LTM4606_1 [Linear]

Ultralow EMI 28VIN, 6A DC/DC μModule Regulator; 超低EMI 28VIN , 6A DC / DCμModule稳压器
LTM4606_1
型号: LTM4606_1
厂家: Linear    Linear
描述:

Ultralow EMI 28VIN, 6A DC/DC μModule Regulator
超低EMI 28VIN , 6A DC / DCμModule稳压器

稳压器
文件: 总28页 (文件大小:365K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4606  
Ultralow EMI 28V , 6A  
IN  
DC/DC µModule Regulator  
FeaTures  
DescripTion  
n
Complete Low EMI Switch Mode Power Supply  
The LTM®4606 is a complete EN55022 Class B certified  
noisehighvoltage6AswitchingmodeDC/DCpowersupply.  
Includedinthepackagearetheswitchingcontroller,power  
FETs, inductor, and all support components. The on-board  
inputfilterandnoisecancellationcircuitsachievelownoise  
operation, thus effectively reducing the electromagnetic  
interference (EMI). Operating over an input voltage range  
of 4.5V to 28V, the LTM4606 supports an output voltage  
range of 0.6V to 5V, set by a single resistor. This high ef-  
ficiency design delivers 6A continuous current (8A peak).  
Only bulk input and output capacitors are needed to finish  
the design.  
n
Wide Input Voltage Range: 4.5V to 28V  
n
6A DC Typical, 8A Peak Output Current  
n
0.6V to 5V Output Voltage Range  
n
EN55022 Class B Certified  
n
Output Voltage Tracking and Margining  
n
PLL Frequency Synchronization  
±±.ꢀ5ꢁ Total DC Error  
Power Good Output  
n
n
n
Current Foldback Protection (Disabled at Start-Up)  
n
Parallel/Current Sharing  
n
Ultrafast Transient Response  
n
Current Mode Control  
High switching frequency and an adaptive on-time current  
mode architecture enables a very fast transient response  
to line and load changes without sacrificing stability. The  
device supports output voltage tracking and output volt-  
age margining.  
Furthermore,theµModule® regulatorcanbesynchronized  
with an external clock for reducing undesirable frequency  
harmonics and allows PolyPhase® operation for high load  
currents.  
n
Up to 93% Efficiency at 5V , 3.3V  
IN  
OUT  
n
n
n
Programmable Soft-Start  
Output Overvoltage Protection  
–55°C to 125°C Operating Temperature Range  
(LTM4606MPV)  
n
Small Surface Mount Footprint, Low Profile Package  
(15mm × 15mm × 2.8mm)  
applicaTions  
n
ASICs or FPGA Transceivers  
The LTM4606 is offered in a space saving and thermally  
enhanced 15mm × 15mm × 2.8mm LGA package, which  
enables utilization of unused space on the bottom of  
PC boards for high density point of load regulation. The  
LTM4606 is Pb-free and RoHS compliant.  
n
Telecom, Servers and Networking Equipment  
n
Industrial Equipment  
RF Equipment  
n
L, LT, LTC, LTM, Linear Technology, the Linear logo, µModule and PolyPhase are registered  
trademarks of Linear Technology Corporation. All other trademarks are the property of their  
respective owners.  
Typical applicaTion  
Radiated Emission Scan at ±2VIN, 2.5VOUT/6A  
50  
Ultralow Noise 2.5V/6A Power Supply with 4.5V to 28V Input  
40  
30  
4.5V TO 28V  
CLOCK SYNC  
V
PLLIN  
IN  
2.5V AT 6A  
20  
10  
V
PGOOD  
RUN  
COMP  
OUT  
LTM4606  
47pF  
FB  
ON/OFF  
C
OUT  
V
FB  
R
C
0
IN  
INTV  
DRV  
CC  
CC  
19.1k  
10µF  
35V  
FCB  
–10  
–20  
–30  
MARG0  
MARG1  
MPGM  
f
MARGIN  
CERAMIC  
x2  
SET  
TRACK/SS  
CONTROL  
CONTROL  
TRACK/SS  
V
D
392k  
5% MARGIN  
10µF  
35V  
SGND PGND  
30  
226.2  
128.1 324.3  
FREQUENCY (MHz)  
422.4  
618.6  
814.8  
1010  
520.5  
716.7  
912.9  
4606 TA01a  
4606 TA01b  
4606fb  
1
LTM4606  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note ±)  
TOP VIEW  
DRV , V  
................................................ –0.3V to 6V  
CC OUT  
PLLIN, FCB, TRACK/SS, MPGM, MARG0,  
MARG1, PGOOD, RUN ..............–0.3V to INTV + 0.3V  
CC  
12  
11  
10  
9
MPGM  
COMP  
RUN  
V , COMP................................................ –0.3V to 2.7V  
FB  
V , V ....................................................... –0.3V to 28V  
IN  
D
SGND  
TRACK/SS  
Internal Operating Temperature Range (Note 2)  
V
PLLIN  
INTV  
8
D
E and I Grades ...................................40°C to 125°C  
MP Grade........................................... –55°C to 125°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range .................. –45°C to 125°C  
7
CC  
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
V
PGND  
BANK 2  
V
IN  
OUT  
BANK 1  
BANK 3  
LGA PACKAGE  
133-LEAD (15mm × 15mm × 2.8mm)  
T
= 125°C, θ = 15°C/W, θ  
= 6°C/W, θ  
= 16°C/W  
JMAX  
θ
JA  
JCbottom  
JCtop  
DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS  
JA  
WEIGHT = 1.7g  
orDer inForMaTion  
LEAD FREE FINISH  
LTM4606EV#PBF  
LTM4606IV#PBF  
LTM4606MPV#PBF  
TRAY  
PART MARKING*  
LTM4606V  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
LTM4606EV#PBF  
LTM4606IV#PBF  
LTM4606MPV#PBF  
133-Lead (15mm × 15mm × 2.8mm) LGA  
133-Lead (15mm × 15mm × 2.8mm) LGA  
133-Lead (15mm × 15mm × 2.8mm) LGA  
LTM4606V  
–40°C to 125°C  
LTM4606MPV  
–55°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
elecTrical characTerisTics  
The l denotes the specifications which apply over the specified internal  
operating temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = ±2V, unless otherwise noted. Per typical  
application (front page) configuration, RFB = 40.2k.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
4.5  
TYP  
MAX  
28  
UNITS  
l
l
V
IN(DC)  
Input DC Voltage  
V
V
V
Output Voltage, Total Variation with  
Line and Load  
C
V
= 10µF x2, C = 200µF; FCB = 0  
OUT  
= 5V to 28V, I  
1.474  
1.5  
1.526  
OUT(DC)  
IN  
IN  
= 0A to 6A, (Note 4)  
OUT  
Input Specifications  
V
Undervoltage Lockout Threshold  
Input Inrush Current at Start-Up  
I
I
= 0A  
3.2  
4
V
IN(UVLO)  
OUT  
OUT  
I
= 0A, C = 10µF x2, C  
= 200µF,  
INRUSH(VIN)  
IN  
OUT  
V
= 1.5V  
OUT  
V
V
= 5V  
0.6  
0.7  
A
A
IN  
IN  
= 12V  
4606fb  
2
LTM4606  
elecTrical characTerisTics The l denotes the specifications which apply over the specified internal  
operating temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = ±2V, unless otherwise noted. Per typical  
application (front page) configuration, RFB = 40.2k.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Input Supply Bias Current  
V
V
= 5V, V = 1.5V, Switching Continuous  
OUT  
27  
25  
22  
mA  
mA  
µA  
Q(VIN)  
IN  
IN  
= 12V, V  
= 1.5V, Switching Continuous  
OUT  
Shutdown, RUN = 0, V = 12V  
IN  
I
Input Supply Current  
S(VIN)  
V
IN  
V
IN  
= 12V, V  
= 1.5V, I = 6A  
OUT  
0.96  
2.18  
A
A
OUT  
= 5V, V  
= 1.5V, I  
= 6A  
OUT  
OUT  
INTV  
V
= 12V, RUN > 2V  
IN  
No Load  
4.7  
0
5
5.3  
V
CC  
Output Specifications  
I
Output Continuous Current Range  
Line Regulation Accuracy  
V
V
= 12V, V = 1.5V (Note 4)  
OUT  
6
A
OUT(DC)  
IN  
l
l
DV  
V
= 1.5V, FCB = 0V, V = 4.5V to 28V,  
0.05  
0.3  
%
OUT(LINE)/ OUT  
OUT  
OUT  
IN  
I
= 0A  
DV  
V
Load Regulation Accuracy  
Input Ripple Voltage  
V
= 1.5V, FCB = 0V, I  
IN  
= 0A to 6A  
OUT(LOAD)/ OUT  
OUT  
V
OUT  
= 12V (Note 4)  
0.3  
%
V
V
I
= 0A, C = 10µF X5R Ceramic x3 and  
OUT IN  
IN(AC)  
100µF Electrolytic  
V
IN  
V
IN  
= 5V, V  
= 12V, V  
= 1.5V  
= 1.5V  
2
3
mV  
mV  
OUT  
OUT  
P-P  
P-P  
Output Ripple Voltage  
I
= 0A, C  
= 22µF X5R Ceramic x3 and  
OUT(AC)  
OUT  
OUT  
100µF X5R Ceramic  
V
V
= 5V, V  
= 1.5V  
= 1.5V  
8
11  
mV  
mV  
IN  
IN  
OUT  
OUT  
P-P  
P-P  
= 12V, V  
f
Output Ripple Voltage Frequency  
I
= 5A, V = 12V, V = 1.5V  
OUT  
900  
kHz  
S
OUT  
IN  
DV  
Turn-On Overshoot,  
TRACK/SS = 10nF  
C
= 200µF, V  
IN  
IN  
= 1.5V, I  
OUT  
= 0A  
OUT(START)  
OUT  
V
V
OUT  
= 12V  
= 5V  
20  
20  
mV  
mV  
t
Turn-On Time, TRACK/SS = Open  
C
= 200µF; V  
= 1.5V, I  
OUT OUT  
= 1A  
START  
OUT  
Resistive Load  
V
V
= 5V  
0.5  
0.5  
ms  
ms  
IN  
IN  
= 12V  
DV  
Peak Deviation for Dynamic Load  
Load: 0% to 50% to 0% of Full Load  
OUT(LS)  
C
= 22µF Ceramic, 470µF x2  
35  
25  
mV  
µs  
OUT  
V
IN  
V
OUT  
= 12V  
= 1.5V  
t
I
Settling Time for Dynamic Load Step Load: 0% to 50% to 0% of Full Load,  
SETTLE  
V
= 12V  
V
= 12V  
IN  
IN  
Output Current Limit  
C
= 200µF  
OUT(PK)  
OUT  
V
V
= 5V, V  
= 1.5V  
OUT  
OUT  
10  
10  
A
A
IN  
IN  
= 12V, V  
= 1.5V  
Control Section  
l
V
V
Voltage at V Pin  
I
