LTM4611 [Linear]

Ultralow VIN, 15A DC/DC μModule Regulator; 超低VIN , 15A DC / DC微型模块稳压器
LTM4611
型号: LTM4611
厂家: Linear    Linear
描述:

Ultralow VIN, 15A DC/DC μModule Regulator
超低VIN , 15A DC / DC微型模块稳压器

稳压器
文件: 总28页 (文件大小:463K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4611  
Ultralow V , 15A DC/DC  
IN  
µModule Regulator  
FeaTures  
DescripTion  
n
Complete Switch Mode Power Supply  
The LTM4611 is a high density 15A output, switch mode  
DC/DC buck converter power supply capable of operating  
fromverylowvoltageinputsupplies. Includedinthepack-  
age are the buck switching controller, power FETs, induc-  
tor and loop-compensation components. The LTM4611  
delivers up to 15A continuous current at high efficiency  
n
Input Voltage Range: 1.5V to 5.5V  
n
15A DC Output  
n
Output Voltage Range: 0.8V to 5V  
n
1.5ꢀ ꢁotal DC Output Error  
n
Differential Remote Sensing for Precision  
Regulation  
from an input voltage of 1.5V up to 5.5V . The output  
IN  
IN  
n
Current Mode Control/ Fast ransient Response  
voltage is set between 0.8V and 5V by a resistor. Only a  
n
Overcurrent Foldback Protection  
few input and output capacitors are needed.  
Parallel Multiple LM®4611s for Current Sharing  
n
Highswitchingfrequencyandacurrentmodearchitecture  
enable a very fast transient response to line and load  
changes without sacrificing stability. The device supports  
frequency synchronization, multiphase/current sharing  
operation, Burst Mode operation and output voltage  
tracking for supply rail sequencing.  
n
Frequency Synchronization  
Selectable Pulse-Skipping or Burst Mode® Operation  
n
n
Soft-Start/Voltage Tracking  
n
Up to 94% Efficiency  
n
Output Overvoltage Protection  
n
Small 15mm × 15mm × 4.32mm LGA Package  
The LTM4611 is available in a thermally enhanced 15mm  
×15mm×4.32mmLGApackage. TheLTM4611isPB-free  
and RoHS compliant.  
L, LT, LTC, LTM, Linear Technology, the Linear logo, Burst Mode, PolyPhase and µModule are  
registered trademarks of Linear Technology Corporation. All other trademarks are the property  
of their respective owners. Protected by U.S. Patents, including 5481178, 5847554, 6580258,  
6304066, 6476589, 6774611, 6677210.  
applicaTions  
n
Telecom Servers and Networking Equipment  
n
Storage and ATCA Cards  
n
General Purpose Point of Load Regulation  
Typical applicaTion  
1.5VIN to 5.5VIN, 15A Step-Down DC/DC µModule® Regulator  
Efficiency vs Load Current  
V
96  
IN  
1.5V TO 5.5V  
22µF  
s3  
94  
C
SS  
0.1µF  
V
PGOOD  
IN  
**  
V
92  
90  
88  
86  
84  
82  
80  
OUT  
STEP-DOWN  
15A  
TRACK/SS  
RUN  
V
OUT  
C
*
FF  
5V , 3.3V  
IN  
LTM4611  
V
OUT  
FB  
3.3V , 2.5V  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
100µF*  
V
OUT_LCL  
2.5V , 1.5V  
IN  
s4  
2.5V , 1.2V  
IN  
MODE_PLLIN  
DIFFV  
OUT  
+
3.3V , 1V  
IN  
1.5V , 0.9V  
V
V
IN  
OSNS  
5V , 1V  
IN  
OUT  
OSNS  
SGND GND  
C *  
P
R
**  
FB  
*SEE TABLE 5  
**SEE TABLE 1  
78  
4611 TA01  
0
5
15  
10  
LOAD CURRENT (A)  
4611 TA01b  
4611f  
LTM4611  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
Terminal Voltages  
INTV  
TRACK/SS  
CC  
MODE_PLLIN  
V
V ........................................................... –0.2V to 6V  
RUN COMP  
IN  
IN  
1
2
3
4
5
6
7
8
9
10  
11  
12  
V
OUT  
with  
A
B
C
D
E
DIFF AMP....–0.1V to the Lesser of (V + 0.1V) or 4V  
IN  
V
IN  
PLLFLTR/f  
MTP1-9  
SET  
V
OUT  
without  
DIFF AMP..–0.1V to the Lesser of (V + 0.1V) or 5.5V  
IN  
RUN, INTV , V  
..........................................6V  
CC OUT_LCL  
INTV  
CC  
MODE_PLLIN, PLLFLTR/f  
,
SET  
F
V
FB  
GND  
TRACK/SS, V  
–, V  
+,  
OSNS  
OSNS  
PGOOD  
SGND  
G
H
J
PGOOD ................................................. –0.3V to 5.5V  
COMP, V ............................................. –0.3V to 2.7V  
FB  
V
OSNS  
+
Terminal Currents  
K
L
DIFFV  
OUT  
V
OUT  
DIFFV ............................................. –10mA to 1mA  
OUT  
V
OUT_LCL  
Temperatures  
V
M
OSNS  
Operating Junction Temperature Range  
(Note 2) ............................................ –40°C to 125°C  
Storage Temperature Range .............. –55°C to 125°C  
Peak Solder Reflow Body Temperature  
(Note 3) ............................................................ 250°C  
LGA PACKAGE  
133-LEAD (15mm s 15mm s 4.32mm)  
T
= 125°C  
J(MAX)  
θ
JCtop  
= 26°C/W, θ = 2.3°C/W, θ = 10°C/W, θ = 14°C/W  
JCbottom JB JA  
θ VALUES DETERMINED PER JESD51-12  
WEIGHT = 2.6 GRAMS  
orDer inForMaTion  
LEAD FREE FINISH  
LTM4611EV#PBF  
LTM4611IV#PBF  
ꢁRAY  
PARꢁ MARKING*  
LTM4611V  
PACKAGE DESCRIPꢁION  
ꢁEMPERAꢁURE RANGE  
–40°C to 125°C  
LTM4611EV#PBF  
LTM4611IV#PBF  
133-Lead (15mm × 15mm × 4.32mm) LGA  
133-Lead (15mm × 15mm × 4.32mm) LGA  
LTM4611V  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
4611f  
LTM4611  
elecTrical characTerisTics ꢁhe l denotes the specifications which apply over the full internal operating  
junction temperature range, otherwise specifications are at ꢁA = 25°C, VIN = 3.3V, per the typical application in Figure 21.  
