LTM4608AMPV#PBF [Linear]

LTM4608A - Low VIN, 8A DC/DC µModule (Power Module) with Tracking, Margining, and Frequency Synchronization; Package: LGA; Pins: 68; Temperature Range: -55°C to 125°C;
LTM4608AMPV#PBF
型号: LTM4608AMPV#PBF
厂家: Linear    Linear
描述:

LTM4608A - Low VIN, 8A DC/DC µModule (Power Module) with Tracking, Margining, and Frequency Synchronization; Package: LGA; Pins: 68; Temperature Range: -55°C to 125°C

开关
文件: 总26页 (文件大小:343K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4608  
Low V , 8A DC/DC µModule  
IN  
Regulator with Tracking, Margining,  
and Frequency Synchronization  
FeaTures  
DescripTion  
The LTM®4608 is a complete 8A switch mode DC/DC  
power supply. Included in the package are the switching  
controller, power FETs, inductor and all support compo-  
nents. Operating over an input voltage range of 2.7V to  
5.5V, the LTM4608 supports an output voltage range of  
0.6V to 5V, set by a single external resistor. This high ef-  
ficiency design delivers up to 8A continuous current (10A  
peak). Only bulk input and output capacitors are needed.  
n
Complete Standalone Power Supply  
n
1.5% Output Voltage Regulation  
n
2.7V to 5.5V Input Voltage Range  
n
8A DC, 10A Peak Output Current  
0.6V Up to 5V Output  
Output Voltage Tracking and Margining  
Power Good Tracking and Margining  
n
n
n
n
Multiphase Operation  
Parallel Current Sharing  
n
The low profile package (2.82mm) enables utilization  
of unused space on the back side of PC boards for high  
density point-of-load regulation. The high switching  
frequency and a current mode architecture enable a very  
fast transient response to line and load changes without  
sacrificing stability. The device supports frequency syn-  
chronization, programmable multiphase and/or spread  
spectrum operation, output voltage tracking for supply  
rail sequencing and voltage margining.  
n
Onboard Frequency Synchronization  
n
Spread Spectrum Frequency Modulation  
n
Overcurrent/Thermal Shutdown Protection  
n
Small Surface Mount Footprint, Low Profile  
(9mm × 15mm × 2.82mm) LGA Package  
applicaTions  
n
Telecom, Networking and Industrial Equipment  
Storage Systems  
Point of Load Regulation  
n
n
Fault protection features include overvoltage protection,  
overcurrent protection and thermal shutdown. The power  
module is offered in a compact and thermally enhanced  
9mm × 15mm × 2.82mm LGA package. The LTM4608 is  
RoHS compliant with Pb-free finish.  
For easier board layout and PCB assembly due to in-  
creased spacing between land grid pads, please refer  
to the LTM4608A.  
L, LT, LTC, LTM, Linear Technology, the Linear logo, µModule, Burst Mode and PolyPhase are  
registered trademarks and LTpowerCAD is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Typical applicaTion  
2.7V to 5.5V Input to 1.8V Output DC/DC µModule® Regulator  
Efficiency vs Load Current  
100  
CLKIN  
95  
CLKIN  
V
V
OUT  
V
= 3.3V  
IN  
IN  
V
V
IN  
OUT  
2.7V TO 5.5V  
1.8V  
90  
85  
SV  
FB  
IN  
10µF  
100µF  
V
IN  
= 5V  
4.87k  
SW  
I
TH  
LTM4608  
RUN  
I
THM  
80  
75  
70  
PGOOD  
PLLLPF  
TRACK  
PGOOD  
MGN  
CLKOUT GND SGND  
4608 TA01a  
V
= 1.8V  
OUT  
8
0
2
4
6
10  
LOAD CURRENT (A)  
4608 TA01b  
4608fd  
1
LTM4608  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
V , SV ......................................................0.3V to 6V  
TOP VIEW  
IN  
IN  
A
B
C
D
E
F
G
CLKOUT .......................................................0.3V to 2V  
GND  
V
CNTRL GND  
IN  
PGOOD, PLLLPF, CLKIN, PHMODE, MODE.. 0.3V to V  
TH THM  
IN  
IN  
1
2
I , I  
, RUN, FB, TRACK, MGN, BSEL..... 0.3V to V  
SW  
V
, V ..................................... 0.3V to (V + 0.3V)  
OUT SW  
IN  
3
Operating Temperature Range (Note 2)....40°C to 85°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range ..................55°C to 125°C  
4
5
6
CNTRL  
7
8
9
10  
11  
GND  
V
OUT  
For easier board layout and PCB assembly due to in-  
creased spacing between land grid pads, please refer  
to the LTM4608A.  
LGA PACKAGE  
68-LEAD (15mm × 9mm × 2.82mm)  
T
= 125°C, θ = 25°C/W, θ = 7°C/W, θ = 50°C/W, WEIGHT = 1.0g  
JMAX  
JA  
JCbottom  
JCtop  
orDer inForMaTion  
LEAD FREE FINISH  
LTM4608EV#PBF  
LTM4608IV#PBF  
PART MARKING*  
LTM4608V  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE (NOTE 2)  
–40°C to 85°C  
68-Lead (15mm × 9mm × 2.82mm) LGA  
68-Lead (15mm × 9mm × 2.82mm) LGA  
LTM4608V  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range (Note 2), otherwise specifications are at TA = 25°C. VIN = 5V unless otherwise noted. See Figure 1.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
V
Input DC Voltage  
Output Voltage  
2.7  
5.5  
V
IN(DC)  
C
= 10µF × 1, C  
= 100µF Ceramic,  
OUT(DC)  
IN  
OUT  
FB  
100µF POSCAP, R = 6.65k, MODE = 0V  
1.475  
1.468  
1.49  
1.49  
1.505  
1.512  
V
V
V
IN  
= 2.7V to 5.5V, V  
= 1.5V, I  
= 0A  
OUT  
OUT  
l
Input Specifications  
V
Undervoltage Lockout Threshold SV Rising  
2.05  
1.85  
2.2  
2.0  
2.35  
2.15  
V
V
IN(UVLO)  
IN  
SV Falling  
IN  
4608fd  
2
LTM4608  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range (Note 2), otherwise specifications are at TA = 25°C. VIN = 5V unless otherwise noted. See Figure 1.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Input Supply Bias Current  
V
IN  
V
IN  
V
IN  
= 3.3V, V  
= 3.3V, V  
= 3.3V, V  
= 1.5V, No Switching, MODE = V  
IN  
= 1.5V, No Switching, MODE = 0V  
= 1.5V, Switching Continuous  
400  
1.15  
55  
µA  
mA  
mA  
Q(VIN)  
OUT  
OUT  
OUT  
V
V
V
= 5V, V  
= 5V, V  
= 5V, V  
= 1.5V, No Switching, MODE = V  
IN  
= 1.5V, No Switching, MODE = 0V  
= 1.5V, Switching Continuous  
450  
1.3  
75  
µA  
mA  
mA  
IN  
IN  
IN  
OUT  
OUT  
OUT  
Shutdown, RUN = 0, V = 5V  
1
µA  
IN  
I
Input Supply Current  
V
IN  
V
IN  
= 3.3V, V  
= 1.5V, I = 8A  
OUT  
4.5  
2.93  
A
A
S(VIN)  
OUT  
= 5V, V  
= 1.5V, I  
= 8A  
OUT  
OUT  
Output Specifications  
I
Output Continuous Current Range V  
(See Output Current Derating  
= 1.5V  
OUT(DC)  
OUT  
V
= 3.3V, 5.5V  
0
0
8
5
A
A
IN  
IN  
Curves for Different V , V  
V
= 2.7V  
IN OUT  
and T )  
A
l
ΔV  
Line Regulation Accuracy  
Load Regulation Accuracy  
V
V
= 1.5V, V from 2.7V to 5.5V, I  
= 0A  
0.1  
0.2  
%/V  
OUT(LINE)  
OUT  
IN  
OUT  
V
OUT  
ΔV  
= 1.5V  
OUT(LOAD)  
OUT  
V
V
l
l
= 3.3V, 5.5V, I  
= 0A to 8A  
LOAD  
0.3  
0.3  
0.75  
0.75  
%
%
IN  
IN  
V
OUT  
= 2.7V, I  
= 0A to 5A  
LOAD  
V
Output Ripple Voltage  
I
= 0A, C  
= 1.5V  
= 100µF/X5R/Ceramic, V = 5V,  
OUT IN  
OUT(AC)  
OUT  
OUT  
V
10  
mV  
P-P  
f
f
Switching Frequency  
SYNC Capture Range  
Turn-On Overshoot  
I
= 8A, V = 5V, V = 1.5V  
OUT  
1.3  
1.5  
1.7  
MHz  
MHz  
S
OUT  
IN  
0.75  
2.25  
SYNC  
ΔV  
C
= 100µF, V  
= 1.5V, I  
= 0A  
OUT  
OUT(START)  
OUT  
V
OUT  
= 3.3V  
= 5V  
10  
10  
mV  
mV  
IN  
IN  
V
t
Turn-On Time  
C
= 100µF, V  
= 1.5V, V = 5V  
IN  
START  
OUT  
OUT  
OUT  
I
=1A Resistive Load, Track = V  
100  
15  
µs  
IN  
ΔV  
Peak Deviation for Dynamic Load Load: 0% to 50% to 0% of Full Load,  
mV  
OUT(LS)  
C
V
= 100µF Ceramic, 100µF POSCAP,  
OUT  
IN  
= 5V, V  
= 1.5V  
OUT  
t
I
Settling Time for Dynamic Load  
Step  
Load: 0% to 50% to 0% of Full Load, V = 5V,  
OUT  
10  
µs  
SETTLE  
IN  
V
= 1.5V, C  
= 100µF  
OUT  
Output Current Limit  
C
= 100µF  
OUT(PK)  
OUT  
V
= 2.7V, V  
= 3.3V, V  
= 1.5V  
= 1.5V  
8
11  
13  
A
A
A
IN  
IN  
IN  
OUT  
OUT  
V
V
= 5V, V  
= 1.5V  
OUT  
Control Section  
V
Voltage at FB Pin  
I
= 0A, V  