= 0A, V = 1.5V  
OUT  
0.591  
1
0.6  
1.5  
–1.5  
0.6  
–1  
0.609  
1.9  
V
V
FB  
FB  
OUT  
RUN Pin On/Off Threshold  
Soft-Start Charging Current  
Forced Continuous Threshold  
Forced Continuous Pin Current  
Minimum On Time  
RUN  
I
V
V
= 0V  
–1  
–2  
µA  
V
SS/TRACK  
SS/TRACK  
V
FCB  
0.57  
0.63  
–2  
I
t
t
= 0V  
FCB  
µA  
ns  
ns  
kW  
FCB  
(Note 3)  
(Note 3)  
50  
100  
400  
ON(MIN)  
OFF(MIN)  
Minimum Off Time  
250  
50  
R
PLLIN Input Resistor  
PLLIN  
4606fb  
3
LTM4606  
elecTrical characTerisTics The l denotes the specifications which apply over the specified internal  
operating temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = ±2V, unless otherwise noted. Per typical  
application (front page) configuration, RFB = 40.2k.  
SYMBOL  
PARAMETER  
Current into DRV Pin  
CONDITIONS  
= 1.5V, I  
MIN  
TYP  
15  
MAX  
25  
UNITS  
mA  
kW  
I
V
= 1A  
OUT  
DRVCC  
CC  
OUT  
R
FBHI  
Resistor Between V  
and V Pins  
60.098  
60.4  
5
60.702  
OUT  
FB  
RUN  
Volts From RUN to GND Maximum  
5.1V Zener Clamp  
V
MAX  
Margin Section  
MPGM  
Margin Reference Voltage Sets a  
Current  
1.18  
1.4  
V
V
MARG0, MARG1  
Voltage Thresholds  
PGOOD  
DV  
DV  
DV  
PGOOD Upper Threshold  
PGOOD Lower Threshold  
PGOOD Hysteresis  
V
V
V
Rising  
7
10  
–10  
1.5  
13  
%
%
%
V
FBH  
FB  
Falling  
–7  
–13  
FBL  
FB  
Returning  
FB(HYS)  
FB  
V
PGOOD Low Voltage  
I
= 5mA  
0.15  
0.4  
PGL  
PGOOD  
Note ±: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM4606E is guaranteed to meet performance specifications  
over the 0°C to 125°C internal operating temperature range. Specifications  
over the –40°C to 125°C internal operating temperature range are assured  
by design, characterization and correlation with statistical process  
controls. The LTM4606I is guaranteed to meet specifications over the  
–40°C to 125°C internal operating temperature range. The LTM4606MP  
is guaranteed and tested over the –55°C to 125°C internal operating  
temperature range. Note that the maximum ambient temperature  
consistent with these specifications is determined by specific operating  
conditions in conjunction with board layout, the rated package thermal  
resistance and other environmental factors.  
Note 3: 100% tested at die level only.  
Note 4: See output current derating curves for different V , V  
and T .  
A
IN OUT  
4606fb  
4
LTM4606  
Typical perForMance characTerisTics  
Efficiency vs Load Current with  
5VIN (FCB = 0)  
Efficiency vs Load Current with  
±2VIN (FCB = 0)  
Efficiency vs Load Current with  
24VIN (FCB = 0)  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
0.6V  
1.2V  
1.8V  
2.5V  
3.3V  
1.2V  
1.5V  
2.5V  
3.3V  
5V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
2.5V  
3.3V  
5V  
OUT  
OUT  
OUT  
OUT  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4606 G01  
4606 G02  
4606 G03  
±.2V Transient Response  
±.5V Transient Response  
±.8V Transient Response  
I
I
OUT  
2A/DIV  
I
OUT  
OUT  
2A/DIV  
2A/DIV  
V
V
V
OUT  
OUT  
OUT  
50mV/DIV  
50mV/DIV  
50mV/DIV  
4606 G04  
4606 G06  
4606 G05  
50µs/DIV  
50µs/DIV  
50µs/DIV  
1.2V AT 3.5A/µs LOAD STEP  
1.8V AT 3.5A/µs LOAD STEP  
1.5V AT 3.5A/µs LOAD STEP  
C
= 2× 22µF, 10V CERAMIC  
1× 100µF, 6.3V CERAMIC  
C
= 2× 22µF, 10V CERAMIC  
1× 100µF, 6.3V CERAMIC  
C
= 2× 22µF, 10V CERAMIC  
1× 100µF, 6.3V CERAMIC  
OUT  
OUT  
OUT  
2.5V Transient Response  
3.3V Transient Response  
–55°C, Start-Up, IOUT = 0A  
V
OUT  
I
I
OUT  
2A/DIV  
OUT  
0.5V/DIV  
2A/DIV  
V
V
OUT  
100mV/DIV  
OUT  
I
IN  
50mV/DIV  
0.5A/DIV  
4606 G07  
4606 G08  
4606 G09  
50µs/DIV  
50µs/DIV  
1ms/DIV  
V
V
C
= 12V  
OUT  
OUT  
IN  
= 1.5V  
2.5V AT 3.5A/µs LOAD STEP  
3.3V AT 3.5A/µs LOAD STEP  
= 2× 22µF, 10V CERAMIC  
1× 100µF, 6.3V CERAMIC  
SOFT-START = 3.9nF  
C
= 2× 22µF, 10V CERAMIC  
1× 100µF, 6.3V CERAMIC  
C
= 2× 22µF, 10V CERAMIC  
1× 100µF, 6.3V CERAMIC  
OUT  
OUT  
4606fb  
5
LTM4606  
Typical perForMance characTerisTics  
Start-Up, IOUT = 6A  
(Resistive Load)  
–55°C, Start-Up, IOUT = 6A  
Start-Up, IOUT = 0A  
V
OUT  
V
V
OUT  
OUT  
0.5V/DIV  
0.5V/DIV  
0.5V/DIV  
I
IN  
0.5A/DIV  
I
IN  
0.5A/DIV  
I
4606 G10  
IN  
1ms/DIV  
V
V
C
= 12V  
OUT  
OUT  
IN  
0.5A/DIV  
= 1.5V  
= 2× 22µF, 10V CERAMIC  
1× 100µF, 6.3V CERAMIC  
SOFT-START = 3.9nF  
4606 G11  
4606 G12  
1ms/DIV  
1ms/DIV  
V
V
C
= 12V  
OUT  
OUT  
V
V
C
= 12V  
OUT  
OUT  
IN  
IN  
= 1.5V  
= 1.5V  
= 1× 22µF, 6.3V CERAMIC  
1× 330µF, 4V SANYO POSCAP  
SOFT-START = 3.9nF  
= 1× 22µF, 6.3V CERAMIC  
1× 330µF, 4V SANYO POSCAP  
SOFT-START = 3.9nF  
Short-Circuit Protection,  
IOUT = 0A  
Short-Circuit Protection,  
IOUT = 6A  
VIN to VOUT Step-Down  
Operation Region  
28  
24  
20  
16  
12  
SEE FREQUENCY ADJUSTMENT SECTION  
FOR OPERATIONS OUTSIDE THIS REGION  
V
V
OUT  
OUT  
2V/DIV  
1V/DIV  
I
IN  
I
IN  
2A/DIV  
OPERATION REGION  
WITH DEFAULT FREQUENCY  
0.2A/DIV  
4606 G13  
4606 G14  
50µs/DIV  
50µs/DIV  
V
V
C
= 12V  
OUT  
OUT  
V
V
C
= 12V  
IN  
OUT  
OUT  
IN  
= 2.5V  
= 2.5V  
= 2× 22µF, 10V CERAMIC  
1× 100µF, 6.3V CERAMIC  
= 2× 22µF, 10V CERAMIC  
1× 100µF, 6.3V CERAMIC  
8
SOFT-START = 0.1µF  
SOFT-START = 0.1µF  
4.5  
0.6 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
V
(V)  
OUT  
4606 G15  
VFB vs Temperature  
Input Ripple  
Output Ripple  
0.606  
0.604  
0.602  
0.600  
0.598  
0.596  
0.594  
V
OUT  
V
IN  
2mV/DIV  
10mV/DIV  
4606 G17  
4606 G18  
2µs/DIV  
2µs/DIV  
V
V
C
= 5V  
V
V
C
= 5V  
IN  
IN  
OUT  
IN  
= 1V AT 6A  
= 1V AT 6A  
OUT  
OUT  
= 3× 10µF, 25V CERAMIC  
1× 150µF BULK  
= 2× 22µF, 6.3V CERAMIC  
1× 100µF, 6.3V CERAMIC  
BW = 300MHz  
BW = 300MHz  
–55  
35  
65  
95  
125  
–25  
5
TEMPERATURE (°C)  
4606 G16  
4606fb  
6
LTM4606  
pin FuncTions  
V (Bank ±): Power Input Pins. Apply input voltage be-  
MPGM (Pins A±2, B±±): Programmable Margining Input.  
A resistor from these pins to ground sets a current that  
is equal to 1.18V/R. This current multiplied by 10kW will  
equal a value in millivolts that is a percentage of the 0.6V  
referencevoltage.SeetheApplicationsInformationsection.  
To parallel LTM4606s, each requires an individual MPGM  
resistor. Do not tie MPGM pins together.  
IN  
tween these pins and PGND pins. Recommend placing  
input decoupling capacitance directly between V pins  
IN  
and PGND pins.  
V
(Bank 3): Power Output Pins. Apply output load  
OUT  
between these pins and PGND pins. Recommend placing  
outputdecouplingcapacitancedirectlybetweenthesepins  
and PGND pins (see figure below).  
f
(Pin B±2): Frequency set internally to 800kHz in  
SET  
continuous conducting mode at light load. An external  
resistor can be placed from this pin to ground to increase  
frequency. This pin can be decoupled with a 1000pF  
capacitor. See the Applications Information section for  
frequency adjustment.  
PGND (Bank 2): Power Ground Pins for Both Input and  
Output Returns.  
V (PinsB, Cꢀ):TopFETDrainPins. Addmorecapacitors  
D
between V and ground to handle the input RMS current  
D
and reduce the input ripple further.  
V
(Pin F±2): The Negative Input of the Error Amplifier.  
FB  
DRV (Pins C±0, E±±, E±2): These pins normally con-  
Internally, this pin is connected to V  
with a 60.4k preci-  
CC  
OUT  
nect to INTV for powering the internal MOSFET drivers.  
sionresistor.Differentoutputvoltagescanbeprogrammed  
CC  
They can be biased up to 6V from an external supply with  
about 50mA capability, or an external circuit as shown in  
Figure 18. This improves efficiency at the higher input  
voltages by reducing power dissipation in the modules.  
withanadditionalresistorbetweentheV andSGNDpins.  
FB  
See the Applications Information section.  
MARG0 (Pin C±2): LSB Logic Input for the Margining  
Function. Together with the MARG1 pin, the MARG0 pin  
will determine if a margin high, margin low, or no margin  
state is applied. The pin has an internal pulldown resistor  
of 50k. See the Applications Information section.  
INTV (Pin Aꢀ): This pin is for additional decoupling of  
CC  
the 5V internal regulator.  
PLLIN (Pin A8): External Clock Synchronization Input to  
the Phase Detector. This pin is internally terminated to  
