  
T2ꢅꢃ  
ꢉꢔ  
L
T2ꢂꢇT  
ꢆ2ꢅꢃ  
ꢆ2ꢂꢇT  
DATA RATE  
(kbps)  
C
(nF)  
ꢐꢃꢄ  
ꢐꢃꢄ2  
L
2882 Fꢀꢁ  
ꢀꢁꢁ  
2ꢎꢁ  
2
ꢀꢁꢁꢁ  
ꢁ.ꢎ  
Figure 10. Driving Larger Capacitive Loads  
2882fh  
17  
For more information www.linear.com/LTM2882  
LTM2882  
TYPICAL APPLICATIONS  
ꢍ.ꢍꢊ ꢎLTM2882ꢏꢍꢐ  
ꢑꢊ ꢎLTM2882ꢏꢑꢐ  
ꢋ.ꢋꢈ ꢌLTM2882ꢍꢋꢎ  
ꢏꢈ ꢌLTM2882ꢍꢏꢎ  
ꢀ.8ꢊ  
ꢏꢈ  
ꢅꢇꢊꢆLꢐTꢇꢃ  
ꢁꢂ  
ꢋꢋ  
ꢁꢂ  
ꢉꢉ  
ꢉꢉ2  
LTM2882  
LTM2882  
ꢀꢏꢑmꢐ ꢌLTM2882ꢍꢏꢎ  
ꢀꢑꢑmꢐ ꢌLTM2882ꢍꢋꢎ  
L
L
ꢁFF ꢁꢂ  
ꢃꢇ  
ꢃꢇ  
ꢃꢄꢂ  
ꢃꢁꢆT  
ꢃꢄꢂ  
ꢃꢁꢆT  
Tꢀꢄꢂ  
TꢀꢁꢆT  
ꢅꢀꢄꢂ  
Tꢀꢄꢂ  
TꢀꢁꢆT  
ꢅꢀꢄꢂ  
ꢈꢉ  
ꢅꢀꢁꢆT  
T2ꢄꢂ  
ꢅꢀꢁꢆT  
T2ꢄꢂ  
T2ꢁꢆT  
ꢅ2ꢄꢂ  
T2ꢁꢆT  
ꢅ2ꢄꢂ  
ꢅ2ꢁꢆT  
ꢅ2ꢁꢆT  
ꢌꢂꢃ  
ꢌꢂꢃ2  
ꢊꢂꢃ  
ꢊꢂꢃ2  
2882 Fꢀꢀ  
2882 Fꢀ2  
Figure 11. 1.8V Microprocessor Interface  
Figure 12. Isolated 5V Power Supply  
ꢍꢉ  
ꢁ.ꢁꢉ ꢊLTM2882ꢋꢁꢌ  
ꢍꢉ ꢊLTM2882ꢋꢍꢌ  
ꢆꢈꢎꢇLꢏTꢈꢄ  
ꢓꢓ  
ꢓꢓ2  
LTM2882  
L
ꢂꢃ  
ꢄꢈ  
ꢄꢅꢃ  
ꢄꢂꢇT  
ꢂFF ꢂꢃ  
Tꢀꢅꢃ  
TꢀꢂꢇT  
ꢆꢀꢅꢃ  
ꢐꢉ  
ꢑꢒꢅTꢓꢔꢈꢄ  
ꢆꢀꢂꢇT  
T2ꢅꢃ  
T2ꢂꢇT  
ꢆ2ꢅꢃ  
ꢕꢖ.ꢁꢉ  
ꢑꢒꢅTꢓꢔꢈꢄ  
ꢆ2ꢂꢇT  
ꢎꢃꢄ  
ꢎꢃꢄ2  
2882 Fꢀꢁ  
ꢆꢈTꢇꢆꢃ  
Figure 13. Isolated Multirail Power Supply  
with Switched Outputs  
2882fh  
18  
For more information www.linear.com/LTM2882  
LTM2882  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTM2882#packaging for the most recent package drawings.  
/ / ꢧ ꢧ ꢧ  
ꢎ . ꢎ ꢎ ꢏ  
ꢕ . ꢅ ꢡ ꢏ  
ꢅ . ꢑ ꢔ ꢏ  
ꢔ . ꢥ ꢕ ꢏ  
ꢔ . ꢥ ꢕ ꢏ  
ꢔ . ꢔ ꢔ ꢔ  
ꢅ . ꢑ ꢔ ꢏ  
ꢕ . ꢅ ꢡ ꢏ  
ꢎ . ꢎ ꢎ ꢏ  
a a a  
2882fh  
19  
For more information www.linear.com/LTM2882  
LTM2882  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTM2882#packaging for the most recent package drawings.  
ꢟ ꢟ ꢟ  
ꢎ . ꢎ ꢎ ꢏ  
ꢘ . ꢅ ꢧ ꢏ  
ꢅ . ꢑ ꢝ ꢏ  
ꢝ . ꢕ ꢘ ꢏ  
ꢝ . ꢕ ꢘ ꢏ  
ꢅ . ꢑ ꢝ ꢏ  
ꢘ . ꢅ ꢧ ꢏ  
ꢎ . ꢎ ꢎ ꢏ  
a a a  
2882fh  
20  
For more information www.linear.com/LTM2882  
LTM2882  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
3/10  
Changes to Features  
1
2, 15  
2
Add HGA Package to Pin Configuration, Order Information and Package Description Sections  
Changes to LGA Package in Pin Configuration Section  
Update to Pin Functions  
9
Update to RF, Magnetic Field Immunity Section  
“PCH Layout Isolation Considerations” Section Replaced  
ꢀ-Grade parts added. Reflected throughout the data sheet.  
12  
13  
H
C
D
E
3/11  
1/12  
1-20  
MP-Grade parts added. Reflected throughout the data sheet.  
1-24  
2
11/12 Storage temperature range updated.  
5/14  
Removed ꢀ-grade and MP-grade parts throughout the data sheet.  
Reduced Maximum Internal Operating Temperature and Storage Temperature Range.  