SYMBOL  
PARAMEꢁER  
CONDIꢁIONS  
MIN  
ꢁYP  
MAX  
UNIꢁS  
Input Specifications  
l
l
V
V
V
V
Input DC Voltage  
1.5  
1.1  
5.5  
V
V
IN  
RUN Pin On Threshold  
RUN Pin On Hysteresis  
RUN Pin Voltage when Floating  
V
Rising  
1.22  
80  
1.35  
RUN  
RUN  
mV  
V
RUNHYS  
RUN(FLOAT)  
RUN(UP,1V)  
3.4  
3.65  
1.1  
4
I
I
I
I
RUN Pin Pull-Up Current  
(RUN = 1V)  
µA  
RUN Pin Pull-Up Current  
(RUN = 1.5V)  
10  
1
µA  
nA  
RUN(UP,1.5V)  
RUN(DOWN,5V)  
Q
RUN Pin Pull-Down Current  
(RUN = 5V)  
Input Supply Bias Current  
V
V
V
= 1.5V, Burst Mode Operation, I  
= 0.1A  
= 0.1A  
= 0.1A  
70  
140  
145  
1.1  
mA  
mA  
mA  
mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
= 1.5V, Pulse-Skipping Mode, I  
= 1.5V, Switching Continuous, I  
Shutdown, RUN = 0V  
I
Input Supply Current  
V
V
V
V
= 2.5V, V  
= 3.3V, V  
= 1.5V, I  
= 1.5V, I  
= 15A  
= 15A  
10.4  
7.9  
A
A
A
A
S(VIN)  
IN  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
= 5V, V  
= 1.5V, I  
= 15A  
OUT  
5.3  
OUT  
= 1.5V, V  
= 0.8V, I  
= 15A  
10.2  
OUT  
OUT  
Output Specifications  
V
Output Voltage, Total Variation  
with Line and Load  
Utilizing DIFF_AMP, R = Not Used, V = 1.5V to  
0.785  
0.781  
0.797  
0.797  
0.809  
0.813  
V
V
OUT(DC)  
FB  
IN  
l
5.5V, I  
= 0A to 15A (Note 4), R Electrically  
OUT  
FB  
Floating, MODE_PLLIN = GND  
(Example See Figure 21)  
(Example See Figure 20)  
V
Utilizing DIFF_AMP  
3.7  
5.4  
15  
V
V
OUT(RANGE)  
OUT(DC)  
Not Utilizing DIFF_AMP  
Output Continuous Current Range  
Line Regulation Accuracy  
I
V
OUT  
V
OUT  
= V (Note 4)  
0
A
FB  
l
l
= V , V from 1.5V to 5.5V, I  
= 0A  
OUT  
0.3  
%
V  
(Line)  
OUT  
FB IN  
OUT  
V
Load Regulation Accuracy  
Output Ripple Voltage  
Turn-On Overshoot  
Turn-On Time  
V
= 1.5V, I  
= 0A to 15A, V = 3.3V  
0.2  
8
0.5  
%
V  
(Load)  
OUT  
OUT  
OUT  
IN  
OUT  
V
(Note 4)  
V
mV  
I
= 0A, C  
= 100µF ×4 X5R Ceramic,  
OUT  
OUT(AC)  
P-P  
OUT  
IN  
V
= 3.3V, V  
= 1.5V  
OUT  
5
mV  
µs  
V  
C
= 100µF ×4 X5R Ceramic, V  
= 0A, V = 3.3V, C = 1nF  
IN SS  
= 1.5V,  
OUT  
OUT(START)  
OUTLS  
OUT  
OUT  
I
t
500  
60  
C
C
= 100µF ×4 X5R Ceramic, No Load,  
START  
OUT  
SS  
= 1nF, V = 3.3V, V = 1.5V  
OUT  
IN  
Peak Deviation for Dynamic Load Load: 0% to 50% to 0% of Full Load  
= 3.3V, V = 1.5V, C = 100µF ×4  
mV  
V  
V
IN  
OUT  
FF  
OUT  
X5R Ceramic, C = 100pF  
t
I
Settling Time for Dynamic Load  
Step  
Load: 0% to 50% to 0% of Full Load  
= 3.3V, V = 1.5V, C = 100µF ×4  
40  
µs  
SETTLE  
V
IN  
OUT  
OUT  
X5R Ceramic, C = 100pF  
FF  
Output Current Limit  
V
V
= 5V, V = 1.5V  
OUT  
30  
30  
A
A
OUT(PK)  
IN  
IN  
= 3.3V, V  
= 1.5V  
OUT  
4611f  
LTM4611  
elecTrical characTerisTics ꢁhe l denotes the specifications which apply over the full internal operating  
junction temperature range, otherwise specifications are at ꢁA = 25°C, VIN = 3.3V, per the typical application in Figure 21.  
SYMBOL  
PARAMEꢁER  
CONDIꢁIONS  
MIN  
ꢁYP  
MAX  
UNIꢁS  
Control Section  
l
l
V
Voltage at V Pin  
I
= 0A, V  
= V  
FB  
0.783  
0.797  
–10  
0.811  
V
nA  
V
FB  
FB  
OUT  
OUT  
I
FB  
V
Feedback Overvoltage Lockout  
0.84  
0.9  
0.87  
1.4  
0.89  
1.9  
OVL  
I
Track Pin Soft-Start Pull-Up  
Current  
TRACK/SS = 0V  
(Note 5)  
µA  
TRACK/SS  
t
Minimum On-Time  
90  
ns  
ON(MIN)  
R
Resistor Between V  
60.05  
60.40  
60.75  
kΩ  
FBHI  
OUT_LCL  
and V Pins  
FB  
+
V
V
,
Common Mode Input Range  
V
V
= 3.3V, Run > 1.5V  
0
0
INTV – 1  
V
OSNS  
IN  
IN  
CC  
OSNS CM RANGE  
DIFFV  
Range  
DIFF_AMP Output Voltage Range  
= 3.3V, DIFFV  
Load = 100k  
INTV  
CC  
V
OUT  
OUT  
V
DIFF_AMP Input Offset Voltage  
Magnitude  
1.25  
2
mV  
mV  
OS  
l
A
V
DIFF_AMP Differential Gain  
PGOOD Trip Level  
1
V/V  
V
V
with Respect to Set Output  
PGOOD  
FB  
–7.5  
7.5  
%
%
%
%
V
V
V
V
Ramping Positive, PGOOD Transitioning  
Ramping Positive, PGOOD Transitioning  
Ramping Negative, PGOOD Transitioning  
Ramping Negative, PGOOD Transitioning  
–10  
5
–5  
10  
10  
–5  
FB  
FB  
FB  
FB  
7.5  
5
–7.5  
–10  
SR  
DIFF_AMP Slew Rate  
2
3
V/µs  
MHz  
GBP  
DIFF_AMP Gain-Bandwidth  
Product  
CMRR  
DIFF_AMP Common Mode  
Rejection  
100  
dB  
R
DIFF_AMP Input Resistance  
V
+ to GND  
19.9  
4.8  
20.0  
20.1  
5.2  
kΩ  
IN  
OSNS  
INꢁV Linear Regulator  
CC  
V
V
Internal V Voltage  
1.5V < V < 5.5V  
5
V
INTVCC  
INTVCC  
CC  
IN  
Load Reg INTV Load Regulation  
I
= 0 to 50mA  
CC  
0.5  
%
CC  
Oscillator and Phase-Locked Loop  
f
Output Ripple Voltage Frequency  
V
= 3.3V, V = 1.5V,  
OUT  
280  
360  
835  
710  
kHz  
kHz  
S
IN  
0.85V ≤ PLLFLTR/f  
≤ 2.0V  
SET  
f
SYNC Capture Range  
SYNC  
4611f  
LTM4611  
elecTrical characTerisTics ꢁhe l denotes the specifications which apply over the full internal operating  
junction temperature range, otherwise specifications are at ꢁA = 25°C, VIN = 3.3V, per the typical application in Figure 21.  
SYMBOL  
PARAMEꢁER  
CONDIꢁIONS  
MIN  
ꢁYP  
MAX  
UNIꢁS  
PLLFLTR/f  
PLLFLTR/f  
Voltage  
Open-Circuit  
PLLFLTR/f  
Pin Voltage When Floating  
1.23  
V
SET(FLOAT)  
SET  
SET  
Frequency Nominal Nominal Frequency  
PLLFLTR/f  
PLLFLTR/f  
PLLFLTR/f  
Floating  
= 0.85V  
= 2.0V  
500  
330  
780  
kHz  
kHz  
kHz  
SET  
SET  
SET  
Frequency Low  
Frequency High  
Lowest Frequency  
Highest Frequency  
I
PLLFLTR  
Sourcing Capability  
Sinking Capability  
PLLFLTR  
Mode_PLLIN Frequency > f  
Mode_PLLIN Frequency < f  
–13  
13  
µA  
µA  
OSC  
OSC  
R
Mode_PLLIN Input Resistance  
Clock Input Level High  
250  
kΩ  
V
MODE(PLLIN)  
V
V
2.0  
40  
IH  
IL  
Clock Input Level Low  
0.6  
60  
V
Mode_PLLIN  
Clock  
Clock Input Duty Cycle Range  
50  
%
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: Consistent with Pb-free 260°C peak IR reflow soldering profiles.  