= 1.5V, V = 2.7V to 5.5V  
0.592  
0.589  
0.596  
0.596  
0.600  
0.603  
V
V
FB  
OUT  
OUT  
IN  
l
SS Delay  
Internal Soft-Start Delay  
90  
µs  
I
0.2  
µA  
FB  
V
RUN Pin On/Off Threshold  
RUN Rising  
RUN Falling  
1.4  
1.3  
1.55  
1.4  
1.7  
1.5  
V
V
RUN  
4608fd  
3
LTM4608  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range (Note 2), otherwise specifications are at TA = 25°C. VIN = 5V unless otherwise noted. See Figure 1.  
SYMBOL  
PARAMETER  
CONDITIONS  
RUN = V  
MIN  
TYP  
MAX  
UNITS  
TRACK  
Tracking Threshold (Rising)  
Tracking Threshold (Falling)  
Tracking Disable Threshold  
0.57  
0.18  
V
V
V
IN  
RUN = 0V  
V
– 0.5  
IN  
R
Resistor Between V  
and FB  
OUT  
9.95  
10  
10.05  
kΩ  
FBHI  
Pins  
ΔV  
PGOOD  
PGOOD Range  
10  
%
%Margining  
Output Voltage Margining  
Percentage  
MGN = V , BSEL = 0V  
4
9
14  
–4  
–9  
–14  
5
6
%
%
%
%
%
%
IN  
MGN = V , BSEL = V  
10  
11  
IN  
IN  
MGN = V , BSEL = Float  
15  
16  
IN  
MGN = 0V, BSEL = 0V  
–5  
–10  
–15  
–6  
–11  
–16  
MGN = 0V, BSEL = V  
IN  
MGN = 0V, BSEL = Float  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM4608E is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the 40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls. The LTM4608I is guaranteed over the  
40°C to 85°C temperature range.  
4608fd  
4
LTM4608  
Typical perForMance characTerisTics  
Efficiency vs Load Current  
Efficiency vs Load Current  
Efficiency vs Load Current  
100  
95  
90  
85  
80  
75  
70  
100  
95  
100  
95  
CONTINUOUS MODE  
CONTINUOUS MODE  
CONTINUOUS MODE  
90  
85  
90  
85  
80  
75  
70  
80  
75  
70  
5V 1.2V  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
3.3V 1.2V  
IN  
OUT  
OUT  
OUT  
OUT  
5V 1.5V  
IN  
2.7V 1.0V  
3.3V 1.5V  
IN  
IN  
OUT  
OUT  
OUT  
5V 1.8V  
IN  
2.7V 1.5V  
IN  
3.3V 1.8V  
IN  
3.3V 2.5V  
IN  
5V 2.5V  
IN  
2.7V 1.8V  
IN  
5V 3.3V  
IN  
0
2
3
4
5
6
7
0
2
4
6
8
1
0
2
4
6
8
LOAD CURRENT (A)  
LOAD CURRENT  
LOAD CURRENT  
4608 G03  
4608 G02  
4608 G01  
Burst Mode Efficiency with  
5V Input  
VIN to VOUT Step-Down Ratio  
VIN to VOUT Step-Down Ratio  
100  
90  
80  
70  
60  
50  
40  
4.0  
3.5  
3.0  
2.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0.5  
0
I
V
V
= 8A  
OUT  
OUT  
OUT  
V
V
V
= 1.8V  
= 2.5V  
= 3.3V  
V
V
V
= 1.5V  
= 2.5V  
= 3.3V  
I
V
V
= 6A  
V
V
V
= 1.8V  
= 2.5V  
= 3.3V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
= 1.2V  
= 1.5V  
= 1.2V  
= 1.5V  
OUT  
OUT  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1  
LOAD CURRENT (A)  
4
2
3
4
5
6
2
5
6
3
V
(V)  
V
(V)  
IN  
IN  
4608 G04  
4608 G05  
4608 G06  
Supply Current vs VIN  
Load Transient Response  
Load Transient Response  
1.6  
1.4  
1.2  
1
1A/DIV  
V
= 1.2V PULSE-SKIPPING MODE  
2A/DIV  
O
V
20mV/DIV  
20mV/DIV  
0.8  
0.6  
0.4  
0.2  
0
= 1.2V BURST MODE  
O
4608 G08  
4608 G09  
V
V
= 5V  
20µs/DIV  
V
V
= 5V  
20µs/DIV  
IN  
OUT  
IN  
OUT  
= 3.3V  
= 2.5V  
2A/µs STEP  
= 100µF X5R  
2.5A/µs STEP  
= 100µF X5R  
C
C
OUT  
OUT  
C1 = 100pF, C3 = 22pF FROM FIGURE 18  
C1 = 120pF, C3 = 47pF FROM FIGURE 18  
2.5  
3
3.5  
4
4.5  
5
5.5  
INPUT VOLTAGE (V)  
4608 G07  
4608fd  
5
LTM4608  
Typical perForMance characTerisTics  
Load Transient Response  
Load Transient Response  
Load Transient Response  
2A/DIV  
2A/DIV  
2A/DIV  
20mV/DIV  
20mV/DIV  
20mV/DIV  
4608 G10  
4608 G11  
4608 G12  
V
V
= 5V  
20µs/DIV  
V
V
= 5V  
20µs/DIV  
V
V
= 5V  
20µs/DIV  
IN  
OUT  
IN  
OUT  
IN  
OUT  
= 1.8V  
= 1.5V  
= 1.2V  
2.5A/µs STEP  
= 100µF X5R  
2.5A/µs STEP  
= 100µF X5R  
2.5A/µs STEP  
= 2 × 100µF  
C
C
C
OUT  
OUT  
OUT  
C1 = NONE, C3 = NONE FROM FIGURE 18  
C1 = NONE, C3 = NONE FROM FIGURE 18  
C1 = 100pF, C3 = NONE FROM FIGURE 18  
Start-Up  
VFB vs Temperature  
Load Regulation vs Current  
602  
600  
598  
596  
594  
592  
590  
0
–0.1  
–0.2  
–0.3  
–0.4  
V
OUT  
V
V
= 5.5V  
IN  
0.5V/DIV  
V
= 3.3V  
IN  
V
IN  
2V/DIV  
= 2.7V  
IN  
4608 G13  
V
V
C
= 5V  
50µs/DIV  
FC MODE  
IN  
–0.5  
–0.6  
= 1.5V  
V
V
= 3.3V  
OUT  
OUT  
IN  
OUT  
= 100µF NO LOAD AND 8A LOAD  
= 1.5V  
(DEFAULT 100µs SOFT-START)  
–25  
0
50  
–50  
75  
100  
25  
0
2
4
6
8
TEMPERATURE (°C)  
LOAD CURRENT (A)  
4608 G14  
4608 G15  
Short-Circuit Protection  
(2.5V Short, No Load)  
Short-Circuit Protection  
(2.5V Short, 4A Load)  
2.5V Output Current  
3.0  
2.5  
V
IN  
5V/DIV  
5V/DIV  
2V/DIV  
2V/DIV  
V
V
IN  
OUT  
V
OUT  
2.0  
1.5  
I
LOAD  
OUT  
5A/DIV  
5A/DIV  
I
OUT  
1.0  
0.5  
0
4608 G17  
4608 G18  
V
V
= 5V  
50µs/DIV  
V
V
= 5V  
50µs/DIV  
IN  
OUT  
IN  
OUT  
= 2.5V  
= 2.5V  
0
5
10  
15  
20  
OUTPUT CURRENT (A)  
4608 G16  
4608fd  
6
LTM4608  
pin FuncTions  
PLLLPF (E3): Phase-Locked Loop Lowpass Filter. An in-  
ternal lowpass filter is tied to this pin. In spread spectrum  
mode, placing a capacitor here to SGND controls the slew  
rate from one frequency to the next. Alternatively, floating  
this pin allows normal running frequency at 1.5MHz, tying  
V (C1, C8, C9, D1, D3-D5, D7-D9 and E8): Power Input  
IN  
Pins. Apply input voltage between these pins and GND  
pins. Recommend placing input decoupling capacitance  
directly between V pins and GND pins.  
IN  
V
OUT  
(C10-C11, D10-D11, E9-E11, F9-F11, G9-G11):  
this pin to SV forces the part to run at 1.33 times its  
IN  
Power Output Pins. Apply output load between these pins  
and GND pins. Recommend placing output decoupling  
capacitance directly between these pins and GND pins.  
See Table 1.  
normal frequency (2MHz), tying it to ground forces the  
frequencytorunat0.67timesitsnormalfrequency(1MHz).  
PHMODE (B4): Phase Selector Input. This pin determines  
the phase relationship between the internal oscillator and  
CLKOUT. Tie it high for 2-phase operation, tie it low for  
GND (A1-A11, B1, B9-B11, F3, F7-F8, G1-G8): Power  
Ground Pins for Both Input and Output Returns.  
3-phase operation, and float or tie it to V /2 for 4-phase  
IN  
SV (F4): Signal Input Voltage. This pin is internally con-  
operation.  
IN  
nected to V through a lowpass filter.  
IN  
MGN (B8): Margining Pin. Increases or decreases the  
output voltage by the amount specified by the BSEL pin.  
To disable margining, tie the MGN pin to a voltage divider  
SGND (E1): Signal Ground Pin. Return ground path for all  
analog and low power circuitry. Tie a single connection to  
GND in the application.  
with50kresistorsfromV toground.SeetheApplications  
IN  
Information section and Figure 20.  
MODE(B5):ModeSelectInput.Tyingthispinhighenables  
Burst Mode® operation. Tying this pin low enables forced  
BSEL (B7): Margining Bit Select Pin. Tying BSEL low se-  
continuous operation. Floating this pin or tying it to V /2  
enables pulse-skipping operation.  
lects 5%, tying it high selects 10%. Floating it or tying  
IN  
it to V /2 selects 15%.  
IN  
CLKIN (B3): External Synchronization Input to Phase  
Detector. This pin is internally terminated to SGND with a  
50k resistor. The phase-locked loop will force the internal  
top power PMOS turn on to be synchronized with the  
TRACK (E5): Output Voltage Tracking Pin. Voltage track-  
ing is enabled when the TRACK voltage is below 0.57V.  
If tracking is not desired, then connect the TRACK pin to  
SV . If TRACK is not tied to SV , then the TRACK pin’s  
IN  
IN  
rising edge of the CLKIN signal. Connect this pin to SV  
voltage needs to be below 0.18V before the chip shuts  
down even though RUN is already low. Do not float this  