Added CTI and DTI parameters.  
1-22  
2
5
3
F
9/14  
4/16  
Revised Output Supply Short-Circuit Current (I  
Added CSA information  
)
CC2  
G
1
3
Revised I (LTM2882-5) limit  
CC  
2/18  
ꢀ-Grade parts added. Reflected throughout the data sheet.  
1-22  
2882fh  
Information furnished by Analog Devices is believed to be accurate and reliable. ꢀowever, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
subject to change without notice. No licenseis grantedbyimplication orotherwiseunder anypatent or patent rights of Analog Devices.  
21  
LTM2882  
TYPICAL APPLICATIONS  
ꢔ.ꢔꢎ ꢕLTM2882ꢖꢔꢗ  
ꢘꢎ ꢕLTM2882ꢖꢘꢗ  
ꢌ.ꢌꢉ ꢍLTM2882ꢎꢌꢏ  
ꢁꢉ ꢍLTM2882ꢎꢁꢏ  
ꢀ.ꢐ2ꢉ Tꢂ ꢁ.ꢁꢉ  
ꢂFF ꢂꢃ  
L
ꢊꢊ  
ꢂꢃ  
ꢊꢊ  
LTM2882  
LTM2882  
L
ꢊꢊ2  
ꢄꢈ  
ꢉꢊ  
ꢋꢈꢆꢅꢋꢌꢈꢆꢍL  
ꢂꢃ  
ꢄꢈ  
ꢄꢅꢃ  
ꢄꢂꢇT  
ꢄꢅꢃ  
ꢄꢂꢇT  
TꢀꢂꢇT  
ꢆꢀꢅꢃ  
Tꢀꢅꢃ  
TꢀꢂꢇT  
ꢆꢀꢅꢃ  
Tꢀꢅꢃ  
T ꢄ  
ꢆꢀꢂꢇT  
T2ꢅꢃ  
ꢆ2ꢂꢇT  
T2ꢅꢃ  
ꢌꢉ Tꢂ 2ꢁꢉ  
ꢌꢉ Tꢂ 2ꢁꢉ  
L
L
ꢆ ꢄ  
T
ꢔꢉ  
ꢔꢉ  
ꢕ2ꢁꢉ Tꢂ ꢔꢉ  
ꢕ2ꢁꢉ Tꢂ ꢔꢉ  
T2ꢂꢇT  
ꢆ2ꢅꢃ  
T2ꢂꢇT  
ꢆ2ꢅꢃ  
ꢆTꢐ  
ꢊTꢐ  
ꢆ2ꢂꢇT  
ꢆ2ꢂꢇT  
ꢋꢃꢄ  
ꢋꢃꢄ2  
ꢓꢃꢄ  
ꢓꢃꢄ2  
2882 Fꢀꢁ  
2882 Fꢀꢁ  
Figure 14. Isolated RS232 Interface with Handshaking  
Figure 15. Isolated Dual Inverting Level Translator  
ꢎ.ꢎꢉ ꢔLTM2882ꢕꢎꢖ  
ꢗꢉ ꢔLTM2882ꢕꢗꢖ  
ꢀꢏ  
ꢌꢉ  
ꢂꢃ  
ꢊꢊ  
LTM2882  
L
ꢊꢊ2  
ꢄꢈ  
ꢄꢅꢃ  
ꢄꢂꢇT  
TꢀꢂꢇT  
ꢆꢀꢅꢃ  
ꢆꢈꢍꢈT  
Tꢀꢅꢃ  
ꢚꢛMꢘ  
ꢚꢛMꢙ  
Lꢂꢋꢅꢊ  
LꢈꢉꢈL  
FꢈTꢍ  
ꢆꢀꢂꢇT  
T2ꢅꢃ  
FꢘꢇLT  
T2ꢂꢇT  
ꢆ2ꢅꢃ  
ꢆ2ꢂꢇT  
ꢅꢆLMLꢁꢐꢑ2  
ꢅꢆLML2ꢐꢑ2  
ꢋꢃꢄ  
ꢋꢃꢄ2  
ꢊMꢚT2ꢎꢁꢞꢕLTꢉ  
ꢀꢏ  
ꢎꢏ  
ꢎꢏ  
ꢐꢒꢑꢓF  
ꢐꢒꢓF  
ꢅLꢅM  
ꢜ ꢑ.ꢁ/Mꢘꢝ ꢊꢇꢆꢆꢈꢃT  
2882 Fꢀꢁ  
Figure 16. Isolated Gate Drive with Overcurrent Detection  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
20Mbps, 15kV ꢀHM ESD, 2500V  
LTM2881  
Isolated RS485/RS422 µModule Transceiver with  
Low EMI Integrated DC/DC Converter  
Isolation with 1W Power  
RMS  
LTC2870/LTC2871 RS232/RS485 Multiprotocol Transceivers with  
Integrated Termination  
20Mbps RS485 and 500kbps RS232, 26kV ESD, 3V to 5V Operation  
LTC2804  
LTC1535  
LTM2883  
1Mbps RS232 Transceiver  
Isolated RS485 Transceiver  
Dual Channel, Full-Duplex, 10kV ꢀHM ESD  
2500 V  
2500 V  
Isolation with External Transformer Driver  
Isolation with Power in HGA Package  
RMS  
2
SPI/Digital or I C Isolated µModule with Adjustable  
RMS  
5V and 12V Rails  
2
LTM2892  
SPI/Digital or I C Isolated µModule  
3500 V  
Isolation, 6 Channels  
RMS  
2882fh  
LT 0218 REV H • PRINTED IN USA  
www.linear.com/LTM2882  
22  
ANALOG DEVICES, INC. 2010  