See Application Note 100.  
Note 4: See output current derating curves for different V , V  
and T .  
A
IN OUT  
Note 5: The minimum on-time condition is specified for a peak-to-peak  
Note 2: The LTM4611 is tested under pulsed load conditions such that  
inductor ripple current of ~40% of I  
section)  
Load. (See the Typical Applications  
MAX  
T ≈ T . The LTM4611E is guaranteed to meet performance specifications  
J
A
over the 0°C to 125°C operating junction temperature (T ) range.  
J
Specifications over the full –40°C to 125°C operating junction temperature  
range are assured by design, characterization and correlation with  
statistical process controls. The LTM4611I is guaranteed to meet  
specifications over the full –40°C to 125°C operating junction temperature  
range. Note that the maximum ambient temperature consistent with  
these specifications is determined by specific operating conditions in  
conjunction with board layout, the rated package thermal resistance and  
other environmental factors.  
4611f  
LTM4611  
Typical perForMance characTerisTics  
Efficiency vs Load Current at  
1.8VIN, Forced Continuous Mode  
Efficiency vs Load Current at  
2.5VIN, Forced Continuous Mode  
Efficiency vs Load Current at  
1.5VIN, Forced Continuous Mode  
95  
90  
85  
80  
75  
95  
90  
85  
80  
75  
95  
90  
85  
80  
75  
1.2V  
1.0V  
0.9V  
0.8V  
OUT  
OUT  
OUT  
OUT  
1.5V  
1.2V  
1.0V  
0.9V  
0.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
1.8V  
1.5V  
1.2V  
1.0V  
0.9V  
0.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
0
3
6
9
12  
15  
3
9
0
6
12  
15  
3
9
0
6
12  
15  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4611 G01  
4611 G02  
4611 G03  
Efficiency vs Load Current at  
5VIN, Forced Continuous Mode  
Efficiency vs Load Current at  
Burst Mode Efficiency  
3.3VIN, Forced Continuous Mode  
95  
90  
85  
80  
75  
95  
90  
85  
80  
75  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
3.3V TO 1.5V  
IN  
OUT  
5V TO 1V  
IN  
OUT  
2.5V  
OUT  
1.2V  
1.0V  
0.9V  
0.8V  
3.3V  
2.5V  
1.8V  
1.5V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
1.8V  
1.5V  
1.2V  
1.0V  
0.9V  
0.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
3
6
9
12  
10  
0
3
6
9
12  
15  
0
15  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4611 G14  
4611 G05  
4611 G04  
Pulse-Skipping Mode Efficiency  
1V ꢁransient Response, 3.3VIN  
1V ꢁransient Response, 5VIN  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
V
V
OUT  
OUT  
50mV/DIV  
50mV/DIV  
3.3V TO 1.5V  
IN  
OUT  
AC-COUPLED  
AC-COUPLED  
5V TO 1V  
IN  
OUT  
I
I
LOAD  
LOAD  
5A/DIV  
5A/DIV  
4611 G06  
4611 G07  
20µs/DIV  
20µs/DIV  
V
= 3.3V, V  
= 1V, USING DIFF AMP  
V
= 5V, V  
= 1V, USING DIFF AMP  
OUT  
IN  
OUT  
IN  
4 s 100µF CERAMIC OUTPUT CAPACITORS  
4 s 100µF CERAMIC OUTPUT CAPACITORS  
= 47pF, C = NONE  
C
FF  
= 47pF, C = NONE  
P
C
FF  
P
7.5A LOAD STEP AT 7.5A/µs  
7.5A LOAD STEP AT 7.5A/µs  
0.1  
1
10  
OUTPUT CURRENT (A)  
4611 G15  
4611f  
LTM4611  
Typical perForMance characTerisTics  
Start-Up, 15A Load  
Start-Up, No Load  
3.3V ꢁransient Response, 5VIN  
V
IN  
1V/DIV  
V
OUT  
V
IN  
50mV/DIV  
1V/DIV  
V
OUT  
AC-COUPLED  
500mV/DIV  
V
I
OUT  
LOAD  
500mV/DIV  
5A/DIV  
I
LOAD  
I
I
5A/DIV  
IN  
IN  
5A/DIV  
1A/DIV  
4611 G09  
4611 G12  
4611 G08  
1ms/DIV  
= 1.5V, NO LOAD  
3 s 22µF CERAMIC INPUT CAPACITORS  
= 10nF  
1ms/DIV  
20µs/DIV  
= 3.3V, USING DIFF AMP  
V
= 3.3V, V  
V
= 3.3V, V = 1.5V, 100mΩ LOAD  
V
= 5V, V  
IN  
OUT  
IN  
OUT  
IN  
OUT  
3 s 22µF CERAMIC INPUT CAPACITORS  
2 s 100µF CERAMIC OUTPUT CAPACITORS  
C
C
= 10nF  
C
= 10pF, C = NONE  
P
7.5A LOAD STEP AT 7.5A/µs  
SS  
SS  
FF  
4 s 100µF CERAMIC OUTPUT CAPACITORS  
= 33pF, C = 10pF  
4 s 100µF CERAMIC OUTPUT CAPACITORS  
C = 33pF, C = 10pF  
FF  
C
FF  
P
P
Start-Up, Pre-Bias  
Short-Circuit, 15A  
Short-Circuit, No Load  
V
OUT  
V
V
500mV/DIV  
OUT  
OUT  
500mV/DIV  
500mV/DIV  
I
LOAD  
2mA/DIV  
I
IN  
I
IN  
1A/DIV  
I
IN  
1A/DIV  
2A/DIV  
RUN  
5V/DIV  
4611 G10  
4611 G13  
4611 G11  
20µs/DIV  
= 1.5V  
2ms/DIV  
20µs/DIV  
V
= 3.3V, V  
= 1.5V, 0.75V PRE-BIAS LOAD  
V
= 3.3V, V  
= 1.5V  
OUT  
V
= 3.3V, V  
OUT  
IN  
OUT  
IN  
IN  
3 s 22µF CERAMIC INPUT CAPACITORS  
= 10nF  
NO LOAD PRIOR TO SHORT  
15A LOAD PRIOR TO SHORT  
C
SS  
4 s 100µF CERAMIC OUTPUT CAPACITORS  
= 33pF, C = 10pF  
C
FF  
P
pin FuncTions  
SGND:(G11, H11, H12)SignalGroundPin. Returnground  
path for all analog and low power circuitry. Tie a single  
connection to the output capacitor GND in the application.  
See the layout guidelines in Figure 17.  
V : (A1-A6, B1-B6, C1-C6) Power Input Pins. Apply input  
IN  
voltage between these pins and GND pins. Recommend  
placing input decoupling capacitance directly between  
V pins and GND pins.  
IN  
MODE_PLLIN:(A8)ForcedContinuousMode,BurstMode  
Operation, or Pulse-Skipping Mode Selection Pin and  
External Synchronization Input to Phase Detector Pin.  