pin. A resistor divider and capacitor can be applied to the  
TRACK pin to increase the soft-start time of the regulator.  
See the Applications Information section. Can tie together  
for parallel operation and tracking. Load current needs to  
be present during track down.  
IN  
to enable spread spectrum modulation. During external  
synchronization, make sure the PLLLPF pin is not tied to  
V or GND.  
IN  
4608fd  
7
LTM4608  
pin FuncTions  
PGOOD (C7): Output Voltage Power Good Indicator.  
Open-drain logic output that is pulled to ground when the  
output voltage is not within 10% of the regulation point.  
Disabled during margining.  
FB(E7):TheNegativeInputoftheErrorAmplifier.Internally,  
this pin is connected to V  
with a 10k precision resistor.  
OUT  
Different output voltages can be programmed with an ad-  
ditional resistor between FB and GND pins. In PolyPhase®  
operation, tie FB pins together for parallel operation. See  
the Applications Information section for details.  
RUN (F1): Run Control Pin. A voltage above 1.5V will turn  
on the module.  
I
(F6): Current Control Threshold and Error Amplifier  
TH  
SW (C3-C5): Switching Node of the Circuit is Used for  
Testing Purposes. This can be connected to an electri-  
cally open circuit copper pad on the board for improved  
thermal performance.  
Compensation Point. The current comparator threshold  
increases with this control voltage. Tie together in parallel  
operation.  
I
(F5): Negative Input to the Internal I Differential  
TH  
THM  
CLKOUT (F2): Output Clock Signal for PolyPhase Opera-  
tion. The phase of CLKOUT is determined by the state of  
the PHMODE pin.  
Amplifier. Tie this pin to SGND for single phase operation.  
For PolyPhase operation, tie the master’s I  
while connecting all of the I  
to SGND  
THM  
pins together.  
THM  
4608fd  
8
LTM4608  
siMpliFieD block DiagraM  
SV  
V
IN  
IN  
V
INTERNAL  
FILTER  
IN  
2.7 TO 5.5V  
+
TRACK  
10µF  
10µF  
10µF  
C
IN  
MGN  
BSEL  
SW  
M1  
M2  
PGOOD  
MODE  
0.22µH  
V
1.5V  
8A  
OUT  
V
OUT  
POWER  
CONTROL  
RUN  
CLKIN  
CLKOUT  
PHMODE  
22µF  
22pF  
C
OUT  
GND  
FB  
I
TH  
10k  
INTERNAL  
COMP  
PLLLPF  
R
FB  
INTERNAL  
FILTER  
6.65k  
I
THM  
SGND  
4608 BD  
Figure 1. Simplified LTM4608 Block Diagram  
Table 1. Decoupling Requirements. TA = 25°C, Block Diagram Configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
10  
TYP  
MAX  
UNITS  
C
IN  
External Input Capacitor Requirement  
I
= 8A  
µF  
OUT  
(V = 2.7V to 5.5V, V  
= 1.5V)  
OUT  
IN  
C
OUT  
External Output Capacitor Requirement  
(V = 2.7V to 5.5V, V = 1.5V)  
I
= 8A  
100  
µF  
OUT  
IN  
OUT  
operaTion  
1.5MHz. For switching noise sensitive applications, it can  
be externally synchronized from 0.75MHz to 2.25MHz.  
Even spread spectrum switching can be implemented in  
the design to reduce noise.  
The LTM4608 is a standalone nonisolated switch mode  
DC/DC power supply. It can deliver up to 8A of DC output  
current with few external input and output capacitors.  
This module provides precisely regulated output voltage  
programmable via one external resistor from 0.6V DC to  
5.0V DC over a 2.7V to 5.5V input voltage. The typical  
application schematic is shown in Figure 18.  
With current mode control and internal feedback loop  
compensation, the LTM4608 module has sufficient stabil-  
ity margins and good transient performance with a wide  
range of output capacitors, even with all ceramic output  
capacitors.  
TheLTM4608hasanintegratedconstantfrequencycurrent  
mode regulator and built-in power MOSFET devices with  
fast switching speed. The typical switching frequency is  
4608fd  
9
LTM4608  
operaTion  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limit and thermal shutdown in an overcurrent condition.  
Internal overvoltage and undervoltage comparators pull  
the open-drain PGOOD output low if the output feedback  
voltage exits a 10% window around the regulation point.  
The FB pin is used to program the output voltage with a  
single external resistor to ground.  
Multiphase operation can be easily employed with the  
synchronizationandphasemodecontrols.Upto12phases  
can be cascaded to run simultaneously with respect to  
each other by programming the PHMODE pin to different  
levels. The LTM4608 has clock in and clock out for poly  
phasing multiple devices or frequency synchronization.  
Pulling the RUN pin below 1.3V forces the controller into  
its shutdown state, by turning off both M1 and M2 at low  
load current. The TRACK pin is used for programming the  
output voltage ramp and voltage tracking during start-up.  
See Applications Information.  
High efficiency at light loads can be accomplished with  
selectableBurstModeoperationusingtheMODEpin.These  
light load features will accommodate battery operation.  
Efficiency graphs are provided for light load operation in  
the Typial Performance Characteristics.  
The LTM4608 is internally compensated to be stable over  
all operating conditions. Table 3 provides a guideline  
for input and output capacitances for several operating  
conditions. The Linear Technology µModule Power De-  
sign Tool is provided for transient and stability analysis.  
Output voltage margining is supported, and can be pro-  
gramedfrom 5%to 15%usingtheMGNandBSELpins.  
The PGOOD pin is disabled during margining.  
applicaTions inForMaTion  
Table 2. RFB Resistor vs Output Voltage  
The typical LTM4608 application circuit is shown in Fig-  
ure 18. External component selection is primarily deter-  
mined by the maximum load current and output voltage.  
RefertoTable3forspecificexternalcapacitorrequirements  
for a particular application.  
V
0.596V  
Open  
1.2V  
10k  
1.5V  
1.8V  
2.5V  
3.3V  
OUT  
R
6.65k  
4.87k  
3.09k  
2.21k  
FB  
Input Capacitors  
The LTM4608 module should be connected to a low AC  
impedance DC source. Three 10µF ceramic capacitors  
are included inside the module. Additional input capaci-  
tors are only needed if a large load step is required up to  
the 4A level. A 47µF to 100µF surface mount aluminum  
electrolytic bulk capacitor can be used for more input bulk  
capacitance. This bulk input capacitor is only needed if  
the input source impedance is compromised by long in-  
ductive leads, traces or not enough source capacitance.  
If low impedance power planes are used, then this 47µF  
capacitor is not needed.  
V to V  
Step-Down Ratios  
IN  
OUT  
There are restrictions in the maximum V to V  
down ratio that can be achieved for a given input voltage.  
The LTM4608 is 100% duty cycle, but the V to V  
minimum dropout is a function of its load current. Please  
refer to the curves in the Typical Performance Charac-  
teristics section of this data sheet for more information.  
step-  
IN  
OUT  
IN  
OUT  
Output Voltage Programming  
The PWM controller has an internal 0.596V reference  
voltage. As shown in the Block Diagram, a 10k/0.5%  
For a buck converter, the switching duty-cycle can be  
estimated as:  
internal feedback resistor connects V  
and FB pins  
OUT  
together. The output voltage will default to 0.596V with  
VOUT  
no feedback resistor. Adding a resistor R from FB pin  
FB  
D=  
V
to GND programs the output voltage:  
IN  
10k + RFB  
VOUT = 0.596V •  
RFB  
4608fd  
10  
LTM4608  
applicaTions inForMaTion  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
Burst Mode Operation  
The LTM4608 is capable of Burst Mode operation in which  
the power MOSFETs operate intermittently based on load  
