LTM4604A [Linear]

Low Voltage, 4A DC/DC μModule with Tracking; 低电压, 4A DC / DC微型模块与跟踪
LTM4604A
型号: LTM4604A
厂家: Linear    Linear
描述:

Low Voltage, 4A DC/DC μModule with Tracking
低电压, 4A DC / DC微型模块与跟踪

文件: 总20页 (文件大小:358K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4604A  
Low Voltage, 4A DC/DC  
µModule with Tracking  
FEATURES  
DESCRIPTION  
The LTM®4604A is a complete 4A switch mode DC/DC  
power supply with 1.75% total output voltage error.  
Includedinthepackagearetheswitchingcontroller,power  
FETs,inductorandallsupportcomponents.Operatingover  
an input voltage range of 2.375V to 5.5V, the LTM4604A  
supports an output voltage range of 0.8V to 5V, set by a  
single resistor. This high efficiency design delivers up to  
4A continuous current (5A peak). Only bulk output capaci-  
tors are needed to complete the design.  
Complete Standalone Power Supply  
1.75% Total DC Output Error (–40°C to 125°C)  
Wide Input Voltage Range: 2.375V to 5.5V  
4A DC, 5A Peak Output Current  
0.8V to 5V Output  
Output Voltage Tracking  
UltraFastTM Transient Response  
Power Good Indicator  
Current Mode Control  
Current Foldback Protection, Parallel/Current Sharing  
Up to 95% Efficiency  
Programmable Soft-Start  
Micropower Shutdown: I ≤ 7μA  
Overtemperature Protection  
The 0.630mm LGA pads with 1.27mm pitch simplify  
PCB layout by providing standard trace routing and via  
placement. (The LTM4604A has smaller pads than the  
LTM4604.) The low profile package (2.3mm) enables  
utilization of unused space on the bottom of PC boards  
for high density point of load regulation. High switching  
frequency and a current mode architecture enable a very  
fast transient response to line and load changes without  
sacrificing stability.  
Q
Small and Very Low Profile Package:  
15mm × 9mm × 2.3mm LGA (0.630mm Pads)  
APPLICATIONS  
Telecom and Networking Equipment  
Fault protection features include foldback current protec-  
tion, thermal shutdown and a programmable soft-start  
function. The LTM4604A is offered in a small thermally  
enhanced 15mm × 9mm × 2.3mm LGA package and is  
Pb free and RoHS compliant.  
Servers  
Storage Cards  
ATCA Cards  
Industrial Equipment  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
μModule and UltraFast are trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Efficiency vs Output Current  
100  
3.3V to 2.5V/4A μModule™ Regulator  
V
V
= 3.3V  
IN  
OUT  
= 2.5V  
95  
90  
V
IN  
3.3V  
10μF  
6.3V  
85  
80  
75  
V
IN  
V
2.5V  
4A  
OUT  
PGOOD  
LTM4604A  
COMP  
V
OUT  
22μF  
6.3V  
FB  
V
IN  
RUN/SS TRACK  
GND  
×2  
70  
65  
2.37k  
4604A TA01a  
1
2
4
0
3
OUTPUT CURRENT (A)  
4604A TA01b  
4604af  
1
LTM4604A  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
V , PGOOD ................................................. –0.3V to 6V  
IN  
TOP VIEW  
TRACK  
COMP, RUN/SS, FB, TRACK..........................–0.3V to V  
PGOOD  
IN  
A
B
C
D
E
F
G
SW, V ........................................–0.3V to (V + 0.3V)  
OUT  
IN  
V
IN  
Internal Operating Temperature Range  
COMP  
FB  
1
2
RUN/  
SS  
(Note 2) ............................................. –40°C to 125°C  
Storage Temperature Range................... –55°C to 125°C  
SW  
3
GND  
4
5
6
7
8
9
10  
11  
GND  
V
OUT  
LGA PACKAGE  
66-PIN (15mm × 9mm × 2.3mm) 0.630mm PAD  
T
JMAX  
= 125°C, θ = 25°C/W, θ = 7°C/W, θ = 50°C/W, WEIGHT = 1.0g  
JA  
JP  
JC  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM4604AEV#PBF  
LTM4604AIV#PBF  
TRAY  
PART MARKING*  
LTM4604AV  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE (NOTE 2)  
–40°C to 125°C  
LTM4604AEV#PBF  
LTM4604AIV#PBF  
66-Lead (15mm × 9mm × 2.3mm) LGA  
66-Lead (15mm × 9mm × 2.3mm) LGA  
LTM4604AV  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping  
container.Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C. VIN = 5V unless otherwise noted. See Figure 15.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
V
Input DC Voltage  
Output Voltage, Total  
Variation with Line and Load  
2.375  
1.482  
1.474  
5.5  
1.518  
1.522  
V
V
V
IN(DC)  
R
= 5.69k  
1.5  
1.5  
OUT(DC)  
FB  
V
= 2.375V to 5.5V, I  
= 0A  
= 0A to 4A (Note 3)  
IN  
OUT  
Input Specifications  
V
Undervoltage Lockout  
Threshold  
Peak Input Inrush Current at  
Start-Up  
I
I
1.75  
2
2.3  
V
IN(UVLO)  
OUT  
OUT  
I
= 0A, C = 10μF, C  
= 22μF ×3,  
= 1.5V  
INRUSH(VIN)  
IN  
OUT  
RUN/SS = 0.01μF, V  
OUT  
V
V
= 3.3V  
= 5V  
0.7  
0.7  
A
A
IN  
IN  
I
Input Supply Bias Current  
V
= 3.3V, No Switching  
60  
28  
100  
35  
7
μA  
mA  
μA  
mA  
μA  
Q(VIN NOLOAD)  
IN  
IN  
IN  
IN  
V
V
V
= 3.3V, V  
= 1.5V, Switching Continuous  
OUT  
= 5V, No Switching  
= 5V, V = 1.5V, Switching Continuous  
OUT  
Shutdown, RUN = 0, V = 5V  
IN  
4604af  
2
LTM4604A  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C. VIN = 5V unless otherwise noted. See Figure 15.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
I
Input Supply Current  
V
V
V
= 2.5V, V  
= 3.3V, V  
= 1.5V, I  
= 1.5V, I  
= 4A  
= 4A  
2.9  
2.2  
1.45  
A
A
A
