LTM4608AEV-PBF [Linear]

Low VIN, 8A DC/DC μModule with Tracking, Margining, and Frequency Synchronization; 低VIN , 8A DC / DC微型模块与跟踪,裕度调节和频率同步
LTM4608AEV-PBF
型号: LTM4608AEV-PBF
厂家: Linear    Linear
描述:

Low VIN, 8A DC/DC μModule with Tracking, Margining, and Frequency Synchronization
低VIN , 8A DC / DC微型模块与跟踪,裕度调节和频率同步

文件: 总24页 (文件大小:343K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4608A  
Low V , 8A DC/DC  
IN  
µModule with Tracking, Margining,  
and Frequency Synchronization  
FEATURES  
DESCRIPTION  
The LTM®4608A is a complete 8A switch mode DC/DC  
Complete Standalone Power Supply  
1.75% Total DC Output Error (–55°C to 125°C)  
2.7V to 5.5V Input Voltage Range  
8A DC, 10A Peak Output Current  
0.6V Up to 5V Output  
Output Voltage Tracking and Margining  
Power Good Tracks Margining  
power supply with 1.75% total output voltage error. In-  
cluded in the package are the switching controller, power  
FETs,inductorandallsupportcomponents.Operatingover  
aninputvoltagerangeof2.7Vto5.5V, theLTM4608Asup-  
ports an output voltage range of 0.6V to 5V, set by a single  
external resistor. This high efficiency design delivers up  
to 8A continuous current (10A peak). Only bulk input and  
output capacitors are needed to complete the design.  
Multiphase Operation  
Parallel Current Sharing  
Onboard Frequency Synchronization  
Spread Spectrum Frequency Modulation  
Overcurrent/Thermal Shutdown Protection  
Current Mode Control/Fast Transient Response  
Selectable Burst Mode® Operation  
Up to 95% Efficiency  
Output Overvoltage Protection  
Small, Low Profile 9mm × 15mm × 2.8mm  
LGA Package (0.630mm Pads)  
The low profile package (2.8mm) enables utilization of  
unused space on the back side of PC boards for high  
density point-of-load regulation. The 0.630mm LGA pads  
with 1.27mm pitch simplify PCB layout by providing stan-  
dard trace routing and via placement. The high switching  
frequency and current mode architecture enable a very  
fast transient response to line and load changes without  
sacrificing stability. The device supports frequency syn-  
chronization, programmable multiphase and/or spread  
spectrum operation, output voltage tracking for supply  
rail sequencing and voltage margining.  
APPLICATIONS  
Telecom, Networking and Industrial Equipment  
Fault protection features include overvoltage protection,  
overcurrent protection and thermal shutdown. The power  
module is offered in a compact and thermally enhanced  
15mm × 9mm × 2.8mm surface mount LGA package. The  
LTM4608A is Pb-free and RoHS compliant.  
Storage Systems  
Point of Load Regulation  
, LT, LTC, LTM and Burst Mode are registered trademarks of Linear Technology  
Corporation. μModule is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners. Protected by U.S.  
Patents, including 5481178, 6580258, 6304066, 6127815, 6498466, 6611131.  
TYPICAL APPLICATION  
Efficiency vs Load Current  
100  
3V to 5.5V Input to 1.8V Output DC/DC μModule™  
V
= 1.8V  
OUT  
95  
CLKIN  
V
= 3.3V  
IN  
CLKIN  
90  
85  
V
V
IN  
3V TO 5.5V  
10μF  
OUT  
1.8V  
100μF  
V
V
IN  
OUT  
V
= 5V  
IN  
SV  
FB  
IN  
4.87k  
SW  
I
TH  
LTM4608A  
80  
75  
70  
RUN  
I
THM  
PGOOD  
PLLLPF  
TRACK  
PGOOD  
MGN  
V
OUT  
CLKOUT GND SGND  
4608A TA01a  
0
2
4
6
8
10  
LOAD CURRENT (A)  
4608A TA01b  
4608afa  
1
LTM4608A  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V , SV ...................................................... –0.3V to 6V  
IN  
IN  
A
B
C
D
E
F
G
CLKOUT ....................................................... –0.3V to 2V  
GND  
V
IN  
CNTRL GND  
PGOOD, PLLLPF, CLKIN, PHMODE, MODE . –0.3V to V  
IN  
1
2
I , I  
, RUN, FB, TRACK,MGN, BSEL ..... –0.3V to V  
TH THM  
IN  
SW  
V
, SW ...................................... –0.3V to (V + 0.3V)  
OUT  
IN  
3
Internal Operating Temperature Range (Note 2)  
4
E and I Grades........................................ –40°C to 125°C  
MP Grade............................................... –55°C to 125°C  
Storage Temperature Range .................. –55°C to 125°C  
5
6
CNTRL  
7
8
9
10  
11  
GND  
V
OUT  
LGA PACKAGE  
68-PIN (15mm × 9mm × 2.8mm)  
T
JMAX  
= 125°C, θ = 25°C/W, θ = 7°C/W, θ = 50°C/W, WEIGHT = 1.0g  
JA JP JC  
ORDER INFORMATION  
PART  
MARKING*  
LEAD FREE FINISH TRAY  
PACKAGE DESCRIPTION  
INTERNAL TEMPERATURE RANGE (NOTE 2)  
LTM4608AEV#PBF  
LTM4608AIV#PBF  
LTM4608AEV#PBF LTM4608AV  
LTM4608AIV#PBF LTM4608AV  
68-Lead (15mm × 9mm × 2.8mm) LGA –40°C to 125°C  
68-Lead (15mm × 9mm × 2.8mm) LGA –40°C to 125°C  
LTM4608AMPV#PBF LTM4608AMPV#PBF LTM4608AMPV 68-Lead (15mm × 9mm × 2.8mm) LGA –55°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C. VIN = 5V unless otherwise noted. See Figure 1.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Input DC Voltage  
2.7  
5.5  
V
IN(DC)  
Output Voltage, Total Variation  
with Line and Load  
C
= 10μF × 1, C  
= 100μF Ceramic,  
OUT  
OUT(DC)  
IN  
100μF POSCAP, R = 6.65k  
FB  
V
= 2.7V to 5.5V, I  
= I to  
OUT(DC)MIN  
1.472  
1.464  
1.49  
1.49  
1.508  
1.516  
V
V
IN  
OUT  
I
(Note 3)  
OUT(DC)MAX  
Input Specifications  
V
Undervoltage Lockout Threshold SV Rising  
2.05  
1.85  
2.2  
2.0  
2.35  
2.15  
V
V
IN(UVLO)  
IN  
SV Falling  
IN  
4608afa  
2
LTM4608A  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C. VIN = 5V unless otherwise noted. See Figure 1.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Input Supply Bias Current  
V
V
V
= 3.3V, No Switching, Mode = V  
IN  
400  
1.15  
55  
μA  
mA  
mA  
Q(VIN)  
IN  
IN  
IN  
= 3.3V, No Switching, Mode = 0V  
= 3.3V, V = 1.5V, Switching Continuous  
OUT  
V
V
V
= 5V, No Switching, Mode = V  
450  
1.3  
75  
μA  
mA  
mA  
IN  
IN  
IN  
IN  
= 5V, No Switching, Mode = 0V  
= 5V, V = 1.5V, Switching Continuous  
OUT  
Shutdown, RUN = 0, V = 5V  
1
μA  
IN  
I
Input Supply Current  
V
V
= 3.3V, V  
= 1.5V, I = 8A  
OUT  
4.5  
2.93  
A
A
S(VIN)  
IN  
IN  
OUT  
= 5V, V  
= 1.5V, I  
= 8A  
OUT  
OUT  
Output Specifications  
I
Output Continuous Current  
Range (Note 3)  
V
= 1.5V  
OUT(DC)  
OUT  
V
= 3.3V, 5.5V  
0
0
8
5
A
A
IN  
IN  
V
= 2.7V  
Line Regulation Accuracy  
Load Regulation Accuracy  
V
V
= 1.5V, V from 2.7V to 5.5V, I  
= 0A  
0.1  
0.25  
%/V  
ΔV  
V
OUT  
IN  
OUT  
OUT(LINE)  
OUT  
= 1.5V (Note 3)  
ΔV  
V
OUT  
V
V
OUT(LOAD)  
= 3.3V, 5.5V, I  
= 0A to 8A  
LOAD  
0.3  
0.3  
0.75  
0.75  
%
%
IN  
IN  
OUT  
= 2.7V, I  
= 0A to 5A  
LOAD  
V
Output Ripple Voltage  
I
= 0A, C  
= 1.5V  
= 100μF X5R Ceramic, V = 5V,  
OUT IN  
OUT(AC)  
OUT  
OUT  
V
10  
mV  
P-P  
f
f
Switching Frequency  
SYNC Capture Range  
Turn-On Overshoot  
I
= 8A, V = 5V, V = 1.5V  
OUT  
1.25  
0.75  
1.5  
1.75  
2.25  
MHz  
MHz  
S
OUT  
IN  
SYNC  
C
= 100μF, V  
= 1.5V, I  
= 0A  
OUT  
ΔV  
OUT  
V
OUT  
OUT(START)  
= 3.3V  
= 5V  
10  
10  
mV  
mV  
IN  
IN  
V
t
Turn-On Time  
C
= 100μF, V  
= 1.5V, V = 5V,  
100  
μs  
START  
OUT  
OUT  
OUT  
IN  
I
= 1A Resistive Load, Track = V ,  
IN  
Peak Deviation for Dynamic  
Load  
Load: 0% to 50% to 0% of Full Load,  
15  
mV  
ΔV  
OUT(LS)  
C
V
= 100μF Ceramic, 100μF POSCAP,  
OUT  
= 5V, V  
= 1.5V  
OUT  
IN  
t
I
Settling Time for Dynamic Load Load: 0% to 50% to 0% of Full Load, V = 5V,  
10  
μs  
SETTLE  
IN  
Step  
V
= 1.5V, C  
= 100μF  
OUT  
OUT  
Output Current Limit  
C
= 100μF  
OUT(PK)  
OUT  
V
= 2.7V, V  
= 3.3V, V  
= 1.5V  
= 1.5V  
8
11  
13  
A
A
A
IN  
IN  
IN  
OUT  
OUT  
V
V
= 5V, V  
= 1.5V  
OUT  
Control Section  
V
Voltage at FB Pin  
I
= 0A, V  
= 1.5V, V = 2.7V to 5.5V  
0.590  
0.587  
0.596  
0.596  
0.602  
0.606  
V
V
FB  
OUT  
OUT  
IN  
SS Delay  
Internal Soft-Start Delay  