Connect this pin to GND to force continuous mode  
V
: (J1-J10, K1-K11, L1-L11, M1-M11) Power Output  
OUꢁ  
Pins. Apply output load between these pins and GND  
pins. Recommend placing output decoupling capacitance  
directly between these pins and GND pins. Review Table 5.  
operation. Connect to INTV to enable pulse-skip-  
CC  
GND: (B7, B9, C7, C9, D1-D6, D8, E1-E7, E9, F1-F9, G1-G9,  
H1-H9) Power Ground Pins for Both Input and Output  
Returns.  
ping mode operation. Leaving the pin floating will  
enable Burst Mode operation. A clock on this pin will  
enablesynchronizationwithforcedcontinuousoperation.  
See the Applications Information section.  
PGOOD:(F11,G12)OutputVoltagePowerGoodIndicator.  
Open-drain logic output that is pulled to ground when the  
output voltage exceeds a 5% regulation window. Both  
pins are tied together internally.  
4611f  
LTM4611  
pin FuncTions  
INꢁV : (A7, D9) Internal 5V LDO for Driving the Control  
Circuitry and the Power MOSFET Drivers. Both pins are  
internally connected.  
PLLFLꢁR/f : (B12) Phase-Locked Loop Lowpass Filter  
CC  
SEꢁ  
fortheInternalPhaseDetector.LTM4611’sdefaultswitch-  
ing frequency is 500kHz. Its switching frequency can be  
increasedbyconnectingaresistorfromthispintoINTV ,  
or decreased by connecting a resistor from this pin to  
SGND. See the Applications Information section.  
CC  
V
: (L12) This pin connects to V  
through a 1M  
OUꢁ_LCL  
OUT  
resistorandtoV witha60.4kresistor. Theremotesense  
FB  
amplifier output DIFFV  
is connected to V  
, and  
OUT  
OUT_LCL  
drives the 60.4k top feedback resistor in remote sensing  
applications. When the remote sense amplifier is used,  
V : (F12) The Negative Input of the Error Amplifier.  
FB  
Internally, this pin is connected to V  
with a 60.4k  
OUT_LCL  
the DIFF_V  
effectively eliminates the 1MΩ from V  
precision resistor. Different output voltages can be pro-  
OUT  
OUT  
to V  
. When the remote sense amplifier is not used,  
grammed with an additional resistor between the V and  
OUT_LCL  
FB  
GND pins. In PolyPhase® operation, tying the V pins  
then connect V  
to V  
directly.  
OUT_LCL  
OUT  
FB  
togetherallowsforparalleloperation.SeetheApplications  
Information section for details.  
+
V
: (J12) (+) Input to the Remote Sense Amplifier.  
OSNS  
This pin connects to the output remote sense point. The  
remote sense amplifier is used for V  
> 3.7V, tie V  
sense amplifier.  
≤ 3.7V. For V  
ꢁRACK/SS: (A9) Output Voltage Tracking Pin and Soft-  
Start Inputs. The pin has a 1.4µA pull-up current source.  
A capacitor from this pin to ground will set a soft-start  
ramp rate. In tracking, the regulator output can be tracked  
to a different voltage. The different voltage is applied to  
a voltage divider then the slave output’s track pin. This  
voltage divider is equal to the slave output’s feedback  
divider for coincidental tracking. Tie all TRACK/SS pins  
together for parallel operation. See the Applications In-  
formation section.  
OUT  
OUT  
+
to GND to rail the output of the remote  
OSNS  
V
OSNS  
: (M12) (–) Input to the Remote Sense Amplifier.  
This pin connects to the ground remote sense point. The  
remotesenseamplifierisusedforV  
3.7V, tie V  
sense amplifier.  
3.7V. ForV  
>
OUT  
OUT  
to INTV to rail the output of the remote  
OSNS  
CC  
DIFFV : (K12) Output of the Remote Sense Amplifier.  
OUꢁ  
This pin connects to the V  
pin for remote sense  
OUT_LCL  
COMP:(A11)CurrentControlThresholdandErrorAmplifier  
Compensation Point. The current comparator threshold  
increases with this control voltage. Tie all COMP pins  
together for parallel operation. The device is internally  
compensated.  
applications. Otherwise float when not used.  
MꢁP1:A12, MꢁP2:B11, MꢁP3:C10, MꢁP4:C11, MꢁP5:  
C12, MꢁP6:D10, MꢁP7:D11, MꢁP8:D12, MꢁP9:E12:  
Extra mounting pads used for increased solder integrity  
strength. Leave electrically open circuit.  
RUN: (A10) Run Control Pin. A voltage above 1.35V will  
turnoninthemodule.TheV undervoltagelockout(UVLO)  
IN  
of the LTM4611 must be set with resistor networks from  
V to RUN and optionally from RUN to GND. Tie all RUN  
IN  
pins together for parallel operation.  
4611f  
LTM4611  
block DiagraM  
INTV  
CC  
1M  
V
OUT_LCL  
10k  
V
OUT  
PGOOD  
V
IN  
>1.35V = ON  
<1.1V = OFF  
ABS MAX = 6V  
R1  
R2  
V
IN  
RUN  
V
µPOWER BIAS  
GENERATOR  
IN  
1.5V TO 5.5V  
+
+
2µF  
COMP  
C
IN  
0.5%  
60.4k  
M1  
INTERNAL  
COMP  
AS NEEDED  
V
0.2µH  
OUT  
V
OUT  
1V  
SGND  
POWER  
CONTROL  
15A  
10µF  
V
FB  
C
OUT  
M2  
PLLFLTR/f  
SET  
GND  
240k  
INTV  
CC  
INTERNAL  
10k  
LOOP  
FILTER  
10k  
10k  
V
+
OSNS  
OSNS  
+
TRACK/SS  
V
+
MODE_PLLIN  
C
SS  
INTV  
CC  
10k  
C
DIFFV  
OUT  
4611 F01  
Figure 1. Simplified LꢁM4611 Block Diagram  
A = 25°C. Use Figure 1 configuration.  
Decoupling reQuireMenTs  
SYMBOL  
PARAMEꢁER  
CONDIꢁIONS  
MIN  
ꢁYP  
MAX  
UNIꢁS  
C
External Input Capacitor Requirement  
IN  
I
= 15A  
66  
µF  
IN  
OUT  
(V = 1.5V to 5.5V, V  
= 1V)  
OUT  
C
External Output Capacitor Requirement  
(V = 1.5V to 5.5V, V = 1V)  
I
= 15A  
400  
µF  
OUT  
OUT  
IN  
OUT  
4611f  
LTM4611  
operaTion  
Power Module Description  
Pulling the RUN pin below 1.1V forces the regulator into a  
shutdown state. The TRACK/SS pin is used for program-  
ming the output voltage ramp and voltage tracking during  
start-up. See the Application Information section.  
The LTM4611 is a high performance single output stand-  
alone nonisolated switching mode DC/DC power supply.  
It can provide a 15A output with few external input and  
output capacitors. This module provides precisely regu-  
latedoutputvoltagesprogrammableviaexternalresistors  
The LTM4611 is internally compensated to be stable over  
all operating conditions. Table 5 provides a guideline for  
input and output capacitances for several operating con-  
ditions. The Linear Technology µModule Power Design  
Tool will be provided for transient and stability analysis.  
from 0.8V to 5V over a 1.5V to 5.5V input range. The  
DC  
DC  
typical application schematic is shown in Figure 21.  
The LTM4611 has an integrated constant-frequency cur-  
rent mode regulator, power MOSFETs, 0.2µH inductor  
and other supporting discrete components. The nominal  
switching frequency range isfrom330kHzto 780kHz, and  
the default operating frequency is 500kHz. For switching  
noise-sensitive applications, it can be externally syn-  
chronized from 360kHz to 710kHz. See the Applications  
Information section.  