S(VIN)  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
= 5V, V  
= 1.5V, I  
= 4A  
OUT  
OUT  
Output Specifications  
I
Output Continuous Current  
Range (Note 3)  
Line Regulation Accuracy  
V
V
= 3.3V, V = 1.5V  
OUT  
4
A
OUT(DC)  
IN  
ΔV  
= 1.5V, V from 2.375V to 5.5V, I  
= 0A  
0.1  
0.2  
%
OUT(LINE)  
OUT  
IN  
OUT  
V
OUT  
ΔV  
Load Regulation Accuracy  
V
= 1.5V, 0A to 4A (Note 3)  
= 3.3V  
= 5V  
OUT(LOAD)  
OUT  
V
V
0.3  
0.3  
0.6  
0.6  
%
%
IN  
IN  
V
OUT  
V
Output Ripple Voltage  
I
I
= 0A  
OUT(AC)  
OUT  
V
V
= 3.3V, V  
= 1.5V  
10  
12  
1.25  
mV  
mV  
MHz  
IN  
IN  
OUT  
P-P  
P-P  
= 5V, V  
= 4A, V = 5V, V = 1.5V  
OUT  
= 1.5V  
OUT  
f
Output Ripple Voltage  
Frequency  
S
OUT  
IN  
ΔV  
Turn-On Overshoot  
V
= 1.5V, RUN/SS = 10nF,  
OUT(START)  
OUT  
OUT  
IN  
IN  
I
= 0A  
V
V
= 3.3V  
= 5V  
20  
20  
mV  
mV  
t
Turn-on Time  
V
= 1.5V, I  
= 1A Resistive Load, TRACK = V  
OUT IN  
START  
OUT  
and RUN/SS = Float  
V
V
= 3.3V  
= 5V  
1.5  
1.0  
ms  
ms  
IN  
IN  
ΔV  
Peak Deviation for Dynamic  
Load Step  
Load: 0% to 50% to 0% of Full Load,  
= 22μF ×3 Ceramic  
IN  
OUT(LS)  
C
OUT  
V
= 5V, V  
= 1.5V  
OUT  
25  
10  
8
8
mV  
μs  
A
A
t
I
Settling Time for Dynamic  
Load Step  
Output Current Limit  
Load: 0% to 50% to 0% of Full Load  
IN  
SETTLE  
OUT(PK)  
V
= 5V, V  
= 1.5V  
OUT  
V
V
= 3.3V, V  
= 1.5V  
IN  
IN  
OUT  
= 5V, V  
= 1.5V  
= 1.5V  
OUT  
OUT  
Control Section  
V
Voltage at FB Pin  
I
= 0A, V  
0.793  
0.788  
0.8  
0.8  
0.807  
0.808  
V
V
FB  
OUT  
I
V
I
V
V
R
0.2  
0.65  
0.2  
μA  
V
μA  
mV  
V
FB  
RUN Pin On/Off Threshold  
TRACK Pin Current  
Offset Voltage  
0.5  
0.8  
RUN  
TRACK  
TRACK = 0.4V  
30  
TRACK(OFFSET)  
TRACK(RANGE)  
FBHI  
Tracking Input Range  
0
0.8  
5.025  
Resistor Between V  
FB Pins  
and  
4.975  
4.99  
kΩ  
OUT  
PGOOD  
ΔV  
R
PGOOD Range  
PGOOD Resistance  
7.5  
90  
%
Ω
PGOOD  
PGOOD  
Open-Drain Pull-Down  
150  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM4604AE is guaranteed to meet performance specifications  
over the 0°C to 125°C internal operating temperature range. Specifications  
over the full –40°C to 125°C internal operating temperature range are assured  
by design, characterization and correlation with statistical process controls.  
The LTM4604AI is guaranteed to meet specifications over the full internal  
operating temperature range. Note that the maximum ambient temperature  
is determined by specific operating conditions in conjunction with board  
layout, the rated package thermal resistance and other environmental factors.  
Note 3: See output current derating curves for different V , V  
and T .  
A
IN OUT  
4604af  
3
LTM4604A  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs Output Current  
VIN = 2.5V  
Efficiency vs Output Current  
VIN = 3.3V  
Efficiency vs Output Current  
VIN = 5V  
95  
90  
100  
95  
100  
95  
90  
90  
85  
80  
85  
80  
75  
85  
80  
75  
70  
65  
V
V
V
V
V
V
= 3.3V  
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
= 0.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
75  
70  
65  
V
V
V
V
V
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
= 0.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
V
= 1.8V  
= 1.5V  
= 1.2V  
= 0.8V  
OUT  
OUT  
OUT  
OUT  
V
70  
65  
V
V
0
1
2
3
4
1
2
4
1
2
4
0
3
0
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4604A G03  
4604A G02  
4604A G01  
Minimum Input Voltage  
at 4A Load  
Load Transient Response  
Load Transient Response  
3.5  
3.0  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= 3.3V  
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
= 0.8V  
I
I
LOAD  
LOAD  
2.5  
2A/DIV  
2A/DIV  
V
OUT  
2.0  
1.5  
1.0  
0.5  
V
OUT  
20mV/DIV  
20mV/DIV  
4604A G06  
V
V
C
= 5V  
20μs/DIV  
IN  
4604A G05  
V
V
C
= 5V  
20μs/DIV  
IN  
= 1.5V  
OUT  
OUT  
= 1.2V  
OUT  
OUT  
= 4 × 22μF, 6.3V CERAMICS  
= 4 × 22μF, 6.3V CERAMICS  
0
0
1.5  
2.5  
2
3
3.5  
4 4.5  
5 5.5  
0.5  
1
V
IN  
(V)  
4604A G04  
Load Transient Response  
Load Transient Response  
Load Transient Response  
I
I
LOAD  
LOAD  
2A/DIV  
2A/DIV  
I
LOAD  
2A/DIV  
V
OUT  
V
V
OUT  
20mV/DIV  
OUT  
20mV/DIV  
20mV/DIV  
4604A G07  
4604A G09  
4604A G08  
V
V
C
= 5V  
20µs/DIV  
V
V
C
= 5V  
OUT  
OUT  
20µs/DIV  
= 2 × 22µF, 6.3V CERAMICS  
V
V
C
= 5V  
20µs/DIV  
IN  
IN  
IN  
= 1.8V  
= 3.3V  
= 2.5V  
OUT  
OUT  
OUT  
OUT  
= 3 × 22µF, 6.3V CERAMICS  
= 3 × 22µF, 6.3V CERAMICS  
4604af  
4
LTM4604A  
TYPICAL PERFORMANCE CHARACTERISTICS  
Start-Up  
Start-Up  
V
V
OUT  
OUT  
1V/DIV  
1V/DIV  
I
IN  
I
IN  
1A/DIV  
1A/DIV  
4604A G10  
4604A G11  
V
V
C
= 5V  
200µs/DIV  
V
V
C
= 5V  
200μs/DIV  
IN  
IN  
= 2.5V  
= 2.5V  
OUT  
OUT  
OUT  
OUT  
= 4 × 22µF  
= 4 × 22μF  
NO LOAD  
4A LOAD  
(0.01µF SOFT-START CAPACITOR)  
(0.01μF SOFT-START CAPACITOR)  
VFB vs Temperature  
Current Limit Foldback  
806  
804  
1.6  
1.4  
1.2  
1.0  
802  
800  
0.8  
0.6  
798  
796  
794  
V
OUT  
= 1.5V  
0.4  
0.2  
0
V
V
V
= 5V  
= 3.3V  
= 2.5V  
IN  
IN  
IN  
4
