LTM4606V [Linear]

Ultralow EMI 28VIN, 6A DC/DC μModule; 超低EMI 28VIN , 6A DC / DC微型模块
LTM4606V
型号: LTM4606V
厂家: Linear    Linear
描述:

Ultralow EMI 28VIN, 6A DC/DC μModule
超低EMI 28VIN , 6A DC / DC微型模块

文件: 总24页 (文件大小:341K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4606  
Ultralow EMI 28V , 6A  
IN  
DC/DC µModule  
FEATURES  
DESCRIPTION  
The LTM®4606 is a complete ultralow noise high voltage  
6A switching mode DC/DC power supply. Included in the  
packagearetheswitchingcontroller,powerFETs,inductor,  
and all support components. The on-board input filter and  
noisecancellationcircuitsachievelownoiseoperation,thus  
effectivelyreducingtheelectromagneticinterference(EMI).  
Operating over an input voltage range of 4.5V to 28V, the  
LTM4606 supports an output voltage range of 0.6V to 5V,  
set by a single resistor. This high efficiency design deliv-  
ers 6A continuous current (8A peak). Only bulk input and  
output capacitors are needed to finish the design.  
n
Complete Low EMI Switch Mode Power Supply  
n
Wide Input Voltage Range: 4.5V to 28V  
n
6A DC Typical, 8A Peak Output Current  
n
0.6V to 5V Output Voltage Range  
n
Low Input and Output Referred Noise  
n
Output Voltage Tracking and Margining  
n
PLL Frequency Synchronization  
±±.5ꢀ Total DC Error  
Power Good Output  
n
n
n
Current Foldback Protection (Disabled at Start-Up)  
n
Parallel/Current Sharing  
n
Ultrafast Transient Response  
High switching frequency and an adaptive on-time current  
mode architecture enables a very fast transient response  
to line and load changes without sacrificing stability. The  
device supports output voltage tracking and output volt-  
age margining.  
n
Current Mode Control  
n
Up to 93% Efficiency at 5V , 3.3V  
IN  
OUT  
n
n
n
Programmable Soft-Start  
Output Overvoltage Protection  
–55°C to 125°C Operating Temperature Range  
(LTM4606MPV)  
Furthermore, the μModule™ can be synchronized with an  
externalclockforreducingundesirablefrequencyharmonics  
and allows PolyPhase® operation for high load currents.  
n
Small Surface Mount Footprint, Low Profile Package  
(15mm × 15mm × 2.8mm)  
The LTM4606 is offered in a space saving and thermally  
enhanced 15mm × 15mm × 2.8mm LGA package, which  
enables utilization of unused space on the bottom of  
PC boards for high density point of load regulation. The  
LTM4606 is Pb-free and RoHS compliant.  
APPLICATIONS  
n
ASICs or FPGA Transceivers  
n
Telecom, Servers and Networking Equipment  
n
Industrial Equipment  
L, LT, LTC, LTM and PolyPhase are registered trademarks of Linear Technology Corporation.  
μModule is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners.  
n
Rf Equipment  
TYPICAL APPLICATION  
Radiated Emission Scan at ±2VIN,  
2.5VOUT/6A  
Ultralow Noise 2.5V/6A Power Supply with 4.5V to 28V Input  
100  
90  
4.5V TO 28V  
CLOCK SYNC  
V
PLLIN  
80  
IN  
2.5V AT 6A  
V
PGOOD  
RUN  
COMP  
OUT  
70  
LTM4606  
47pF  
FB  
ON/OFF  
C
OUT  
60  
50  
40  
30  
20  
10  
0
V
FB  
R
CISPR.22, CLASS B, 3 METERS  
C
10μF  
35V  
IN  
INTV  
DRV  
CC  
CC  
19.1k  
FCB  
MARG0  
MARG1  
MPGM  
f
MARGIN  
CERAMIC  
x2  
SET  
TRACK/SS  
CONTROL  
CONTROL  
TRACK/SS  
V
D
392k  
5% MARGIN  
10μF  
35V  
SGND PGND  
4606 TA01  
0
100 200 300 400 500 600 700 800 9001000  
FREQUENCY (MHz)  
4606 TA01b  
4606f  
1
LTM4606  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note ±)  
TOP VIEW  
DRV , V  
................................................0.3V to 6V  
CC OUT  
PLLIN, FCB, TRACK/SS, MPGM, MARG0,  
MARG1, PGOOD, RUN ..........–0.3V to INTV + 0.3V  
12  
11  
10  
9
8
7
6
5
4
3
MPGM  
COMP  
CC  
V , f , COMP........................................0.3V to 2.7V  
FB SET  
RUN  
SGND  
V , V .......................................................0.3V to 28V  
IN  
D
TRACK/SS  
V
Internal Operating Temperature Range (Note 2)  
PLLIN  
D
INTV  
CC  
E and I Grades ...................................–40°C to 125°C  
MP Grade...........................................–55°C to 125°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range...................–45°C to 125°C  
2
1
A
B
C
D
E
F
G
H
J
K
V
L
M
V
IN  
PGND  
BANK 2  
OUT  
BANK 3  
BANK 1  
LGA PACKAGE  
133-LEAD (15mm × 15mm × 2.8mm)  
T
= 125°C, θ = 15°C/W, θ = 6°C/W  
JA JC  
JMAX  
θ
JA  
DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS  
WEIGHT = 1.7g  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM4606EV#PBF  
LTM4606IV#PBF  
LTM4606MPV#PBF  
TRAY  
PART MARKING*  
LTM4606V  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
LTM4606EV#PBF  
LTM4606IV#PBF  
LTM4606MPV#PBF  
133-Lead (15mm × 15mm × 2.8mm) LGA  
133-Lead (15mm × 15mm × 2.8mm) LGA  
133-Lead (15mm × 15mm × 2.8mm) LGA  
LTM4606V  
–40°C to 125°C  
LTM4606MPV  
–55°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://linear.com/packaging/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C. VIN = ±2V, unless otherwise noted. Per typical application  
(front page) configuration, RFB = 40.2k.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
4.5  
TYP  
MAX  
28  
UNITS  
l
l
V
IN(DC)  
Input DC Voltage  
V
V
V
Output Voltage, Total Variation with  
Line and Load  
C
IN  
V
IN  
= 10μF x2, C = 200μF; FCB = 0  
OUT  
= 5V to 28V, I  
1.478  
1.5  
1.522  
OUT(DC)  
= 0A to 6A, (Note 4)  
OUT  
Input Specifications  
V
Undervoltage Lockout Threshold  
Input Inrush Current at Start-Up  
I
I
= 0A  
3.2  
4
V
IN(UVLO)  
OUT  
I
= 0A, C = 10μF x2, C  
= 200μF,  
INRUSH(VIN)  
OUT  
IN  
OUT  
V
= 1.5V  
OUT  
V
V
= 5V  
0.6  
0.7  
A
A
IN  
IN  
= 12V  
4606f  
2
LTM4606  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C. VIN = ±2V, unless otherwise noted. Per typical application  
(front page) configuration, RFB = 40.2k.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Input Supply Bias Current  
V
V
V
V
= 5V, No Switching  
1.5  
27  
mA  
mA  
mA  
mA  
μA  
Q(VIN)  
IN  
IN  
IN  
IN  
= 5V, V  
= 1.5V, Switching Continuous  
OUT  
= 12V, No Switching  
= 12V, V = 1.5V, Switching Continuous  
2.5  
25  
OUT  
Shutdown, RUN = 0, V = 12V  
22  
IN  
I
Input Supply Current  
S(VIN)  
V
IN  
V
IN  
= 12V, V  
= 1.5V, I = 6A  
OUT  
0.96  
2.18  
A
A
OUT  
= 5V, V  
= 1.5V, I  
= 6A  
OUT  
OUT  
INTV  
V
= 12V, RUN > 2V  
No Load  
4.7  
0
5
5.3  
V
CC  
IN  
Output Specifications  
I
Output Continuous Current Range  
Line Regulation Accuracy  
V
V
= 12V, V = 1.5V (Note 4)  
OUT  
6
A
OUT(DC)  
IN  
l
l
= 1.5V, FCB = 0V, V = 4.5V to 28V,  
0.05  
0.3  
%
ΔV  
V
OUT  
OUT  
IN  
OUT(LINE)/ OUT  
I
= 0A  
Load Regulation Accuracy  
Input Ripple Voltage  
V
OUT  
V
= 1.5V, FCB = 0V, I  
IN  
= 0A to 6A  
ΔV  
V
OUT  
OUT(LOAD)/ OUT  
= 12V (Note 4)  
0.3  
%
V
V
I
= 0A, C = 10μF X5R Ceramic x3 and  
IN(AC)  
OUT IN  
100μF Electrolytic  
V
V
= 5V, V  
= 1.5V  
= 1.5V  
2
3
mV  
mV  
IN  
IN  
OUT  
OUT  
P-P  
P-P  
= 12V, V  
Output Ripple Voltage  
I
= 0A, C  
= 22μF X5R Ceramic x3 and  
OUT(AC)  
OUT  
OUT  
100μF X5R Ceramic  
V
V
= 5V, V  
= 1.5V  
= 1.5V  
8
11  
mV  
mV  
IN  
IN  
OUT  
OUT  
P-P  
P-P  
= 12V, V  
f
S
Output Ripple Voltage Frequency  
I
= 5A, V = 12V, V = 1.5V  
OUT  
900  
kHz  
OUT  
IN  
Turn-On Overshoot,  
TRACK/SS = 10nF  
C
= 200μF, V  
IN  
IN  