The V pin is used to program the output voltage with a  
FB  
single external resistor to ground.  
Aremotesenseamplifierisprovidedforaccuratelysensing  
output voltages ≤3.7V at the load point.  
Multiphase operation can be easily employed with the  
synchronization inputs using an external clock source.  
See the Typical Applications.  
With current mode control and internal feedback loop  
compensation, the LTM4611 module has sufficient stabil-  
ity margins and good transient performance with a wide  
range of output capacitors, even with all ceramic output  
capacitors.  
High efficiency at light loads can be accomplished with  
selectable Burst Mode operation using the MODE_PLLIN  
pin. These light-load features will accommodate battery  
operation. Efficiency graphs are provided for light-load  
operation in the Typical Performance Characteristics  
section.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limit in an overcurrent condition. An internal overvoltage  
monitor protects the output voltage in the event of an  
overvoltage >7.5%. The top MOSFET is turned off and the  
bottom MOSFET is turned on until the output is cleared.  
4611f  
ꢀ0  
LTM4611  
applicaTions inForMaTion  
The typical LTM4611 application circuit is shown in  
Figure 21. External component selection is primarily  
determined by the maximum load current and output  
voltage. Refer to Table 5 for specific external capacitor  
requirements for particular applications.  
is used, then DIFFV  
is connected to the V  
pin.  
OUT_LCL  
OUT  
OUT_LCL  
If the remote sense amplifier is not used, then V  
connects to V . The output voltage will default to 0.8V  
OUT  
with no feedback resistor. Adding a resistor R from V  
FB  
FB  
to GND programs the output voltage:  
60.4k+RFB  
V to V  
Step-Down Ratios  
IN  
OUꢁ  
VOUT = 0.8V •  
RFB  
There are restrictions in the V to V  
step-down  
IN  
OUT  
ratio that can be achieved for a given input voltage. The  
V to V minimum dropout is still a function of its load  
ꢁable 1. VFB Resistor ꢁable vs Various Output Voltages  
0.8V 1.0V 1.2V 1.5V 1.8V 2.5V 3.3V 5.0V  
(kΩ) Open 243 121 68.1 47.5 28.0 19.1 11.5  
V
IN  
OUT  
OUꢁ  
current at very low input voltages. A dropout voltage of  
300mV from input to output of LTM4611 is achievable  
at 15A load, but reflected input voltage ripple and noise  
should be taken into consideration in such applications.  
Additionally,thetransient-handlingcapabilityofthesource  
supply feeding LTM4611 can become an important factor  
in truly achieving ultralow dropout at high output current.  
R
FB  
For parallel operation of N LTM4611s, the following equa-  
tion can be used to solve for R :  
FB  
60.4k /N  
RFB =  
VOUT  
–1  
0.8V  
For example, V can sag or overshoot dramatically when  
IN  
Tie the V pins together for each parallel output. The  
FB  
LTM4611 responds to heavy transient step loads on its  
output, if insufficient input bypass capacitance is used in  
combination with a sluggish source supply.  
COMP, TRACK/SS, V  
tied together as shown in Figures 18 and 19.  
, and RUN pins must also be  
OUT_LCL  
For parallel applications, best noise immunity can be  
When V  
is expected to be within 600mV of V , or  
IN  
OUT  
achievedbyplacingcapacitorsofvalueC fromV toGND,  
P
FB  
when the caliber of the source supply is in question, it  
is recommended to evaluate the amount and quality of  
input bypass capacitance needed to maintain one’s target  
dropout voltage with the source supply that will be used  
in the end application. Demo Board DC1588A can be used  
for such evaluation.  
and value C from V  
to V , local to each µModule.  
FF  
OUT  
FB  
If space limitations impede realizing this, then placement  
of capacitors of value N • C from V to GND, and value  
P
FB  
FB  
N • C from V  
to the bussed V signal, can suffice.  
FF  
OUT  
Input Capacitors  
At very low duty cycles the minimum specified on-time  
must be maintained. See the Frequency Adjustment sec-  
tion and temperature derating curves.  
The LTM4611 module should be connected to a low  
AC impedance DC source. Additional input capacitors  
are needed for the RMS input ripple current rating. The  
To prevent overstress to the µpower bias generator, do  
I
equation which follows can be used to calculate  
CIN(RMS)  
not ramp up V at a rate exceeding 5V/µs (in practice, it  
IN  
the input capacitor requirement. Typically 22µF X7R ce-  
ramics are a good choice with RMS ripple current ratings  
of ~2A each. A 100µF to 150µF surface mount aluminum  
electrolytic bulk capacitor can be used for more input  
bulk capacitance. This bulk input capacitor is only needed  
if the input source impedance is compromised by long  
inductive leads, traces or not enough source capacitance.  
If low impedance power planes are used, then this bulk  
capacitor is not needed.  
is difficult to violate this guideline.) There is no restriction  
on how rapidly V may be discharged.  
IN  
Output Voltage Programming  
ThePWMcontrollerhasaninternal0.8V 1.75%reference  
voltage over temperature. As shown in the Block Diagram,  
a 60.4k internal feedback resistor connects the V  
OUT_LCL  
and V pins together. When the remote sense amplifier  
FB  
4611f  
ꢀꢀ  
LTM4611  
applicaTions inForMaTion  
For a buck converter, the switching duty cycle can be  
estimated as:  
Burst Mode Operation  
The LTM4611 is capable of Burst Mode operation in which  
the power MOSFETs operate intermittently based on load  
demand, thus saving quiescent current. For applications  
wheremaximizingtheefficiencyatverylightloadsisahigh  
priority,BurstModeoperationshouldbeapplied.Toenable  
Burst Mode operation, simply leave the MODE_PLLIN pin  
floating. During Burst Mode operation, the peak current of  
the inductor is set to approximately 33% of the maximum  
peak current value in normal operation even though the  
V
OUT  
VIN  
D=  
Without considering the inductor current ripple, for each  
output, the RMS current of the input capacitor can be  
estimated as:  
IOUT(MAX)  
ICIN(RMS)  
=
D(1D)  
η%  
voltage at the I pin indicates a lower value. The voltage  
TH  
at the I pin drops when the inductor’s average current is  
TH  
Intheaboveequation,η%istheestimatedefficiencyofthe  
power module. The bulk capacitor can be a switcher-rated  
electrolytic aluminum capacitor or a Polymer capacitor.  
greaterthantheloadrequirement.AstheI voltagedrops  
TH  
below0.5V,theburstcomparatortrips,causingtheinternal  
sleep line to go high and turn off both power MOSFETs.  
Output Capacitors  
In this sleep mode, the internal circuitry is partially turned  
off, reducing the LTM4611’s quiescent current while the  
load current is supplied by the output capacitors. When  
The LTM4611 is designed for low output voltage ripple  
noise. The bulk output capacitors defined as C  
are  
OUT  
the output voltage drops–causing I to rise–the internal  
chosen with low enough effective series resistance (ESR)  
to meet the output voltage ripple and transient require-  
TH  
sleep line goes low and the LTM4611 resumes normal  
operation. The next oscillator cycle turns on the top power  
MOSFET and the switching cycle repeats.  
ments. C  
can be the low ESR tantalum capacitor, the  
OUT  
low ESR Polymer capacitor or ceramic capacitors. The  
typical output capacitance range is from 200µF to 800µF.  
Additional output filtering may be required by the system  
designer, if further reduction of output ripple or dynamic  
transient spikes is required. Table 5 shows a matrix of dif-  
ferent output voltages and output capacitors to minimize  
the voltage droop and overshoot during a 7A/µs transient.  