90  
μs  
I
0.2  
μA  
FB  
V
RUN Pin On/Off Threshold  
RUN Rising  
RUN Falling  
1.4  
1.3  
1.55  
1.4  
1.7  
1.5  
V
V
RUN  
4608afa  
3
LTM4608A  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C. VIN = 5V unless otherwise noted. See Figure 1.  
SYMBOL  
PARAMETER  
CONDITIONS  
RUN = V  
MIN  
TYP  
MAX  
UNITS  
TRACK  
Tracking Threshold (Rising)  
Tracking Threshold (Falling)  
Tracking Disable Threshold  
0.57  
0.18  
V
V
V
IN  
RUN = 0V  
V
– 0.5  
IN  
R
Resistor Between V  
Pins  
and FB  
OUT  
9.95  
10  
10.05  
kΩ  
FBHI  
PGOOD Range  
10  
%
ΔV  
PGOOD  
%Margining  
Output Voltage Margining  
Percentage  
MGN = V , BSEL = 0V  
4
9
14  
–4  
–9  
–14  
5
6
%
%
%
%
%
%
IN  
MGN = V , BSEL = V  
10  
11  
IN  
IN  
MGN = V , BSEL = Float  
15  
16  
IN  
MGN = 0V, BSEL = 0V  
–5  
–10  
–15  
–6  
–11  
–16  
MGN = 0V, BSEL = V  
IN  
MGN = 0V, BSEL = Float  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM4608AE is guaranteed to meet performance  
specifications over the 0°C to 125°C internal operating temperature  
range. Specifications over the full –40°C to 125°C internal operating  
temperature range are assured by design, characterization and  
correlation with statistical process controls. The LTM4608AI is  
guaranteed to meet specifications over the full internal operating  
temperature range. The LTM4608AMP is guaranteed and tested  
over the –55°C to 125°C temperature range. Note that the maximum  
ambient temperature is determined by specific operating conditions in  
conjunction with board layout, the rated package thermal resistance and  
other environmental factors.  
Note 3: See output current derating curves for different V , V  
and T .  
IN OUT  
A
4608afa  
4
LTM4608A  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs Load Current  
Efficiency vs Load Current  
Efficiency vs Load Current  
100  
95  
90  
85  
80  
75  
70  
100  
95  
100  
95  
CONTINUOUS MODE  
CONTINUOUS MODE  
CONTINUOUS MODE  
90  
85  
90  
85  
80  
75  
70  
80  
75  
70  
5V 1.2V  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
3.3V 1.2V  
IN  
OUT  
OUT  
OUT  
OUT  
5V 1.5V  
IN  
2.7V 1.0V  
3.3V 1.5V  
IN  
IN  
OUT  
OUT  
OUT  
5V 1.8V  
IN  
2.7V 1.5V  
IN  
3.3V 1.8V  
IN  
3.3V 2.5V  
IN  
5V 2.5V  
IN  
2.7V 1.8V  
IN  
5V 3.3V  
IN  
0
2
3
4
5
6
7
0
2
4
6
8
1
0
2
4
6
8
LOAD CURRENT (A)  
LOAD CURRENT  
LOAD CURRENT  
4608A G03  
4608A G02  
4608A G01  
Burst Mode Efficiency with  
5V Input  
VIN to VOUT Step-Down Ratio  
VIN to VOUT Step-Down Ratio  
100  
90  
80  
70  
60  
50  
40  
4.0  
3.5  
3.0  
2.5  
4.0  
3.5  
3.0  
2.5  
I
= 5A  
I
= 8A  
OUT  
OUT  
V
V
V
V
V
= 1.2V  
= 1.5V  
= 1.8V  
= 2.5V  
= 3.3V  
V
V
V
V
V
= 1.2V  
= 1.5V  
= 1.8V  
= 2.5V  
= 3.3V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
2.0  
1.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0.5  
0
V
V
V
= 1.5V  
= 2.5V  
= 3.3V  
OUT  
OUT  
OUT  
1
2
4
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1  
LOAD CURRENT (A)  
1
2
4
0
5
6
0
5
6
3
3
V
(V)  
V
(V)  
IN  
IN  
4608A G04  
4608A G06  
4608A G05  
Supply Current vs VIN  
Load Transient Response  
Load Transient Response  
1.6  
1.4  
1.2  
1
I
LOAD  
1A/DIV  
I
LOAD  
V
= 1.2V PULSE-SKIPPING MODE  
2A/DIV  
O
V
IN  
2V/DIV  
V
OUT  
V
OUT  
20mV/DIV  
0.8  
0.6  
0.4  
0.2  
0
20mV/DIV  
AC COUPLED  
AC COUPLED  
V
= 1.2V BURST MODE  
O
4608A G08  
4608A G09  
V
V
= 5V  
20μs/DIV  
V
V
= 5V  
20μs/DIV  
IN  
OUT  
IN  
OUT  
= 3.3V, R = 2.21k  
= 2.5V, R = 3.09k  
FB  
FB  
2A/μs STEP  
= 100μF X5R  
2.5A/μs STEP  
= 100μF X5R  
C
C
OUT  
OUT  
C1 = 100pF, C3 = 22pF FROM FIGURE 18  
C1 = 120pF, C3 = 47pF FROM FIGURE 18  
2.5  
3
3.5  
4
4.5  
5
5.5  
INPUT VOLTAGE (V)  
4608A G07  
4608afa  
5
LTM4608A  
TYPICAL PERFORMANCE CHARACTERISTICS  
Load Transient Response  
Load Transient Response  
Load Transient Response  
I
I
I
LOAD  
LOAD  
LOAD  
2A/DIV  
2A/DIV  
2A/DIV  
V
OUT  
V
V
OUT  
OUT  
20mV/DIV  
20mV/DIV  
20mV/DIV  
AC COUPLED  
AC COUPLED  
AC COUPLED  
4608A G10  
4608A G11  
4608A G12  
V
V
= 5V  
20μs/DIV  
V
V
= 5V  
20μs/DIV  
V
V
= 5V  
20μs/DIV  
IN  
OUT  
IN  
OUT  
IN  
OUT  
= 1.8V, R = 4.87k  
= 1.5V, R = 6.65k  
= 1.2V, R = 10k  
FB  
FB  
FB  
2.5A/μs STEP  
= 100μF X5R  
2.5A/μs STEP  
= 100μF X5R  
2.5A/μs STEP  
= 2 × 100μF  
C
OUT  
C
C
OUT  
OUT  
C1 = NONE, C3 = NONE FROM FIGURE 18  
C1 = NONE, C3 = NONE FROM FIGURE 18  
C1 = 100pF, C3 = NONE FROM FIGURE 18  
Start-Up  
VFB vs Temperature  
Load Regulation vs Current  
602  
600  
598  
596  
594  
592  
590  
0
–0.1  
–0.2  
–0.3  
–0.4  
V
OUT  
V
IN  
= 5.5V  
0.5V/DIV  
V
IN  
= 3.3V  
V
IN  
2V/DIV  
V
IN  
= 2.7V  
4608A G13  
V
V
C
= 5V  
50μs/DIV  
FC MODE  
IN  
–0.5  
–0.6  
= 1.5V  
V
V
= 3.3V  
OUT  
OUT  
IN  
OUT  
= 100μF NO LOAD AND 8A LOAD  
= 1.5V  
(DEFAULT 100μs SOFT-START)  
–25  
5
65  
–55  
95  
125  
35  
0
2
4
6
8
TEMPERATURE (°C)  
LOAD CURRENT (A)  
4608A G14  
4608A G15  
Short-Circuit Protection  
(2.5V Short, No Load)  
Short-Circuit Protection  
(2.5V Short, 4A Load)  
2.5V Output Current  
3.0  
2.5  
V
IN  
5V/DIV  
5V/DIV  
2V/DIV  
2V/DIV  
V
V
IN  
OUT  
V
OUT  
OUT  
2.0  
1.5  
I
LOAD  
OUT  
5A/DIV  
5A/DIV  
5A/DIV  
I
I
SHORT  
OUT  
1.0  
0.5  
0
4608A G17  
4608A G18  
V
V
= 5V  
50μs/DIV  
V
V
= 5V  
50μs/DIV  
IN  
OUT  
IN  
OUT  
= 2.5V  
= 2.5V  
0
5
10  
15  
20  
OUTPUT CURRENT (A)  
4608A G16  
4608afa  
6
LTM4608A  
PIN FUNCTIONS  
PHMODE (B4): Phase Selector Input. This pin determines  
the phase relationship between the internal oscillator and  
CLKOUT. Tie it high for 2-phase operation, tie it low for  
V (C1, C8, C9, D1, D3-D5, D7-D9 and E8): Power Input  
IN  
Pins. Apply input voltage between these pins and GND  
pins. Recommend placing input decoupling capacitance  
3-phase operation, and float or tie it to V /2 for 4-phase  
directly between V pins and GND pins.  
IN  
IN  
operation.  
V
OUT  
(C10-C11, D10-D11, E9-E11, F9-F11, G9-G11):  
MGN (B8): Margining Pin. Tie this pin to V  
to disable  
Power Output Pins. Apply output load between these pins  
and GND pins. Recommend placing output decoupling  
capacitance directly between these pins and GND pins.  
See Table 1.  
OUT  
margining. For margining, connect a voltage divider from  
V to GND with the center point connected to the MGN  
IN  
pin. Each resistor ≈ 50k. See Applications Information  
and Figure 18.  
GND (A1-A11, B1, B9-B11, F3, F7-F8, G1-G8): Power  
Ground Pins for Both Input and Output Returns.  
BSEL (B7): Margining Bit Select Pin. Tying BSEL low se-  
lects 5%, tying it high selects 10%. Floating it or tying  
SV (F4): Signal Input Voltage. This pin is internally con-  
IN  
it to V /2 selects 15%.  
IN  
nected to V through a lowpass filter.  
IN  
TRACK (E5): Output Voltage Tracking Pin. Voltage track-  
ing is enabled when the TRACK voltage is below 0.57V.  
If tracking is not desired, then connect the TRACK pin to  
SGND (E1): Signal Ground Pin. Return ground path for all  
analog and low power circuitry. Tie a single connection to  
GND in the application.  
SV . If TRACK is not tied to SV , then the TRACK pin’s  
IN  
IN  
MODE(B5):Mode Select Input. Tying this pin high enables  
voltage needs to be below 0.18V before the chip shuts  
down even though RUN is already low. Do not float this  
pin. A resistor divider and capacitor can be applied to the  
TRACK pin to increase the soft-start time of the regulator.  
See Applications Information. Can tie together for parallel  
operation and tracking. Load current needs to be present  
during track down.  
Burst Mode operation. Tying this pin low enables forced  