= 1.5V, I  
OUT  
= 0A  
ΔV  
OUT  
V
V
OUT  
OUT(START)  
= 12V  
= 5V  
20  
20  
mV  
mV  
t
Turn-On Time, TRACK/SS = Open  
C
= 200μF; V  
= 1.5V, I  
OUT OUT  
= 1A  
START  
OUT  
Resistive Load  
V
V
= 5V  
0.5  
0.5  
ms  
ms  
IN  
IN  
= 12V  
Peak Deviation for Dynamic Load  
Load: 0% to 50% to 0% of Full Load  
ΔV  
OUT(LS)  
C
= 22μF Ceramic, 470μF x2  
35  
25  
mV  
μs  
OUT  
V
IN  
V
OUT  
= 12V  
= 1.5V  
t
I
Settling Time for Dynamic Load Step Load: 0% to 50% to 0% of Full Load,  
SETTLE  
V
= 12V  
V
= 12V  
IN  
IN  
Output Current Limit  
C
= 200μF  
OUT(PK)  
OUT  
V
V
= 5V, V  
= 1.5V  
OUT  
OUT  
10  
10  
A
A
IN  
IN  
= 12V, V  
= 1.5V  
Control Section  
l
V
V
Voltage at V Pin  
I
= 0A, V = 1.5V  
OUT  
0.594  
1
0.6  
1.5  
0.606  
1.9  
V
V
FB  
FB  
OUT  
RUN Pin On/Off Threshold  
Soft-Start Charging Current  
RUN  
I
V
= 0V  
–1  
–1.5  
–2  
μA  
SS/TRACK  
SS/TRACK  
4606f  
3
LTM4606  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C. VIN = ±2V, unless otherwise noted. Per typical application  
(front page) configuration, RFB = 40.2k.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.6  
–1  
MAX  
0.63  
–2  
UNITS  
V
V
FCB  
Forced Continuous Threshold  
Forced Continuous Pin Current  
Minimum On Time  
0.57  
I
t
t
V
= 0V  
FCB  
μA  
ns  
FCB  
(Note 3)  
(Note 3)  
50  
100  
400  
ON(MIN)  
OFF(MIN)  
Minimum Off Time  
250  
50  
ns  
R
PLLIN  
PLLIN Input Resistor  
kΩ  
mA  
kΩ  
V
I
Current into DRV Pin  
V
OUT  
= 1.5V, I = 1A  
OUT  
15  
25  
DRVCC  
CC  
R
Resistor Between V  
and V Pins  
60.098  
60.4  
5
60.702  
FBHI  
OUT  
FB  
RUN  
Volts From RUN to GND Maximum  
5.1V Zener Clamp  
MAX  
Margin Section  
MPGM  
Margin Reference Voltage Sets a  
Current  
1.18  
1.4  
V
V
MARG0, MARG1  
Voltage Thresholds  
PGOOD  
PGOOD Upper Threshold  
PGOOD Lower Threshold  
PGOOD Hysteresis  
V
V
V
Rising  
7
10  
–10  
1.5  
13  
%
%
%
V
ΔV  
FB  
FBH  
Falling  
–7  
–13  
ΔV  
FB  
FBL  
Returning  
ΔV  
FB  
FB(HYS)  
V
PGOOD Low Voltage  
I
= 5mA  
0.15  
0.4  
PGL  
PGOOD  
Note ±: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM4606E is guaranteed to meet performance specifications  
over the 0°C to 125°C internal operating temperature range. Specifications  
over the –40°C to 125°C internal operating temperature range are assured  
by design, characterization and correlation with statistical process  
controls. The LTM4606I is guaranteed to meet specifications over the  
–40°C to 125°C internal operating temperature range. The LTM4606MP  
is guaranteed and tested over the –55°C to 125°C internal operating  
temperature range. Note that the maximum ambient temperature is  
determined by specific operating conditions in conjunction with board  
layout, the rated package thermal resistance and other environmental  
factors.  
Note 3: 100% tested at die level only.  
Note 4: See output current derating curves for different V , V  
and T .  
A
IN OUT  
4606f  
4
LTM4606  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs Load Current with  
5VIN (FCB = 0)  
Efficiency vs Load Current with  
±2VIN (FCB = 0)  
Efficiency vs Load Current with  
24VIN (FCB = 0)  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
0.6V  
1.2V  
1.8V  
2.5V  
3.3V  
1.2V  
1.5V  
2.5V  
3.3V  
5V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
2.5V  
3.3V  
5V  
OUT  
OUT  
OUT  
OUT  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4606 G01  
4606 G02  
4606 G03  
±.2V Transient Response  
±.5V Transient Response  
±.8V Transient Response  
I
I
I
OUT  
2A/DIV  
OUT  
OUT  
2A/DIV  
2A/DIV  
V
V
V
OUT  
50mV/DIV  
OUT  
OUT  
50mV/DIV  
50mV/DIV  
4606 G04  
4606 G05  
4606 G06  
50μs/DIV  
50μs/DIV  
50μs/DIV  
1.2V AT 3.5A/μs LOAD STEP  
1.5V AT 3.5A/μs LOAD STEP  
1.8V AT 3.5A/μs LOAD STEP  
C
= 2x 22μF, 10V CERAMIC  
1x 100μF, 6.3V CERAMIC  
C
= 2x 22μF, 10V CERAMIC  
1x 100μF, 6.3V CERAMIC  
C
= 2x 22μF, 10V CERAMIC  
1x 100μF, 6.3V CERAMIC  
OUT  
OUT  
OUT  
2.5V Transient Response  
3.3V Transient Response  
–55°C, Start-Up, IOUT = 0A  
V
OUT  
I
I
0.5V/DIV  
OUT  
OUT  
2A/DIV  
2A/DIV  
V
V
OUT  
100mV/DIV  
OUT  
I
IN  
50mV/DIV  
0.5A/DIV  
4606 G07  
4606 G08  
4606 G16  
1ms/DIV  
50μs/DIV  
50μs/DIV  
V
V
C
= 12V  
IN  
OUT  
OUT  
= 1.5V  
2.5V AT 3.5A/μs LOAD STEP  
3.3V AT 3.5A/μs LOAD STEP  
= 2x 22μF, 10V CERAMIC  
1x 100μF, 6.3V CERAMIC  
SOFT-START = 3.9nF  
C
OUT  
= 2x 22μF, 10V CERAMIC  
1x 100μF, 6.3V CERAMIC  
C
= 2x 22μF, 10V CERAMIC  
1x 100μF, 6.3V CERAMIC  
OUT  
4606f  
5
LTM4606  
TYPICAL PERFORMANCE CHARACTERISTICS  
Start-Up, IOUT = 6A  
(Resistive Load)  
–55°C, Start-Up, IOUT = 6A  
Start-Up, IOUT = 0A  
V
OUT  
V
V
OUT  
OUT  
0.5V/DIV  
0.5V/DIV  
0.5V/DIV  
I
IN  
0.5A/DIV  
I
IN  
0.5A/DIV  
I
4606 G17  
IN  
1ms/DIV  
V
V
C
= 12V  
OUT  
OUT  
IN  
0.5A/DIV  
= 1.5V  
= 2x 22μF, 10V CERAMIC  
1x 100μF, 6.3V CERAMIC  
SOFT-START = 3.9nF  
4606 G09  
4606 G10  
1ms/DIV  
V
V
C
= 12V  
OUT  
OUT  
1ms/DIV  
V
V
C
= 12V  
OUT  
OUT  
IN  
IN  
= 1.5V  
= 1.5V  
= 1x 22μF, 6.3V CERAMIC  
= 1x 22μF, 6.3V CERAMIC  
1x 330μF, 4V SANYO POSCAP  
1x 330μF, 4V SANYO POSCAP  
SOFT-START = 3.9nF  
SOFT-START = 3.9nF  
VIN to VOUT Step-Down  
Operation Region  
Short-Circuit Protection,  
IOUT = 0A  
Short-Circuit Protection,  
IOUT = 6A  
28  
24  
20  
16  
12  
SEE FREQUENCY ADJUSTMENT SECTION  
FOR OPERATIONS OUTSIDE THIS REGION  
V
V
OUT  
OUT  
2V/DIV  
1V/DIV  
I
IN  
I
IN  
2A/DIV  
OPERATION REGION  
WITH DEFAULT FREQUENCY  
0.2A/DIV  
4606 G11  
4606 G12  
50μs/DIV  
50μs/DIV  
V
V
C
= 12V  
OUT  
OUT  
V
V
C
= 12V  
OUT  
OUT  
IN  
IN  
= 2.5V  
= 2.5V  
= 2x 22μF, 10V CERAMIC  
1x 100μF, 6.3V CERAMIC  
= 2x 22μF, 10V CERAMIC  
1x 100μF, 6.3V CERAMIC  
8
SOFT-START = 0.1μF  
SOFT-START = 0.1μF  
4.5  
0.6 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
V
OUT  
(V)  
4606 G13  
VFB vs Temperature  
Input Ripple  
Output Ripple  
0.606  
0.604  
0.602  
0.600  
0.598  
0.596  
0.594  
V
OUT  
V
IN  
2mV/DIV  
10mV/DIV  
4606 G14  
4606 G15  
2μs/DIV  
2μs/DIV  
V
V
C
= 5V  
V
V
C
= 5V  
IN  
IN  
OUT  
IN  
= 1V AT 6A  
= 1V AT 6A  
OUT  
OUT  
= 3x 10μF, 25V CERAMIC  
1x 150μF BULK  
= 2x 22μF, 6.3V CERAMIC  
1x 100μF, 6.3V CERAMIC  
BW = 300MHz  
BW = 300MHz  
–55  
35  
65  
95  
125  
–25  
5
TEMPERATURE (°C)  
4606 G18  
4606f  
6
LTM4606  
PIN FUNCTIONS  
V (Bank ±): Power Input Pins. Apply input voltage be-  
low load, to INTV to enable discontinuous mode opera-  
tion at low load or to a resistive divider from a secondary  
output when using a secondary winding.  
IN  
CC  
tween these pins and PGND pins. Recommend placing  
input decoupling capacitance directly between V pins  
IN  
and PGND pins.  
TRACK/SS(PinA9):OutputVoltageTrackingandSoft-Start  
Pin. When the module is configured as a master output,  
then a soft-start capacitor is placed on this pin to ground  
to control the master ramp rate. A soft-start capacitor can  
be used for soft-start turn-on as a standalone regulator.  
Slave operation is performed by putting a resistor divider  
from the master output to ground, and connecting the  
center point of the divider to this pin. See the Applications  
Information section.  