The table optimizes total equivalent ESR and total bulk  
capacitancetooptimizethetransientperformance.Stabil-  
ity criteria are considered in the Table 5 matrix, and the  
Linear Technology µModule Power Design Tool will be  
provided for stability analysis. Multiphase operation will  
reduce effective output ripple as a function of the num-  
ber of phases. Application Note 77 discusses this noise  
reduction versus output ripple current cancellation, but  
the output capacitance should be considered carefully as  
a function of stability and transient response. The Linear  
Technology µModule Power Design Tool can calculate the  
output ripple reduction as the number of implemented  
phase’s increases by N times.  
Pulse-Skipping Mode Operation  
In applications where low output ripple and high effi-  
ciencyatintermediatecurrentsaredesired,pulse-skipping  
mode should be used. Pulse-skipping operation allows  
the LTM4611 to skip cycles at low output loads, thus  
increasing efficiency by reducing switching loss. Tying  
the MODE_PLLIN pin to INTV enables pulse-skipping  
CC  
operation. With pulse-skipping mode at light load, the  
internalcurrentcomparatormayremaintrippedforseveral  
cycles,thusskippingoperationcycles.Thismodehaslower  
ripple than Burst Mode operation and maintains a higher  
frequency operation than Burst Mode operation.  
Forced Continuous Operation  
In applications where fixed frequency operation is more  
critical than low current efficiency, and where the lowest  
output ripple is desired, forced continuous operation  
should be used. Forced continuous operation can be  
4611f  
ꢀꢁ  
LTM4611  
applicaTions inForMaTion  
enabled by tying the MODE_PLLIN pin to GND. In this  
the effective ripple frequency is multiplied by, the number  
of phases used (assuming that the input voltage is greater  
thanthenumberofphasesusedtimestheoutputvoltage).  
Theoutputrippleamplitudeisalsoreducedbythenumber  
of phases used. See Application Note 77.  
mode, inductor current is allowed to reverse during low  
output loads, the I voltage is in control of the current  
TH  
comparator threshold throughout, and the top MOSFET  
alwaysturnsonwitheachoscillatorpulse.Duringstart-up,  
forced continuous mode is disabled and inductor current  
is prevented from reversing until the LTM4611’s output  
voltage is in regulation.  
The LTM4611 device is an inherently current mode con-  
trolled device, so parallel modules will have good current  
sharing. This will balance the thermals on the design.  
Tie the COMP, V  
and V pins of each LTM4611  
OUT_LCL  
FB  
Multiphase Operation  
together to share the current evenly. In addition, tie the  
respectiveTRACK/SSandRUNpinsofparalleledLTM4611  
devices together, to ensure proper start-up and shutdown  
behavior. Figures 18 and 19 show schematics of LTM4611  
devices operating in parallel.  
For outputs that demand more than 15A of load current,  
multiple LTM4611 devices can be paralleled to provide  
more output current without increasing input and output  
voltageripples.TheMODE_PLLINpinallowstheLTM4611  
to be synchronized to an external clock (between 360kHz  
to 710kHz) and the internal phase-locked loop allows the  
LTM4611 to lock onto input clock phase as well. The PLL-  
Input RMS Ripple Current Cancellation  
Application Note 77 provides a detailed explanation of  
multiphase operation. The input RMS ripple current can-  
cellation mathematical derivations are presented, and a  
graph is displayed representing the RMS ripple current  
reductionasafunctionofthenumberofinterleavedphases  
(see Figure 2).  
FLTR/f pin has the onboard loop filter for the PLL. See  
SET  
Figures 18 and 19 for a synchronizing example circuit.  
A multiphase power supply significantly reduces the  
amount of ripple current in both the input and output ca-  
pacitors. The RMS input ripple current is reduced by, and  
0.60  
1 PHASE  
2 PHASE  
0.55  
3 PHASE  
4 PHASE  
6 PHASE  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY FACTOR (V /V  
)
OUT IN  
4617#3EM F02  
Figure 2. Normalized Input RMS Ripple Current vs Duty Factor for One to Six µModules (Phases)  
4611f  
ꢀꢂ  
LTM4611  
applicaTions inForMaTion  
PLL, Frequency Adjustment and Synchronization  
The default switching frequency of the LTM4611–with  
benefit due to the high inductor ripple currents associated  
withthatoperatingcondition.SeetheTypicalApplications  
sectionforsynchronizationexamples.TheLTM4611mini-  
mum on-time is limited to 90ns. Guardband the on-time  
to 130ns. The on-time can be calculated as:  
PLLFLTR/f  
PLLFLTR/f  
left floating–is 500kHz, nominally. The  
pin is driven to 1.23V through a high im-  
SET  
SET  
pedance (>350kΩ) network. If desired, a resistor (R  
)
fSET  
can be connected from the PLLFLTR/f  
pin to INTV  
SET  
CC  
V
1
OUT   
tON(MIN)  
=
to increase the switching frequency to as high as 780kHz,  
nominally. Alternatively, R can instead be connected  
FREQ  
VIN  
fSET  
from PLLFLTR/f  
to signal ground (SGND) to decrease  
SET  
Output Voltage racking and Soft-Start Functions  
theswitchingfrequencytoaslowastheminimumspecified  
valueof330kHz,nominally.Inpracticalterms,however,be  
advised that switching frequencies below 400kHz may be  
of limited benefit due to the high inductor ripple currents  
associated with that operating condition. See Figure 3.  
Output voltage tracking can be programmed externally  
using the TRACK/SS pin. The output can be tracked up  
and down with another regulator. The master regulator’s  
output is divided down with an external resistor divider  
that is the same as the slave regulator’s feedback divider  
to implement coincident tracking. The LTM4611 uses an  
accurate60.4kresistorinternallyforthetopfeedbackresis-  
tor. Figure 4 shows an example of coincident tracking.  
There exists a fundamental trade-off between switch  
mode DC/DC power conversion efficiency and switching  
frequency: higher operating module switching frequency  
enables the smallest overall solution size (minimized  
output capacitance) for a given application; whereas,  
lower switching frequency enables the highest efficiency  
for a given application (to the extent that peak and RMS  
inductor currents can be supported), but requires more  
outputcapacitancetomaintaincomparableoutputvoltage  
ripple and noise characteristics.  
60.4k  
RFB2  
VOUT _ SLAVE = 1+  
• VTRACK  
V
V
is the track ramp applied to the slave’s track pin.  
has a control range of 0V to 0.8V, or the internal  
TRACK  
TRACK  
reference voltage. When the master’s output is divided  
down with the same resistor values used to set the slave’s  
output, thentheslavewillcoincidenttrackwiththemaster  
until it reaches its final value. The master will continue  
to its final value from the slave’s regulation point. Volt-  
TheLTM4611canbesynchronizedfrom360kHzto710kHz  
with an input clock that has a high level above 2V and a  
low level below 0.6V. Again in practical terms, be advised  
thatswitchingfrequenciesbelow400kHzmaybeoflimited  
age tracking is disabled when V is more than 0.8V.  
2.05  
1.91  
1.78  
1.64  
1.50  
1.37  
1.23  
1.09  
0.96  
0.82  
0.68  
0.55  
0.41  
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
TRACK  
R
in Figure 4 will be equal to the R  
for coincident  
TA  
FB2  
R
CONNECTED  
CC  
fSET  
TO INTV  
tracking.  