相关型号:

LTM2882IY-5-PBF

Dual Isolated RS232 μModule Transceiver + Power
Linear

LTM2882_10

Dual Isolated RS232 μModule Transceiver Power
Linear

LTM2883

SPI/Digital or I2C μModule Isolator with Adjustable ±12.5V and 5V Regulated Power
Linear

LTM2883CY-3I#PBF

LTM2883 - SPI/Digital or I<sup>2</sup>C &#181;Module Isolator with Adjustable ±12.5V and 5V Regulated Power; Package: BGA; Pins: 32; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTM2883CY-3S#PBF

LTM2883 - SPI/Digital or I<sup>2</sup>C &#181;Module Isolator with Adjustable ±12.5V and 5V Regulated Power; Package: BGA; Pins: 32; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTM2883CY-5S#PBF

LTM2883 - SPI/Digital or I<sup>2</sup>C &#181;Module Isolator with Adjustable ±12.5V and 5V Regulated Power; Package: BGA; Pins: 32; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTM2883HY-3S#PBF

LTM2883 - SPI/Digital or I<sup>2</sup>C &#181;Module Isolator with Adjustable ±12.5V and 5V Regulated Power; Package: BGA; Pins: 32; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTM2883IY-3I#PBF

LTM2883 - SPI/Digital or I<sup>2</sup>C &#181;Module Isolator with Adjustable ±12.5V and 5V Regulated Power; Package: BGA; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM2883IY-3S#PBF

LTM2883 - SPI/Digital or I<sup>2</sup>C &#181;Module Isolator with Adjustable ±12.5V and 5V Regulated Power; Package: BGA; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM2883IY-5I#PBF

LTM2883 - SPI/Digital or I<sup>2</sup>C &#181;Module Isolator with Adjustable ±12.5V and 5V Regulated Power; Package: BGA; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM2883_1211

SPI/Digital or I2C μModule Isolator with Adjustable ±12.5V and 5V Regulated Power
Linear

LTM2886CY-3I#PBF

LTM2886 - SPI/Digital or I<sup>2</sup>C &#181;Module Isolator with Fixed ±5V and Adjustable 5V Regulated Power; Package: BGA; Pins: 32; Temperature Range: 0&deg;C to 70&deg;C
Linear