SGND with a 50k resistor. Apply a clock with high level  
MARG±(PinsC±±, D±2):MSBLogicInputfortheMargin-  
ing Function. Together with the MARG0 pin, the MARG1  
pins will determine if a margin high, margin low, or no  
marginstateisapplied.Thepinshaveaninternalpull-down  
resistor of 50k. See the Applications Information section.  
above 2V and below INTV . See the Applications Infor-  
CC  
mation section.  
FCB(PinM±2):ForcedContinuousInput.Connectthispin  
to SGND to force continuous synchronization operation at  
SGND (Pins D9, H±2): Signal Ground Pins. These pins  
connect to PGND at output capacitor point.  
low load, to INTV to enable discontinuous mode opera-  
CC  
tion at low load or to a resistive divider from a secondary  
COMP (Pins A±±, D±±): Current Control Threshold and  
Error Amplifier Compensation Point. The current com-  
parator threshold increases with this control voltage. The  
voltage ranges from 0V to 2.4V with 0.7V corresponding  
to zero sense voltage (zero current).  
output when using a secondary winding.  
TRACK/SS(PinA9):OutputVoltageTrackingandSoft-Start  
Pin. When the module is configured as a master output,  
then a soft-start capacitor is placed on this pin to ground  
to control the master ramp rate. A soft-start capacitor can  
be used for soft-start turn-on as a standalone regulator.  
Slave operation is performed by putting a resistor divider  
from the master output to ground, and connecting the  
center point of the divider to this pin. See the Applications  
Information section.  
PGOOD (Pin G±2): Output Voltage Power Good Indicator.  
Open-drain logic output that is pulled to ground when the  
output voltage is not within 10% of the regulation point,  
after a 25µs power bad mask timer expires.  
4606fb  
7
LTM4606  
pin FuncTions  
RUN (Pins A±0, B9): Run Control Pins. A voltage above  
1.9V will turn on the module, and below 1V will turn off  
the module. A programmable UVLO function can be ac-  
NC (Pins J±2, K±2, L±2): These pads must be left floating  
(electrical open circuit) and are used for increased solder  
integrity strength.  
complished with a resistor from V to this pin that has a  
IN  
5.1V Zener to ground. Maximum pin voltage is 5V.  
12  
11  
10  
9
MPGM  
COMP  
RUN  
SGND  
TRACK/SS  
V
PLLIN  
INTV  
8
D
7
CC  
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
V
PGND  
BANK 2  
V
IN  
OUT  
BANK 1  
BANK 3  
4606fb  
8
LTM4606  
block DiagraM  
>1.9V = ON  
<1V = OFF  
MAX = 5V  
V
OUT  
RUN  
INPUT  
FILTER  
V
IN  
4.5V TO 28V  
+
PGOOD  
COMP  
5.1V  
ZENER  
1.5µF  
C
IN  
60.4k  
V
D
INTERNAL  
COMP  
C
D
POWER CONTROL  
M1  
M2  
SGND  
1µH  
V
OUT  
2.5V  
MARG1  
MARG0  
AT 6A  
NOISE  
CANCEL-  
LATION  
V
FB  
22µF  
50k 50k  
+
f
SET  
R
FB  
C
OUT  
19.1k  
41.2k  
10k  
PGND  
FCB  
MPGM  
TRACK/SS  
PLLIN  
C
SS  
50k  
4.7µF  
INTV  
DRV  
CC  
CC  
4606 F01  
Figure ±. Simplified Block Diagram  
Decoupling requireMenTs TA = 25°C. Use Figure ± configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
IN  
External Input Capacitor Requirement  
IN  
I
= 6A  
10  
µF  
OUT  
(V = 4.5V to 28V, V  
= 2.5V)  
OUT  
C
External Output Capacitor Requirement  
(V = 4.5V to 28V, V = 2.5V)  
I
= 6A  
100  
200  
µF  
OUT  
OUT  
IN  
OUT  
4606fb  
9
LTM4606  
operaTion  
Power Module Description  
Inputfilterandnoisecancellationcircuitsreducethenoise  
coupling to I/O sides, and ensure the electromagnetic  
interference (EMI) to meet EN55022 Class B limits.  
TheLTM4606isastandalonenon-isolatedswitchingmode  
DC/DC power supply. It can deliver up to 6A of DC output  
current with some external input and output capacitors.  
This module provides precisely regulated output voltage  
Pulling the RUN pin below 1V forces the controller into its  
shutdown state, turning off both M1 and M2. At low load  
currents, discontinuous mode (DCM) operation can be  
enabled to achieve higher efficiency compared to continu-  
ous mode (CCM) by setting the FCB pin higher than 0.6V.  
programmable via one external resistor from 0.6V to  
DC  
5.0V over a 4.5V to 28V input voltage range. The typical  
DC  
application schematic is shown in Figure 20.  
The LTM4606 has an integrated constant on-time current  
When the DRV pin is connected to INTV an integrated  
CC  
CC  
mode regulator, ultralow R  
FETs with fast switch-  
5V linear regulator powers the internal gate drivers. If a  
DS(ON)  
ing speed and integrated Schottky diodes. With current  
mode control and internal feedback loop compensation,  
the LTM4606 module has sufficient stability margins and  
goodtransientperformanceunderawiderangeofoperat-  
ing conditions and with a wide range of output capacitors,  
even all ceramic output capacitors.  
5V external bias supply is applied on the DRV pin, then  
CC  
an efficiency improvement will occur due to the reduced  
powerlossintheinternallinearregulator.Thisisespecially  
true at the higher input voltage range.  
The MPGM, MARG0 and MARG1 pins are used to sup-  
port voltage margining, where the percentage of margin  
is programmed by the MPGM pin, and the MARG0 and  
MARG1 selected margining. The PLLIN pin provides fre-  
quency synchronization of the device to an external clock.  
The TRACK/SS pin is used for power supply tracking and  
soft-start programming.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limiting. Besides, foldback current limiting is provided in  
an overcurrent condition while V drops. Internal over-  
FB  
voltageandundervoltagecomparatorspulltheopen-drain  
PGOOD output low if the output feedback voltage exits a  
10% window around the regulation point. Furthermore,  
in an overvoltage condition, internal top FET M1 is turned  
off and bottom FET M2 is turned on and held on until the  
overvoltage condition clears.  
4606fb  
10  
LTM4606  
applicaTions inForMaTion  
The typical LTM4606 application circuit is shown in Fig-  
ure 20. External component selection is primarily deter-  
mined by the maximum load current and output voltage.  
RefertoTable2forspecificexternalcapacitorrequirements  
for a particular application.  
RPGM resistor on the MPGM pin programs the current.  
Calculate V  
:
OUT(MARGIN)  
%VOUT  
100  
VOUT(MARGIN)  
where %V  
=
VOUT  
is the percentage of V  
you want to  
OUT  
margin, and V  
OUT  
V to V  
Step-Down Ratios  
IN  
OUT  
is the margin quantity in volts:  
OUT(MARGIN)  
Under the default frequency, there are restrictions in  
the maximum V and V step-down ratio that can be  
VOUT  
1.18V  
IN  
OUT  
RPGM  
=
10k  
achieved for a given input voltage. These constraints are  
caused by the limitation of the minimum on and off time in  
the internal switches. Refer to the Frequency Adjustment  
section to change the switching frequency and get wider  
input and output ranges. See the Thermal Considerations  
and Output Current Derating section in this data sheet for  
the current restrictions.  
0.6V VOUT(MARGIN)  
where RPGM is the resistor value to place on the MPGM  
pin to ground.  
The output margining will be margining of the value.  
This is controlled by the MARG0 and MARG1 pins. See  
the truth table below:  
Output Voltage Programming and Margining  
MARG±  
LOW  
MARG0  
LOW  
MODE  
NO MARGIN  
MARGIN UP  
MARGIN DOWN  
NO MARGIN  
ThePWMcontrollerhasaninternal0.6Vreferencevoltage.  
As shown in the Block Diagram, a 60.4k internal feedback  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
resistor connects the V  
and V pins together. Adding  
OUT  
FB  
HIGH  
a resistor R from the V pin to the SGND pin programs  
FB  
FB  
the output voltage:  
Input Capacitors and Input EMI Noise Attenuation  
60.4k +RFB  
VOUT = 0.6V  
The LTM4606 is designed to achieve low input conducted  
EMInoiseduetothefastswitchingofturn-onandturn-off.  
In the LTM4606, a high frequency inductor is integrated  
RFB  
Table ±. RFB Standard ±ꢁ Resistor Values vs VOUT  
to the input line for noise attenuation. V and V pins  
D
IN  
R
FB  
Open 60.4  
0.6 1.2  
40.2  
1.5  
30.1  
1.8  
25.5  
2
19.1  
2.5  
13.3  
3.3  
8.25  
5
(kΩ)  
are available for external input capacitors to form a high  
V
frequency π filter. As shown in Figure 19, the ceramic  