V
(Bank 3): Power Output Pins. Apply output load  
OUT  
between these pins and PGND pins. Recommend placing  
outputdecouplingcapacitancedirectlybetweenthesepins  
and PGND pins (see figure below).  
PGND (Bank 2): Power Ground Pins for Both Input and  
Output Returns.  
V (PinsB7, C7):TopFETDrainPins. Addmorecapacitors  
D
between V and ground to handle the input RMS current  
D
MPGM (Pins A±2, B±±): Programmable Margining Input.  
A resistor from these pins to ground sets a current that  
is equal to 1.18V/R. This current multiplied by 10kΩ will  
equal a value in millivolts that is a percentage of the 0.6V  
referencevoltage.SeetheApplicationsInformationsection.  
To parallel LTM4606s, each requires an individual MPGM  
resistor. Do not tie MPGM pins together.  
and reduce the input ripple further.  
DRV (PinsC±0,E±±,E±2):Thesepinsnormallyconnect  
CC  
to INTV for powering the internal MOSFET drivers. They  
CC  
can be biased up to 6V from an external supply with about  
50mA capability, or an external circuit as shown in Figure  
18. This improves efficiency at the higher input voltages  
by reducing power dissipation in the modules.  
f
(Pin B±2): Frequency set internally to 800kHz. An  
SET  
INTV (Pin A7): This pin is for additional decoupling of  
external resistor can be placed from this pin to ground  
to increase frequency. This pin can be decoupled with a  
1000pFcapacitor.SeetheApplicationsInformationsection  
for frequency adjustment.  
CC  
the 5V internal regulator.  
PLLIN(PinA8):ExternalClockSynchronizationInputtothe  
Phase Detector. This pin is internally terminated to SGND  
with a 50k resistor. Apply a clock above 2V and below  
V
(Pin F±2): The Negative Input of the Error Amplifier.  
FB  
INTV . See the Applications Information section.  
Internally, this pin is connected to V  
with a 60.4k preci-  
CC  
OUT  
sionresistor.Differentoutputvoltagescanbeprogrammed  
FCB(PinM±2):ForcedContinuousInput.Connectthispin  
to SGND to force continuous synchronization operation at  
withanadditionalresistorbetweentheV andSGNDpins.  
FB  
See the Applications Information section.  
TOP VIEW  
MARG0 (Pin C±2): LSB Logic Input for the Margining  
Function. Together with the MARG1 pin, the MARG0 pin  
will determine if a margin high, margin low, or no margin  
state is applied. The pin has an internal pulldown resistor  
of 50k. See the Applications Information section.  
12  
11  
10  
9
MPGM  
COMP  
RUN  
SGND  
TRACK/SS  
PLLIN  
INTV  
CC  
MARG±(PinsC±±, D±2):MSBLogicInputfortheMargin-  
ingFunction.TogetherwiththeMARG0pin,theMARG1pins  
will determine if a margin high, margin low, or no margin  
stateisapplied.Thepinshaveaninternalpulldownresistor  
of 50k. See the Applications Information section.  
V
8
7
6
5
4
3
2
D
1
SGND (Pins D9, H±2): Signal Ground Pins. These pins  
connect to PGND at output capacitor point.  
A
B
C
D
E
F
G
H
J
K
V
L
M
V
PGND  
BANK 2  
IN  
OUT  
BANK 3  
BANK 1  
4606f  
7
LTM4606  
PIN FUNCTIONS  
COMP(PinsA±±,D±±):CurrentControlThresholdandEr-  
rorAmplifierCompensationPoint.Thecurrentcomparator  
threshold increases with this control voltage. The voltage  
ranges from 0V to 2.4V with 0.7V corresponding to zero  
sense voltage (zero current).  
output voltage is not within 10% of the regulation point,  
after a 25μs power bad mask timer expires.  
RUN (Pins A±0, B9): Run Control Pins. A voltage above  
1.9V will turn on the module, and below 1V will turn off  
the module. A programmable UVLO function can be ac-  
PGOOD (Pin G±2): Output Voltage Power Good Indicator.  
Open-drain logic output that is pulled to ground when the  
complished with a resistor from V to this pin that has a  
IN  
5.1V zener to ground. Maximum pin voltage is 5V.  
BLOCK DIAGRAM  
>1.9V = ON  
<1V = OFF  
MAX = 5V  
V
OUT  
RUN  
PGOOD  
COMP  
INPUT  
FILTER  
V
IN  
4.5V TO 28V  
+
5.1V  
ZENER  
1.5μF  
C
IN  
60.4k  
V
D
INTERNAL  
COMP  
C
D
POWER CONTROL  
M1  
M2  
SGND  
V
OUT  
2.5V  
MARG1  
MARG0  
AT 6A  
NOISE  
CANCEL-  
LATION  
V
FB  
22μF  
50k 50k  
+
f
SET  
R
FB  
C
OUT  
19.1k  
41.2k  
PGND  
FCB  
10k  
MPGM  
TRACK/SS  
PLLIN  
C
SS  
50k  
4.7μF  
INTV  
DRV  
CC  
CC  
4606 F01  
Figure ±. Simplified Block Diagram  
DECOUPLING REQUIREMENTS TA = 25°C. Use Figure ± configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
External Input Capacitor Requirement  
IN  
I
= 6A  
10  
μF  
IN  
OUT  
(V = 4.5V to 28V, V  
= 2.5V)  
OUT  
C
OUT  
External Output Capacitor Requirement  
(V = 4.5V to 28V, V = 2.5V)  
I
= 6A  
100  
200  
μF  
OUT  
IN  
OUT  
4606f  
8
LTM4606  
OPERATION  
Power Module Description  
and bottom FET M2 is turned on and held on until the  
overvoltage condition clears.  
TheLTM4606isastandalonenon-isolatedswitchingmode  
DC/DC power supply. It can deliver up to 6A of DC output  
current with some external input and output capacitors.  
This module provides precisely regulated output voltage  
Inputlterandnoisecancellationcircuitsreducethenoise  
coupling to I/O sides, and ensure the electromagnetic  
interference (EMI) to meet the limits of CISPR 22 and  
CISPR 25.  
programmable via one external resistor from 0.6V to  
DC  
5.0V over a 4.5V to 28V input voltage range. The typical  
DC  
Pulling the RUN pin below 1V forces the controller into  
its shutdown state, turning off both M1 and M2. At low  
load currents, discontinuous mode (DCM) operation  
can be enabled to achieve higher efficiency compared to  
continuous mode (CCM) by setting the FCB pin higher  
than 0.6V.  
application schematic is shown in Figure 20.  
The LTM4606 has an integrated constant on-time current  
mode regulator, ultralow R  
FETs with fast switching  
DS(ON)  
speed and integrated Schottky diodes. The typical switch-  
ing frequency is 800kHz. With current mode control and  
internalfeedbackloopcompensation,theLTM4606module  
has sufficient stability margins and good transient per-  
formance under a wide range of operating conditions and  
with a wide range of output capacitors, even all ceramic  
output capacitors.  
When the DRV pin is connected to INTV an integrated  
CC  
CC  
5V linear regulator powers the internal gate drivers. If a  
5V external bias supply is applied on the DRV pin, then  
CC  
an efficiency improvement will occur due to the reduced  
powerlossintheinternallinearregulator.Thisisespecially  
true at the higher input voltage range.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limiting.Besides,foldbackcurrentlimitingisprovidedinan  
overcurrentconditionwhileV drops.Internalovervoltage  
andundervoltagecomparatorspulltheopen-drainPGOOD  
output low if the output feedback voltage exits a 10%  
window around the regulation point. Furthermore, in an  
overvoltage condition, internal top FET M1 is turned off  
The MPGM, MARG0, and MARG1 pins are used to sup-  
port voltage margining, where the percentage of margin  
is programmed by the MPGM pin, and the MARG0 and  
MARG1 selected margining. The PLLIN pin provides fre-  
quency synchronization of the device to an external clock.  
The TRACK/SS pin is used for power supply tracking and  
soft-start programming.  
FB  
4606f  
9
LTM4606  
APPLICATIONS INFORMATION  