demand, thus saving quiescent current. For applications  
where maximizing the efficiency at very light loads is a  
high priority, Burst Mode operation should be applied. To  
enable Burst Mode operation, simply tie the MODE pin to  
IOUT(MAX)  
ICIN(RMS)  
=
D1D  
(
)
η%  
In the above equation, η% is the estimated efficiency of  
the power module. The bulk capacitor can be a switcher-  
rated electrolytic aluminum capacitor, polymer capacitor  
for bulk input capacitance due to high inductance traces  
or leads. If a low inductance plane is used to power the  
device, then only one 10µF ceramic is required. The three  
internal 10µF ceramics are typically rated for 2A of RMS  
ripple current, so the ripple current at the worse case for  
8A maximum current is 4A or less.  
V . Duringthisoperation, thepeakcurrentoftheinductor  
IN  
is set to approximately 20% of the maximum peak current  
value in normal operation even though the voltage at the  
I
pin indicates a lower value. The voltage at the I pin  
TH  
TH  
drops when the inductor’s average current is greater than  
the load requirement. As the I voltage drops below 0.2V,  
TH  
the BURST comparator trips, causing the internal sleep  
line to go high and turn off both power MOSFETs.  
Output Capacitors  
In sleep mode, the internal circuitry is partially turned off,  
reducingthequiescentcurrenttoabout450µA.Theloadcur-  
rentisnowbeingsuppliedfromtheoutputcapacitor.When  
The LTM4608 is designed for low output voltage ripple  
noise. The bulk output capacitors defined as C  
are  
OUT  
chosen with low enough effective series resistance (ESR)  
to meet the output voltage ripple and transient require-  
the output voltage drops, causing I to rise above 0.25V,  
TH  
the internal sleep line goes low, and the LTM4608 resumes  
normal operation. The next oscillator cycle will turn on the  
toppowerMOSFETandtheswitchingcyclerepeats.  
ments. C  
can be a low ESR tantalum capacitor, a low  
OUT  
ESR polymer capacitor or ceramic capacitor. The typical  
outputcapacitancerangeisfrom4Fto220µF.Additional  
output filtering may be required by the system designer,  
if further reduction of output ripple or dynamic transient  
spikesisdesired.Table3showsamatrixofdifferentoutput  
voltages and output capacitors to minimize the voltage  
droop and overshoot during a 3A/µs transient. The table  
optimizes total equivalent ESR and total bulk capacitance  
tooptimizethetransientperformance.Stabilitycriteriaare  
consideredintheTable3matrix,andtheLinearTechnology  
LTpowerCADDesignToolisavailableforstabilityanalysis.  
Multiphase operation will reduce effective output ripple as  
a function of the number of phases. Application Note 77  
discusses this noise reduction versus output ripple cur-  
rent cancellation, but the output capacitance will be more  
a function of stability and transient response. The Linear  
Technology LTpowerCAD Design Tool will calculate the  
outputripplereductionasthenumberphasesimplemented  
increases by N times.  
Pulse-Skipping Mode Operation  
Inapplicationswherelowoutputrippleandhighefficiency  
atintermediatecurrentsaredesired, pulse-skippingmode  
should be used. Pulse-skipping operation allows the  
LTM4608toskipcyclesatlowoutputloads,thusincreasing  
efficiency by reducing switching loss. Floating the MODE  
pin or tying it to V /2 enables pulse-skipping operation.  
IN  
Thisallowsdiscontinuousconductionmode(DCM)opera-  
tion down to near the limit defined by the chip’s minimum  
on-time (about 100ns). Below this output current level,  
the converter will begin to skip cycles in order to main-  
tain output regulation. Increasing the output load current  
slightly, above the minimum required for discontinuous  
conduction mode, allows constant frequency PWM.  
4608fd  
11  
LTM4608  
applicaTions inForMaTion  
Table 3. Output Voltage Response Versus Component Matrix (Refer to Figure 18) 0A to 3A Load Step  
TYPICAL MEASURED VALUES  
C
VENDORS  
VALUE  
PART NUMBER  
C
VENDORS  
OUT2  
VALUE  
PART NUMBER  
10TPD150M  
PART NUMBER  
10CE100FH  
OUT1  
TDK  
22µF, 6.3V  
22µF, 16V  
100µF, 6.3V  
100µF, 6.3V  
C3216X7S0J226M  
GRM31CR61C226KE15L  
C4532X5R0J107MZ  
GRM32ER60J107M  
Sanyo POSCAP  
150µF, 10V  
Murata  
TDK  
C (BULK) VENDORS VALUE  
IN  
Sanyo  
100µF, 10V  
Murata  
V
C
C
C
C
V
(V)  
DROOP PEAK-TO- PEAK  
RECOVERY  
TIME (µs)  
LOAD STEP  
(A/µs)  
R
FB  
OUT  
IN  
IN  
OUT1  
OUT2  
IN  
(V)  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
2.5  
3.3  
3.3  
(CERAMIC) (BULK)* (CERAMIC)  
(BULK)  
I
C1  
C3  
(mV)  
13  
17  
13  
17  
13  
17  
16  
20  
16  
20  
16  
16  
18  
20  
16  
20  
18  
20  
22  
21  
21  
21  
22  
21  
28  
33  
30  
21  
38  
39  
DEVIATION (mV)  
(kΩ)  
14.7  
14.7  
14.7  
14.7  
14.7  
14.7  
10  
TH  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF × 2  
22µF × 1  
100µF × 2  
22µF × 1  
100µF × 2  
22µF × 1  
100µF × 2  
22µF × 1  
100µF × 2  
22µF × 1  
100µF × 2  
22µF × 1  
100µF × 2  
22µF × 1  
100µF × 2  
22µF × 1  
100µF × 2  
22µF × 1  
100µF × 1  
22µF × 1  
100µF × 2  
22µF × 1  
100µF × 2  
22µF × 1  
100µF × 1  
22µF × 1  
100µF × 1  
22µF × 1  
100µF × 1  
22µF × 1  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
100pF  
None  
68pF  
None  
100pF  
None  
100pF  
None  
100pF  
None  
100pF  
None  
100pF  
None  
None  
None  
47pF  
None  
47pF  
None  
None  
None  
47pF  
None  
47pF  
None  
None  
None  
None  
None  
None  
None  
None  
5
26  
34  
26  
34  
26  
34  
32  
41  
32  
41  
32  
32  
36  
41  
32  
41  
36  
41  
42  
42  
43  
41  
44  
42  
42  
60  
60  
41  
74  
75  
7
3
150µF × 2  
150µF × 2  
150µF × 2  
150µF × 2  
150µF × 2  
150µF × 2  
150µF × 2  
150µF × 2  
150µF × 2  
150µF × 2  
150µF × 2  
150µF × 2  
150µF × 1  
150µF × 1  
150µF × 1  
None  
68pF  
5
8
3
3.3  
3.3  
2.7  
2.7  
5
7
3
None  
68pF  
10  
7
3
3
None  
100pF  
None  
100pF  
None  
100pF  
47pF  
8
3
8
3
5
10  
8
3
10  
3.3  
3.3  
2.7  
2.7  
5
3
10  
10  
10  
8
3
10  
3
10  
3
10  
100pF  
None  
100pF  
None  
100pF  
None  
47pF  
8
3
6.65  
6.65  
6.65  
6.65  
6.65  
6.65  
4.87  
4.87  
4.87  
4.87  
4.87  
4.87  
3.09  
3.09  
3.09  
3.09  
2.21  
2.21  
5
12  
10  
12  
10  
12  
8
3
3.3  
3.3  
2.7  
2.7  
5
3
3
3
3
3
None  
120pF  
None  
120pF  
None  
100pF  
22pF  
5
12  
12  
12  
12  
14  
10  
10  
10  
10  
10  
12  
3
3.3  
3.3  
2.7  
2.7  
5
3
3
3
3
3
5
3
100pF  
22pF  
3.3  
3.3  
5
3
3
22pF  
3
None  
5
3
*Bulk capacitance is optional if V has very low input impedance.  
IN  
Forced Continuous Operation  
throughout,andthetopMOSFETalwaysturnsonwitheach  
oscillator pulse. During start-up, forced continuous mode  
is disabled and inductor current is prevented from revers-  
ing until the LTM4608’s output voltage is in regulation.  
In applications where fixed frequency operation is more  
critical than low current efficiency, and where the lowest  
outputrippleisdesired,forcedcontinuousoperationshould  
be used. Forced continuous operation can be enabled by  
tying the MODE pin to GND. In this mode, inductor cur-  
rent is allowed to reverse during low output loads, the I  
voltage is in control of the current comparator threshold  
Multiphase Operation  
For output loads that demand more than 8A of current,  
multiple LTM4608s can be cascaded to run out of phase to  
TH  
4608fd  
12  
LTM4608  
applicaTions inForMaTion  
provide more output current without increasing input and  
output voltage ripple. The CLKIN pin allows the LTC4608  
to synchronize to an external clock (between 0.75MHz  