OUT  
(V)  
capacitor C1 on the V pins is used to handle most of  
D
the RMS current into the converter, so careful attention  
The MPGM pin programs a current that when multiplied  
by an internal 10k resistor sets up the 0.6V reference  
offset for margining. A 1.18V reference divided by the  
is needed for capacitor C1 selection.  
For a buck converter, the switching duty cycle can be  
estimated as:  
VOUT  
D =  
V
IN  
4606fb  
11  
LTM4606  
applicaTions inForMaTion  
Without considering the inductor ripple current, the RMS  
current of the input capacitor can be estimated as:  
meet EN55022 Class B. For different applications, input  
capacitance may be varied to meet different radiated EMI  
limits.  
IOUT(MAX)  
ICIN(RMS)  
=
D 1– D  
(
)
η
Output Capacitors  
The LTM4606 is designed for low output voltage ripple.  
In the above equation, η is the estimated efficiency of the  
power module. Note the capacitor ripple current ratings  
are often based on temperature and hours of life. This  
makes it advisable to properly derate the capacitor, or  
choose a capacitor rated at a higher temperature than  
required. Always contact the capacitor manufacturer for  
derating requirements.  
The bulk output capacitors defined as C  
are chosen  
OUT  
with low enough effective series resistance (ESR) to meet  
theoutputvoltagerippleandtransientrequirements. C  
OUT  
can be a low ESR tantalum capacitor, low ESR polymer  
capacitor or ceramic capacitor. The typical capacitance is  
200µF if all ceramic output capacitors are used. Additional  
output filtering may be required by the system designer,  
if further reduction of output ripple or dynamic transient  
spikeisrequired.Table2showsamatrixofdifferentoutput  
voltages and output capacitors to minimize the voltage  
droop and overshoot during a 3A/µs transient. The table  
optimizes total equivalent ESR and total bulk capacitance  
to maximize transient performance.  
In a typical 6A output application, one or two very low  
ESR X5R or X7R, 10µF ceramic capacitors are recom-  
mendedforC1.Thisdecouplingcapacitorshouldbeplaced  
directly adjacent to the module V pins in the PCB layout  
D
to minimize the trace inductance and high frequency AC  
noise. Each 10µF ceramic is typically good for 2 to 3 amps  
of RMS ripple current. Refer to your ceramics capacitor  
catalog for the RMS current ratings.  
Multiphase operation with multiple LTM4606 devices in  
parallel will lower the effective output ripple current due  
to the phase interleaving operation. Refer to Figure 3  
for the normalized output ripple current versus the duty  
cycle. Figure 3 provides a ratio of peak-to-peak output  
ripple current to the inductor ripple current as functions  
of duty cycle and the number of paralleled phases. Pick  
the corresponding duty cycle and the number of phases  
to get the correct output ripple current value. For example,  
each phase’s inductor ripple current DIr at zero duty cycle  
is ~2.5A for a 12V to 2.5V design. The duty cycle is about  
0.21. The 2-phase curve has a ratio of ~0.58 for a duty  
cycle of 0.21. This 0.58 ratio of output ripple current to  
the inductor ripple current DIr at 2.5A equals ~1.5A of the  
To attenuate high frequency noise, extra input capacitors  
should be connected to the V pads and placed before  
IN  
the high frequency inductor to form the π filter. One of  
these low ESR ceramic capacitors is recommended to  
be placed close to the connection into the system board.  
A large bulk 100µF capacitor is only needed if the input  
sourceimpedanceiscompromisedbylonginductiveleads  
or traces. Figure 2 shows the radiated EMI test results to  
50  
40  
30  
20  
output ripple current (∆I ).  
L
10  
The output voltage ripple has two components that are  
related to the amount of bulk capacitance and effective  
series resistance (ESR) of the output bulk capacitance.  
The equation is:  
0
–10  
–20  
–30  
DIL  
8 f N C  
30  
226.2  
128.1 324.3  
FREQUENCY (MHz)  
422.4  
618.6  
814.8  
1010  
DVOUT(PP)  
+ESR DI  
L
520.5  
716.7  
912.9  
OUT  
4606 F02  
Figure 2. Radiated Emission Scan with ±2VIN  
to 2.5VOUT at 6A (±×±00µF XꢀR Ceramic COUT  
where f is the frequency and N is the number of paralleled  
)
phases.  
4606fb  
12  
LTM4606  
applicaTions inForMaTion  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1-PHASE  
2-PHASE  
3-PHASE  
4-PHASE  
6-PHASE  
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY CYCLE (V /V  
)
IN  
4612 F05  
O
Figure 3. Normalized Output Ripple Current vs Duty Cycle, Dlr = VOT/LI  
Fault Conditions: Current Limit and Overcurrent  
Foldback  
A capacitor on this pin will program the ramp rate of the  
output voltage. A 1.5µA current source will charge up the  
external soft-start capacitor to 80% of the 0.6V internal  
voltage reference plus or minus any margin delta. This will  
control the ramp of the internal reference and the output  
voltage. The total soft-start time can be calculated as:  
LTM4606 has a current mode controller, which inher-  
ently limits the cycle-by-cycle inductor current not only  
in steady-state operation, but also in transient.  
To further limit current in the event of an overload condi-  
tion,theLTM4606providesfoldbackcurrentlimiting.Ifthe  
output voltage falls by more than 50%, then the maximum  
output current is progressively lowered to about one sixth  
of its full current limit value.  
CSS  
1.5µA  
tSOFTSTART 0.8 0.6V ± V  
(
)
OUT(MARGIN)  
When the RUN pin falls below 2.5V, then the SS pin is reset  
to allow for proper soft-start control when the regulator is  
enabledagain.Currentfoldbackandforcecontinuousmode  
are disabled during the soft-start process. The soft-start  
function can also be used to control the output ramp up  
time, so that another regulator can be easily tracked to it.  
Soft-Start and Tracking  
The TRACK/SS pin provides a means to either soft-start  
the regulator or track it to a different power supply.  
4606fb  
13  
LTM4606  
applicaTions inForMaTion  
Output Voltage Tracking  
Run Enable  
Output voltage tracking can be programmed externally  
usingtheTRACK/SSpin. Theoutputcanbetrackedupand  
down with another regulator. Figure 4 shows an example  
of coincident tracking where the master regulator’s output  
is divided down with an external resistor divider that is the  
sameastheslaveregulator’sfeedbackdivider.Ratiometric  
modes of tracking can be achieved by selecting different  
resistor values to change the output tracking ratio. The  
master output must be greater than the slave output for  
the tracking to work. Figure 5 shows the coincident output  
tracking characteristics.  
The RUN pin is used to enable the power module. The  
pin has an internal 5.1V zener to ground. The pin can be  
driven with a logic input not to exceed 5V.  
The RUN pin can also be used as an undervoltage lock out  
(UVLO) function by connecting a resistor divider from the  
input supply to the RUN pin:  
R1+R2  
VUVLO  
=
1.5V  
R2  
where R2 is the bottom resistor of the divider, R1 is the  
top resistor of the divider.  
V
IN  
Power Good  
100k  
V
PLLIN  
V
IN  
D
The PGOOD pin is an open-drain pin that can be used to  
monitor valid output voltage regulation. This pin monitors  
a 10% window around the regulation point and tracks  
with margining.  
SLAVE  
OUTPUT  
2.5V  
PGOOD  
RUN  
V
OUT  
C
OUT  
V
FB  
LTM4606  
C
COMP  
FCB  
MARG0  
MARG1  
MPGM  
IN  
INTV  
CC  
CC  
MASTER  
OUTPUT  
DRV  
R2  
60.4k  
COMP Pin  
f
SET  
TRACK  
CONTROL  
TRACK/SS  
SGND PGND  
19.1k  
This pin is the external compensation pin. The module  
has already been internally compensated for most output  
voltages. Table 2 is provided for most application require-  
ments. LTpowerCAD™ is available for other control loop  
optimization.  
R1  
19.1k  
4606 F04  
Figure 4. Output Voltage Coincident Tracking  
FCB Pin  
The FCB pin determines whether the bottom MOSFET  
remains on when current reverses in the inductor. Tying  
this pin above its 0.6V threshold enables discontinuous  
operation where the bottom MOSFET turns off when in-  
ductor current reverses. FCB pin below the 0.6V threshold  