continuous operation. Floating this pin or tying it to V /2  
IN  
enables pulse-skipping operation.  
CLKIN (B3): External Synchronization Input to Phase  
Detector. This pin is internally terminated to SGND with a  
50k resistor. The phase locked loop will force the internal  
top power PMOS turn on to be synchronized with the  
FB (E7): The Negative Input of the Error Amplifier. Inter-  
rising edge of the CLKIN signal. Connect this pin to SV  
nally, this pin is connected to V  
with a 10k precision  
IN  
OUT  
to enable spread spectrum modulation. During external  
resistor. Different output voltages can be programmed  
with an additional resistor between FB and GND pins. In  
PolyPhase® operation, tie FB pins together for parallel  
operation. See Applications Information for details.  
synchronization, make sure the PLLLPF pin is not tied to  
V or GND.  
IN  
PLLLPF (E3): Phase Locked Loop Lowpass Filter. An in-  
ternal lowpass filter is tied to this pin. In spread spectrum  
mode, placing a capacitor here to SGND controls the slew  
rate from one frequency to the next. Alternatively, float-  
ing this pin allows normal running frequency at 1.5MHz,  
I
(F6): Current Control Threshold and Error Amplifier  
TH  
Compensation Point. The current comparator threshold  
increases with this control voltage. Tie together in parallel  
operation.  
tying this pin to SV forces the part to run at 1.33 times  
IN  
I
(F5): Negative Input to the Internal I Differential  
TH  
THM  
its normal frequency (2MHz), tying it to ground forces  
the frequency to run at 0.67 times its normal frequency  
(1MHz).  
Amplifier. Tie this pin to SGND for single phase operation.  
For PolyPhase operation, tie the master’s I  
while connecting all of the I  
to SGND  
THM  
pins together.  
THM  
PolyPhase is a registered trademark of Linear Technology Corporation.  
4608afa  
7
LTM4608A  
PIN FUNCTIONS  
SW (C3-C5): Switching Node of the Circuit is Used for  
Testing Purposes. This can be connected to copper on  
the board for improved thermal performance.  
PGOOD (C7): Output Voltage Power Good Indicator.  
Open-drain logic output that is pulled to ground when the  
output voltage is not within 10% of the regulation point.  
Disabled during margining.  
CLKOUT (F2): Output Clock Signal for PolyPhase Opera-  
tion. The phase of CLKOUT is determined by the state of  
the PHMODE pin.  
RUN (F1): Run Control Pin. A voltage above 1.5V will turn  
on the module.  
TOP VIEW  
A
B
C
D
E
F
G
GND  
V
IN  
CNTRL GND  
1
2
SW  
3
4
5
6
CNTRL  
7
8
9
10  
11  
GND  
V
OUT  
LGA PACKAGE  
68-PIN (15mm × 9mm × 2.8mm)  
4608afa  
8
LTM4608A  
SIMPLIFIED BLOCK DIAGRAM  
SV  
V
IN  
IN  
V
INTERNAL  
FILTER  
IN  
2.7 TO 5.5V  
+
TRACK  
10μF  
10μF  
10μF  
C
IN  
MGN  
BSEL  
SW  
M1  
M2  
PGOOD  
MODE  
L
V
OUT  
V
POWER  
CONTROL  
OUT  
RUN  
1.5V  
CLKIN  
CLKOUT  
PHMODE  
22μF  
22pF  
C
OUT  
GND  
FB  
I
TH  
10k  
INTERNAL  
COMP  
PLLLPF  
R
FB  
INTERNAL  
FILTER  
6.65k  
I
THM  
SGND  
4608A BD  
Figure 1. Simplified LTM4608A Block Diagram  
Table 1. Decoupling Requirements. TA = 25°C, Block Diagram Configuration  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
External Input Capacitor Requirement  
IN  
I
= 8A  
10  
μF  
IN  
OUT  
(V = 2.7V to 5.5V, V  
= 1.5V)  
OUT  
C
External Output Capacitor Requirement  
(V = 2.7V to 5.5V, V = 1.5V)  
I
= 8A  
100  
μF  
OUT  
OUT  
IN  
OUT  
OPERATION  
is 1.5MHz. For switching noise sensitive applications, it  
canbeexternallysynchronizedfrom0.75MHzto2.25MHz.  
Even spread spectrum switching can be implemented in  
the design to reduce noise.  
The LTM4608A is a standalone nonisolated switch mode  
DC/DC power supply. It can deliver up to 8A of DC output  
current with few external input and output capacitors.  
This module provides precisely regulated output voltage  
programmable via one external resistor from 0.6V DC to  
5.0V DC over a 2.7V to 5.5V input voltage. The typical  
application schematic is shown in Figure 18.  
With current mode control and internal feedback loop  
compensation, the LTM4608A module has sufficient  
stability margins and good transient performance with  
a wide range of output capacitors, even with all ceramic  
output capacitors.  
The LTM4608A has an integrated constant frequency cur-  
rent mode regulator and built-in power MOSFET devices  
withfastswitchingspeed.Thetypicalswitchingfrequency  
4608afa  
9
LTM4608A  
OPERATION  
Multiphase operation can be easily employed with the  
synchronizationandphasemodecontrols.Upto12phases  
can be cascaded to run simultaneously with respect to  
each other by programming the PHMODE pin to different  
levels. The LTM4608A has clock in and clock out for poly  
phasing multiple devices or frequency synchronization.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limit and thermal shutdown in an overcurrent condition.  
Internalovervoltageandundervoltagecomparatorspullthe  
open-drain PGOOD output low if the output feedback volt-  
age exits a 10% window around the regulation point.  
Pulling the RUN pin below 1.3V forces the controller into  
its shutdown state, by turning off both M1 and M2 at low  
load current. The TRACK pin is used for programming the  
output voltage ramp and voltage tracking during start-up.  
See Applications Information.  
High efficiency at light loads can be accomplished with  
selectableBurstModeoperationusingtheMODEpin.These  
light load features will accommodate battery operation.  
Efficiency graphs are provided for light load operation in  
the Typial Performance Characteristics.  
The LTM4608A is internally compensated to be stable  
over all operating conditions. Table 3 provides a guideline  
for input and output capacitances for several operating  
conditions.TheLinearTechnologyμModulePowerDesign  
Tool is provided for transient and stability analysis. The  
FB pin is used to program the output voltage with a single  
external resistor to ground.  
Output voltage margining is supported, and can be pro-  
gramed from 5% to 15% using the MGN and BSEL pins.  
The PGOOD pin is disabled during margining  
APPLICATIONS INFORMATION  
The typical LTM4608A application circuit is shown in  
Figure 18. External component selection is primarily  
determined by the maximum load current and output  
voltage. Refer to Table 3 for specific external capacitor  
requirements for a particular application.  
10k +RFB  
VOUT = 0.596V •  
RFB  
Table 2. RFB Resistor vs Output Voltage  
V
0.596V  
Open  
1.2V  
10k  
1.5V  
1.8V  
2.5V  
3.3V  
OUT  
R
6.65k  
4.87k  
3.09k  
2.21k  
FB  
V to V  
Step-Down Ratios  
IN  
OUT  
There are restrictions in the maximum V to V  
step-  
IN  
OUT  
Input Capacitors  
down ratio that can be achieved for a given input voltage.  
The LTM4608A is 100% duty cycle, but the V to V  
The LTM4608A module should be connected to a low AC  
impedance DC source. Three 10μF ceramic capacitors  
are included inside the module. Additional input capaci-  
tors are only needed if a large load step is required up to  
the 4A level. A 47μF to 100μF surface mount aluminum  
electrolytic bulk capacitor can be used for more input  
bulk capacitance. This bulk input capacitor is only needed  
if the input source impedance is compromised by long  
inductive leads, traces or not enough source capacitance.  
If low impedance power planes are used, then this 47μF  
capacitor is not needed.  
IN  
OUT  
minimum drop out is still shown as a function of its load  
current. For 5V input, all outputs can deliver 8A. For 3.3V  
input, all outputs can deliver 8A, except 2.5V  
is limited to 6A.  
which  
OUT  