5
7
3
8
–50 –25  
0
25  
50  
75  
100 125  
6
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
4604A G12  
4604A G15  
Short-Circuit Protection  
1.5V Short, No Load  
Short-Circuit Protection  
1.5V Short, 4A Load  
V
V
OUT  
0.5V/DIV  
OUT  
0.5V/DIV  
I
I
IN  
IN  
1A/DIV  
4A/DIV  
4604A G13  
4604A G14  
20μs/DIV  
100μs/DIV  
4604af  
5
LTM4604A  
PIN FUNCTIONS  
V
(B1, C1, C3-C7, D7, E6 and E7): Power Input Pins.  
with an additional resistor between FB and GND pins.  
Two power modules can current share when this pin is  
connected in parallel with the adjacent module’s FB pin.  
See Applications Information section.  
IN  
Apply input voltage between these pins and GND pins.  
Recommendplacinginputdecouplingcapacitancedirectly  
between V pins and GND pins.  
IN  
V
(D8-D11, E8-E11, F6-F11, G6-G11): Power Output  
COMP(G1):CurrentControlThresholdandErrorAmplifier  
Compensation Point. The current comparator threshold  
increases with this control voltage. Two power modules  
can current share when this pin is connected in parallel  
with the adjacent module’s COMP pin.  
OUT  
Pins. Apply output load between these pins and GND  
pins. Recommend placing output decoupling capaci-  
tance directly between these pins and GND pins. Review  
Table 4.  
GND (G3-G5, F3-F5, E4-E5, A1-A11, B6-B11, C8-C11):  
PGOOD(F1):Output Voltage Power Good Indicator. Open-  
drain logic output that is pulled to ground when the output  
voltage is not within 7.5% of the regulation point.  
Power Ground Pins for Both Input and Output Returns.  
TRACK(E1):Output Voltage Tracking Pin. When the module  
is configured as a master output, then a soft-start capaci-  
tor is placed on the RUN/SS pin to ground to control the  
masterramprate. Slaveoperationisperformedbyputting  
a resistor divider from the master output to ground, and  
connecting the center point of the divider to this pin on  
the slave regulator. If tracking is not desired, then connect  
RUN/SS (D1): Run Control and Soft-Start Pin. A voltage  
above 0.8V will turn on the module, and below 0.5V will  
turn off the module. This pin has a 1M resistor to V and  
IN  
a 1000pF capacitor to GND. See Application Information  
section for soft-start information. The shut down pin  
should be pull low with a falling edge of ≤ 1μs to ensure  
the device does not transition slowly through the internal  
under voltage lockout threshold.  
the TRACK pin to V . Load current must be present for  
IN  
tracking. See Applications Information section.  
FB (G2): The Negative Input of the Error Amplifier. Inter-  
SW (B3 and B4): Switching Node of the circuit is used for  
testing purposes. This can be connected to copper on the  
board to improve thermal performance. Make sure not to  
connect it to other output pins.  
nally, this pin is connected to V  
with a 4.99k precision  
OUT  
resistor. Different output voltages can be programmed  
4604af  
6
LTM4604A  
BLOCK DIAGRAM  
PGOOD  
V
V
IN  
V
IN  
2.375V TO 5.5V  
10μF  
6.3V  
×2  
10μF  
6.3V  
R
SS  
RUN/SS  
1M  
C
SS  
C
SSEXT  
1000pF  
M1  
M2  
TRACK  
COMP  
OUT  
L
V
1.5V  
4A  
OUT  
4.99k  
CONTROL,  
DRIVE  
TRACK  
SUPPLY  
22μF  
6.3V  
×3  
R1  
4.99k  
C2  
470pF  
10μF  
6.3V  
5.76k  
INTERNAL  
COMP  
GND  
4604A BD  
FB  
SW  
R
FB  
5.76k  
Figure 1. Simplified LTM4604A Block Diagram  
DECOUPLING REQUIREMENTS T = 25°C. Use Figure 1 Configuration.  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
External Input Capacitor Requirement  
IN  
I
= 4A  
10  
μF  
IN  
OUT  
(V = 2.375V to 5.5V, V  
= 1.5V)  
OUT  
C
External Output Capacitor Requirement  
(V = 2.375V to 5.5V, V = 1.5V)  
I
= 4A  
22  
100  
μF  
OUT  
OUT  
IN  
OUT  
4604af  
7
LTM4604A  
OPERATION  
Power Module Description  
drainPGOODoutputlowiftheoutputfeedbackvoltageexits  
a 7.5%windowaroundtheregulationpoint.Furthermore,  
in an overvoltage condition, internal top FET M1 is turned  
off and bottom FET M2 is turned on and held on until the  
overvoltage condition clears.  
The LTM4604A is a standalone non-isolated switch mode  
DC/DC power supply. It can deliver up to 4A of DC output  
current with few external input and output capacitors.  
This module provides a precise regulated output voltage  
programmable via one external resistor from 0.8V DC to  
5.0V DC over a 2.375V to 5.5V input voltage. A typical  
application schematic is shown in Figure 15.  
PullingtheRUNpinbelow0.5Vforcesthecontrollerintoits  
shutdown state, turning off both M1 and M2. At low load  
current, the module works in continuous current mode by  
default to achieve minimum output voltage ripple.  
The LTM4604A has an integrated constant frequency  
current mode regulator with built-in power MOSFETs with  
fast switching speed. The typical switching frequency is  
1.25MHz.Withcurrentmodecontrolandinternalfeedback  
loop compensation, the LTM4604A module has sufficient  
stability margins and good transient performance under a  
widerangeofoperatingconditionsandwithawiderangeof  
output capacitors, even all ceramic output capacitors.  