forcescontinuoussynchronousoperation,allowingcurrent  
to reverse at light loads and maintain low output ripple.  
MASTER OUTPUT  
SLAVE OUTPUT  
OUTPUT  
VOLTAGE  
4606 F05  
TIME  
Figure 5. Coincident Tracking Characteristics  
4606fb  
14  
LTM4606  
applicaTions inForMaTion  
PLLIN  
Thermal Considerations and Output Current Derating  
Thepowermodulehasaphase-lockedloopcomprisedofan  
internal voltage controlled oscillator and a phase detector.  
This allows the internal top MOSFET turn-on to be locked  
totherisingedgeoftheexternalclock. Thefrequencyrange  
is 30% around the operating frequency. A pulse detection  
circuit is used to detect a clock on the PLLIN pin to turn  
on the phase lock loop. The pulse width of the clock has to  
be at least 400ns and 2V in amplitude. During the start-up  
of the regulator, the phase-lock loop function is disabled.  
In different applications, LTM4606 operates in a variety  
of thermal environments. The maximum output current is  
limited by the environment thermal condition. Sufficient  
cooling should be provided to help ensure reliable opera-  
tion. When the cooling is limited, proper output current  
derating is necessary, considering ambient temperature,  
airflow, input/output condition, and the need for increased  
reliability.  
The power loss curves in Figures 6 and 7 can be used  
in coordination with the load current derating curves in  
INTV and DRV Connection  
CC  
CC  
Figures 8 to 15 for calculating an approximate θ for the  
JA  
An internal low dropout regulator produces an internal  
5V supply that powers the control circuitry and DRV  
module. The graphs delineate between no heat sink, and  
a BGA heat sink. Each of the load current derating curves  
will lower the maximum load current as a function of the  
increasedambienttemperaturetokeepthemaximumjunc-  
tiontemperatureofthepowermoduleat125°Cmaximum.  
Each of the derating curves and the power loss curve that  
corresponds to the correct output voltage can be used to  
CC  
for driving the internal power MOSFETs. Therefore, if  
the system does not have a 5V power rail, the LTM4606  
can be directly powered by Vin. The gate driver current  
through the LDO is about 20mA. The internal LDO power  
dissipation can be calculated as:  
P
= 20mA • (V – 5V)  
IN  
solve for the approximate θ of the condition. Each figure  
LDO_LOSS  
JA  
has three curves that are taken at three different air flow  
The LTM4606 also provides an external gate driver voltage  
conditions. Tables 3 and 4 provide the approximate θ  
JA  
pin DRV . If there is a 5V rail in the system, it is recom-  
CC  
for Figures 8 to 15. A complete explanation of the thermal  
characteristics is provided in the thermal application note  
AN110.  
mended to connect DRV pin to the external 5V rail. This is  
CC  
especially true for higher input voltages. Do not apply more  
than 6V to the DRV pin. A 5V output can be used to power  
CC  
the DRV pin with an external circuit as shown in Figure 18.  
CC  
Safety Considerations  
Parallel Operation of the Module  
The LTM4606 modules do not provide isolation from V  
IN  
to V . There is no internal fuse. If required, a slow blow  
OUT  
The LTM4606 device is an inherently current mode con-  
trolleddevice.Parallelmoduleswillhaveverygoodcurrent  
sharing. This will balance the thermals on the design. The  
voltage feedback equation changes with the variable N as  
modules are paralleled:  
fuse with a rating twice the maximum input current needs  
tobeprovidedtoprotecteachunitfromcatastrophicfailure.  
Radiated EMI Noise  
High radiated EMI noise is a disadvantage for switching  
regulators by nature. Fast switching turn-on and turn-off  
make large di/dt change in the converters, which act as  
the radiation sources in most systems. The LTM4606  
integrates the feature to minimize the radiated EMI noise  
for applications with low noise requirements. Optimized  
gatedriverfortheMOSFETandnoisecancellationnetwork  
are installed inside the LTM4606 to achieve low radiated  
EMInoise.Figure16showsatypicalexampleforLTM4606  
to meet the Class B of EN55022 radiated emission limit.  
4606fb  
60.4k  
+ R  
FB  
N
V
= 0.6V  
OUT  
R
FB  
N is the number of paralleled modules.  
15  
LTM4606  
applicaTions inForMaTion  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
24V LOSS  
12V LOSS  
1.5  
5V LOSS  
1.0  
12V LOSS  
0.5  
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4606 F07  
4606 F06  
Figure 6. ±.5V Power Loss  
Figure ꢀ. 3.3V Power Loss  
6
5
6
5
4
3
4
3
2
1
0
2
1
0
5V , 1.5V , 0LFM  
5V , 1.5V , 0LFM  
IN OUT  
IN  
OUT  
5V , 1.5V , 200LFM  
5V , 1.5V , 200LFM  
IN OUT  
IN  
IN  
OUT  
OUT  
5V , 1.5V , 400LFM  
5V , 1.5V , 400LFM  
IN OUT  
75  
80  
85  
90  
95  
75  
80  
85  
90  
95  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4606 F08  
4606 F09  
Figure 8. No Heat Sink  
Figure 9. BGA Heat Sink  
6
5
6
5
4
3
4
3
2
1
0
2
1
0
12V , 1.5V , 0LFM  
IN  
OUT  
12V , 1.5V , 200LFM  
IN  
IN  
OUT  
OUT  
12V , 1.5V , 400LFM  
70  
75  
AMBIENT TEMPERATURE (°C)  
12V , 1.5V , 0LFM  
80  
85  
90  
95  
70  
75  
80  
85  
90  
95  
AMBIENT TEMPERATURE (°C)  
4606 F10  
4606 F11  
IN  
OUT  
12V , 1.5V , 200LFM  
IN  
OUT  
12V , 1.5V , 400LFM  
IN  
OUT  
Figure ±0. No Heat Sink  
Figure ±±. BGA Heat Sink  
4606fb  
16  
LTM4606  
applicaTions inForMaTion  
6
6
5
5
4
3
4
3
2
2
1
0
12V , 3.3V , 0LFM  
12V , 3.3V , 0LFM  
IN OUT  
1
0
IN  
OUT  
12V , 3.3V , 200LFM  
12V , 3.3V , 200LFM  
IN OUT  
IN  
IN  
OUT  
OUT  
12V , 3.3V , 400LFM  
12V , 3.3V , 400LFM  
IN OUT  
70  
75  
80  
85  
90  
95  
70  
75  
80  
85  
90  
95  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4606 F12  
4606 F13  
Figure ±2. No Heat Sink  
Figure ±3. BGA Heat Sink  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
24V , 3.3V , 0LFM  
24V , 3.3V , 0LFM  
IN  
OUT  
IN  
OUT  
24V , 3.3V , 200LFM  
24V , 3.3V , 200LFM  
IN  
IN  
OUT  
OUT  
IN  
IN  
OUT  
OUT  
24V , 3.3V , 400LFM  
24V , 3.3V , 400LFM  
60  
65  
70  
75  
80  
85  
60  
65  
70  
75  
80  
85  
90  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4606 G15  
4606 F14  
Figure ±4. No Heat Sink  
Figure ±5. BGA Heat Sink  
50  
40  
30  
20  
10  
0
–10  
–20  
–30  
30  
226.2  
128.1 324.3  
FREQUENCY (MHz)  
422.4  
618.6  
814.8  
1010  
520.5  
716.7  
912.9  
4606 F16  
Figure ±6. Radiated Emission Scan with ±2VIN  
to 2.5VOUT at 6A (±×±00µF XꢀR Ceramic COUT  
)
4606fb  
17  
LTM4606  
applicaTions inForMaTion  
Table 2. Output Voltage Response vs Component Matrix (Refer to Figure 20)  
TYPICAL MEASURED VALUES  
C
VENDORS  
PART NUMBER  
C
OUT2  
VENDORS  
PART NUMBER  
OUT±  
TAIYO YUDEN  
TAIYO YUDEN  
TDK  
JMK316BJ226ML-T501 (22µF, 6.3V)  
JMK325BJ476MM-T (47µF, 6.3V)  
C3225X5R0J476M (47µF, 6.3V)  
SANYO POSCAP  
SANYO POSCAP  
SANYO POSCAP  
6TPE220MIL (220µF, 6.3V)  
2R5TPE330M9 (330µF, 2.5V)  
4TPE330MCL (330µF, 4V)  
V
C
C
C
C
V
(V)  
DROOP  
(mV)  
PEAK TO  
PEAK (mV)  
RECOVERY  
TIME (µs)  
LOAD STEP  
(A/µs)  
R
FB  
OUT  
IN  
IN  
OUT±  
OUT2  
IN  
(V)  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
5
(CERAMIC)  
(BULK)  
(CERAMIC)  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
4 × 47µF 6.3V  
4 × 47µF 6.3V  
4 × 47µF 6.3V  
(BULK)  
330µF 4V  
330µF 2.5V  
220µF 6.3V  
NONE  
(kW)  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
8.25  
8.25  
8.25  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
5
34  
22  
68  
40  
30  
26  
24  
18  
30  
26  
24  
18  
30  
30  
26  
26  
30  
30  
26  
26  
37  
30  
26  
26  
37  
30  
26  
26  
40  
34  
28  
12  
40  
34  
28  
18  
40  
32  
28  
14  
40  
32  
28  
22  
20  
20  
20  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
5
5
20  
40  
5
32  
60  
330µF 4V  
330µF 2.5V  
220µF 6.3V  
NONE  
12  
12  
12  
12  
5
34  
68  
22  
40  
20  
39  
29.5  
35  
55  
330µF 4V  
330µF 2.5V  
220µF 6.3V  
NONE  
70  
5
25  
48  
5
24  
47.5  
68  
5
36  
330µF 4V  
330µF 2.5V  
220µF 6.3V  
NONE  
12  
12  
12  
12  
5
35  
70  
25  
48  
24  
45  
32.6  
38  
61.9  
76  
330µF 4V  
330µF 2.5V  
220µF 6.3V  
NONE  
5
29.5  
28  
57.5  
55  
5
5
43  
80  