Output Voltage Programming  
The PWM controller has an internal 0.596V reference  
voltage. As shown in the Block Diagram, a 10k 0.5%  
internal feedback resistor connects V  
and FB pins  
OUT  
together. The output voltage will default to 0.596V with  
For a buck converter, the switching duty-cycle can be  
estimated as:  
no feedback resistor. Adding a resistor R from FB pin  
to GND programs the output voltage:  
FB  
4608afa  
10  
LTM4608A  
APPLICATIONS INFORMATION  
Burst Mode Operation  
VOUT  
D =  
V
TheLTM4608AiscapableofBurstModeoperationinwhich  
the power MOSFETs operate intermittently based on load  
demand, thus saving quiescent current. For applications  
where maximizing the efficiency at very light loads is a  
high priority, Burst Mode operation should be applied. To  
enable Burst Mode operation, simply tie the MODE pin to  
IN  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
IOUT(MAX)  
ICIN(RMS)  
=
• D • 1– D  
(
)
η%  
V . Duringthisoperation, thepeakcurrentoftheinductor  
IN  
is set to approximately 20% of the maximum peak current  
In the above equation, η% is the estimated efficiency of  
the power module. The bulk capacitor can be a switcher-  
rated electrolytic aluminum capacitor, polymer capacitor  
for bulk input capacitance due to high inductance traces  
or leads. If a low inductance plane is used to power the  
device, then only one 10μF ceramic is required. The three  
internal 10μF ceramics are typically rated for 2A of RMS  
ripple current, so the ripple current at the worse case for  
8A maximum current is 4A or less.  
value in normal operation even though the voltage at the  
I
pin indicates a lower value. The voltage at the I pin  
TH  
TH  
drops when the inductor’s average current is greater than  
theloadrequirement. AstheI voltagedropsbelow0.2V,  
TH  
the BURST comparator trips, causing the internal sleep  
line to go high and turn off both power MOSFETs.  
In sleep mode, the internal circuitry is partially turned off,  
reducing the quiescent current to about 450μA. The load  
current is now being supplied from the output capacitor.  
Output Capacitors  
When the output voltage drops, causing I to rise above  
TH  
0.25V, the internal sleep line goes low, and the LTM4608A  
resumes normal operation. The next oscillator cycle will  
turn on the top power MOSFET and the switching cycle  
repeats.  
The LTM4608A is designed for low output voltage ripple  
noise. The bulk output capacitors defined as C  
are  
OUT  
chosen with low enough effective series resistance (ESR)  
to meet the output voltage ripple and transient require-  
ments. C  
can be a low ESR tantalum capacitor, a low  
OUT  
Pulse-Skipping Mode Operation  
ESR polymer capacitor or ceramic capacitor. The typical  
output capacitance range is from 47μF to 220μF. Additional  
output filtering may be required by the system designer,  
if further reduction of output ripple or dynamic transient  
spikesisrequired.Table3showsamatrixofdifferentoutput  
voltages and output capacitors to minimize the voltage  
droop and overshoot during a 3A/μs transient. The table  
optimizes total equivalent ESR and total bulk capacitance  
tooptimizethetransientperformance.Stabilitycriteriaare  
consideredintheTable3matrix,andtheLinearTechnology  
μModule Power Design Tool will be provided for stability  
analysis.Multiphaseoperationwillreduceeffectiveoutput  
ripple as a function of the number of phases. Application  
Note 77 discusses this noise reduction versus output  
ripple current cancellation, but the output capacitance  
will be more a function of stability and transient response.  
The Linear Technology μModule Power Design Tool will  
calculate the output ripple reduction as the number phases  
implemented increases by N times.  
In applications where low output ripple and high efficiency  
at intermediate currents are desired, pulse-skipping mode  
should be used. Pulse-skipping operation allows the  
LTM4608Atoskipcyclesatlowoutputloads,thusincreas-  
ingefficiencybyreducingswitchingloss.FloatingtheMODE  
pin or tying it to V /2 enables pulse-skipping operation.  
IN  
Thisallowsdiscontinuousconductionmode(DCM)opera-  
tion down to near the limit defined by the chip’s minimum  
on-time (about 100ns). Below this output current level, the  
converter will begin to skip cycles in order to maintain out-  
put regulation. Increasing the output load current slightly,  
abovetheminimumrequiredfordiscontinuousconduction  
mode, allows constant frequency PWM.  
Forced Continuous Operation  
In applications where fixed frequency operation is more  
critical than low current efficiency, and where the lowest  
output ripple is desired, forced continuous operation should  
4608afa  
11  
LTM4608A  
APPLICATIONS INFORMATION  
Table 3. Output Voltage Response Versus Component Matrix (Refer to Figure 18) 0A to 3A Load Step  
TYPICAL MEASURED VALUES  
C
VENDORS  
VALUE  
PART NUMBER  
C
VENDORS  
OUT2  
VALUE  
PART NUMBER  
10TPD150M  
OUT1  
TDK  
22μF, 6.3V  
22μF, 16V  
100μF, 6.3V  
100μF, 6.3V  
C3216X7S0J226M  
GRM31CR61C226KE15L  
C4532X5R0J107MZ  
GRM32ER60J107M  
Sanyo POSCAP  
150μF, 10V  
Murata  
TDK  
C
(BULK) VENDORS VALUE  
PART NUMBER  
10CE100FH  
IN  
Sanyo  
100μF, 10V  
Murata  
V
C
C
C
C
V
(V)  
DROOP PEAK-TO- PEAK RECOVERY LOAD STEP  
R
FB  
OUT  
IN  
IN  
OUT1  
OUT2  
IN  
(V) (CERAMIC) (BULK)* (CERAMIC)  
(BULK)  
I
C1  
C3  
(mV) DEVIATION (mV) TIME (μs)  
(A/μs)  
(kΩ)  
14.7  
14.7  
14.7  
14.7  
14.7  
14.7  
10  
TH  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
2.5  
3.3  
3.3  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF × 2  
22μF × 1  
100μF × 2  
22μF × 1  
100μF × 2  
22μF × 1  
100μF × 2  
22μF × 1  
100μF × 2  
22μF × 1  
100μF × 2  
22μF × 1  
100μF × 2  
22μF × 1  
100μF × 2  
22μF × 1  
100μF × 2  
22μF × 1  
100μF × 1  
22μF × 1  
100μF × 2  
22μF × 1  
100μF × 2  
22μF × 1  
100μF × 1  
22μF × 1  
100μF × 1  
22μF × 1  
100μF × 1  
22μF × 1  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
100pF  
None  
68pF  
None  
68pF  
None  
68pF  
None  
100pF  
None  
100pF  
None  
100pF  
47pF  
None  
100pF  
None  
100pF  
None  
100pF  
None  
100pF  
None  
100pF  
None  
None  
None  
47pF  
None  
47pF  
None  
None  
None  
47pF  
None  
47pF  
None  
None  
None  
None  
None  
None  
None  
None  
5
13  
17  
13  
17  
13  
17  
16  
20  
16  
20  
16  
16  
18  
20  
16  
20  
18  
20  
22  
21  
21  
21  
22  
21  
28  
33  
30  
21  
38  
39  
26  
34  
26  
34  
26  
34  
32  
41  
32  
41  
32  
32  
36  
41  
32  
41  
36  
41  
42  
42  
43  
41  
44  
42  
42  
60  
60  
41  
74  
75  
7
3
150μF × 2  
150μF × 2  
150μF × 2  
150μF × 2  
150μF × 2  
150μF × 2  
150μF × 2  
150μF × 2  
150μF × 2  
150μF × 2  
150μF × 2  
150μF × 2  
150μF × 1  
150μF × 1  
150μF × 1  
5
8
3
3.3  
3.3  
2.7  
2.7  
5
7
3
10  
7
3
3
8
3
8
3
5
10  
8
3
10  
3.3  
3.3  
2.7  
2.7  
5
3
10  
10  
10  
8
3
10  
3
10  
3
10  
100pF  
None  
100pF  
None  
100pF  
None  
47pF  
8
3
6.65  
6.65  
6.65  
6.65  
6.65  
6.65  
4.87  
4.87  
4.87  
4.87  
4.87  
4.87  
3.09  
3.09  
3.09  
3.09  
2.21  
2.21  
5
12  
10  
12  
10  
12  
8
3
3.3  
3.3  
2.7  
2.7  
5
3
3
3
3
3
None  
120pF  
None  
120pF  
None  
100pF  
22pF  
100pF  
22pF  
22pF  
None  
5
12  
12  
12  
12  
14  
10  
10  
10  
10  
10  
12  
3
3.3  
3.3  
2.7  
2.7  
5
3
3
3
3
3
5
3
3.3  
3.3  
5
3
3
3
5
3
*Bulk capacitance is optional if V has very low input impedance.  
IN  
be used. Forced continuous operation can be enabled by  
tying the MODE pin to GND. In this mode, inductor cur-  
Multiphase Operation  