and 2.25MHz) and the internal phase-locked loop allows  
the LTM4608 to lock onto CLKIN’s phase as well. The  
CLKOUT signal can be connected to the CLKIN pin of the  
following LTM4608 stage to line up both the frequency  
and the phase of the entire system. Tying the PHMODE  
which then can generate a CLKOUT signal that’s 420°,  
or 60° (PHMODE = SV ) for the 4th stage. With the 60°  
IN  
CLKIN input, the next two stages can shift 120° (PHMODE  
= 0) for each to generate a 300° signal for the 6th stage.  
Finally, the signal with a 60° phase shift on the 6th stage  
(PHMODE is floating) goes back to the 1st stage. Figure 3  
shows the configuration for a 12 phase configuration  
A multiphase power supply significantly reduces the  
amount of ripple current in both the input and output  
capacitors. The RMS input ripple current is reduced by,  
and the effective ripple frequency is multiplied by, the  
number of phases used (assuming that the input voltage  
isgreaterthanthenumberofphasesusedtimestheoutput  
voltage). The output ripple amplitude is also reduced by  
the number of phases used.  
pin to SV , SGND or SV /2 (floating) generates a phase  
IN  
IN  
difference (between CLKIN and CLKOUT) of 180°, 120° or  
90°respectively,whichcorrespondstoa2-phase,3-phase  
or 4-phase operation. A total of 6 phases can be cascaded  
to run simultaneously with respect to each other by pro-  
gramming the PHMODE pin of each LTM4608 to different  
levels. For a 6-phase example in Figure 2, the 2nd stage  
that is 120° out of phase from the 1st stage can generate  
a 240° (PHMODE = 0) CLKOUT signal for the 3rd stage,  
(420)  
60  
0
120  
240  
180  
300  
+120  
+120  
+180  
+120  
+120  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
PHMODE  
PHASE 1  
PHMODE  
PHASE 3  
S
VIN  
PHMODE  
PHASE 5  
PHMODE  
PHASE 2  
PHMODE  
PHASE 4  
PHMODE  
PHASE 6  
4608 F02  
Figure 2. 6-Phase Operation  
(420)  
60  
0
120  
240  
180  
300  
+120  
+120  
+180  
+120  
+120  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
PHMODE  
PHASE 1  
PHMODE  
PHASE 5  
S
VIN  
PHMODE  
PHASE 9  
PHMODE  
PHASE 3  
PHMODE  
PHASE 7  
PHMODE  
PHASE 11  
4608 F02  
+
V
OUT1  
LTC6908-2  
OUT2  
(510)  
150  
(390)  
30  
90  
210  
330  
270  
+120  
+120  
+180  
+120  
+120  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
PHMODE  
PHASE 4  
PHMODE  
PHASE 8  
S
VIN  
PHMODE  
PHASE 12  
PHMODE  
PHASE 6  
PHMODE  
PHASE 10  
PHMODE  
PHASE 2  
4608 F03  
Figure 3. 12-Phase Operation  
4608fd  
13  
LTM4608  
applicaTions inForMaTion  
The LTM4608 device is an inherently current mode con-  
trolleddevice.Parallelmoduleswillhaveverygoodcurrent  
sharing. This will balance the thermals on the design. Tie  
Spread Spectrum Operation  
Switching regulators can be particularly troublesome  
where electromagnetic interference (EMI) is concerned.  
the I pins of each LTM4608 together to share the current  
TH  
Switching regulators operate on a cycle-by-cycle basis to  
transfer power to an output. In most cases, the frequency  
ofoperationisfixedbasedontheoutputload.Thismethod  
of conversion creates large components of noise at the  
frequency of operation (fundamental) and multiples of the  
operating frequency (harmonics).  
evenly. To reduce ground potential noise, tie the I  
pins  
THM  
of all LTM4608s together and then connect to the SGND at  
onlyonepoint. Figure19showsaschematicoftheparallel  
design.TheFBpinsoftheparallelmodulearetiedtogether.  
With parallel operation, input and output capacitors may  
be reduced in part according to the operating duty cycle.  
To reduce this noise, the LTM4608 can run in spread  
Input RMS Ripple Current Cancellation  
spectrum operation by tying the CLKIN pin to SV .  
IN  
In spread spectrum operation, the LTM4608’s internal  
oscillator is designed to produce a clock pulse whose  
period is random on a cycle-by-cycle basis but fixed  
between 70% and 130% of the nominal frequency. This  
has the benefit of spreading the switching noise over  
a range of frequencies, thus significantly reducing the  
Application Note 77 provides a detailed explanation of  
multiphase operation. The input RMS ripple current can-  
cellation mathematical derivations are presented, and a  
graph is displayed representing the RMS ripple current  
reductionasafunctionofthenumberofinterleavedphases.  
Figure 4 shows this graph.  
0.60  
1-PHASE  
2-PHASE  
3-PHASE  
4-PHASE  
6-PHASE  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY FACTOR (V /V  
)
IN  
O
4608 F04  
Figure 4. Normalized Input RMS Ripple Current vs Duty Factor for One to Six Modules (Phases)  
4608fd  
14  
LTM4608  
applicaTions inForMaTion  
peak noise. Spread spectrum operation is disabled if  
CLKIN is tied to ground or if it’s driven by an external  
frequency synchronization signal. A capacitor value of  
0.01µF must be placed from the PLLLPF pin to ground to  
control the slew rate of the spread spectrum frequency  
sameastheslaveregulator’sfeedbackdividertoimplement  
coincident tracking. The LTM4608 uses an accurate 10k  
resistor internally for the top feedback resistor. Figure 5  
shows an example of coincident tracking:  
10k  
change. Add a control ramp on the TRACK pin with R  
SR  
Slave = 1+  
V  
TRACK  
and C referenced to V . Figure 21 shows an example  
R
FB4   
SR  
IN  
for spread spectrum operation.  
V
V
is the track ramp applied to the slave’s track pin.  
has a control range of 0V to 0.596V, or the internal  
TRACK  
TRACK  
1
RSR  
SR  
0.592  
referencevoltage.Whenthemaster’soutputisdivideddown  
withthesameresistorvaluesusedtosettheslave’soutput,  
this resistor divider is connected to the slave’s track pin.  
The slave will then coincident track with the master until it  
reaches its final value. The master will continue to its final  
value from the slave’s regulation point. Voltage tracking  
ln 1−  
500 C  
V
IN  
Output Voltage Tracking  
Output voltage tracking can be programmed externally  
using the TRACK pin. The output can be tracked up and  
downwithanotherregulator.Themasterregulator’soutput  
is divided down with an external resistor divider that is the  
is disabled when V  
Figure 5 will be equal to R for coincident tracking.  
is more than 0.596V. R  
in  
TRACK  
FB4  
FB2  
MASTER  
3.3V  
7A  
CLKIN  
V
IN  
V
V
IN  
OUT  
FB  
5V  
C2  
100µF  
SV  
IN  
100pF  
SW  
TIE TO V  
IN  
LTM4608  
C3  
R
FB1  
2.21k  
FOR DISABLE  
AND DEFAULT  
RUN  
RUN  
I
TH  
22pF  
PLLLPF  
TRACK  
MODE  
I
100µs SOFT-START  
THM  
TRACK  
V
IN  
PGOOD  
R
C
SR  
SR  
50k  
BSEL  
MGN  
PHMODE  
APPLY A CONTROL  
RAMP WITH R AND  
CLKOUT GND SGND  
SR  
50k  
C
TIED TO V WHERE  
SR  
IN  
t = –(ln (1 – 0.596/V ) • R • C )  
SR  
IN  
SR  
OR APPLY AN EXTERNAL TRACKING RAMP  
SLAVE  
1.5V  
8A  
CLKIN  
V
V
IN  
OUT  
+
C4  
100µF  
POSCAP  
C1  
100µF  
SV  
IN  
SW  
FB  
MASTER  
LTM4608  
3.3V  
R
FB2  
6.65k  
RUN  
RUN  
I
TH  
R
FB3  
PLLLPF  
TRACK  
MODE  
I
THM  
10k  
V
TRACK  
IN  
PGOOD  
BSEL  
R
FB4  
50k  
6.65k  
PHMODE  
MGN  
CLKOUT GND SGND  
50k  
4608 F05  
Figure 5. Dual Outputs (3.3V and 1.5V) with Tracking  
4608fd  
15  
LTM4608  
applicaTions inForMaTion  
Thetrackpinofthemastercanbecontrolledbyanexternal  
ramp or by R and C in Figure 5 referenced to V . The  
SR  
SR  
IN  
RC ramp time can be programmed using equation:  
MASTER OUTPUT  
SLAVE OUTPUT  
0.596V  
t = ln 1–  
R CSR   
SR  
V
IN  
Ratiometric tracking can be achieved by a few simple  