330µF 4V  
330µF 2.5V  
220µF 6.3V  
NONE  
12  
12  
12  
12  
5
38  
76  
28  
55  
27  
52  
36.4  
38  
70  
330µF 4V  
330µF 4V  
220µF 6.3V  
NONE  
78  
5
37.6  
39.5  
66  
74  
5
78.1  
119  
78  
5
330µF 4V  
330µF 4V  
220µF 6.3V  
NONE  
12  
12  
12  
12  
7
38  
34.5  
35.8  
50  
66.3  
68.8  
98  
330µF 4V  
330µF 4V  
220µF 6.3V  
NONE  
42  
86  
7
47  
89  
7
50  
94  
7
75  
141  
86  
330µF 4V  
330µF 4V  
220µF 6.3V  
NONE  
12  
12  
12  
12  
12  
15  
20  
42  
47  
88  
50  
94  
69  
131  
215  
215  
217  
NONE  
110  
110  
110  
5
NONE  
5
NONE  
4606fb  
18  
LTM4606  
applicaTions inForMaTion  
Table 3. ±.5V Output  
DERATING CURVE  
Figures 8, 10  
Figures 8, 10  
Figures 8, 10  
Figures 9, 11  
Figures 9, 11  
Figures 9, 11  
V
(V)  
POWER LOSS CURVE  
Figure 6  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
IN  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
0
13.5  
10  
9
Figure 6  
200  
400  
0
None  
Figure 6  
None  
Figure 6  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
9.5  
7
Figure 6  
200  
400  
Figure 6  
5
Table 4. 3.3V Output  
DERATING CURVE  
Figures 12, 14  
V
(V)  
POWER LOSS CURVE  
Figure 7  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
(°C/W)  
JA  
IN  
12, 24  
0
13.5  
11  
10  
10  
7
Figures 12, 14  
12, 24  
12, 24  
12, 24  
12, 24  
12, 24  
Figure 7  
200  
400  
0
None  
Figures 12, 14  
Figure 7  
None  
Figures 13, 15  
Figure 7  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figures 13, 15  
Figure 7  
200  
400  
Figures 13, 15  
Figure 7  
5
Heat Sink Manufacturer  
Wakefield Engineering  
Part No: LTN20069  
Phone: 603-635-2800  
Layout Checklist/Example  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to PGND underneath the unit.  
The high integration of LTM4606 makes the PCB board  
layout very simple and easy. However, to optimize its  
electrical and thermal performance, some layout con-  
siderations are still necessary.  
• Place one or more high frequency ceramic capacitors  
close to the connection into the system board.  
• Use large PCB copper areas for high current path, in-  
Figure 17 gives a good example of the recommended  
layout. For load current below 3A, decouple the input and  
output grounds. Use vias to connect GND pads to the  
bottom layer, then connect to the right side of the module  
as the output GND.  
cluding V , PGND and V . It helps to minimize the  
IN  
OUT  
PCB conduction loss and thermal stress.  
• Place high frequency ceramic input and output capaci-  
tors next to the V , PGND and V  
pins to minimize  
D
OUT  
high frequency noise.  
V
IN  
C
C
IN  
IN  
• Place a dedicated power ground layer underneath the  
unit.  
GND  
• UseroundcornersforthePCBcopperlayertominimize  
the radiated noise.  
SIGNAL  
GND  
• To minimize the EMI noise and reduce module thermal  
stress, use multiple vias for interconnection between  
top layer and other power layers on different locations.  
C
C
OUT  
OUT  
• Donotputviasdirectlyonpads,unlesstheyarecapped.  
V
OUT  
4606 F17  
Figure ±ꢀ. Recommended PCB Layout  
4606fb  
19  
LTM4606  
applicaTions inForMaTion  
Frequency Adjustment  
time.Figure18showsanoperatingrangeof10Vto28Vfor  
1MHzoperationwitha150kresistortoground,andan8Vto  
The LTM4606 is designed to typically operate at 800kHz  
16V operating range for f floating. These modifications  
SET  
across most input conditions. The f pin is typically left  
SET  
are made to provide wider input voltage ranges for the 5V  
output designs while limiting the inductor ripple current,  
and maintaining the 400ns minimum off-time.  
open or decoupled with an optional 1000pF capacitor. The  
switching frequency has been optimized for maintaining  
constant output ripple noise over most operating ranges.  
The 800kHz switching frequency and the 400ns minimum  
off time can limit operation at higher duty cycles like 5V  
to 3.3V, and produce excessive inductor ripple currents  
for lower duty cycle applications like 28V to 5V.  
Example for 3.3V Output  
LTM4606 minimum on-time = 100ns;  
t
ON  
= ((3.3 • 10pF)/I  
)
fSET  
LTM4606 minimum off-time = 400ns;  
= t – t , where t = 1/Frequency  
Example for 5V Output  
t
OFF  
ON  
LTM4606 minimum on-time = 100ns;  
Duty Cycle (DC) = t /t or V /V  
ON  
OUT IN  
t
= ((4.8 • 10pF)/I  
)
ON  
fSET  
Equations for setting frequency:  
= (V /(3 • R )), for 28V input operation, I =  
fSET  
LTM4606 minimum off-time = 400ns;  
= t – t , where t = 1/Frequency  
I
fSET  
IN  
fSET  
t
OFF  
ON  
227µA, t = ((3.3 • 10pF)/I ), t = 145ns, where the  
ON  
fSET  
fSET ON  
Duty Cycle = t /t or V /V  
internal R  
is 41.2k. Frequency = (V /(V • t )) =  
ON  
OUT IN  
OUT IN ON  
(3.3V/(28 • 145ns)) ~ 810kHz. The minimum on-time and  
minimum-off time are within specification at 146ns and  
1089ns. But the 4.5V minimum input for converting 3.3V  
output will not meet the minimum off-time specification  
Equations for setting frequency:  
= (V /(3 • R )), where the internal R is 41.2k.  
fSET  
I
fSET  
IN  
fSET  
For 28V input operation, I  
= 227µA. t = ((4.8 • 10pF)/  
ON  
fSET  
I
), t = 211ns. Frequency = (V /(V • t )) = (5V/  
fSET ON  
OUT IN ON  
of 400ns. t = 905ns, Frequency = 810kHz, t = 329ns.  
ON  
OFF  
(28211ns))~850kHz. Theinductorripplecurrentbegins  
to get high at the higher input voltages due to a larger volt-  
age across the inductor. The current ripple is ~5A at 20%  
duty cycle if the integrated inductor is 1µH. The inductor  
ripplecurrentcanbeloweredatthehigherinputvoltagesby  
Solution  
Lower the switching frequency at lower input voltages to  
allow for higher duty cycles, and meet the 400ns mini-  
mum off-time at 4.5V input voltage. The off-time should  
be about 500ns with 100ns guard band. The duty cycle  
addinganexternalresistorfromf togroundtoincrease  
SET  
theswitchingfrequency.A4Aripplecurrentischosen,and  
thetotalpeakcurrentisequalto1/2ofthe4Aripplecurrent  
plusthe outputcurrent. For5Voutput, currentislimited to  
5A, so the total peak current is less than 7A. This is below  
the 8A peak specified value. A 150k resistor is placed from  
for (3.3V/4.5V) = ~73%. Frequency = (1 – DC)/t  
or  
OFF  
(1 – 0.73)/500ns = 540kHz. The switching frequency  
needs to be lowered to 540kHz at 4.5V input. t = DC/  
ON  
frequency, or 1.35µs. The f  
pin voltage compliance  
SET  
is 1/3 of V , and the I  
current equates to 36µA with  
current needs to be 24µA for  
IN  
fSET  
f
to ground, and the parallel combination of 150k and  
SET  
the internal 41.2k. The I  
fSET  
41.2k equates to 32.3k. The I  
calculation with 32.3k  
fSET  
540kHz operation. A resistor can be placed from V  
to  
OUT  
and 28V input voltage equals 289µA. This equates to a t  
ON  
f
to lower the effective I  
current out of the f pin  
SET  
fSET SET  
of 166ns. This will increase the switching frequency from  
850kHz to ~1MHz for the 28V to 5V conversion. The  
minimum on time is above 100ns at 28V input. Since  
the switching frequency is approximately constant over  
input and output conditions, then the lower input voltage  
range is limited to 8V for the 1MHz operation due to the  
to 24µA. The f  
pin is 4.5V/3 =1.5V and V  
= 3.3V,  
OUT  
SET  
therefore a 150k resistor will source 12µA into the f  
SET  
node and lower the I  
current to 24µA. This enables the  
fSET  
540kHz operation and the 4.5V to 28V input operation for  
down converting to 3.3V output as shown in Figure 19.  
The frequency will scale from 540kHz to 950kHz over this  
input range. This provides for an effective output current  
400ns minimum off time. Equation: t = (V /V ) • (1/  
ON  
OUT IN  
Frequency) equates to a 375ns on time, and a 400ns off  
of 5A over the input range.  
4606fb  
20  
LTM4606  
Typical applicaTions  
V
OUT  
10V TO 28V  
C1  
10µF  
R4  
100k  
R3  
100k  
V
V
PLLIN  
D
IN  
5V AT 5A  
V
PGOOD  
RUN  
COMP  
INTV  
DRV  
OUT  
C2  
C
22µF  
6.3V  
C
LTM4606  
OUT1  
OUT2  
100pF  
+
ON/OFF  
C
10µF  
35V  
220µF  
6.3V  
V
IN  
FB  
R
FB  
8.25k  
CC  
CC  
FCB  
CERAMIC  
x2  
MARG0  
MARG1  
MPGM  
f
MARGIN  
SET  
TRACK/SS  
CONTROL  
REFER TO TABLE 2  
FOR OUTPUT CAPACITOR  
SELECTIONS  