The TRACK pin is used for power supply tracking. See the  
Applications Information section.  
The LTM4604A is internally compensated to be stable  
over a wide operating range. Table 4 provides a guideline  
for input and output capacitance for several operating  
conditions. An excel loop analysis tool is provided for  
transient and stability analysis.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limit. In addition, foldback current limiting is provided  
The FB pin is used to program the output voltage with a  
single resistor connected to ground.  
in an overcurrent condition while V  
drops. Internal  
OUT  
overvoltage and undervoltage comparators pull the open-  
4604af  
8
LTM4604A  
APPLICATIONS INFORMATION  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
A typical LTM4604A application circuit is shown in  
Figure 15. External component selection is primarily  
determined by the maximum load current and output  
voltage. Refer to Table 4 for specific external capacitor  
requirements for a particular application.  
IOUT(MAX)  
ICIN(RMS)  
=
• D • 1– D  
(
)
η%  
In the above equation, η% is the estimated efficiency of  
the power module. The bulk capacitor can be a switcher-  
rated electrolytic aluminum capacitor, OS-CON capacitor  
for bulk input capacitance due to high inductance traces  
or leads. If a low inductance plane is used to power the  
device, then no input capacitance is required. The two  
internal 10μF ceramics are typically rated for 2A to 3A of  
RMS ripple current. The worst-case ripple current for the  
4A maximum current is 2A or less.  
V to V  
Step-Down Ratios  
IN  
OUT  
There are restrictions in the maximum V and V  
down ratio that can be achieved for a given input voltage.  
The LTM4604A is 100% duty cycle, but the V to V  
minimum dropout is a function of the load current. A typi-  
cal 0.5V minimum is sufficient (see Typical Performance  
Characteristics).  
step-  
IN  
OUT  
IN  
OUT  
Output Voltage Programming  
Output Capacitors  
The PWM controller has an internal 0.8V reference volt-  
age. As shown in the Block Diagram, a 4.99k 0.5% internal  
The LTM4604A is designed for low output voltage ripple.  
The bulk output capacitors defined as C  
with low enough effective series resistance (ESR) to meet  
theoutputvoltagerippleandtransientrequirements.C  
feedback resistor connects the V  
and FB pins together.  
OUT  
are chosen  
OUT  
The output voltage will default to 0.8V with no feedback  
resistor. Adding a resistor R from the FB pin to GND  
FB  
OUT  
programs the output voltage:  
can be a low ESR tantalum capacitor, a low ESR polymer  
capacitor or an X5R/X7R ceramic capacitor. The typical  
output capacitance range is 22μF to 100μF. Additional  
output filtering may be required by the system designer  
if further reduction of output ripple or dynamic transient  
spike is required. Table 4 shows a matrix of different  
output voltages and output capacitors to minimize the  
voltage droop and overshoot during a 2A/μs transient.  
The table optimizes the total equivalent ESR and total bulk  
capacitancetomaximizetransientperformance.TheLinear  
Technology μModule Power Design Tool can be provided  
for further optimization.  
4.99k +RFB  
VOUT = 0.8V •  
RFB  
Table 1. FB Resistor vs Output Voltage  
V
0.8V  
1.2V  
10k  
1.5V  
1.8V  
2.5V  
3.3V  
OUT  
R
Open  
5.76k  
4.02k  
2.37k  
1.62k  
FB  
Input Capacitors  
The LTM4604A module should be connected to a low ac-  
impedance DC source. Two 10μF ceramic capacitors are  
included inside the module. Additional input capacitors  
are only needed if a large load step is required up to a  
full 4A level. An input 47μF bulk capacitor is only needed  
if the input source impedance is compromised by long  
inductive leads or traces.  
Fault Conditions: Current Limit and Overcurrent  
Foldback  
The LTM4604A has current mode control, which inher-  
ently limits the cycle-by-cycle inductor current not only  
in steady-state operation, but also in transient.  
For a buck converter, the switching duty cycle can be  
estimated as:  
To further limit current in the event of an overload condi-  
tion, the LTM4604A provides foldback current limiting as  
the output voltage falls. The LTM4604A device has over-  
temperature shutdown protection that inhibits switching  
VOUT  
D =  
V
IN  
operation around 150°C.  
4604af  
9
LTM4604A  
APPLICATIONS INFORMATION  
Run Enable and Soft-Start  
pin must go beyond 0.8V to ensure the slave output has  
reached its final value. Load current must be present for  
proper tracking.  
The RUN/SS pin provides dual functions of enable and  
soft-start control. The RUN/SS pin is used to control turn  
on of the LTM4604A. While this pin is below 0.5V, the  
LTM4604A will be in a 7μA low quiescent current state.  
A 0.8V threshold will enable the LTM4604A. This pin can  
be used to sequence LTM4604A devices. The soft-start  
V
IN  
5V  
C
10μF  
6.3V  
IN1  
X5R OR X7R  
control is provided by a 1M pull-up resistor (R ) and a  
SS  
V
IN  
V
3.3V  
4A  
MASTER  