The typical LTM4606 application circuit is shown in  
Figure 20. External component selection is primarily  
determined by the maximum load current and output  
voltage. Refer to Table 2 for specific external capacitor  
requirements for a particular application.  
where RPGM is the resistor value to place on the MPGM  
pin to ground.  
The output margining will be margining of the value.  
This is controlled by the MARG0 and MARG1 pins. See  
the truth table below:  
V to V  
Step-Down Ratios  
MARG±  
LOW  
MARG0  
LOW  
MODE  
IN  
OUT  
NO MARGIN  
MARGIN UP  
MARGIN DOWN  
NO MARGIN  
There are restrictions in the maximum V and V  
step-  
IN  
OUT  
LOW  
HIGH  
LOW  
down ratio that can be achieved for a given input voltage.  
These constraints are caused by the limitation of the  
minimum on and off time in the internal switches. Refer  
totheFrequencyAdjustmentsectiontochangetheswitch-  
ing frequency and get wider input and output ranges. See  
the Thermal Considerations and Output Current Derating  
section in this data sheet for the current restrictions.  
HIGH  
HIGH  
HIGH  
Input Capacitors and Input EMI Noise Attenuation  
The LTM4606 is designed to achieve the low input con-  
ducted EMI noise due to the fast switching of turn-on  
and turn-off. In the LTM4606, a high frequency inductor  
Output Voltage Programming and Margining  
is integrated to the input line for noise attenuation. V  
D
and V pins are available for external input capacitors to  
IN  
ThePWMcontrollerhasaninternal0.6Vreferencevoltage.  
As shown in the Block Diagram, a 60.4k internal feedback  
form a high frequency ∏ filter. As shown in Figure 19, the  
ceramiccapacitorC1ontheV pinsisusedtohandlemost  
D
resistor connects the V  
and V pins together. Adding  
OUT  
FB  
of the RMS current into the converter, so careful attention  
a resistor R from the V pin to the SGND pin programs  
FB  
FB  
is needed for capacitor C1 selection.  
the output voltage:  
For a buck converter, the switching duty-cycle can be  
estimated as:  
60.4k +RFB  
VOUT = 0.6V  
RFB  
VOUT  
D=  
Table ±. RFB Standard ±ꢀ Resistor Values vs VOUT  
V
IN  
R
FB  
(kΩ)  
Open 60.4  
0.6 1.2  
40.2  
1.5  
30.1  
1.8  
25.5  
2
19.1  
2.5  
13.3  
3.3  
8.25  
5
Without considering the inductor ripple current, the RMS  
current of the input capacitor can be estimated as:  
V
OUT  
(V)  
IOUT(MAX)  
The MPGM pin programs a current that when multiplied  
by an internal 10k resistor sets up the 0.6V reference  
offset for margining. A 1.18V reference divided by the  
RPGM resistor on the MPGM pin programs the current.  
ICIN(RMS)  
=
D 1D  
(
)
η
In the above equation, η is the estimated efficiency of the  
power module. Note the capacitor ripple current ratings  
are often based on temperature and hours of life. This  
makes it advisable to properly derate the capacitor, or  
choose a capacitor rated at a higher temperature than  
required. Always contact the capacitor manufacturer for  
derating requirements.  
Calculate V  
:
OUT(MARGIN)  
%VOUT  
100  
VOUT(MARGIN)  
=
• VOUT  
where%V isthepercentageofV youwanttomargin,  
OUT  
OUT(MARGIN)  
OUT  
and V  
is the margin quantity in volts:  
In a typical 6A output application, one or two very low  
ESR X5R or X7R, 10μF ceramic capacitors are recom-  
mendedforC1.Thisdecouplingcapacitorshouldbeplaced  
VOUT  
1.18V  
RPGM  
=
10k  
0.6V VOUT(MARGIN)  
4606f  
10  
LTM4606  
APPLICATIONS INFORMATION  
directly adjacent to the module V pins in the PCB layout  
spikeisrequired.Table2showsamatrixofdifferentoutput  
voltages and output capacitors to minimize the voltage  
droop and overshoot during a 3A/μs transient. The table  
optimizes total equivalent ESR and total bulk capacitance  
to maximize transient performance.  
D
to minimize the trace inductance and high frequency AC  
noise. Each 10μF ceramic is typically good for 2 to 3 amps  
of RMS ripple current. Refer to your ceramics capacitor  
catalog for the RMS current ratings.  
To attenuate high frequency noise, extra input capacitors  
Multiphase operation with multiple LTM4606 devices in  
parallel will lower the effective output ripple current due  
to the phase interleaving operation. Refer to Figure 3  
for the normalized output ripple current versus the duty  
cycle. Figure 3 provides a ratio of peak-to-peak output  
ripple current to the inductor ripple current as functions  
of duty cycle and the number of paralleled phases. Pick  
the corresponding duty cycle and the number of phases  
to get the correct output ripple current value. For example,  
each phase’s inductor ripple current DIr at zero duty cycle  
is ~2.5A for a 12V to 2.5V design. The duty cycle is about  
0.21. The 2-phase curve has a ratio of ~0.58 for a duty  
cycle of 0.21. This 0.58 ratio of output ripple current to  
the inductor ripple current DIr at 2.5A equals ~1.5A of the  
should be connected to the V pads and placed before  
IN  
the high frequency inductor to form the ∏ filter. One of  
these low ESR ceramic capacitors is recommended to  
be placed close to the connection into the system board.  
A large bulk 100μF capacitor is only needed if the input  
source impedance is compromised by long inductive  
leads or traces. Figure 2 shows the conducted EMI  
testing results to meet the level 5 of CISPR 25. For differ-  
ent applications, input capacitance may be varied to meet  
different conducted EMI limits.  
80  
70  
60  
50  
output ripple current (ΔI ).  
L
The output voltage ripple has two components that are  
related to the amount of bulk capacitance and effective  
series resistance (ESR) of the output bulk capacitance.  
The equation is:  
CIS25QP  
40  
30  
20  
10  
0
ΔIL  
8 • f N • C  
ΔVOUT(PP)  
+ ESR • ΔIL  
OUT  
0.15  
1
10  
30  
FREQUENCY (MHz)  
4606 F02  
Where f is the frequency and N is the number of paral-  
leled phases.  
Figure 2. Conducted Emission Scan with ±2VIN to 2.5VOUT at 6A  
(3× ±0μF Ceramic Capacitors on VIN pads and ±× ±0μF Ceramic  
Capacitor on VD Pads)  
Fault Conditions: Current Limit and Overcurrent  
Foldback  
Output Capacitors  
LTM4606 has a current mode controller, which inher-  
ently limits the cycle-by-cycle inductor current not only  
in steady-state operation, but also in transient.  
The LTM4606 is designed for low output voltage ripples.  
The bulk output capacitors defined as C  
are chosen  
OUT  
with low enough effective series resistance (ESR) to meet  
theoutputvoltagerippleandtransientrequirements. C  
To further limit current in the event of an overload condi-  
tion,theLTM4606providesfoldbackcurrentlimiting.Ifthe  
output voltage falls by more than 50%, then the maximum  
output current is progressively lowered to about one sixth  
of its full current limit value.  
OUT  
can be a low ESR tantalum capacitor, low ESR polymer  
capacitor or ceramic capacitor. The typical capacitance is  
200μF if all ceramic output capacitors are used. Additional  
output filtering may be required by the system designer,  
if further reduction of output ripple or dynamic transient  
4606f  
11  
LTM4606  
APPLICATIONS INFORMATION  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1-PHASE  
2-PHASE  