TRACK/SS  
CONTROL  
SGND PGND  
R1  
392k  
5% MARGIN  
R
fSET  
150k  
IMPROVE EFFICIENCY  
FOR ≥12V INPUT  
4606 TA02  
Figure ±8. ±0V to 28VIN, 5V at 5A Design  
V
OUT  
4.5V TO 28V  
C1  
10µF  
R4  
100k  
R3  
V
V
IN  
PLLIN  
100k  
D
3.3V AT 5A  
V
PGOOD  
RUN  
COMP  
INTV  
DRV  
OUT  
C2  
LTM4606  
C
C
OUT2  
OUT1  
100pF  
+
ON/OFF  
C
10µF  
35V  
22µF  
6.3V  
x2  
220µF  
V
IN  
FB  
R
6.3V  
FB  
13.3k  
CC  
CC  
FCB  
CERAMIC  
x2  
MARG0  
MARG1  
MPGM  
f
MARGIN  
SET  
TRACK/SS  
CONTROL  
REFER TO TABLE 2  
FOR OUTPUT CAPACITOR  
SELECTIONS  
R
fSET  
150k  
SGND PGND  
R1  
392k  
5% MARGIN  
TRACK/SS  
CONTROL  
V
OUT  
4606 TA03  
Figure ±9. 3.3V at 5A Design  
4606fb  
21  
LTM4606  
Typical applicaTions  
V
OUT  
4.5V TO 28V  
CLOCK SYNC  
C1  
10µF  
R4  
100k  
R3  
100k  
V
V
PLLIN  
D
IN  
2.5V AT 6A  
V
PGOOD  
RUN  
COMP  
INTV  
DRV  
OUT  
C2  
C
22µF  
6.3V  
C
LTM4606  
OUT1  
OUT2  
100pF  
+
ON/OFF  
220µF  
6.3V  
V
FB  
R
FB  
19.1k  
CC  
CC  
FCB  
MARG0  
MARG1  
MPGM  
f
MARGIN  
SET  
CONTROL  
TRACK/SS  
C
10µF  
35V  
CERAMIC  
x2  
IN  
C4  
0.01µF  
SGND PGND  
R1  
392k  
5% MARGIN  
4606 TA04  
Figure 20. Typical 4.5V to 28VIN, 2.5V at 6A Design  
V
OUT  
V
IN  
4.5V TO 28V  
C1  
10µF  
CLOCK SYNC  
0° PHASE  
R2  
100k  
R4  
V
V
IN  
PLLIN  
100k  
D
2.5V AT 12A  
PGOOD  
RUN  
COMP  
V
OUT  
C6  
C
22µF  
6.3V  
LTM4606  
OUT1  
+
C
OUT2  
220pF  
220µF  
6.3V  
V
FB  
FCB  
INTV  
CC  
CC  
C2  
10µF  
35V  
DRV  
f
MARG0  
MARG1  
MPGM  
MARGIN  
CONTROL  
SET  
TRACK/SS  
C5  
100µF  
35V  
+
C4  
0.33µF  
R1  
392k  
R
FB  
9.53k  
SGND PGND  
2-PHASE  
OSCILLATOR  
+
5% MARGIN  
V
OUT1  
GND OUT2  
SET MOD  
C7  
0.1µF  
R5  
118k  
C3  
10µF  
LTC6908-1  
CLOCK SYNC  
180° PHASE  
R3  
100k  
V
V
PLLIN  
D
IN  
V
PGOOD  
RUN  
OUT  
C
22µF  
6.3V  
LTM4606  
OUT3  
C
+
OUT4  
220µF  
6.3V  
V
COMP  
FB  
C8  
10µF  
35V  
FCB  
INTV  
CC  
MARG0  
MARG1  
MPGM  
DRV  
CC  
f
SET  
TRACK/SS  
R6  
392k  
SGND PGND  
5% MARGIN  
4606 TA05  
Figure 2±. 2-Phase, Parallel 2.5V at ±2A Design  
4606fb  
22  
LTM4606  
Typical applicaTions  
3.3V  
V
IN  
5V TO 28V  
C3  
10µF  
CLOCK SYNC  
0° PHASE  
R4  
R2  
100k  
V
V
IN  
PLLIN  
100k  
D
3.3V AT 6A  
PGOOD  
RUN  
COMP  
V
OUT  
C6  
C
LTM4606  
OUT1  
C
+
OUT2  
22pF  
100µF  
6.3V  
220µF  
6.3V  
V
FB  
FCB  
INTV  
CC  
CC  
DRV  
C2  
10µF  
35V  
f
MARG0  
MARG1  
MPGM  
MARGIN  
SET  
CONTROL  
TRACK/SS  
C5  
100µF  
35V  
+
R1  
392k  
R
FB1  
13.3k  
C7  
0.15µF  
SGND PGND  
2-PHASE  
OSCILLATOR  
+
5% MARGIN  
3.3V  
V
OUT1  
GND OUT2  
SET MOD  
C9  
0.1µF  
R5  
118k  
C4  
10µF  
LTC6908-1  
CLOCK SYNC  
180° PHASE  
R7  
100k  
R3  
100k  
V
V
PLLIN  
D
IN  
2.5V AT 6A  
V
PGOOD  
RUN  
OUT  
C1  
22pF  
C
OUT3  
LTM4606  
C
+
OUT4  
100µF  
6.3V  
220µF  
6.3V  
V
FCB  
COMP  
FB  
C8  
10µF  
35V  
INTV  
CC  
3.3V TRACK  
R8  
MARG0  
MARG1  
MPGM  
MARGIN  
CONTROL  
DRV  
CC  
60.4k  
f
SET  
TRACK/SS  
R6  
392k  
R
R9  
19.1k  
FB2  
SGND PGND  
19.1k  
4606 TA06  
Figure 22. 2-Phase, 3.3V and 2.5V Outputs at 6A with Tracking and Margining  
4606fb  
23  
LTM4606  
Typical applicaTions  
4.5V TO 28V  
1.8V  
C3  
10µF  
CLOCK SYNC  
0° PHASE  
R4  
100k  
R2  
100k  
V
V
IN  
PLLIN  
D
1.8V AT 6A  
PGOOD  
RUN  
COMP  
V
OUT  
C6  
100pF  
C
LTM4606  
OUT1  
C
OUT2  
+
100µF  
6.3V  
220µF  
6.3V  
V
FB  
FCB  
INTV  
DRV  
CC  
C2  
CC  
10µF  
35V  
f
MARG0  
MARG1  
MPGM  
MARGIN  
SET  
CONTROL  
TRACK/SS  
C5  
+
100µF  
35V  
R1  
392k  
R
FB1  
30.1k  
C7  
0.15µF  
SGND PGND  
2-PHASE  
OSCILLATOR  
+
5% MARGIN  
1.8V  
V
OUT1  
GND OUT2  
SET MOD  
C9  
0.1µF  
R5  
182k  
C4  
10µF  
LTC6908-1  
CLOCK SYNC  
180° PHASE  
R7  
100k  
R3  
100k  
V
V
PLLIN  
D
IN  
1.5V AT 6A  
V
PGOOD  
RUN  
OUT  
C1  
100pF  
C
22µF  
6.3V  
LTM4606  
OUT3  
C
+
OUT4  
220µF  
6.3V  
V
FCB  
COMP  
FB  
C8  
10µF  
35V  
INTV  
CC  
1.8V TRACK  
R8  
MARG0  
MARG1  
MPGM  
DRV  
MARGIN  
CONTROL  
CC  
60.4k  
f
SET  
TRACK/SS  
R6  
392k  
R
FB2  
40.2k  
R9  
40.2k  
SGND PGND  
4606 TA07  
Figure 23. 2-Phase, ±.8V and ±.5V Outputs at 6A with Tracking and Margining  
4606fb  
24  
LTM4606  
package DescripTion  
Pin Assignment Tables  
(Arranged by Pin Function)  
PIN NAME  
PIN NAME  
PGND  
PIN NAME  
PIN NAME  
A1  
A2  
A3  
A4  
A5  
A6  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
D1  
D2  
D3  
D4  
D5  
D6  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
J10  
J11  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
A7  
INTV  
CC  
PLLIN  
PGND  
PGND  
PGND  
PGND  
PGND  
A8  
A9  
TRACK/SS  
RUN  
A10  
A11  
A12  
COMP  
MPGM  
B1  
B2  
B3  
B4  
B5  
B6  
V
V
V
V
V
V
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
B7  
V
-
IN  
IN  
IN  
IN  
IN  
IN  
D
B8  
B9  
RUN  
-
B10  
B11  
B12  
MPGM  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
V
V
V
V
V
V
V
V
V
V
V
f
SET  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
C1  
C2  
C3  
C4  
C5  
C6  
V
V
V
V
V
V
C7  
V
-
IN  
IN  
IN  
IN  
IN  
IN  
D
C8  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
C9  
-
C10  
C11  
C12  
DRV  
CC  
MARG1  
MARG0  
D7  
-
-
D8  
D9  
SGND  
-
D10  
D11  
D12  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
L10  
L11  
V
V
V
V
V
V
V
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
COMP  
MARG1  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
E9  
-
-
E10  
E11  
E12  
DRV  
DRV  
CC  
CC  
F10  
F11  
F12  
-
-
V
FB  
G12  
H12  
J12  
K12  
L12  
M12  
PGOOD  
SGND  
NC  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
V
V
V
V
V
V
V
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
NC  
NC  
FCB  
4606fb  
25  
LTM4606  
package DescripTion  
Z
b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
4606fb  
26  
LTM4606  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
3/10  
Change to Features.  
1
2
Change to Absolute Maximum Ratings.  
Changes to Electrical Characteristics.  
Changes to Related Parts.  
2, 3  
25  
B
3/11  
Text updated throughout the data sheet.  
Graph replaced on the front page, Figure 2, and Figure 16.  
Added value of 1µH to inductor on Figure 1.  
Updated Related Parts.  
1-28  
1, 12, 17  
9
28  
4606fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTM4606  
package phoTograph  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
LTM4601/  
LTM4601A  
12A DC/DC µModule Regulator with PLL, Output  
Tracking/Margining and Remote Sensing  
Synchronizable, PolyPhase Operation, LTM4601-1/LTM4601A-1 Version Has No  
Remote Sensing, LGA Package  
LTM4618  
6A DC/DC µModule Regulator with PLL,  
Output Tracking  
4.5V ≤ V ≤ 26.5V, 0.8V ≤ V  
≤ 5V, Synchronizable, 9mm × 15mm × 4.3mm  
IN  
OUT  
LGA Package  
LTM4604A  
LTM4608A  
LTM4612  
LTM4627  
Low V 4A DC/DC µModule Regulator  
2.375V ≤ V ≤ 5.5V, 0.8V ≤ V  
≤ 5V, 9mm × 15mm × 2.3mm LGA Package  
≤ 5V, 9mm × 15mm × 2.8mm LGA Package  
IN  
IN  
OUT  
Low V 8A DC/DC µModule Regulator  
2.375V ≤ V ≤ 5.5V, 0.6V ≤ V  
IN  
IN  
OUT  
Low Noise 5A, 15V  
DC/DC µModule Regulator  
Low Noise, with PLL, Output Tracking and Margining, LTM4606 Pin-Compatible  
4.5V ≤ V ≤ 20V, 0.6V ≤ V ≤ 5V, 1.5% Total DC Output Accuracy,  
OUT  
15A DC/DC µModule Regulator  
IN  
OUT  
15mm × 15mm × 4.32mm LGA Package  
EN55022 Class B Certified DC/DC µModule Regulators  
LTM8020  
LTM8021  
High V 0.2A DC/DC Step-Down µModule Regulator 4V ≤ V ≤ 36V, 1.25V ≤ V  
≤ 5V, 6.25mm × 6.25mm × 2.3mm LGA Package  
IN  
IN  
OUT  
High V 0.5A DC/DC Step-Down µModule Regulator 3V ≤ V ≤ 36V, 0.8V ≤ V ≤ 5V, 6.25mm × 11.25mm × 2.8mm LGA Package  
OUT  
IN  
IN  
LTM8022/  
LTM8023  
36V , 1A and 2A DC/DC µModule Regulators  
Pin Compatible, 4.5V ≤ V ≤ 36V, 9mm × 11.25mm × 2.8mm LGA Package  
IN  
IN  
LTM8031/  
LTM8032  
1A, 2A EMC DC/DC µModule Regulators  
3A EMC DC/DC µModule Regulator  
EN55022 Class B Compliant, 3.6V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 10V,  
IN  
OUT  
Pin Compatible, 9mm × 15mm × 2.82mm LGA Package  
LTM8033  
3.6V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 24V, 11.25mm × 15mm × 4.32mm LGA Package  
OUT  
IN  
4606fb  
LT 0311 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM4607