1000pF capacitor (C ) as drawn in the Block Diagram.  
SS  
PGOOD  
LTM4604A  
COMP  
V
OUT  
An external capacitor can be applied to the RUN/SS pin  
to increase the soft-start time. A typical value is 0.01μF.  
The approximate equation for soft-start is:  
C
OUT1  
22μF  
FB  
6.3V ×3  
X5R OR  
X7R  
RAMP  
RUN/SS TRACK  
GND  
CONTROL  
R
FB3  
OR V  
C
IN  
1.62k  
SSEXT  
V
IN  
tSOFTSTART = ln  
•R  
CSS +CSSEXT  
SS  
(
)
V – 1.8V  
IN  
V
IN  
5V  
where R and C are shown in the Block Diagram of  
SS  
SS  
C
10μF  
6.3V  
IN2  
Figure 1, 1.8V is the soft-start upper range, and C  
SSEXT  
is the additional capacitance for further soft-start contol.  
The soft-start function can also be used to control the  
output ramp-up time, so that another regulator can be  
easily tracked. An independent ramp control signal can  
be applied to the master ramp, otherwise, connect the  
X5R OR X7R  
V
IN  
V
1.5V  
4A  
SLAVE  
PGOOD  
LTM4604A  
COMP  
V
OUT  
C
OUT2  
22μF  
FB  
6.3V ×3  
X5R OR  
X7R  
RUN/SS TRACK  
GND  
R
TRACK pin to V to disable tracking.  
FB  
IN  
R
FB2  
5.76k  
5.76k  
Output Voltage Tracking  
R
FB1  
4.99k  
4604A F02  
Output voltage tracking can be programmed externally  
using the TRACK pin. The output can be tracked up and  
down with another regulator. The master regulator’s  
output is divided down with an external resistor divider  
that is the same as the slave regulator’s feedback divider  
to implement coincident tracking. The LTM4604A uses a  
very accurate 4.99k resistor for the top feedback resistor.  
Figure 2 shows an example of coincident tracking.  
Figure 2. Dual Outputs (3.3V and 1.5V) with Tracking  
MASTER OUTPUT  
SLAVE OUTPUT  
RFB2  
VTRACK  
=
VMASTER  
4.99k +RFB2  
V
V
is the track ramp applied to the slave’s TRACK pin.  
applies the track reference for the slave output up  
TRACK  
TRACK  
to the point of the programmed value at which V  
proceeds beyond the 0.8V reference value. The V  
TRACK  
TRACK  
TIME  
4604A F03  
Figure 3. Output Voltage Coincident Tracking  
4604af  
10  
LTM4604A  
APPLICATIONS INFORMATION  
Ratio metric modes of tracking can be achieved by select-  
ing different resistor values to change the output tracking  
ratio. The master output must be greater than the slave  
output for the tracking to work. Linear Technology Tracker  
Cad26 can be used to implement different tracking sce-  
narios. The Master and Slave data inputs can be used to  
implement the correct resistor values for coincident or  
ratio tracking. The master and slave regulators require  
load current for tracking down.  
Parallel Operation  
The LTM4604A device is an inherently current mode  
controlled device. Parallel modules will have very good  
current sharing. This will balance the thermals on the  
design.Figure 16showsaschematicoftheparalleldesign.  
The voltage feedback changes with the variable N as more  
modules are paralleled. The equation:  
4.99k  
+RFB  
N
VOUT = 0.8V •  
Power Good  
RFB  
The PGOOD pin is an open-drain pin that can be used to  
monitor valid output voltage regulation. This pin monitors  
a 7.5% window around the regulation point.  
N is the number of paralleled modules.  
Thermal Considerations and Output Current Derating  
COMP Pin  
The power loss curves in Figures 4 and 5 can be used  
in coordination with the load derating curves in Figures  
The pin is the external compensation pin. The module has  
alreadybeeninternallycompensatedforalloutputvoltages.  
Table 4 is provided for most application requirements.  
The Linear Technology μModule Power Design Tool can  
be provided for other control loop optimizations.  
6 through 13 for calculating an approximate θ for the  
JA  
module with and without heat sinking methods with vari-  
ous airflow conditions. Thermal models are derived from  
several temperature measurements at the bench, and are  
correlated with thermal analysis software. Tables 2 and  
3 provide a summary of the equivalent θ for the noted  
JA  
conditions.Theseequivalentθ parametersarecorrelated  
JA  
to the measured values and improve with air flow. The  
maximum junction temperature is monitored while the  
derating curves are derived.  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
5V TO 1.2V  
5V TO 2.5V  
0.4  
0.4  
POWER LOSS  
POWER LOSS  
3.3V TO 1.2V  
POWER LOSS  
3.3V TO 2.5V  
0.2  
0.2  
0
POWER LOSS  
0
0
3
4
5
2
3
4
1
2
0
5
1
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4604A F04  
4604A F05  
Figure 4. 1.2V Power Loss  
Figure 5. 2.5V Power Loss  
4604af  
11  
LTM4604A  
APPLICATIONS INFORMATION  
4.0  
3.5  
3.0  
2.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
0.5  
0
90 95  
70 75 80 85  
100 105 110 115  
90 95  
70 75 80 85  
100 105 110 115  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4606A F06  
4606A F07  
Figure 6. 5VIN to 1.2VOUT No Heat Sink  
Figure 7. 5VIN to 1.2VOUT with Heat Sink  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
1.0  
0LFM  
0LFM  
0.5  
0.5  
200LFM  
200LFM  
400LFM  
400LFM  
0
0
90 95  
100 105 110 115  