calculations and the slew rate value applied to the mas-  
ter’s track pin. As mentioned above, the TRACK pin has  
a control range from 0V to 0.596V. The master’s TRACK  
pin slew rate is directly equal to the master’s output slew  
rate in Volts/Time:  
TIME  
4608 F06  
Figure 6. Output Voltage Coincident Tracking  
MR  
SR  
10k = RFB3  
For example: MR = 3.3V/ms and SR = 1.5V/ms. Then  
where MR is the master’s output slew rate and SR is the  
slave’s output slew rate in Volts/Time. When coincident  
R
= 22.1k. Solve for R to equal to 4.87k.  
FB3  
FB4  
Forapplicationsthatdonotrequiretrackingorsequencing,  
tracking is desired, then MR and SR are equal, thus R  
FB3  
simply tie the TRACK pin to SV to let RUN control the  
IN  
is equal the 10k. R is derived from equation:  
FB4  
turn on/off. Connecting TRACK to SV also enables the  
IN  
0.596V  
~100µs of internal soft-start during start-up. Load current  
RFB4  
=
VTRACK  
V
V
FB  
FB  
needs to be present during track down.  
+
10k RFB2  
RFB3  
Power Good  
where V is the feedback voltage reference of the regula-  
FB  
The PGOOD pin is an open-drain pin that can be used to  
monitor valid output voltage regulation. This pin monitors  
a 10% window around the regulation point. As shown  
in Figure 20, the sequencing function can be realized in a  
dualoutputapplicationbycontrollingtheRUNpinsandthe  
PGOOD signals from each other. The 1.5V output begins  
its soft starting after the PGOOD signal of 3.3V output  
becomes high, and 3.3V output starts its shutdown after  
the PGOOD signal of 1.5V output becomes low. This can  
be applied to systems that require voltage sequencing  
between the core and sub-power supplies.  
tor and V  
is 0.596V. Since R is equal to the 10k  
TRACK  
FB3  
top feedback resistor of the slave regulator in equal slew  
rate or coincident tracking, then R is equal to R with  
FB4  
FB2  
V
= V  
. Therefore R = 10k and R = 6.65k in  
TRACK FB3 FB4  
FB  
Figure 5.  
Inratiometrictracking, adifferentslewratemaybedesired  
for the slave regulator. R can be solved for when SR  
FB3  
is slower than MR. Make sure that the slave supply slew  
rate is chosen to be fast enough so that the slave output  
voltage will reach it final value before the master output.  
4608fd  
16  
LTM4608  
applicaTions inForMaTion  
Slope Compensation  
determined by the BSEL pin. When BSEL is low, it is 5%.  
When BSEL is high, it is 10%. When BSEL is floating,  
it is 15%. When margining is active, the internal output  
overvoltage and undervoltage comparators are disabled  
and PGOOD remains high. Margining is disabled by tying  
the MGN pin to a voltage divider as shown in Figure 20.  
The module has already been internally compensated for  
alloutputvoltages.Table3isprovidedformostapplication  
requirements. A spice model will be provided for other  
control loop optimization. For single module operation,  
connect I  
pin to SGND. For parallel operation, tie I  
THM  
THM  
pins together and then connect to SGND at one point. Tie  
Thermal Considerations and Output Current Derating  
I
TH  
pins together to share currents evenly for all phases.  
The power loss curves in Figures 7 and 8 can be used  
in coordination with the load current derating curves in  
Output Margining  
Figures 9 to 16 for calculating an approximate θ for the  
JA  
For a convenient system stress test on the LTM4608’s  
output, the user can program the LTM4608’s output to  
5%, 10% or 15% of its normal operational voltage.  
The margin pin with a voltage divider is driven with a  
small three-state gate as shown in Figure 18, for the three  
margin states (high, low, no margin). When the MGN  
pin is <0.3V, it forces negative margining in which the  
output voltage is below the regulation point. When MGN is  
modulewithvariousheatsinkingmethods.Thermalmodels  
are derived from several temperature measurements at  
the bench, and thermal modeling analysis. Thermal Ap-  
plication Note 103 provides a detailed explanation of the  
analysis for the thermal models and the derating curves.  
Tables 4 and 5 provide a summary of the equivalent θ  
JA  
for the noted conditions. These equivalent θ parameters  
JA  
are correlated to the measured values and improve with  
air flow. The junction temperature is maintained at 125°C  
or below for the derating curves.  
>V – 0.3V, the output voltage is forced above the regu-  
IN  
lation point. The amount of output voltage margining is  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.5  
5V 1.5V  
3.3V 1.5V  
IN  
OUT  
OUT  
IN  
OUT  
OUT  
5V 3.3V  
IN  
3.3V 2.5V  
IN  
0
0
4
0
2
6
8
4
0
2
6
8
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4608 F08  
4608 F07  
Figure 7. 3.3VIN, 2.5V and 1.5VOUT Power Loss  
Figure 8. 5VIN, 3.3V and 1.5VOUT Power Loss  
4608fd  
17  
LTM4608  
applicaTions inForMaTion  
9
8
7
6
5
4
3
9
8
7
6
5
4
3
2
1
0
2
400LFM  
200LFM  
0LFM  
400LFM  
200LFM  
0LFM  
1
0
80 90  
80 90  
40 50 60 70  
100 110 120  
40 50 60 70  
100 110 120  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4608 F09  
4608 F10  
Figure 9. No Heat Sink with 3.3VIN to 1.5VOUT  
Figure 10. BGA Heat Sink with 3.3VIN to 1.5VOUT  
9
8
7
6
5
4
3
9
8
7
6
5
4
3
2
2
400LFM  
200LFM  
0LFM  
400LFM  
200LFM  
0LFM  
1
0
1
0
80 90  
80 90  
40 50 60 70  
100 110 120  
40 50 60 70  
100 110 120  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4608 F11  
4608 F12  
Figure 11. No Heat Sink with 5VIN to 1.5VOUT  
Figure 12. BGA Heat Sink with 5VIN to 1.5VOUT  
9
8
7
6
5
4
3
9
8
7
6
5
4
3
2
2
400LFM  
200LFM  
0LFM  
400LFM  
200LFM  
0LFM  
1
0
1
0
80 90  
40 50 60 70 80 90 100 110 120  
AMBIENT TEMPERATURE (°C)  
4608 F14  
40 50 60 70  
100 110 120  
AMBIENT TEMPERATURE (°C)  
4608 F13  
Figure 13. No Heat Sink with 3.3VIN to 2.5VOUT  
Figure 14. BGA Heat Sink with 3.3VIN to 2.5VOUT  
4608fd  
18  
LTM4608  
applicaTions inForMaTion  
9
8
7
6
5
4
3
9
8
7
6
5
4
3
2
1
0
2
400LFM  
400LFM  
200LFM  
0LFM  
1
200LFM  
0LFM  
0
80 90  
40 50 60 70  
AMBIENT TEMPERATURE (°C)  
100 110 120  
80 90  
40 50 60 70  
100 110 120  
AMBIENT TEMPERATURE (°C)  
4608 F15  
4608 F16  
Figure 16. BGA Heat Sink with 5VIN to 3.3VOUT  
Figure 15. No Heat Sink with 5VIN to 3.3VOUT  
Table 4. 1.5V Output  
DERATING CURVE  
Figures 9, 11  
Figures 9, 11  
Figures 9, 11  
Figures 10, 12  
Figures 10, 12  
Figures 10, 12  
V
(V)  
POWER LOSS CURVE  
Figures 7, 8  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
25  
IN  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
0
Figures 7, 8  
200  
400  
0
None  
21  
Figures 7, 8  
None  
20  
Figures 7, 8  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
23.5  
22  
Figures 7, 8  
200  
400  
Figures 7, 8  
22  
Table 5. 3.3V Output  
DERATING CURVE  
Figure 15  
V
(V)  
POWER LOSS CURVE  
Figure 8  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
(°C/W)  
IN  
JA  
5
0
25  
21  
Figure 15  
5
5
5
5
5
Figure 8  
200  
400  
0
None  
Figure 15  
Figure 8  
None  
20  
Figure 16  
Figure 8  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
23.5  
22  
Figure 16  
Figure 8  
200  
400  
Figure 16  
Figure 8  
22  
4608fd  
19  
LTM4608  
applicaTions inForMaTion  
Safety Considerations  
•ꢀ Placeꢀhighꢀfrequencyꢀceramicꢀinputꢀandꢀoutputꢀcapaci-  
tors next to the V , GND and V  
pins to minimize  
IN  
OUT  
The LTM4608 modules do not provide isolation from V  
IN  
high frequency noise.  
to V . There is no internal fuse. If required, a slow blow  
OUT  
fuse with a rating twice the maximum input current needs  