For output loads that demand more than 8A of current,  
multiple LTM4608As can be cascaded to run out of phase  
toprovidemoreoutputcurrentwithoutincreasinginputand  
outputvoltageripple.TheCLKINpinallowstheLTM4608A  
to synchronize to an external clock (between 0.75MHz  
and 2.25MHz) and the internal phase locked loop allows  
rent is allowed to reverse during low output loads, the I  
TH  
voltage is in control of the current comparator threshold  
throughout,andthetopMOSFETalwaysturnsonwitheach  
oscillator pulse. During star t-up, forced continuous mode is  
disabled and inductor current is prevented from reversing  
until the LTM4608A’s output voltage is in regulation.  
4608afa  
12  
LTM4608A  
APPLICATIONS INFORMATION  
the LTM4608A to lock onto CLKIN’s phase as well. The  
CLKOUT signal can be connected to the CLKIN pin of the  
following LTM4608A stage to line up both the frequency  
and the phase of the entire system. Tying the PHMODE  
on the 6th stage (PHMODE is floating) goes back to the  
1st stage. Figure 3 shows the configuration for 12-phase  
operation.  
A multiphase power supply significantly reduces the  
amount of ripple current in both the input and output  
capacitors. The RMS input ripple current is reduced by,  
and the effective ripple frequency is multiplied by, the  
numberofphasesused(assumingthattheinputvoltageis  
greater than the number of phases used times the output  
voltage). The output ripple amplitude is also reduced by  
the number of phases used.  
pin to SV , SGND or SV /2 (floating) generates a phase  
IN  
IN  
difference (between CLKIN and CLKOUT) of 180°, 120°  
or 90° respectively, which corresponds to a 2-phase, 3-  
phase or 4-phase operation. A total of 12 phases can be  
cascadedtorunsimultaneouslywithrespecttoeachother  
by programming the PHMODE pin of each LTM4608A to  
different levels. For a 6-phase example in Figure 2, the  
2nd stage that is 120° out of phase from the 1st stage  
can generate a 240° (PHMODE = 0) CLKOUT signal for  
the 3rd stage, which then can generate a CLKOUT signal  
The LTM4608A device is an inherently current mode con-  
trolleddevice.Parallelmoduleswillhaveverygoodcurrent  
sharing. This will balance the thermals on the design.  
that’s 420°, or 60° (PHMODE = SV ) for the 4th stage.  
IN  
Tie the I pins of each LTM4608A together to share the  
With the 60° CLKIN input, the next two stages can shift  
120° (PHMODE = 0) for each to generate a 300° signal  
for the 6th stage. Finally, the signal with a 60° phase shift  
TH  
current evenly. To reduce ground potential noise, tie the  
I
pins of all LTM4608As together and then connect to  
THM  
(420)  
60  
0
120  
240  
180  
300  
+120  
+120  
+180  
+120  
+120  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
PHMODE  
PHASE 1  
PHMODE  
PHASE 3  
S
PHMODE  
PHASE 5  
PHMODE  
PHASE 2  
PHMODE  
PHASE 4  
PHMODE  
PHASE 6  
VIN  
4608A F02  
Figure 2. 6-Phase Operation  
(390)  
30  
0
90  
180  
270  
+90  
+90  
+90  
+120  
+90  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
PHMODE  
PHASE 1  
PHMODE  
PHASE 4  
PHMODE  
PHASE 7  
PHMODE  
PHASE 10  
PHMODE  
PHASE 2  
(420)  
60  
120  
210  
300  
150  
+90  
+90  
+120  
+90  
+90  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
PHMODE  
PHASE 5  
PHMODE  
PHASE 8  
PHMODE  
PHASE 11  
PHMODE  
PHASE 3  
PHMODE  
PHASE 6  
4608A F03  
240  
330  
+90  
CLKIN CLKOUT  
CLKIN CLKOUT  
PHMODE  
PHASE 9  
PHMODE  
PHASE 12  
Figure 3. 12-Phase Operation  
4608afa  
13  
LTM4608A  
APPLICATIONS INFORMATION  
the SGND at only one point. Figure 19 shows a schematic  
of the parallel design. The FB pins of the parallel module  
are tied together. With parallel operation, input and out-  
put capacitors may be reduced in part according to the  
operating duty cycle.  
frequency of operation (fundamental) and multiples of the  
operating frequency (harmonics).  
To reduce this noise, the LTM4608A can run in spread  
spectrum operation by tying the CLKIN pin to SV . In  
IN  
spread spectrum operation, the LTM4608A’s internal  
oscillator is designed to produce a clock pulse whose  
period is random on a cycle-by-cycle basis but fixed  
between 70% and 130% of the nominal frequency. This  
has the benefit of spreading the switching noise over a  
range of frequencies, thus significantly reducing the peak  
noise. Spread spectrum operation is disabled if CLKIN is  
tied to ground or if it’s driven by an external frequency  
synchronization signal. A capacitor value of 0.01μF must  
be placed from the PLLLPF pin to ground to control the  
slew rate of the spread spectrum frequency change.  
Input RMS Ripple Current Cancellation  
Application Note 77 provides a detailed explanation of  
multiphase operation. The input RMS ripple current can-  
cellation mathematical derivations are presented, and a  
graph is displayed representing the RMS ripple current  
reductionasafunctionofthenumberofinterleavedphases.  
Figure 4 shows this graph.  
Spread Spectrum Operation  
Switching regulators can be particularly troublesome  
where electromagnetic interference (EMI) is concerned.  
Output Voltage Tracking  
Output voltage tracking can be programmed externally  
using the TRACK pin. The output can be tracked up and  
downwithanotherregulator.Themasterregulator’soutput  
is divided down with an external resistor divider that is the  
Switching regulators operate on a cycle-by-cycle basis to  
transfer power to an output. In most cases, the frequency  
ofoperationisxedbasedontheoutputload.Thismethod  
of conversion creates large components of noise at the  
0.60  
1-PHASE  
2-PHASE  
3-PHASE  
4-PHASE  
6-PHASE  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY FACTOR (V /V  
)
IN  
O
4608A F04  
Figure 4. Normalized Input RMS Ripple Current vs Duty Factor for One to Six Phases  
4608afa  
14  
LTM4608A  
APPLICATIONS INFORMATION  
sameastheslaveregulator’sfeedbackdividertoimplement  
coincident tracking. The LTM4608A uses an accurate 10k  
resistor internally for the top feedback resistor. Figure 5  
shows an example of coincident tracking:  
Thetrackpinofthemastercanbecontrolledbyanexternal  
ramp or by R and C in Figure 5 referenced to V . The  
SR  
SR  
IN  
RC ramp time can be programmed using equation:  
0.596V  
t = – ln 1–  
RSR • CSR  
10k  
V
IN  
Slave = 1+  
• VTRACK  
R
FB4ꢄ  
V
is the track ramp applied to the slave’s track  
TRACK  
TRACK  
pin. V  
MASTER OUTPUT  
SLAVE OUTPUT  
has a control range of 0V to 0.596V, or the  
internal reference voltage. When the master’s output is  
divided down with the same resistor values used to set  
the slave’s output, this resistor divider is connected to  
the slave’s track pin. The slave will then coincident track  
with the master until it reaches its final value. The master  
will continue to its final value from the slave’s regulation  
point. Voltage tracking is disabled when V  
than 0.596V.  
is more  
TRACK  
TIME  
4608A F06  
Figure 6. Output Voltage Coincident Tracking  
MASTER  
3.3V  
7A  
CLKIN  
V
IN  
V
V
I
IN  
OUT  
5V  
C2  
100μF  
SV  
IN  
100pF  
SW  
FB  
TIE TO V  
IN  
LTM4608A  
C3  
R
FB1  
2.21k  
FOR DISABLE  
AND DEFAULT  
RUN  
RUN  
I
TH  
22pF  
PLLLPF  
TRACK  
MODE  
100μs SOFT-START  
THM  
TRACK  
PGOOD  
R
C
SR  
SR  
BSEL  
MGN  
PHMODE  
3.3V  
APPLY A CONTROL  
RAMP WITH R AND  
CLKOUT GND SGND  
SR  
C
SR  
TIED TO V WHERE  
IN  
t = –(ln (1 – 0.596/V ) • R • C )  
SR  
IN  
SR  
OR APPLY AN EXTERNAL TRACKING RAMP  
SLAVE  
1.5V  
8A  
CLKIN  
V
V
OUT  
IN  
+
C1  
100μF  
C4  
100μF  
SV  
IN  
SW  
FB  
MASTER  
3.3V  
LTM4608A  
R
FB2  
RUN  
RUN  
I
TH  
6.65k  
R
FB3  
PLLLPF  