90 95  
70 75 80 85  
70 75 80 85  
100 105 110 115  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4606A F09  
4606A F08  
Figure 8. 3.3VIN to 1.2VOUT No Heat Sink  
Figure 9. 3.3VIN to 1.2VOUT with Heat Sink  
4604af  
12  
LTM4604A  
APPLICATIONS INFORMATION  
4.0  
3.5  
3.0  
2.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0LFM  
0LFM  
200LFM  
400LFM  
0.5  
200LFM  
400LFM  
0
90 95  
70 75 80 85  
100 105 110  
90 95  
70 75 80 85  
100 105 110 115  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4606A F10  
4606A F11  
Figure 10. 5VIN to 2.5VOUT No Heat Sink  
Figure 11. 5VIN to 2.5VOUT with Heat Sink  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
1.0  
0LFM  
0LFM  
0.5  
0.5  
200LFM  
200LFM  
400LFM  
400LFM  
0
0
90 95  
100 105 110 115  
90 95  
70 75 80 85  
70 75 80 85  
100 105 110 115  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4606A F13  
4606A F12  
Figure 12. 3.3VIN to 2.5VOUT No Heat Sink  
Figure 13. 3.3VIN to 2.5VOUT with Heat Sink  
4604af  
13  
LTM4604A  
APPLICATIONS INFORMATION  
Table 2. 1.2V Output  
DERATING CURVE  
Figures 6, 8  
Figures 6, 8  
Figures 6, 8  
Figures 7, 9  
Figures 7, 9  
Figures 7, 9  
V
(V)  
POWER LOSS CURVE  
Figure 4  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
25  
IN  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
0
Figure 4  
200  
400  
0
None  
22.5  
21  
Figure 4  
None  
Figure 4  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
21  
Figure 4  
200  
400  
20  
Figure 4  
18  
Table 3. 2.5V Output  
DERATING CURVE  
Figures 10, 12  
V
(V)  
POWER LOSS CURVE  
Figure 5  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
25  
IN  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
0
Figures 10, 12  
Figure 5  
200  
400  
0
None  
21  
Figures 10, 12  
Figure 5  
None  
21  
Figures 11, 13  
Figure 5  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
21  
Figures 11, 13  
Figure 5  
200  
400  
18  
Figures 11, 13  
Figure 5  
16  
Table 4. Output Voltage Response Versus Component Matrix (Refer to Figure 17), 0A to 2A Load Step Typical Measured Values  
C
C
DROOP  
(mV)  
PEAK-TO- RECOVERY LOAD STEP  
R
FB  
IN  
OUT  
(CERAMIC)  
V
(V) (CERAMIC)  
C
(BULK)  
C
V (V)  
IN  
PEAK(mV)  
(μs)  
10  
10  
10  
10  
10  
10  
10  
10  
10  
12  
12  
12  
15  
15  
15  
(A/μs)  
(kΩ)  
OUT  
IN  
COMP  
1.2  
1.2  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
56μF Aluminum 100μF 6.3V  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
2.5  
21  
23  
24  
19  
21  
21  
25  
30  
30  
22  
25  
25  
22  
25  
25  
43  
45  
46  
41  
43  
43  
50  
60  
60  
45  
55  
55  
50  
56  
56  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
10  
56μF Aluminum  
56μF Aluminum  
22μF ×4  
22μF ×4  
3.3  
5
10  
1.2  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
3.3  
3.3  
3.3  
10  
56μF Aluminum 100μF 6.3V  
2.5  
3.3  
5
5.76  
5.76  
5.76  
4.02  
4.02  
4.02  
2.37  
2.37  
2.37  
1.62  
1.62  
1.62  
56μF Aluminum  
56μF Aluminum  
22μF ×4  
22μF ×4  
56μF Aluminum 100μF 6.3V  
2.5  
3.3  
5
56μF Aluminum  
56μF Aluminum  
22μF ×3  
22μF ×3  
56μF Aluminum 100μF 6.3V  
2.5  
3.3  
5
56μF Aluminum  
56μF Aluminum  
22μF ×3  
22μF ×3  
56μF Aluminum 100μF 6.3V  
2.5  
3.3  
5
56μF Aluminum  
56μF Aluminum  
22μF ×3  
22μF ×3  
4604af  
14  
LTM4604A  
APPLICATIONS INFORMATION  
Safety Considerations  
• Place high frequency ceramic input and output capaci-  
tors next to the V , GND and V  
pins to minimize  
IN  
OUT  
The LTM4604A modules do not provide isolation from  
high frequency noise.  
V to V . There is no internal fuse. If required, a slow  
IN  
OUT  
• Place a dedicated power ground layer underneath the  
unit.  
blow fuse with a rating twice the maximum input current  
needs to be provided to protect each unit from catastrophic  
failure.  
• To minimize the via conduction loss and reduce module  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
Layout Checklist/Example  
The high integration of LTM4604A makes the PCB board  
layout very simple and easy. However, to optimize its  
electrical and thermal performance, some layout consid-  
erations are still necessary.  
• Do not put vias directly on the pads unless they are  
capped.  
• SW pads can be soldered to board to improve thermal  
performance.  
• Use large PCB copper areas for high current path,  
Figure 14 gives a good example of the recommended  
layout.  
including V , GND and V . It helps to minimize the  
IN  
OUT  
PCB conduction loss and thermal stress.  
V
IN  
V
OUT  
GND  
2.375V TO 5.5V  
C
10μF  
6.3V  
IN  
C
OUT  
C
OUT  
C
OUT  
X5R OR X7R  
V
IN  
V
1.5V  
4A  
OUT  
OPEN-DRAIN  
PGOOD  
LTM4604A  
COMP  
V
OUT  
PULL UP  
C
OUT  
FB  
22μF ×3  
6.3V  
RUN/SS TRACK  
GND  
X5R OR X7R  
R
FB  
C
SSEXT  
5.69k  
0.01μF  
4604A F15  
Figure 15. Typical 2.375V to 5.5V Input, 1.5V at 4A Design  
V
IN  
C
IN  
GND  
4604A F14  
Figure 14. Recommended PCB Layout  
4604af  
15  
LTM4604A  
TYPICAL APPLICATIONS  
V
IN  
2.375V TO 5V  
C
10μF  
6.3V  
IN1  
X5R OR X7R  
V