tobeprovidedtoprotecteachunitfromcatastrophicfailure.  
•ꢀ Placeꢀaꢀdedicatedꢀpowerꢀgroundꢀlayerꢀunderneathꢀtheꢀ  
unit.  
•ꢀ Toꢀminimizeꢀtheꢀviaꢀconductionꢀlossꢀandꢀreduceꢀmoduleꢀ  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
Layout Checklist/Example  
The high integration of LTM4608 makes the PCB board  
layout very simple and easy. However, to optimize its  
electrical and thermal performance, some layout consid-  
erations are still necessary.  
•ꢀ Doꢀnotꢀputꢀviasꢀdirectlyꢀonꢀtheꢀpads,ꢀunlessꢀtheyꢀareꢀ  
capped.  
•ꢀ UseꢀaꢀseparatedꢀSGNDꢀgroundꢀcopperꢀareaꢀforꢀcom-  
ponents connected to signal pins. Connect the SGND  
to GND underneath the unit.  
•ꢀ Useꢀ largeꢀ PCBꢀ copperꢀ areasꢀ forꢀ highꢀ currentꢀ path,ꢀ  
including V , GND and V . It helps to minimize the  
IN  
OUT  
PCB conduction loss and thermal stress.  
Figure17givesagoodexampleoftherecommendedlayout.  
GND  
V
OUT  
C
OUT  
OUT  
OUT  
C
GND  
C
C
IN  
V
IN  
C
IN  
GND  
4608 F17  
Figure 17. Recommended PCB Layout  
For easier board layout and PCB assembly due to increased  
spacing between land grid pads, please refer to the LTM4608A.  
4608fd  
20  
LTM4608  
Typical applicaTions  
CLKIN  
CLKIN  
V
2.5V  
8A  
8A AT 5V INPUT  
6A AT 3.3V INPUT  
OUT  
V
IN  
V
V
I
IN  
OUT  
3V TO 5.5V  
C
C1  
C
OUT  
IN  
SV  
IN  
10µF  
220pF  
100µF  
SW  
FB  
LTM4608  
C3  
47pF  
R
V
IN  
FB  
3.09k  
RUN  
I
TH  
PLLLPF  
TRACK  
MODE  
100k  
THM  
PGOOD  
PGOOD  
V
(HIGH = 10%)  
(FLOAT = 15%)  
(LOW = 5%)  
BSEL  
50k  
IN  
BSEL  
MGN  
MODE  
PHMODE  
OE  
PHMODE  
1
50k  
5
Y
OUT  
2
4
CLKOUT GND SGND  
U1  
A
IN  
U1: PERICOM PI74ST1G126CEX  
OR TOSHIBA TC7SZ126AFE  
3
4608 F18  
OE  
A
Y
MGN  
MARGIN VALUE  
IN OUT  
H
H
L
H
H
L
Z
H
L
IN  
+ OF BSEL SELECTION  
– OF BSEL SELECTION  
NO MARGIN  
L
X
V
/2  
Figure 18. Typical 3V to 5.5VIN, 2.5V at 8A Design  
V
1.5V  
16A  
OUT  
CLKIN  
V
IN  
V
V
IN  
OUT  
3V TO 5.5V  
C4  
100pF  
100µF  
6.3V  
X5R  
10µF  
SV  
IN  
SW  
FB  
LTM4608  
3.32k  
RUN  
RUN  
I
TH  
PLLLPF  
TRACK  
MODE  
I
THM  
TRACK  
PGOOD  
BSEL  
C3  
V
IN  
PHMODE  
MGN  
100µF  
6.3V  
X5R  
CLKOUT GND SGND  
50k  
50k  
CLKIN  
V
IN  
V
OUT  
C2  
10µF  
C1  
SV  
IN  
100µF  
6.3V  
X5R  
SW  
FB  
LTM4608  
RUN  
I
TH  
PLLLPF  
TRACK  
MODE  
I
THM  
PGOOD  
BSEL  
PHMODE  
MGN  
CLKOUT GND SGND  
4608 F19  
Figure 19. Two LTM4608s in Parallel, 1.5V at 16A Design.  
See Also Dual 8A per Channel LTM4616  
4608fd  
21  
LTM4608  
Typical applicaTions  
CLKIN  
CLKIN  
V
3.3V  
7A  
OUT2  
V
IN  
V
V
IN  
OUT  
5V  
100µF  
6.3V  
X5R  
C2  
SV  
IN  
100pF  
D1  
MMSD4148  
SW  
FB  
LTM4608  
R
C3  
22pF  
FB1  
2.21k  
SHDN  
RUN  
I
TH  
PLLLPF  
TRACK  
MODE  
I
THM  
100k  
PGOOD  
BSEL  
V
IN  
SHDN  
3.3V  
50k  
50k  
PHMODE  
MGN  
CLKOUT GND SGND  
R1  
100k  
R2  
100k  
1.5V  
V
1.5V  
8A  
OUT1  
CLKIN  
V
V
IN  
OUT  
C1  
C4  
+
SV  
FB  
IN  
100µF  
6.3V  
X5R  
100µF  
SANYO  
POSCAP  
10mΩ  
D2  
R
FB2  
MMSD4148  
SW  
I
TH  
6.65k  
LTM4608  
SHDN  
RUN  
I
THM  
PLLLPF  
TRACK  
MODE  
100k  
PGOOD  
BSEL  
PHMODE  
MGN  
CLKOUT GND SGND  
4608 F20  
Figure 20. Dual LTM4608 Output Sequencing Application  
See Also Dual 8A per Channel LTM4616  
SV  
IN  
V
OUT  
CLKIN  
V
1.2V/8A  
5A AT  
IN  
V
V
IN  
OUT  
2.7V TO 5.5V  
C2  
C1  
10µF  
100pF  
2.7V INPUT  
SV  
IN  
100µF  
6.3V  
X5R  
100µF  
6.3V  
X5R  
R
SR  
SW  
FB  
LTM4608  
180k  
10k  
RUN  
I
TH  
PLLLPF  
TRACK  
MODE  
I
THM  
V
IN  
PGOOD  
BSEL  
PGOOD  
BSEL  
0.01µF  
C
SR  
MODE  
PHMODE  
50k  
0.22µF  
PHMODE  
MGN  
CLKOUT GND SGND  
50k  
4608 F21  
Figure 21. 2.7V to 5.5VIN, 1.2VOUT Design in Spread Spectrum Operation  
4608fd  
22  
LTM4608  
Typical applicaTions  
4608fd  
23  
LTM4608  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
Z
b b b  
Z
6 . 3 5 0  
5 . 0 8 0  
3 . 8 1 0  
2 . 5 4 0  
1 . 2 7 0  
0 . 3 8 1  
0 . 0 0 0  
0 . 3 8 1  
1 . 2 7 0  
2 . 5 4 0  
3 . 8 1 0  
5 . 0 8 0  
6 . 3 5 0  
a a a  
Z
4608fd  
24  
LTM4608  
revision hisTory (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
12/10 Voltage changed in the Typical Application drawing.  
Note added to the Absolute Maximum Ratings section.  
Note 2 added to the Electrical Characteristics section.  
Replaced graphs G05 and G06 in the Typical Performance Characteristics section.  
Updated MGN (B8) in the Pin Functions section.  
Changes made to Figure 1.  
1
2
2, 3, 4  
5
7
9
Text changes made to the Applications Information section.  
Changes made to Figure 5.  
11, 14, 19  
15  
Note added to Figure 17.  
20  
Changes made to Figures 18, 21, 22.  
21, 22, 23  
Updated the Related Parts table.  
26  
8
C
D
3/11  
3/12  
Removed Pin Configuration drawing from Pin Functions  
Added value of 0.22µH to Inductor in Figure 1  
Updated Figure 3  
9
13  
1
Revised the Typical Application circuit.  
Changed the format of the Pin Assignment Table.  
26  
4608fd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
25  
LTM4608  
package DescripTion  
Pin Assignment Table  
(Arranged by Pin Number)  
PIN  
PIN  
PIN  
PIN  
PIN  
PIN  
PIN  
PIN  
PIN  
PIN  
PIN  
PIN  
PIN  
PIN  
NAME FUNCTION NAME FUNCTION NAME FUNCTION NAME FUNCTION NAME FUNCTION NAME FUNCTION NAME FUNCTION  
A1  
A2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
B1  
B2  
GND  
C1  
C2  
V
D1  
D2  
V
E1  
E2  
SGND  
F1  
F2  
RUN  
CLKOUT  
GND  
G1  
G2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
IN  
IN  
PLLLPF  
A3  
B3  
CLKIN  
PHMODE  
MODE  
C3  
SW  
SW  
D3  
V
V
V
E3  
F3  
G3  
IN  
IN  
IN  
A4  
B4  
C4  
D4  
E4  
F4  
SV  
G4  
IN  
A5  
B5  
C5  
SW  
D5  
E5  
TRACK  
F5  
I
G5  
THM  
A6  
B6  
C6  
D6  
E6  
F6  
I
G6  
TH  
A7  
B7  
BSEL  
MGN  
GND  
GND  
GND  
C7  
PGOOD  
D7  
V
V
V
E7  
FB  
F7  
GND  
GND  
G7  
IN  
IN  
IN  
A8  
B8  
C8  
V
V
D8  
E8  
V
F8  
G8  
IN  
IN  
IN  
A9  
B9  
C9  
D9  
E9  
V
V
V
F9  
V
V
V
G9  
V
OUT  
V
OUT  
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
A10  
A11  
B10  
B11  
C10  
C11  
V
V
D10  
D11  
V
V
E10  
E11  
F10  
F11  
G10  
G11  
OUT  
OUT  
OUT  
OUT  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
Monitors Four Supplies; Adjustable Reset Timer  
LTC2900  
LTC2923  
Quad Supply Monitor with Adjustable Reset Timer  
Power Supply Tracking Controller  
Tracks Both Up and Down; Power Supply Sequencing  
LT3825/LT3837 Synchronous Isolated Flyback Controllers  
No Optocoupler Required; 3.3V, 12A Output; Simple Design  
LTM4616  
LTM4628  
Low V Dual 8A DC/DC Step-Down µModule Regulator  
2.7V ≤ V ≤ 5.5V, 0.6V ≤ V  
≤ 5V, 15mm × 15mm × 2.82mm LGA Package  
OUT  
IN  
IN  
Dual 8A, 26V, DC/DC Step-Down µModule Regulator  
4.5V ≤ V ≤ 26.5V, 0.6V ≤ V  
≤ 5.5V, Remote Sense Amplifier, Internal  
IN  
OUT  
Temperature Sensing Output, 15mm × 15mm × 4.32mm LGA Package  
LTM4601/  
LTM4601A  
12A DC/DC µModule Regulator with PLL, Output  
Tracking/ Margining and Remote Sensing  
Synchronizable, PolyPhase Operation, LTM4601-1/LTM4601A-1 Version Has  
No Remote Sensing, LGA and BGA Packages  
LTM4602  
LTM4618  
6A DC/DC µModule Regulator  
Pin Compatible with the LTM4600, LGA Package  
Synchronizable, PolyPhase Operation  
6A DC/DC µModule Regulator with PLL and Outpupt  
Tracking/Margining and Remote Sensing  
LTM4604A  
Low V 4A DC/DC µModule Regulator  
2.375V ≤ V ≤ 5.5V, 0.8V ≤ V  
≤ 5V, 9mm × 15mm × 2.32mm LGA Package  
OUT  
IN  
IN  
4608fd  
LT 0312 REV D • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
26  
l
l
LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM4608AMPV-PBF