3-PHASE  
4-PHASE  
6-PHASE  
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY CYCLE (V /V  
)
IN  
4612 F05  
O
Figure 3. Normalized Output Ripple Current vs Duty Cycle, Dlr = VOT/LI  
Soft-Start and Tracking  
downwithanotherregulator.Themasterregulator’soutput  
is divided down with an external resistor divider that is the  
same as the slave regulator’s feedback divider. Figure 4  
shows an example of coincident tracking. Ratiometric  
modes of tracking can be achieved by selecting different  
resistor values to change the output tracking ratio. The  
master output must be greater than the slave output for  
the tracking to work. Figure 5 shows the coincident output  
tracking characteristics.  
The TRACK/SS pin provides a means to either soft-start  
the regulator or track it to a different power supply. A  
capacitor on this pin will program the ramp rate of the  
output voltage. A 1.5μA current source will charge up the  
external soft-start capacitor to 80% of the 0.6V internal  
voltagereferenceminusanymargindelta.Thiswillcontrol  
the ramp of the internal reference and the output voltage.  
The total soft-start time can be calculated as:  
V
IN  
CSS  
tSOFTSTART 0.8• 0.6V – V  
(
)
OUT(MARGIN)  
100k  
1.5µA  
V
IN  
PLLIN  
V
D
SLAVE  
OUTPUT  
2.5V  
PGOOD  
RUN  
V
OUT  
When the RUN pin falls below 2.5V, then the SS pin is reset  
to allow for proper soft-start control when the regulator is  
enabledagain.Currentfoldbackandforcecontinuousmode  
are disabled during the soft-start process. The soft-start  
functioncanalsobeusedtocontroltheoutputrampuptime,  
so that another regulator can be easily tracked to it.  
C
V
FB  
OUT  
LTM4606  
C
COMP  
FCB  
MARG0  
MARG1  
MPGM  
IN  
INTV  
CC  
CC  
MASTER  
OUTPUT  
DRV  
R2  
60.4k  
f
SET  
TRACK  
CONTROL  
TRACK/SS  
SGND PGND  
19.1k  
R1  
19.1k  
Output Voltage Tracking  
4606 F04  
Output voltage tracking can be programmed externally  
usingtheTRACK/SSpin. Theoutputcanbetrackedupand  
Figure 4. Output Voltage Coincident Tracking  
4606f  
12  
LTM4606  
APPLICATIONS INFORMATION  
operation where the bottom MOSFET turns off when in-  
ductor current reverses. FCB pin below the 0.6V threshold  
forcescontinuoussynchronousoperation,allowingcurrent  
to reverse at light loads and maintain low output ripple.  
MASTER OUTPUT  
SLAVE OUTPUT  
OUTPUT  
VOLTAGE  
PLLIN  
Thepowermodulehasaphase-lockedloopcomprisedofan  
internal voltage controlled oscillator and a phase detector.  
This allows the internal top MOSFET turn-on to be locked  
totherisingedgeoftheexternalclock. Thefrequencyrange  
is 30% around the operating frequency. A pulse detection  
circuit is used to detect a clock on the PLLIN pin to turn on  
the phase lock loop. The pulse width of the clock has to be  
at least 400ns and 2V in amplitude. During the start-up of  
the regulator, the phase-lock loop function is disabled.  
4606 F05  
TIME  
Figure 5. Coincident Tracking Characteristics  
Run Enable  
The RUN pin is used to enable the power module. The  
pin has an internal 5.1V zener to ground. The pin can be  
driven with a logic input not to exceed 5V.  
INTV and DRV Connection  
CC  
CC  
The RUN pin can also be used as an undervoltage lock out  
(UVLO) function by connecting a resistor divider from the  
input supply to the RUN pin:  
An internal low dropout regulator produces an internal  
5V supply that powers the control circuitry and DRV  
for driving the internal power MOSFETs. Therefore, if  
the system does not have a 5V power rail, the LTM4606  
can be directly powered by Vin. The gate driver current  
through the LDO is about 20mA. The internal LDO power  
dissipation can be calculated as:  
CC  
R1+R2  
VUVLO  
=
1.5V  
R2  
where R2 is the bottom resistor of the divider, R1 is the  
top resistor of the divider.  
P
= 20mA • (V – 5V)  
IN  
LDO_LOSS  
TheLTM4606alsoprovidesanexternalgatedrivervoltagepin  
Power Good  
DRV . If there is a 5V rail in the system, it is recommended  
CC  
The PGOOD pin is an open-drain pin that can be used to  
monitor valid output voltage regulation. This pin monitors  
a 10% window around the regulation point and tracks  
with margining.  
toconnectDRV pintotheexternal5Vrail.Thisisespecially  
CC  
true for higher input voltages. Do not apply more than 6V to  
the DRV pin. A 5V output can be used to power the DRV  
CC  
CC  
pin with an external circuit as shown in Figure 18.  
COMP Pin  
Parallel Operation of the Module  
This pin is the external compensation pin. The module  
has already been internally compensated for most output  
voltages. Table 2 is provided for most application require-  
ments. A Linear Technology μModule design tool will be  
provided for other control loop optimization.  
The LTM4606 device is an inherently current mode con-  
trolleddevice.Parallelmoduleswillhaveverygoodcurrent  
sharing. This will balance the thermals on the design. The  
voltage feedback equation changes with the variable N as  
modules are paralleled:  
60.4k  
FCB Pin  
+RFB  
N
VOUT = 0.6V  
The FCB pin determines whether the bottom MOSFET  
remains on when current reverses in the inductor. Tying  
this pin above its 0.6V threshold enables discontinuous  
RFB  
N is the number of paralleled modules.  
4606f  
13  
LTM4606  
APPLICATIONS INFORMATION  
Thermal Considerations and Output Current Derating  
will lower the maximum load current as a function of the  
increasedambienttemperaturetokeepthemaximumjunc-  
tiontemperatureofthepowermoduleat125°Cmaximum.  
Each of the derating curves and the power loss curve that  
corresponds to the correct output voltage can be used to  
In different applications, LTM4606 operates in a variety  
of thermal environments. The maximum output current is  
limited by the environment thermal condition. Sufficient  
cooling should be provided to help ensure reliable opera-  
tion. When the cooling is limited, proper output current  
derating is necessary, considering ambient temperature,  
airflow, input/output condition, and the need for increased  
reliability.  
solve for the approximate θ of the condition. Each figure  
JA  
has three curves that are taken at three different air flow  
conditions. Tables 3 and 4 provide the approximate θ  
JA  
for Figures 8 to 15. A complete explanation of the thermal  
characteristics is provided in the thermal application note  
AN110.  
The power loss curves in Figures 6 and 7 can be used  
in coordination with the load current derating curves in  
Figures 8 to 15 for calculating an approximate θ for the  
Safety Considerations  
JA  
module. The graphs delineate between no heat sink, and  
TheLTM4606modulesdonotprovideisolationfromV to  
IN  
a BGA heat sink. Each of the load current derating curves  
V
OUT  
.Thereisnointernalfuse.Ifrequired,aslowblowfuse  
6
5
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
24V LOSS  
12V LOSS  
4
3
5V LOSS  
12V LOSS  
2
5V , 1.5V , 0LFM  
IN  
IN  
OUT  
OUT  
OUT  
1
0
5V , 1.5V , 200LFM  
5V , 1.5V , 400LFM  
IN  
75  
80  
85  
90  
95  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
AMBIENT TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4606 F08  
4606 F06  
4606 F07  