TRACK  
MODE  
I
THM  
10k  
TRACK  
PGOOD  
BSEL  
R
FB4  
6.65k  
PHMODE  
MGN  
1.5V  
CLKOUT GND SGND  
4608A F05  
Figure 5. Dual Outputs (3.3V and 1.5V) with Tracking  
4608afa  
15  
LTM4608A  
APPLICATIONS INFORMATION  
Ratiometric tracking can be achieved by a few simple  
calculationsandtheslewratevalueappliedtothemaster’s  
trackpin.Asmentionedabove,theTRACKpinhasacontrol  
range from 0V to 0.596V. The master’s TRACK pin slew  
rate is directly equal to the master’s output slew rate in  
Volts/Time:  
For example: MR = 3.3V/ms and SR = 1.5V/ms. Then  
= 22.1k. Solve for R to equal to 4.87k.  
R
FB3  
FB4  
For applications that do not require tracking or sequencing,  
simply tie the TRACK pin to SV to let RUN control the  
IN  
turn on/off. Connecting TRACK to SV also enables the  
IN  
~100μs of internal soft-start during start-up. Load current  
needs to be present during track down.  
MR  
SR  
10k = RFB3  
Power Good  
where MR is the master’s output slew rate and SR is the  
slave’s output slew rate in Volts/Time. When coincident  
The PGOOD pin is an open-drain pin that can be used to  
monitor valid output voltage regulation. This pin monitors  
a 10% window around the regulation point. As shown  
in Figure 20, the sequencing function can be realized in a  
dualoutputapplicationbycontrollingtheRUNpinsandthe  
PGOOD signals from each other. The 1.5V output begins  
its soft starting after the PGOOD signal of 3.3V output  
becomes high, and 3.3V output starts its shut down after  
the PGOOD signal of 1.5V output becomes low. This can  
be applied to systems that require voltage sequencing  
between the core and sub-power supplies.  
tracking is desired, then MR and SR are equal, thus R  
FB3  
is equal the 10k. R is derived from equation:  
FB4  
0.596V  
RFB4  
=
VTRACK  
RFB3  
VFB VFB  
+
10k RFB2  
where V is the feedback voltage reference of the regula-  
FB  
tor and V  
is 0.596V. Since R is equal to the 10k  
TRACK  
FB3  
top feedback resistor of the slave regulator in equal slew  
rate or coincident tracking, then R is equal to R with  
FB4  
FB2  
V
= V  
. Therefore R = 10k and R = 6.65k in  
TRACK FB3 FB4  
Slope Compensation  
FB  
Figure 5.  
The module has already been internally compensated for  
all output voltages. Table 3 is provided for most applica-  
tion requirements. A spice model will be provided for other  
control loop optimization. For single module operation,  
Inratiometrictracking,adifferentslewratemaybedesired  
for the slave regulator. R can be solved for when SR is  
FB3  
slower than MR. Make sure that the slave supply slew rate  
is chosen to be fast enough so that the slave output voltage  
will reach it final value before the master output.  
connect I  
pin to SGND. For parallel operation, tie I  
THM  
THM  
pins together and then connect to SGND at one point. Tie  
I
TH  
pins together to share currents evenly for all phases.  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.5  
5V 1.5V  
3.3V 1.5V  
IN  
OUT  
OUT  
IN  
OUT  
OUT  
5V 3.3V  
IN  
3.3V 2.5V  
IN  
0
0
4
0
2
6
8
4
0
2
6
8
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4608A F08  
4608A F07  
Figure 7. 3.3VIN, 2.5V and 1.5VOUT Power Loss  
Figure 8. 5VIN, 3.3V and 1.5VOUT Power Loss  
4608afa  
16  
LTM4608A  
APPLICATIONS INFORMATION  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
400LFM  
200LFM  
0LFM  
400LFM  
200LFM  
0LFM  
1
0
80 90  
40 50 60 70  
100 110 120  
80 90  
40 50 60 70  
100 110 120  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4608A F10  
4608A F09  
Figure 9. No Heat Sink with 3.3VIN to 1.5VOUT  
Figure 10. BGA Heat Sink with 3.3VIN to 1.5VOUT  
9
8
7
6
5
4
3
9
8
7
6
5
4
3
2
2
400LFM  
200LFM  
0LFM  
400LFM  
200LFM  
0LFM  
1
0
1
0
80 90  
40 50 60 70  
100 110 120  
80 90  
40 50 60 70  
100 110 120  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4608A F12  
4608A F11  
Figure 11. No Heat Sink with 5VIN to 1.5VOUT  
Figure 12. BGA Heat Sink with 5VIN to 1.5VOUT  
9
8
7
6
5
4
3
9
8
7
6
5
4
3
2
2
400LFM  
200LFM  
0LFM  
400LFM  
200LFM  
0LFM  
1
0
1
0
80 90  
40 50 60 70  
100 110 120  
80 90  
40 50 60 70  
100 110 120  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4608A F14  
4608A F13  
Figure 13. No Heat Sink with 3.3VIN to 2.5VOUT  
Figure 14. BGA Heat Sink with 3.3VIN to 2.5VOUT  
4608afa  
17  
LTM4608A  
APPLICATIONS INFORMATION  
9
8
7
6
5
4
3
9
8
7
6
5
4
3
2
1
0
2
400LFM  
200LFM  
0LFM  
400LFM  
200LFM  
0LFM  
1
0
80 90  
40 50 60 70  
100 110 120  
80 90  
40 50 60 70  
100 110 120  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4608A F15  
4608A F16  
Figure 15. No Heat Sink with 5VIN to 3.3VOUT  
Figure 16. BGA Heat Sink with 5VIN to 3.3VOUT  
Table 4. 1.5V Output  
DERATING CURVE  
Figures 9, 11  
V
(V)  
POWER LOSS CURVE  
Figures 7, 8  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
25  
IN  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
0
Figures 9, 11  
Figures 7, 8  
200  
400  
0
None  
21  
Figures 9, 11  
Figures 7, 8  
None  
20  
Figures 10, 12  
Figures 10, 12  
Figures 10, 12  
Figures 7, 8  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
23.5  
22  
Figures 7, 8  
200  
400  
Figures 7, 8  
22  
Table 5. 3.3V Output  
DERATING CURVE  
Figure 15  
V
(V)  
POWER LOSS CURVE  
Figure 8  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
IN  
5
0
25  
21  
Figure 15  
5
5
5
5
5
Figure 8  
200  
400  
0
None  
Figure 15  
Figure 8  
None  
20  
Figure 16  
Figure 8  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
23.5  
22  
Figure 16  
Figure 8  
200  
400  
Figure 16  
Figure 8  
22  
4608afa  
18  
LTM4608A  
APPLICATIONS INFORMATION  
Output Margining  
electrical and thermal performance, some layout con-  
siderations are still necessary.  
For a convenient system stress test on the LTM4608A’s  
output, the user can program the LTM4608A’s output to  
5%, 10% or 15% of its normal operational voltage.  
The margin pin with a voltage divider is driven with a  
small three-state gate as shown in Figure 18, for the three  
margin states (high, low, no margin). When the MGN pin  
is low, it forces negative margining in which the output  
voltage is below the regulation point. When MGN is high,  
the output voltage is forced to above the regulation point.  
The amount of output voltage margining is determined by  
the BSEL pin. When BSEL is low, it is 5%. When BSEL is  
high, it is 10%. When BSEL is floating, it is 15%. When  
margining is active, the internal output overvoltage and  
undervoltage comparators are disabled and PGOOD  
remains high. Margining is disabled by tying the MGN  
• Use large PCB copper areas for high current path,  
including V , GND and V . It helps to minimize the  
IN  
OUT  
PCB conduction loss and thermal stress.  
• Place high frequency ceramic input and output capaci-  
tors next to the V , GND and V  
pins to minimize  
IN  
OUT  
high frequency noise.  
• Place a dedicated power ground layer underneath the  
unit.  
• Tominimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
• Do not put vias directly on the pads, unless they are  
capped.  
pin to V  
.
OUT  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to GND underneath the unit.  
Thermal Considerations and Output Current Derating  
The power loss curves in Figures 7 and 8 can be used  
in coordination with the load current derating curves in  
Figure 17 gives a good example of the recommended  
layout.  
Figures 9 to 16 for calculating an approximate θ for the  
JA  
modulewithvariousheatsinkingmethods.Thermalmodels  
are derived from several temperature measurements at  
the bench, and thermal modeling analysis. Thermal Ap-  