= 0.8V × ((4.99k/N) + R )/R  
FB FB  
OUT  
WHERE N IS THE NUMBER OF PARALLEL MODULES  
V
IN  
OPEN-DRAIN PULL UP  
PGOOD  
LTM4604A  
COMP  
V
OUT  
C
OUT1  
22μF ×3  
6.3V  
FB  
X5R OR X7R  
REFER TO  
TABLE 4  
RUN/SS TRACK  
GND  
R
FB  
C
SSEXT  
2.87k  
0.01μF  
V
1.5V  
8A  
OUT  
C
10μF  
6.3V  
IN2  
X5R OR X7R  
V
IN  
PGOOD  
LTM4604A  
COMP  
V
OUT  
C
OUT2  
22μF ×3  
6.3V  
FB  
X5R OR X7R  
REFER TO  
TABLE 4  
RUN/SS TRACK  
GND  
4604A F16  
Figure 16. Two LTM4604As in Parallel, 1.5V at 8A Design  
4604af  
16  
LTM4604A  
TYPICAL APPLICATIONS  
V
IN  
3.3V TO 5V  
C
10μF  
6.3V  
IN  
50k  
X5R OR X7R  
V
IN  
V
2.5V  
4A  
OUT  
OPEN-DRAIN  
PULL UP  
PGOOD  
LTM4604A  
COMP  
V
OUT  
C
OUT  
22μF ×3  
FB  
6.3V  
X5R OR X7R  
REFER TO  
TABLE 4  
RUN/SS TRACK  
GND  
R
FB  
C
SSEXT  
2.37k  
0.01μF  
4604A F17  
Figure 17. 3.3V to 5V Input, 2.5V at 4A Design  
4604af  
17  
LTM4604A  
PACKAGE DESCRIPTION  
LGA Package  
66-Lead (15mm × 9mm × 2.32mm)  
(Reference LTC DWG # 05-08-1820 Rev Ø)  
DETAIL A  
G
2.19 – 2.45  
PAD 1  
F
E
D
C
B
A
aaa  
Z
1
PAD “A1”  
CORNER  
2
4
3
4
5
12.70  
BSC  
6
15.00  
BSC  
MOLD  
SUBSTRATE  
CAP  
7
0.290 – 0.350  
8
1.90 – 2.10  
DETAIL B  
9
10  
11  
0.630 0.025 SQ. 68x  
PADS  
1.27  
BSC  
X
Y
SEE NOTES  
9.00  
BSC  
eee  
S X Y  
7.620  
BSC  
3
DETAIL B  
PACKAGE TOP VIEW  
PACKAGE BOTTOM VIEW  
DETAIL A  
6.350  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994  
5.080  
3.810  
2.540  
1.270  
0.000  
1.270  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3
4
LAND DESIGNATION PER JESD MO-222  
DETAILS OF PAD #1 IDENTIFIER ARE OPTIONAL,  
BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.  
THE PAD #1 IDENTIFIER MAY BE EITHER A MOLD OR  
MARKED FEATURE  
0.315  
0.315  
LTMXXXXXX  
μModule  
5. PRIMARY DATUM -Z- IS SEATING PLANE  
6. THE TOTAL NUMBER OF PADS: 66  
COMPONENT  
PIN “A1”  
2.540  
3.810  
5.080  
6.350  
SYMBOL TOLERANCE  
TRAY PIN 1  
BEVEL  
aaa  
bbb  
eee  
0.15  
0.10  
0.05  
PACKAGE IN TRAY LOADING ORIENTATION  
LGA 66 0108 REV Ø  
SUGGESTED PCB LAYOUT  
TOP VIEW  
4604af  
18  
LTM4604A  
PACKAGE DESCRIPTION  
Pin Assignment Table  
(Arranged by Pin Number)  
PIN NAME  
A1 GND  
A2 GND  
A3 GND  
A4 GND  
A5 GND  
A6 GND  
A7 GND  
A8 GND  
A9 GND  
A10 GND  
A11 GND  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
B1  
B2  
V
C1  
C2  
C3  
C4  
C5  
C6  
C7  
V
V
V
V
V
V
D1 RUN/SS E1 TRACK F1 PGOOD G1 COMP  
IN  
IN  
D2  
D3  
D4  
D5  
D6  
E2  
E3  
F2  
G2 FB  
B3 SW  
B4 SW  
F3 GND  
F4 GND  
F5 GND  
F6 VOUT  
F7 VOUT  
F8 VOUT  
F9 VOUT  
F10 VOUT  
F11 VOUT  
G3 GND  
G4 GND  
G5 GND  
G6 VOUT  
G7 VOUT  
G8 VOUT  
G9 VOUT  
G10 VOUT  
G11 VOUT  
IN  
IN  
IN  
IN  
IN  
E4 GND  
E5 GND  
B5  
B6 GND  
B7 GND  
B8 GND  
B9 GND  
B10 GND  
B11 GND  
E6  
E7  
V
V
IN  
IN  
D7 VIN  
C8 GND  
C9 GND  
C10 GND  
C11 GND  
D8 VOUT  
D9 VOUT  
D10 VOUT  
D11 VOUT  
E8 VOUT  
E9 VOUT  
E10 VOUT  
E11 VOUT  
4604af  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresenta-  
t ion t h a t t he in ter c onne c t ion o f i t s cir cui t s a s de s cr ib e d her ein w ill no t in fr inge on ex is t ing p a ten t r igh t s.  
19  
LTM4604A  
PACKAGE PHOTOGRAPH  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC2900  
Quad Supply Monitor with Adjustable Reset Timer Monitors Four Supplies; Adjustable Reset Timer  
LTC2923  
Power Supply Tracking Controller  
10A DC/DC μModule  
Tracks Both Up and Down; Power Supply Sequencing  
4.5V ≤ V ≤ 28V; 0.6V ≤ V ≤ 5V; 15mm × 15mm × 2.8mm  
LTM4600HV  
IN  
OUT  
LTM4601/LTM4601A 12A DC/DC μModule with PLL, Output Tracking/  
Synchronizable, PolyPhase Operation, LTM4601-1/LTM4601A-1 Version  
has no Remote Sensing  
Margining and Remote Sensing  
LTM4601AHVMP  
12A Military Grade μModule  
4.5V ≤ V ≤ 28V; 0.6V ≤ V  
≤ 5V; 15mm × 15mm × 2.8mm,  
OUT  
IN  
–55°C to 125°C  
LTM4602  
LTM4603  
6A DC/DC μModule  
Pin Compatible with the LTM4600  
6A DC/DC μModule with PLL and Output Tracking/ Synchronizable, PolyPhase Operation, LTM4603-1 Version has  
Margining and Remote Sensing  
5A Buck-Boost μModule  
5A Buck-Boost μModule  
8A Low Voltage μModule  
no Remote Sensing, Pin Compatible with the LTM4601  
LTM4605  
LTM4607  
LTM4608A  
4.5V ≤ V ≤ 20V; 0.8V ≤ V  
≤ 16V; 15mm × 15mm × 2.8mm LGA  
≤ 24V; 15mm × 15mm × 2.8mm LGA  
IN  
OUT  
OUT  
4.5V ≤ V ≤ 36V; 0.8V ≤ V  
IN  
2.4V ≤ V ≤ 5.5V, Parallel for Higher Output Current,  
IN  
9mm × 15mm × 2.8mm LGA  
LTM4616  
LTM8020  
LTM8021  
LTM8022  
LTM8023  
Dual 8A DC/DC μModule  
0.2A DC/DC μModule  
0.5A DC/DC μModule  
1A DC/DC μModule  
2A DC/DC μModule  
Dual 8A or Single 16A; 2.375V ≤ V ≤ 5.5V; 15mm × 15mm × 2.5mm LGA  
IN  
4V ≤ V ≤ 36V; 1.25V ≤ V  
≤ 5V; 6.25mm × 6.25mm × 2.3mm LGA  
≤ 5V; 6.25mm × 11.25mm × 2.8mm LGA  
≤ 10V; 11.25mm × 9mm × 2.8mm LGA  
≤ 10V; 11.25mm × 9mm × 2.8mm LGA  
IN  
OUT  
3.6V ≤ V ≤ 36V; 0.8V ≤ V  
IN  
OUT  
OUT  
OUT  
3.6V ≤ V ≤ 36V; 0.8V ≤ V  
IN  
3.6V ≤ V ≤ 36V; 0.8V ≤ V  
IN  
4604af  
LT 0808 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM4604AEV-PBF