Figure 6. ±.5V Power Loss  
Figure 7. 3.3V Power Loss  
Figure 8. No Heat Sink  
6
5
6
5
6
5
4
3
4
3
4
3
2
1
0
2
1
0
2
1
0
12V , 1.5V , 0LFM  
5V , 1.5V , 0LFM  
IN  
OUT  
IN  
OUT  
12V , 1.5V , 200LFM  
5V , 1.5V , 200LFM  
IN  
IN  
OUT  
OUT  
IN  
IN  
OUT  
OUT  
12V , 1.5V , 400LFM  
5V , 1.5V , 400LFM  
70  
75  
80  
85  
90  
95  
70  
75  
80  
85  
90  
95  
75  
80  
85  
90  
95  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4606 F11  
4606 F10  
4606 F09  
12V , 1.5V , 0LFM  
IN  
IN  
OUT  
OUT  
OUT  
12V , 1.5V , 200LFM  
Figure ±±. BGA Heat Sink  
Figure 9. BGA Heat Sink  
12V , 1.5V , 400LFM  
IN  
Figure ±0. No Heat Sink  
4606f  
14  
LTM4606  
APPLICATIONS INFORMATION  
6
5
6
5
4
3
4
3
2
1
0
2
12V , 3.3V , 0LFM  
12V , 3.3V , 0LFM  
IN  
OUT  
1
0
IN  
OUT  
12V , 3.3V , 200LFM  
12V , 3.3V , 200LFM  
IN  
IN  
OUT  
OUT  
IN  
IN  
OUT  
OUT  
12V , 3.3V , 400LFM  
12V , 3.3V , 400LFM  
70  
75  
80  
85  
90  
95  
70  
75  
80  
85  
90  
95  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4606 F13  
4606 F12  
Figure ±2. No Heat Sink  
Figure ±3. BGA Heat Sink  
6
5
6
5
4
3
2
1
0
4
3
2
1
0
24V , 3.3V , 0LFM  
24V , 3.3V , 0LFM  
IN  
OUT  
IN  
IN  
OUT  
OUT  
OUT  
24V , 3.3V , 200LFM  
24V , 3.3V , 200LFM  
IN  
IN  
OUT  
OUT  
24V , 3.3V , 400LFM  
24V , 3.3V , 400LFM  
IN  
60  
65  
70  
75  
80  
85  
60  
65  
70  
75  
80  
85  
90  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4606 F14  
4606 G15  
Figure ±5. BGA Heat Sink  
Figure ±4. No Heat Sink  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
with a rating twice the maximum input current needs to be  
provided to protect each unit from catastrophic failure.  
Radiated EMI Noise  
High radiated EMI noise is a disadvantage for switching  
regulators by nature. Fast switching turn-on and turn-off  
make large di/dt change in the converters, which act as  
the radiation sources in most systems. The LTM4606 in-  
tegrates the feature to minimize the radiated EMI noise for  
applications with low-noise requirements. Optimized gate  
driver for the MOSFET and noise cancellation network are  
installed inside the LTM4606 to achieve low radiated EMI  
noise. Figure 16 shows a typical example for LTM4606 to  
meet the Class B of CISPR 22 radiated emission limit.  
0
100 200 300 400 500 600 700 800 9001000  
FREQUENCY (MHz)  
4606 F16  
Figure ±6. Radiated Emission Scan with ±2VIN to 2.5VOUT at 6A.  
CISPR.22 Class B Chase 6±4± BiLog, RG-8 ±.5 Meters Chase  
CPA923±A Horizontal, 3 Meters All Sides, 30MHz to ±000MHz,  
RES BW ±20kHz, SWP 455ms.  
4606f  
15  
LTM4606  
APPLICATIONS INFORMATION  
Table 2. Output Voltage Response Versus Component Matrix (Refer to Figure 20)  
TYPICAL MEASURED VALUES  
C
VENDORS  
PART NUMBER  
C
OUT2  
VENDORS  
PART NUMBER  
OUT±  
TAIYO YUDEN  
TAIYO YUDEN  
TDK  
JMK316BJ226ML-T501 (22μF, 6.3V)  
JMK325BJ476MM-T (47μF, 6.3V)  
C3225X5R0J476M (47μF, 6.3V)  
SANYO POSCAP  
SANYO POSCAP  
SANYO POSCAP  
6TPE220MIL (220μF, 6.3V)  
2R5TPE330M9 (330μF, 2.5V)  
4TPE330MCL (330μF, 4V)  
V
C
C
C
C
V
(V)  
DROOP  
(mV)  
PEAK TO  
PEAK (mV)  
RECOVERY  
TIME (μs)  
LOAD STEP  
(A/μs)  
R
FB  
OUT  
IN  
IN  
OUT±  
OUT2  
IN  
(V)  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
5
(CERAMIC)  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
(BULK)  
(CERAMIC)  
1 × 22μF 6.3V  
1 × 47μF 6.3V  
2 × 47μF 6.3V  
4 × 47μF 6.3V  
1 × 22μF 6.3V  
1 × 47μF 6.3V  
2 × 47μF 6.3V  
4 × 47μF 6.3V  
1 × 22μF 6.3V  
1 × 47μF 6.3V  
2 × 47μF 6.3V  
4 × 47μF 6.3V  
1 × 22μF 6.3V  
1 × 47μF 6.3V  
2 × 47μF 6.3V  
4 × 47μF 6.3V  
1 × 22μF 6.3V  
1 × 47μF 6.3V  
2 × 47μF 6.3V  
4 × 47μF 6.3V  
1 × 22μF 6.3V  
1 × 47μF 6.3V  
2 × 47μF 6.3V  
4 × 47μF 6.3V  
1 × 22μF 6.3V  
1 × 47μF 6.3V  
2 × 47μF 6.3V  
4 × 47μF 6.3V  
1 × 22μF 6.3V  
1 × 47μF 6.3V  
2 × 47μF 6.3V  
4 × 47μF 6.3V  
1 × 22μF 6.3V  
1 × 47μF 6.3V  
2 × 47μF 6.3V  
4 × 47μF 6.3V  
1 × 22μF 6.3V  
1 × 47μF 6.3V  
2 × 47μF 6.3V  
4 × 47μF 6.3V  
4 × 47μF 6.3V  
4 × 47μF 6.3V  
(BULK)  
330μF 4V  
330μF 2.5V  
220μF 6.3V  
NONE  
(kΩ)  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
8.25  
8.25  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
5
34  
22  
68  
40  
30  
26  
24  
18  
30  
26  
24  
18  
30  
30  
26  
26  
30  
30  
26  
26  
37  
30  
26  
26  
37  
30  
26  
26  
40  
34  
28  
12  
40  
34  
28  
18  
40  
32  
28  
14  
40  
32  
28  
22  
20  
20  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
5
5
20  
40  
5
32  
60  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
330μF 4V  
330μF 2.5V  
220μF 6.3V  
NONE  
12  
12  
12  
12  
5
34  
68  
22  
40  
20  
39  
29.5  
35  
55  
330μF 4V  
330μF 2.5V  
220μF 6.3V  
NONE  
70  
5
25  
48  
5
24  
47.5  
68  
5
36  
330μF 4V  
330μF 2.5V  
220μF 6.3V  
NONE  
12  
12  
12  
12  
5
35  
70  
25  
48  
24  
45  
32.6  
38  
61.9  
76  
330μF 4V  
330μF 2.5V  
220μF 6.3V  
NONE  
5
29.5  
28  
57.5  
55  
5
5
43  
80  
330μF 4V  
330μF 2.5V  
220μF 6.3V  
NONE  
12  
12  
12  
12  
5
38  
76  
28  
55  
27  
52  
36.4  
38  
70  
330μF 4V  
330μF 4V  
220μF 6.3V  
NONE  
78  
5
37.6  
39.5  
66  
74  
5
78.1  
119  
78  
5
330μF 4V  
330μF 4V  
220μF 6.3V  
NONE  
12  
12  
12  
12  
7
38  
34.5  
35.8  
50  
66.3  
68.8  
98  
330μF 4V  
330μF 4V  
220μF 6.3V  
NONE  
42  
86  
7
47  
89  
7
50  
94  
7
75  
141  
86  
330μF 4V  
330μF 4V  
220μF 6.3V  
NONE  
12  
12  
12  
12  
15  
20  
42  
47  
88  
50  
94  
69  
131  
215  
217  
NONE  
110  
110  
5
NONE  
4606f  
16  
LTM4606  
APPLICATIONS INFORMATION  
Table 3. ±.5V Output  
DERATING CURVE  
Figures 8, 10  
Figures 8, 10  
Figures 8, 10  
Figures 9, 11  
Figures 9, 11  
Figures 9, 11  
V
(V)  
POWER LOSS CURVE  
Figure 6  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
IN  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
0
13.5  
10  
9
Figure 6  
200  
400  
0
None  
Figure 6  
None  
Figure 6  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
9.5  
7
Figure 6  
200  
400  
Figure 6  
5
Table 4. 3.3V Output  
DERATING CURVE  
Figures 12, 14  
V
(V)  
POWER LOSS CURVE  
Figure 7  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
IN  
12, 24  
0
13.5  
11  
10  
10  
7
Figures 12, 14  
12, 24  
12, 24  
12, 24  
12, 24  
12, 24  
Figure 7  
200  
400  
0
None  
Figures 12, 14  
Figure 7  
None  
Figures 13, 15  
Figure 7  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figures 13, 15  
Figure 7  
200  
400  
Figures 13, 15  
Figure 7  
5
Heat Sink Manufacturer  
Wakefield Engineering  
Part No: LTN20069  
Phone: 603-635-2800  
Layout Checklist/Example  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to PGND underneath the unit.  
The high integration of LTM4606 makes the PCB board  
layout very simple and easy. However, to optimize its  
electrical and thermal performance, some layout con-  
siderations are still necessary.  
• Place one or more high frequency ceramic capacitors  
close to the connection into the system board.  
• Use large PCB copper areas for high current path, in-  
cluding V , PGND and V . It helps to minimize the  
Figure 17 gives a good example of the recommended  
layout. For load current below 3A, decouple the input  