plication Note 103 provides a detailed explanation of the  
analysis for the thermal models and the derating curves.  
GND  
V
OUT  
C
OUT  
OUT  
OUT  
C
Tables 4 and 5 provide a summary of the equivalent θ  
JA  
forthenotedconditions. Theseequivalent θ parameters  
JA  
GND  
C
are correlated to the measured values and improve with  
air flow. The junction temperature is maintained at 125°C  
or below for the derating curves.  
C
IN  
Safety Considerations  
The LTM4608A modules do not provide isolation from  
V to V . There is no internal fuse. If required, a slow  
IN  
OUT  
V
IN  
blow fuse with a rating twice the maximum input current  
needs to be provided to protect each unit from catastrophic  
failure.  
C
IN  
GND  
4608A F17  
Layout Checklist/Example  
Figure 17. Recommended PCB Layout  
The high integration of LTM4608A makes the PCB board  
layout very simple and easy. However, to optimize its  
4608afa  
19  
LTM4608A  
APPLICATIONS INFORMATION  
CLKIN  
V
2.5V  
8A  
8A AT 5V INPUT  
6A AT 3.3V INPUT  
OUT  
CLKIN  
V
IN  
V
V
I
IN  
OUT  
FB  
3V TO 5.5V  
C
C1  
C
OUT  
IN  
SV  
IN  
10μF  
220pF  
100μF  
SW  
LTM4608A  
C3  
47pF  
R
V
FB  
3.09k  
IN  
RUN  
I
TH  
PLLLPF  
TRACK  
MODE  
100k  
THM  
PGOOD  
PGOOD  
V
IN  
(HIGH = 10%)  
(FLOAT = 15%)  
(LOW = 5%)  
BSEL  
50k  
BSEL  
MGN  
MODE  
PHMODE  
OE  
PHMODE  
1
50k  
5
V
OUT  
2
4
CLKOUT GND SGND  
U1  
A
IN  
U1: PERICON P1745T1G126CEX  
OR TOSHIBA 7C75Z126AFE  
3
4608A F18  
OE  
A
V
MGN  
MARGIN VALUE  
IN OUT  
H
H
L
H
H
L
Z
H
L
IN  
+ OF BSEL SELECTION  
– OF BSEL SELECTION  
NO MARGIN  
L
X
V
/2  
Figure 18. Typical 3V to 5.5VIN, 2.5V at 8A Design  
V
1.5V  
16A  
OUT  
CLKIN  
V
IN  
V
V
IN  
OUT  
3V TO 5.5V  
C4  
100pF  
100μF  
6.3V  
X5R  
10μF  
SV  
IN  
SW  
FB  
LTM4608A  
3.32k  
RUN  
RUN  
I
TH  
PLLLPF  
TRACK  
MODE  
I
THM  
TRACK  
PGOOD  
BSEL  
C3  
PHMODE  
MGN  
V
OUT  
100μF  
6.3V  
X5R  
CLKOUT GND SGND  
CLKIN  
V
IN  
V
OUT  
C2  
10μF  
C1  
SV  
IN  
100μF  
6.3V  
X5R  
SW  
FB  
LTM4608A  
RUN  
I
TH  
PLLLPF  
TRACK  
MODE  
I
THM  
PGOOD  
BSEL  
V
OUT  
PHMODE  
MGN  
CLKOUT GND SGND  
4608A F19  
Figure 19. Two LTM4608As in Parallel, 1.5V at 16A Design  
4608afa  
20  
LTM4608A  
APPLICATIONS INFORMATION  
CLKIN  
CLKIN  
V
3.3V  
7A  
OUT2  
V
IN  
V
IN  
V
OUT  
5V  
100μF  
6.3V  
X5R  
C2  
SV  
IN  
100pF  
D1  
MMSD4148  
SW  
FB  
LTM4608A  
R
C3  
22pF  
FB1  
2.21k  
SHDN  
RUN  
I
TH  
PLLLPF  
TRACK  
MODE  
I
THM  
PGOOD  
BSEL  
100k  
SHDN  
PHMODE  
MGN  
3.3V  
R2  
100k  
CLKOUT GND SGND  
3.3V  
1.5V  
R1  
100k  
V
1.5V  
8A  
OUT1  
CLKIN  
V
IN  
V
OUT  
C1  
C4  
+
SV  
FB  
IN  
100μF  
6.3V  
X5R  
100μF  
SANYO  
POSCAP  
10mΩ  
D2  
R
FB2  
MMSD4148  
SW  
I
TH  
6.65k  
LTM4608A  
SHDN  
RUN  
I
THM  
PLLLPF  
TRACK  
MODE  
100k  
PGOOD  
BSEL  
4608A F20  
PHMODE  
MGN  
1.5V  
CLKOUT GND SGND  
Figure 20. Dual LTM4608A Output Sequencing Application  
CLKIN  
V
OUT  
CLKIN  
V
1.2V/8A  
5A AT  
IN  
V
V
IN  
OUT  
2.7V TO 5.5V  
C2  
C1  
10μF  
100pF  
2.7V INPUT  
SV  
IN  
100μF  
6.3V  
X5R  
100μF  
6.3V  
X5R  
SW  
FB  
LTM4608A  
10k  
RUN  
I
TH  
PLLLPF  
TRACK  
MODE  
I
THM  
PGOOD  
BSEL  
1.2V  
PGOOD  
BSEL  
MODE  
PHMODE  
PHMODE  
MGN  
CLKOUT GND SGND  
4608A F21  
Figure 21. 2.7V to 5.5VIN, 1.2VOUT Design  
4608afa  
21  
LTM4608A  
APPLICATIONS INFORMATION  
4608afa  
22  
LTM4608A  
PACKAGE DESCRIPTION  
LGA Package  
68-Lead (15mm × 9mm × 2.82mm)  
(Reference LTC DWG # 05-08-1821 Rev Ø)  
DETAIL A  
G
2.72 – 2.92  
PAD 1  
F
E
D
C
B
A
aaa  
Z
1
PAD “A1”  
CORNER  
2
4
3
4
5
12.70  
BSC  
6
15.00  
BSC  
MOLD  
SUBSTRATE  
CAP  
7
0.290 – 0.350  
8
2.200 – 2.600  
DETAIL B  
9
10  
11  
0.630 0.025 SQ. 68x  
PADS  
1.27  
BSC  
X
Y
SEE NOTES  
9.00  
BSC  
eee  
S X Y  
7.620  
BSC  
3
DETAIL B  
PACKAGE TOP VIEW  
PACKAGE BOTTOM VIEW  
DETAIL A  
6.350  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994  
5.080  
3.810  
2.540  
1.270  
0.000  
1.270  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3
4
LAND DESIGNATION PER JESD MO-222  
DETAILS OF PAD #1 IDENTIFIER ARE OPTIONAL,  
BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.  
THE PAD #1 IDENTIFIER MAY BE EITHER A MOLD OR  
MARKED FEATURE  
LTMXXXXXX  
μModule  
5. PRIMARY DATUM -Z- IS SEATING PLANE  
6. THE TOTAL NUMBER OF PADS: 68  
COMPONENT  
PIN “A1”  
2.540  
3.810  
5.080  
6.350  
SYMBOL TOLERANCE  
TRAY PIN 1  
BEVEL  
aaa  
bbb  
eee  
0.15  
0.10  
0.05  
PACKAGE IN TRAY LOADING ORIENTATION  
LGA 68 1207 REV Ø  
SUGGESTED PCB LAYOUT  
TOP VIEW  
4608afa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresenta-  
t ion t h a t t he in ter c onne c t ion o f i t s cir cui t s a s de s cr ib e d her ein w ill no t in fr inge on ex is t ing p a ten t r igh t s.  
23  
LTM4608A  
PACKAGE DESCRIPTION  
Pin Assignment Table  
(Arranged by Pin Number)  
PIN NAME  
A1 GND  
A2 GND  
A3 GND  
A4 GND  
A5 GND  
A6 GND  
A7 GND  
A8 GND  
A9 GND  
A10 GND  
A11 GND  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
E1 SGND  
E2  
E3 PLLLPF F3 GND  
PIN NAME  
PIN NAME  
B1 GND  
C1  
C2  
V
D1  
D2  
D3  
D4  
D5  
D6  
V
V
V
V
F1 RUN  
G1 GND  
IN  
IN  
B2  
B3 CLKIN  
B4 PHMODE C4 SW  
B5 MODE C5 SW  
B6 C6  
F2 CLKOUT G2 GND  
C3 SW  
G3 GND  
G4 GND  
G5 GND  
G6 GND  
G7 GND  
G8 GND  
G9 VOUT  
G10 VOUT  
G11 VOUT  
IN  
IN  
IN  
E4  
E5 TRACK F5  
E6 F6  
E7 FB  
E8  
F4 SV  
IN  
THM  
TH  
I
I
B7 BSEL  
B8 MGN  
B9 GND  
B10 GND  
B11 GND  
C7 PGOOD D7 VIN  
F7 GND  
F8 GND  
F9 VOUT  
F10 VOUT  
F11 VOUT  
C8  
V
V
V
V
D8  
D9  
V
V
V
IN  
IN  
IN  
IN  
C9  
E9 VOUT  
E10 VOUT  
E11 VOUT  
IN  
C10  
C11  
D10 VOUT  
D11 VOUT  
OUT  
OUT  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC2900  
Quad Supply Monitor with Adjustable Reset Timer Monitors Four Supplies; Adjustable Reset Timer  
LTC2923  
Power Supply Tracking Controller  
10A DC/DC μModule  
Tracks Both Up and Down; Power Supply Sequencing  
4.5V ≤ V ≤ 28V; 0.6V ≤ V ≤ 5V, LGA Package  
LTM4600HV  
IN  
OUT  
LTM4600HVMP Military Plastic 10A DC/DC μModule  
Guaranteed Operation from –55°C to 125°C Ambient, LGA Package  
LTM4601/  
LTM4601A  
12A DC/DC μModule with PLL, Output Tracking/  
Margining and Remote Sensing  
Synchronizable, PolyPhase Operation, LTM4601-1/LTM4601A-1 Version has no  
Remote Sensing, LGA Package, MP Version Available  
LTM4602  
LTM4603  
6A DC/DC μModule  
Pin Compatible with the LTM4600, LGA Package  
6A DC/DC μModule with PLL and Outpupt  
Tracking/Margining and Remote Sensing  
Synchronizable, PolyPhase Operation, LTM4603-1 Version has no Remote  
Sensing, Pin Compatible with the LTM4601, LGA Package  
LTM4604A  
LTM4605  
LTM4607  
LTM8020  
LTM8021  
LTM8022  
LTM8023  
Low V 4A DC/DC μModule  
2.375V ≤ V ≤ 5.5V, 0.8V ≤ V  
≤ 5V, 9mm × 15mm × 2.3mm LGA Package  
OUT  
IN  
IN  
5A to 12A Buck-Boost μModule  
5A to 12A Buck-Boost μModule  
4.5V ≤ V ≤ 20V; 0.8V ≤ V  
≤ 16V, 15mm × 15mm × 2.8mm LGA Package  
≤ 25V, 15mm × 15mm × 2.8mm LGA Package  
≤ 5V, 6.25mm × 6.25mm × 2.3mm LGA Package  
IN  
OUT  
OUT  
OUT  
4.5V ≤ V ≤ 36V; 0.8V ≤ V  
IN  
High V 0.2A DC/DC Step-Down μModule  
4V ≤ V ≤ 36V; 1.25V ≤ V  
IN  
IN  
High V 0.5A DC/DC Step-Down μModule  
3V ≤ V ≤ 36V; 0.8V ≤ V  
≤ 5V, 6.25mm × 11.25mm × 2.8mm LGA Package  
OUT  
IN  
IN  
High V 1A DC/DC Step-Down μModule  
3.6V ≤ V ≤ 36V; 0.8V ≤ V  
≤ 10V, 11.25mm × 9mm × 2.8mm LGA Package  
≤ 10V, 11.25mm × 9mm × 2.8mm LGA Package  
IN  
IN  
OUT  
OUT  
High V 2A DC/DC Step-Down μModule  
3.6V ≤ V ≤ 36V; 0.8V ≤ V  
IN  
IN  
4608afa  
LT 1008 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM4608AIV-PBF