R
fSET  
The TRACK/SS pin of the master can be controlled by an  
external ramp or the soft-start function of that regulator  
canbeusedtodevelopthatmasterramp.TheLTM4611can  
be used as a master by setting the ramp rate on its track  
pin using a soft-start capacitor. A 1.4µA current source  
is used to charge the soft-start capacitor. The following  
equation can be used:  
NOT USED  
R
CONNECTED  
fSET  
TO GND  
SWITCHING FREQUENCY  
PLLFLTR/f VOLTAGE  
SET  
0.1  
1
10  
100  
VALUE OF RESISTOR ON PLLFLTR/f  
PIN (MΩ)  
4611 F03  
SET  
CSS  
1.4µA  
tSOFTSTART = 0.8V •  
Figure 3. Relationship Between Oscillator Frequency,  
PLLFLꢁR/fSEꢁ Voltage, and External RISEꢁ Value and  
Connection  
4611f  
ꢀꢃ  
LTM4611  
applicaTions inForMaTion  
V
IN  
1.8V TO 5.5V  
C
22µF  
10V  
C
22µF  
10V  
C
22µF  
10V  
IN1  
IN2  
IN3  
SOFT-START  
CAPACITOR  
PGOOD  
CC  
V
INTV  
IN  
V
1.5V  
15A  
OUT  
COMP  
V
C
OUT  
SS  
C
*
R2  
10k  
+
C
*
OUT2  
OUT1  
TRACK/SS  
RUN  
V
OUT_LCL  
100µF  
6.3V  
470µF  
6.3V  
LTM4611  
DIFFV  
OUT  
+
PLLFLTR/f  
V
V
SET  
OSNS  
CONTINUOUS MODE  
MODE_PLLIN  
OSNS  
C
*
FF1  
V
FB  
SGND  
GND  
R
C *  
P1  
47pF  
FB1  
69.8k  
V
IN  
1.8V TO 5.5V  
C
22µF  
10V  
C
22µF  
10V  
C
22µF  
10V  
IN4  
IN5  
IN6  
MASTER RAMP  
OR OUTPUT  
PGOOD  
CC  
V
INTV  
IN  
V
1.2V  
15A  
OUT  
R
TB  
R
TA  
COMP  
V
OUT  
V
OUT_LCL  
60.4k  
121k  
R1  
10k  
+
C
*
C
*
OUT3  
OUT4  
TRACK/SS  
RUN  
470µF  
6.3V  
100µF  
LTM4611  
6.3V  
DIFFV  
OUT  
+
PLLFLTR/f  
V
V
SET  
OSNS  
CONTINUOUS MODE  
MODE_PLLIN  
OSNS  
C
*
FF2  
V
FB  
SGND  
GND  
R
C *  
P2  
FB2  
121k  
47pF  
4611 F04  
*SEE TABLE 5  
Figure 4. Dual Outputs (1.5V and 1.2V) With ꢁracking  
minimum to 9.8ms maximum. Tracking a rail in a man-  
ner such that TRACK/SS ramps up at a rate faster than  
210V/s may also warrant special attention, as explained  
in the following.  
MASTER OUTPUT  
SLAVE OUTPUT  
OUTPUT  
VOLTAGE  
Fasterturn-onandtrackingratesareachievable,ifneeded:  
one need only decrease the default PLLFLTR/f RC time  
SET  
constant. Recall that the PLLFLTR/f  
pin is biased to  
SET  
1.23Vviaahighimpedancesource(>350kΩ);alsobeaware  
4611 F05  
TIME  
that the internal PLL filter contains an initially discharged  
Figure 5. Output Voltage Coincident ꢁracking  
10nF capacitor prior to INTV being established.  
CC  
Requiring the output voltage to power up rapidly without  
Even for applications that do not require tracking or  
attention to the PLLFLTR/f  
time-constant results in  
SET  
sequencing, a minimum recommended value for C is  
SS  
an initial switching frequency of operation that is initially  
10nF (X7R MLCC, 10% tolerance, nominal; X5R material  
may be substituted if the capacitor temperature will not  
exceed85°C),yieldingextremeturn-onrisetimesof3.8ms  
lower than expected (~250kHz)—only during the early  
stagesofstart-up—untilthePLLFLTR/f voltagereaches  
SET  
steady-state value (1.23V by default).  
4611f  
ꢀꢄ  
LTM4611  
applicaTions inForMaTion  
Decreasing the PLLFLTR/f  
RC time constant can be  
Inratiometrictracking,adifferentslewratemaybedesired  
SET  
accomplished, for example, by driving the PLLFLTR/f  
for the slave regulator. R can be solved for when SR is  
SET  
TB  
pin with an external, lower impedance resistor divider  
network from INTV and GND to PLLFLTR/f —in the  
slower than MR. Make sure that the slave supply slew rate  
ischosentobefastenoughsothattheslaveoutputvoltage  
will reach its final value before the master output.  
CC  
SET  
simplest of implementations, by shorting PLLFLTR/f  
SET  
to INTV (therebyprogramming the switching frequency  
CC  
For example, MR = 1.5V/ms, and SR = 1.2V/ms. Then R  
= 75k. Solve for R to equal to 87k.  
TB  
to 780kHz, nominal), or by driving the PLLFLTR/f  
from a low impedance voltage source.  
pin  
SET  
TA  
Beware that without any kind of soft-start ramp up, it is  
important to provide thorough input filter capacitance to  
handle input surge currents at start-up, so as to avoid  
excessive input line sag and power supply motor boating.  
Leavingprovisionforatleastasoft-startcapacitorinone’s  
application is strongly recommended.  
When,inadditiontoneedingfasterturn-ontime,oneisalso  
synchronizingtoanexternalclocksignal, oneneedbearin  
mind: the PLLs sink and source current is recommended  
for not more than 8µA loading, and the PLL will need  
to successfully drive any external PLLFLTR/f  
network  
SET  
impedance to achieve phase lock; and lastly, some phase  
shiftinclocksynchronizationwilloccurasexternalloading  
Overcurrent and Overvoltage Protection  
on PLLFLTR/f  
becomes heavier.  
SET  
The LTM4611 has overcurrent protection (OCP) in a  
short circuit. The internal current comparator threshold  
folds back during a short to reduce the output current.  
An overvoltage condition (OVP) above 7.5% of the regu-  
lated output voltage will force the top MOSFET off and  
the bottom MOSFET on until the condition is cleared. An  
input electronic circuit breaker or fuse can be sized to be  
tripped or cleared when the bottom MOSFET is turned on  
toprotectagainsttheovervoltage.Foldbackcurrentlimiting  
is disabled during soft-start or tracking start-up.  
Tobeclear,usingaC valueof10nF(orhigher)eliminates  
SS  
the need for any of the above special considerations or  
provisions.  
Ratiometric tracking can be achieved by a few simple  
calculationsandtheslewratevalueappliedtothemaster’s  
TRACK/SSpin.Asmentionedabove,theTRACK/SSpinhas  
a control range from 0V to 0.8V. The master’s TRACK/SS  
pin slew rate is directly equal to the master’s output slew  
rate in volts/time. The equation:  
MR  
SR  
Run Enable  
60.4k= RTB  
The RUN pin is used to enable the power module or  
sequence the power module. The threshold is 1.22V. The  
RUN pin must be used as an undervoltage lockout (UVLO)  
function by connecting a resistor divider from the input  
supply to the RUN pin:  
where MR is the master’s output slew rate and SR is the  
slave’s output slew rate in volts/time. When coincident  
tracking is desired, then MR and SR are equal, thus R  
TB  
is equal to 60.4k. R is derived from equation:  
TA  
R1  
R2=  
0.8V  
RTA =  
VUVLO  
–1  
VFB  
VFB VTRACK  
+
1.22V  
60.4k RFB2  
RTB  
To achieve the lowest possible UVLO, 1.22V, leave R2  
unpopulated. R1 can be 10k, or if R2 is unpopulated, R1  
where V is the feedback voltage reference of the regula-  
FB  
tor, and V  
is 0.8V. Since R is equal to the 60.4k  
TB  
TRACK  
may be replaced with a hardwired connection from V  
to RUN.  