and output grounds. Use vias to connect GND pads to the  
bottom layer, then connect to the right side of the module  
as the output GND.  
IN  
OUT  
PCB conduction loss and thermal stress.  
• Place high frequency ceramic input and output capaci-  
tors next to the V , PGND and V  
pins to minimize  
D
OUT  
high frequency noise.  
V
IN  
C
C
IN  
IN  
• Place a dedicated power ground layer underneath the  
unit.  
GND  
• UseroundcornersforthePCBcopperlayertominimize  
the radiated noise.  
SIGNAL  
GND  
• To minimize the EMI noise and reduce module thermal  
stress,usemultipleviasforinterconnectionbetweentop  
layer and other power layers on different locations.  
C
C
OUT  
OUT  
V
OUT  
4606 F17  
• Do not put vias directly on pads, unless they are  
capped.  
Figure ±7. Recommended PCB Layout  
4606f  
17  
LTM4606  
APPLICATIONS INFORMATION  
Frequency Adjustment  
operating range of 10V to 28V for 1MHz operation with a  
150k resistor to ground, and an 8V to 16V operating range  
The LTM4606 is designed to typically operate at 800kHz  
for f floating. These modifications are made to provide  
SET  
across most input conditions. The f pin is typically left  
SET  
wider input voltage ranges for the 5V output designs while  
limiting the inductor ripple current, and maintaining the  
400ns minimum off time.  
open or decoupled with an optional 1000pF capacitor. The  
switching frequency has been optimized for maintaining  
constant output ripple noise over most operating ranges.  
The 800kHz switching frequency and the 400ns minimum  
off time can limit operation at higher duty cycles like 5V  
to 3.3V, and produce excessive inductor ripple currents  
for lower duty cycle applications like 28V to 5V.  
Example for 3.3V Output  
LTM4606 minimum on-time = 100ns;  
t
ON  
= ((3.3 • 10pF)/I  
)
fSET  
LTM4606 minimum off-time = 400ns;  
= t – t , where t = 1/Frequency  
Example for 5V Output  
t
OFF  
ON  
LTM4606 minimum on-time = 100ns;  
Duty Cycle (DC) = t /t or V /V  
ON  
OUT IN  
t
= ((4.8 • 10pf)/I  
)
ON  
fSET  
Equations for setting frequency:  
= (V /(3 • R )), for 28V input operation, I =  
fSET  
LTM4606 minimum off-time = 400ns;  
= t – t , where t = 1/Frequency  
I
fSET  
IN  
fSET  
t
OFF  
ON  
227μA, t = ((3.3 • 10pf)/I ), t = 145ns, where the  
ON  
fSET  
fSET ON  
Duty Cycle = t /t or V /V  
internal R  
is 41.2k. Frequency = (V /(V • t )) =  
ON  
OUT IN  
OUT IN ON  
(3.3V/(28 • 145ns)) ~ 810kHz. The minimum on-time and  
minimum-off time are within specification at 146ns and  
1089ns. But the 4.5V minimum input for converting 3.3V  
outputwillnotmeettheminimumoff-timespecificationof  
400ns. t = 905ns, Frequency = 810kHz, t = 329ns.  
Equations for setting frequency:  
= (V /(3 • R )), where the internal R is 41.2k.  
fSET  
I
fSET  
IN  
fSET  
For 28V input operation, I  
= 227μA. t = ((4.8 • 10pF)/  
ON  
fSET  
I
),t =211ns.Frequency=(V /(V t ))=(5V/(28  
fSET ON  
OUT IN ON  
ON  
OFF  
• 211ns)) ~ 850kHz. The inductor ripple current begins to  
get high at the higher input voltages due to a larger voltage  
across the inductor. The current ripple is ~5A at 20% duty  
cycle if the integrated inductor is 1μH. The inductor ripple  
current can be lowered at the higher input voltages by add-  
Solution  
Lower the switching frequency at lower input voltages to  
allow for higher duty cycles, and meet the 400ns mini-  
mum off-time at 4.5V input voltage. The off-time should  
be about 500ns with 100ns guard band. The duty cycle  
ing an external resistor from f to ground to increase the  
SET  
switching frequency. A 4A ripple current is chosen, and the  
total peak current is equal to 1/2 of the 4A ripple current  
plus the output current. For 5V output, current is limited to  
5A, so the total peak current is less than 7A. This is below  
the 8A peak specified value. A 150k resistor is placed from  
for (3.3V/4.5V) = ~73%. Frequency = (1 – DC)/t  
or  
OFF  
(1 – 0.73)/500ns = 540kHz. The switching frequency  
needs to be lowered to 540kHz at 4.5V input. t = DC/  
ON  
frequency, or 1.35μs. The f  
pin voltage compliance  
SET  
is 1/3 of V , and the I  
current equates to 36μA with  
current needs to be 24μA for  
IN  
fSET  
f
to ground, and the parallel combination of 150k and  
SET  
the internal 41.2k. The I  
fSET  
41.2k equates to 32.3k. The I  
calculation with 32.3k  
fSET  
540kHz operation. A resistor can be placed from V  
to  
OUT  
and 28V input voltage equals 289μA. This equates to a t  
ON  
f
to lower the effective I  
current out of the f pin  
SET  
fSET SET  
of 166ns. This will increase the switching frequency from  
850kHzto~1MHzforthe28Vto5Vconversion.Theminimum  
on time is above 100ns at 28V input. Since the switching  
frequency is approximately constant over input and output  
conditions, then the lower input voltage range is limited to  
8V for the 1MHz operation due to the 400ns minimum off  
to 24μA. The f  
pin is 4.5V/3 =1.5V and V  
= 3.3V,  
OUT  
SET  
therefore an 150k resistor will source 12μA into the f  
SET  
node and lower the I  
current to 24μA. This enables the  
fSET  
540kHz operation and the 4.5V to 28V input operation for  
down converting to 3.3V output as shown in Figure 19.  
The frequency will scale from 540kHz to 950kHz over this  
input range. This provides for an effective output current  
time. Equation:t =(V /V )(1/Frequency)equatesto  
ON  
OUT IN  
a 375ns on time, and a 400ns off time. Figure 18 shows an  
of 5A over the input range.  
4606f  
18  
LTM4606  
TYPICAL APPLICATIONS  
V
OUT  
10V TO 28V  
C1  
10μF  
R4  
100k  
R3  
100k  
V
V
PLLIN  
D
IN  
5V AT 5A  
V
PGOOD  
RUN  
COMP  
INTV  
DRV  
OUT  
C2  
C
22μF  
6.3V  
C
OUT2  
220μF  
6.3V  
LTM4606  
OUT1  
100pF  
+
ON/OFF  
C
10μF  
35V  
V
FB  
IN  
R
FB  
8.25k  
CC  
CC  
FCB  
CERAMIC  
x2  
MARG0  
MARG1  
MPGM  
f
MARGIN  
SET  
TRACK/SS  
CONTROL  
REFER TO TABLE 2  
FOR OUTPUT CAPACITOR  
SELECTIONS  
TRACK/SS  
CONTROL  
SGND PGND  
R1  
392k  
5% MARGIN  
R
fSET  
150k  
4606 TA02  
IMPROVE EFFICIENCY  
FOR ≥12V INPUT  
Figure ±8. ±0V to 28VIN, 5V at 5A Design  
V
OUT  
4.5V TO 28V  
C1  
10μF  
R4  
100k  
R3  
100k  
V
D
V
IN  
PLLIN  
3.3V AT 5A  
V
PGOOD  
RUN  
COMP  
OUT  
C2  
100pF  
LTM4606  
C
C
OUT2  
220μF  
6.3V  
OUT1  
+
ON/OFF  
C
10μF  
35V  
22μF  
6.3V  
x2  
V
FB  
IN  
R
FB  
13.3k  
INTV  
CC  
CC  
FCB  
DRV  
CERAMIC  
x2  
MARG0  
MARG1  
MPGM  
f
MARGIN  
SET  
CONTROL  
TRACK/SS  
REFER TO TABLE 2  
FOR OUTPUT CAPACITOR  
SELECTIONS  
R
fSET  
150k  
SGND PGND  
R1  
392k  
5% MARGIN  
TRACK/SS  
CONTROL  
V
OUT  
4606 TA03  
Figure ±9. 3.3V at 5A Design  
4606f  
19  
LTM4606  
TYPICAL APPLICATIONS  
V
OUT  
4.5V TO 28V  
CLOCK SYNC  
C1  
10μF  
R4  
100k  
R3  
100k  
V
V
PLLIN  
D
IN  
2.5V AT 6A  
V
PGOOD  
RUN  
COMP  
INTV  
DRV  
OUT  
C2  
C
22μF  
6.3V  
C
LTM4606  
OUT1  
OUT2  
100pF  
+
ON/OFF  
220μF  
6.3V  
V
FB  
R
FB  
19.1k  
CC  
CC  
FCB  
MARG0  
MARG1  
MPGM  
f
MARGIN  
SET  
CONTROL  
TRACK/SS  
C
10μF  
35V  
CERAMIC  
x2  
IN  
C4  
0.01μF  
SGND PGND  
R1  
392k  
5% MARGIN  
4606 TA04  
Figure 20. Typical 4.5V to 28VIN, 2.5V at 6A Design  
V
OUT  
V
IN  
4.5V TO 28V  
C1  