Low VIN, 8A DC/DC μModule with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608AMPV

Low VIN, 8A DC/DC μModule with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608AMPV#PBF

LTM4608A - Low VIN, 8A DC/DC µModule (Power Module) with Tracking, Margining, and Frequency Synchronization; Package: LGA; Pins: 68; Temperature Range: -55°C to 125°C
Linear

LTM4608AMPV-PBF

Low VIN, 8A DC/DC μModule with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608AMPY

LTM4608A - Low VIN, 8A DC/DC µModule (Power Module) with Tracking, Margining, and Frequency Synchronization; Package: BGA; Pins: 68; Temperature Range: -55°C to 125°C
Linear

LTM4608AV

Low VIN, 8A DC/DC μModule with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608A_1

Low VIN, 8A DC/DC Module Regulator with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608A_12

Low VIN, 8A DC/DC μModule Regulator
Linear

LTM4608EV#PBF

LTM4608 - 8A, Low VIN DC/DC µModule (Power Module) with Tracking, Margining, Multiphase and Frequency Synchronization; Package: LGA; Pins: 68; Temperature Range: -40°C to 85°C
Linear

LTM4608EV-PBF

Low VIN, 8A DC/DC μModuleTM with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608IV-PBF

Low VIN, 8A DC/DC μModuleTM with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608V

Low VIN, 8A DC/DC μModuleTM with Tracking, Margining, and Frequency Synchronization
Linear