Low Voltage, 4A DC/DC μModule with Tracking
Linear

LTM4604AIV-PBF

Low Voltage, 4A DC/DC μModule with Tracking
Linear

LTM4604EV#PBF

LTM4604 - Low Voltage, 4A DC/DC µModule (Power Module) Regulator with Tracking; Package: LGA; Pins: 66; Temperature Range: -40°C to 85°C
Linear

LTM4604EV-PBF

Low Voltage, 4A DC/DC μModuleTM with Tracking
Linear

LTM4604IV-PBF

Low Voltage, 4A DC/DC μModuleTM with Tracking
Linear

LTM4604V

Low Voltage, 4A DC/DC μModuleTM with Tracking
Linear

LTM4605

High Effi ciency Buck-Boost DC/DC μModule
Linear

LTM4605

High Effi ciency, Synchronous, 4-Switch Buck-Boost Controller
Linear System

LTM4605EV#PBF

LTM4605 - High Efficiency Buck-Boost DC/DC µModule (Power Module) Regulator; Package: LGA; Pins: 141; Temperature Range: -40°C to 85°C
Linear

LTM4605EV-PBF

High Effi ciency Buck-Boost DC/DC μModule
Linear

LTM4605IV#PBF

LTM4605 - High Efficiency Buck-Boost DC/DC µModule (Power Module) Regulator; Package: LGA; Pins: 141; Temperature Range: -40°C to 85°C
Linear

LTM4605IV-PBF

High Effi ciency Buck-Boost DC/DC μModule
Linear