10μF  
CLOCK SYNC  
0° PHASE  
R2  
100k  
R4  
V
D
V
IN  
PLLIN  
100k  
2.5V AT 12A  
PGOOD  
RUN  
COMP  
V
OUT  
C6  
220pF  
C
22μF  
6.3V  
LTM4606  
OUT1  
+
C
OUT2  
220μF  
6.3V  
V
FB  
FCB  
INTV  
CC  
CC  
C2  
10μF  
35V  
DRV  
f
MARG0  
MARG1  
MPGM  
MARGIN  
CONTROL  
SET  
TRACK/SS  
C5  
100μF  
35V  
+
C4  
0.33μF  
R1  
392k  
R
FB  
9.53k  
SGND PGND  
2-PHASE  
OSCILLATOR  
+
5% MARGIN  
V
OUT1  
GND OUT2  
SET MOD  
C7  
0.1μF  
R5  
118k  
C3  
10μF  
LTC6908-1  
CLOCK SYNC  
180° PHASE  
R3  
100k  
V
V
PLLIN  
D
IN  
V
PGOOD  
RUN  
OUT  
C
22μF  
6.3V  
LTM4606  
OUT3  
C
+
OUT4  
220μF  
6.3V  
V
FB  
COMP  
C8  
10μF  
35V  
FCB  
INTV  
CC  
MARG0  
MARG1  
MPGM  
DRV  
CC  
f
SET  
TRACK/SS  
R6  
392k  
SGND PGND  
4606 TA05  
5% MARGIN  
Figure 2±. 2-Phase, Parallel 2.5V at ±2A Design  
4606f  
20  
LTM4606  
TYPICAL APPLICATIONS  
3.3V  
V
IN  
5V TO 28V  
C3  
10μF  
CLOCK SYNC  
0° PHASE  
R4  
R2  
100k  
V
V
IN  
PLLIN  
100k  
D
3.3V AT 6A  
PGOOD  
RUN  
COMP  
V
OUT  
C6  
C
LTM4606  
OUT1  
C
+
OUT2  
22pF  
100μF  
6.3V  
220μF  
6.3V  
V
FB  
FCB  
INTV  
CC  
CC  
DRV  
C2  
10μF  
35V  
f
MARG0  
MARG1  
MPGM  
MARGIN  
SET  
TRACK/SS  
CONTROL  
C5  
100μF  
35V  
+
R1  
392k  
R
FB1  
13.3k  
C7  
0.15μF  
SGND PGND  
2-PHASE  
OSCILLATOR  
+
5% MARGIN  
3.3V  
V
OUT1  
GND OUT2  
SET MOD  
C9  
0.1μF  
R5  
118k  
C4  
10μF  
LTC6908-1  
CLOCK SYNC  
180° PHASE  
R7  
100k  
R3  
100k  
V
V
PLLIN  
D
IN  
2.5V AT 6A  
V
OUT  
PGOOD  
RUN  
C1  
22pF  
C
OUT3  
LTM4606  
C
+
OUT4  
100μF  
6.3V  
220μF  
6.3V  
V
FCB  
COMP  
FB  
C8  
10μF  
35V  
INTV  
CC  
3.3V TRACK  
R8  
MARG0  
MARG1  
MPGM  
MARGIN  
CONTROL  
DRV  
CC  
60.4k  
f
SET  
TRACK/SS  
R6  
392k  
R
FB2  
19.1k  
R9  
19.1k  
SGND PGND  
4606 TA06  
Figure 22. 2-Phase, 3.3V and 2.5V Outputs at 6A with Tracking and Margining  
1.8V  
4.5V TO 28V  
C3  
10μF  
CLOCK SYNC  
0° PHASE  
R4  
100k  
R2  
100k  
V
V
IN  
PLLIN  
D
1.8V AT 6A  
PGOOD  
RUN  
COMP  
V
OUT  
C6  
100pF  
C
LTM4606  
OUT1  
C
+
OUT2  
100μF  
6.3V  
220μF  
6.3V  
V
FB  
FCB  
INTV  
DRV  
CC  
C2  
CC  
10μF  
35V  
f
MARG0  
MARG1  
MPGM  
MARGIN  
SET  
TRACK/SS  
CONTROL  
C5  
100μF  
35V  
+
R1  
392k  
R
FB1  
30.1k  
C7  
0.15μF  
SGND PGND  
2-PHASE  
OSCILLATOR  
+
5% MARGIN  
1.8V  
V
OUT1  
GND OUT2  
SET MOD  
C9  
0.1μF  
R5  
182k  
C4  
10μF  
LTC6908-1  
CLOCK SYNC  
180° PHASE  
R7  
100k  
R3  
100k  
V
V
PLLIN  
D
IN  
1.5V AT 6A  
V
OUT  
PGOOD  
RUN  
C1  
100pF  
C
22μF  
6.3V  
LTM4606  
OUT3  
C
+
OUT4  
220μF  
6.3V  
V
FCB  
COMP  
FB  
C8  
10μF  
35V  
INTV  
CC  
1.8V TRACK  
R8  
MARG0  
MARG1  
MPGM  
DRV  
MARGIN  
CONTROL  
CC  
60.4k  
f
SET  
TRACK/SS  
R6  
392k  
R
FB2  
40.2k  
R9  
40.2k  
SGND PGND  
4606 TA07  
Figure 23. 2-Phase, ±.8V and ±.5V Outputs at 6A with Tracking and Margining  
4606f  
21  
LTM4606  
PACKAGE DESCRIPTION  
Pin Assignment Tables  
(Arranged by Pin Function)  
PIN NAME  
PIN NAME  
PGND  
PIN NAME  
PIN NAME  
A1  
A2  
A3  
A4  
A5  
A6  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
D1  
D2  
D3  
D4  
D5  
D6  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
J10  
J11  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
A7  
INTV  
CC  
PLLIN  
PGND  
PGND  
PGND  
PGND  
PGND  
A8  
A9  
TRACK/SS  
RUN  
A10  
A11  
A12  
COMP  
MPGM  
B1  
B2  
B3  
B4  
B5  
B6  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
B7  
V
D
-
B8  
B9  
RUN  
-
B10  
B11  
B12  
MPGM  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
f
SET  
C1  
C2  
C3  
C4  
C5  
C6  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
C7  
V
-
D
C8  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
C9  
-
C10  
C11  
C12  
DRV  
CC  
MARG1  
MARG0  
D7  
-
-
D8  
D9  
SGND  
-
D10  
D11  
D12  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
L10  
L11  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
COMP  
MARG1  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
E9  
-
-
E10  
E11  
E12  
DRV  
CC  
DRV  
CC  
F10  
F11  
F12  
-
-
V
FB  
G12  
H12  
J12  
K12  
L12  
M12  
PGOOD  
SGND  
NC  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
NC  
NC  
FCB  
4606f  
22  
LTM4606  
PACKAGE DESCRIPTION  
Z
b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
4606f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTM4606  
PACKAGE PHOTOGRAPH  
RELATED PARTS  
PART NUMBER  
LTC2900  
DESCRIPTION  
COMMENTS  
Quad Supply Monitor with Adjustable Reset Timer  
10A DC/DC μModule  
Monitors Four Supplies; Adjustable Reset Timer  
Basic 10A DC/DC μModule, LGA Package  
Guaranteed Operation from –55°C to 125°C Ambient, LGA Package  
LTM4600  
LTM4600HVMP  
Military Plastic 10A DC/DC μModule  
LTM4601/  
LTM4601A  
12A DC/DC μModule with PLL, Output Tracking/  
Margining and Remote Sensing  
Synchronizable, PolyPhase Operation, LTM4601-1/LTM4601A-1 Version has no  
Remote Sensing, LGA Package  
LTM4602  
LTM4603  
6A DC/DC μModule  
Pin Compatible with the LTM4600, LGA Package  
6A DC/DC μModule with PLL and Outpupt Tracking/ Synchronizable, PolyPhase Operation, LTM4603-1 Version has no Remote  
Margining and Remote Sensing  
Sensing, Pin Compatible with the LTM4601, LGA Package  
LTM4604/  
LTM4604A  
Low V 4A DC/DC μModule  
2.375V ≤ V ≤ 5.5V, 0.8V ≤ V ≤ 5V, 9mm × 15mm × 2.3mm LGA Package  
IN  
IN  
OUT  
LTM4608/  
LTM4608A  
Low V 8A DC/DC μModule  
2.375V ≤ V ≤ 5.5V; 0.6V ≤ V  
≤ 5V; 9mm × 15mm × 2.8mm LGA Package  
IN  
IN  
OUT  
LTM4612  
LTM8020  
LTM8021  
Low Noise 4.5A, 15V  
DC/DC μModule  
Low Noise, with PLL, Output Tracking and Margining, LTM4606 Pin-Compatible  
OUT  
High V 0.2A DC/DC Step-Down μModule  
4V ≤ V ≤ 36V, 1.25V ≤ V  
≤ 5V 6.25mm × 6.25mm × 2.3mm LGA Package  
OUT  
IN  
IN  
High V 0.5A DC/DC Step-Down μModule  
3V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 5V 6.25mm × 11.25mm × 2.8mm LGA Package  
OUT  
IN  
IN  
LTM8022/LTM8023 36V , 1A and 2A DC/DC μModule  
Pin Compatible; 4.5V ≤ V ≤ 36V; 9mm × 11.25mm × 2.8mm LGA Package  
IN  
IN  
4606f  
LT 0708 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM4606_1

Ultralow EMI 28VIN, 6A DC/DC μModule Regulator
Linear

LTM4607

36VIN, 24VOUT High Effi ciency Buck-Boost DC/DC μModule
Linear

LTM4607

High Effi ciency, Synchronous, 4-Switch Buck-Boost Controller
Linear System

LTM4607EV#PBF

LTM4607 - 36Vin, 24Vout High Efficiency Buck-Boost DC/DC &#181;Module (Power Module); Package: LGA; Pins: 141; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4607EV-PBF

36VIN, 24VOUT High Effi ciency Buck-Boost DC/DC μModule
Linear

LTM4607IV-PBF

36VIN, 24VOUT High Effi ciency Buck-Boost DC/DC μModule
Linear

LTM4607V

36VIN, 24VOUT High Effi ciency Buck-Boost DC/DC μModule
Linear

LTM4608

Low VIN, 8A DC/DC μModuleTM with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608A

Low VIN, 8A DC/DC μModule with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608AEV-PBF

Low VIN, 8A DC/DC μModule with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608AIV-PBF

Low VIN, 8A DC/DC μModule with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608AMPV

Low VIN, 8A DC/DC μModule with Tracking, Margining, and Frequency Synchronization
Linear