36VIN, 24VOUT High Effi ciency Buck-Boost DC/DC μModule
Linear

LTM4607

High Effi ciency, Synchronous, 4-Switch Buck-Boost Controller
Linear System

LTM4607EV#PBF

LTM4607 - 36Vin, 24Vout High Efficiency Buck-Boost DC/DC &#181;Module (Power Module); Package: LGA; Pins: 141; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4607EV-PBF

36VIN, 24VOUT High Effi ciency Buck-Boost DC/DC μModule
Linear

LTM4607IV-PBF

36VIN, 24VOUT High Effi ciency Buck-Boost DC/DC μModule
Linear

LTM4607V

36VIN, 24VOUT High Effi ciency Buck-Boost DC/DC μModule
Linear

LTM4608

Low VIN, 8A DC/DC μModuleTM with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608A

Low VIN, 8A DC/DC μModule with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608AEV-PBF

Low VIN, 8A DC/DC μModule with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608AIV-PBF

Low VIN, 8A DC/DC μModule with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608AMPV

Low VIN, 8A DC/DC μModule with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608AMPV#PBF

LTM4608A - Low VIN, 8A DC/DC &#181;Module (Power Module) with Tracking, Margining, and Frequency Synchronization; Package: LGA; Pins: 68; Temperature Range: -55&deg;C to 125&deg;C
Linear