Low VIN, 8A DC/DC μModule with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608AMPY

LTM4608A - Low VIN, 8A DC/DC &#181;Module (Power Module) with Tracking, Margining, and Frequency Synchronization; Package: BGA; Pins: 68; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM4608AV

Low VIN, 8A DC/DC μModule with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608A_1

Low VIN, 8A DC/DC Module Regulator with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608A_12

Low VIN, 8A DC/DC μModule Regulator
Linear

LTM4608EV#PBF

LTM4608 - 8A, Low VIN DC/DC &#181;Module (Power Module) with Tracking, Margining, Multiphase and Frequency Synchronization; Package: LGA; Pins: 68; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4608EV-PBF

Low VIN, 8A DC/DC μModuleTM with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608IV-PBF

Low VIN, 8A DC/DC μModuleTM with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608V

Low VIN, 8A DC/DC μModuleTM with Tracking, Margining, and Frequency Synchronization
Linear

LTM4608_1

Low VIN, 8A DC/DC Module Regulator with Tracking, Margining, and Frequency Synchronization
Linear

LTM4609

36VIN, 34VOUT High Effi ciency Buck-Boost DC/DC μModule
Linear

LTM4609EV

36VIN, 34VOUT High Effi ciency Buck-Boost DC/DC μModule
Linear