IN  
top feedback resistor of the slave regulator in equal slew  
rate or coincident tracking, then R is equal to R with  
TA  
FB2  
V
= V  
. Therefore R = 60.4k, and R = 121k in  
TRACK TB TA  
FB  
Figure 4.  
4611f  
ꢀꢅ  
LTM4611  
applicaTions inForMaTion  
See the Block Diagram for the example of use. When  
RUN is below its threshold, TRACK/SS is pulled low by  
internal circuity.  
For increased accuracy and fidelity to the actual applica-  
tion, many designers use finite element analysis (FEA)  
to predict thermal performance. To that end, the Pin  
Configuration section of the data sheet typically gives  
four thermal coefficients:  
INꢁV Regulator  
CC  
TheLTM4611hasaninternallyregulatedbiassupplycalled  
. θ : thermal resistance from junction to ambient.  
1
JA  
INTV . This regulator output has a 4.7µF ceramic capaci-  
CC  
2. θ  
: thermal resistance from junction to the bot-  
JCbottom  
tom of the product case.  
tor internal. This regulator powers the internal controller  
and MOSFET drivers. The gate driver current is ~13mA for  
500kHz operation and ~20mA for 780kHz operation; the  
regulator loss is ~40mW and ~60mW, respectively.  
3. θ : thermal resistance from junction to top of the  
JCtop  
product case.  
Stability Compensation  
4. θ : thermal resistance from junction to the printed  
JB  
circuit board.  
The module has already been internally compensated  
for all output voltages. Table 5 is provided for most ap-  
plication requirements. The Linear Technology µModule  
Power Design Tool will be provided for other control loop  
optimization.  
While the meaning of each of these coefficients may seem  
to be intuitive, JEDEC has defined each to avoid confusion  
and inconsistency. These definitions are given in JESD  
51-12, and are quoted or paraphrased in the following:  
1. θ is the natural convection junction-to-ambient air  
JA  
ꢁhermal Considerations and Output Current Derating  
thermal resistance measured in a one cubic foot sealed  
enclosure. This environment is sometimes referred to  
as “still air” although natural convection causes the  
air to move. This value is determined with the part  
mounted to a JESD 51-9 defined test board, which does  
not necessarily reflect an actual application or viable  
operating condition.  
The LTM4611 output current may need to be derated if it  
is required to operate in a high ambient temperature or  
deliver a large amount of continuous power. Some factors  
that influence derating are input voltage, output power,  
ambient temperature, airflow, and elevation (air density).  
The power loss curves in Figures 7 to 9 and current de-  
rating curves in Figures 10 to 16 can be used as a guide.  
These curves were generated by an LTM4611 mounted to  
a 95mm × 76mm 4-layer FR4 printed circuit board (PCB)  
1.6mm thick with two ounce copper for the outer layers  
and one ounce copper for the two inner layers. Boards of  
other sizes and layer count can exhibit different thermal  
behavior, so it is ultimately incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental operating conditions.  
2. θ  
is the junction-to-board thermal resistance  
JCbottom  
with all of the component power dissipation flow-  
ing through the bottom of the package. In the typical  
µModule, the bulk of the heat flows out the bottom of  
the package, but there is always heat flow out into the  
ambientenvironment.Asaresult,thisthermalresistance  
valuemaybeusefulforcomparingpackagesbutthetest  
conditionsdon’tgenerallymatchtheuser’sapplication.  
3. θ  
is determined with nearly all of the component  
JCtop  
ThethermalresistancenumberslistedinthePinConfigura-  
tion section of the data sheet are based on modeling the  
µModule package mounted on a test board specified per  
JESD51-9 (“Test Boards for Area Array Surface Mount  
Package Thermal Measurements”). The thermal coef-  
ficients provided are based on JESD 51-12 (“Guidelines  
for Reporting and Using Electronic Package Thermal  
Information”).  
power dissipation flowing through the top of the pack-  
age.AstheelectricalconnectionsofthetypicalµModule  
are on the bottom of the package, it is rare for an ap-  
plication to operate such that most of the heat flows  
from the junction to the top of the part. As in the case  
of θ  
, this value may be useful for comparing  
JCbottom  
packages but the test conditions don’t generally match  
the user’s application.  
4611f  
ꢀꢆ  
LTM4611  
applicaTions inForMaTion  
the printed circuit board. Consequently, a poor printed  
circuit board design can cause excessive heating, result-  
ing in impaired performance or reliability. Please refer to  
the PCB Layout section for printed circuit board design  
suggestions  
4. θ is the junction-to-board thermal resistance where  
JB  
almost all of the heat flows through the bottom of the  
µModule and into the board, and is really the sum of  
the θ  
and the thermal resistance of the bottom  
JCbottom  
of the part through the solder joints and through a por-  
tion of the board. The board temperature is measured  
a specified distance from the package, using a two  
sided, two layer board. This board is described in JESD  
51-9.  
The 1.2V, 2.5V and 3.3V power loss curves in Figures 7  
and 8 can be used in coordination with the load current  
derating curves in Figures 9 to 16 for calculating an  
approximate θ thermal resistance for the LTM4611  
JA  
with various heat sinking and air flow conditions, as  
evaluated on the aforementioned 4-layer FR4 PCB. The  
power loss curves are taken at room temperature, and  
are increased with multiplicative factors with ambient  
temperature. Theseapproximatefactorsare:1upto50°C;  
1.1 for 60°C; 1.15 for 70°C; 1.2 for 80°C; 1.25 for  
90°C; 1.3 for 100°C; 1.35 for 110°C and 1.4 for 120°C.  
The derating curves are plotted with the output current  
starting at 15A and the ambient temperature at 55°C. The  
output voltages are 1.2V, 2.5V and 3.3V. These are chosen  
to include the lower and higher output voltage ranges for  
correlating the thermal resistance. Thermal models are  
derived from several temperature measurements in a  
controlled temperature chamber along with thermal mod-  
eling analysis. The junction temperatures are monitored  
while ambient temperature is increased with and without  
air flow, and with and without a heat sink attached with  
thermally conductive adhesive tape. The BGA heat sinks  
evaluated in Table 5 yield very comparable performance  
in laminar airflow despite being visibly different in con-  
struction and form factor. The power loss increase with  
Given these definitions, it should now be apparent that  
none of these thermal coefficients reflects an actual  
physical operating condition of a µModule. Thus, none  
of them can be individually used to accurately predict the  
thermal performance of the product. Likewise, it would  
be inappropriate to attempt to use any one coefficient to  
correlate to the junction temperature versus load graphs  
given in the product’s data sheet. The only appropriate  
way to use the coefficients is to run a detailed thermal  
analysis, such as FEA, which considers all of the thermal  
resistances simultaneously.  
A graphical representation of these thermal resistances  
is given in Figure 5.  
The blue resistances are contained within the µModule,  
and the green are outside.  
The die temperature of the LTM4611 must be lower than  
the maximum rating of 125°C, so care should be taken in  
the layout of the circuit to ensure good heat sinking of the  
LTM4611. The bulk of the heat flow out of the LTM4611 is  
through the bottom of the module and the LGA pads into  
JUNCTION-TO-AMBIENT RESISTANCE (JESD 51-9 DEFINED BOARD)  
JUNCTION-TO-CASE (TOP)  
RESISTANCE  
CASE (TOP)-TO-AMBIENT  
RESISTANCE  
JUNCTION-TO-BOARD RESISTANCE  
JUNCTION  
µMODULE  
A
t
JUNCTION-TO-CASE  
(BOTTOM) RESISTANCE  
CASE (BOTTOM)-TO-BOARD  
BOARD-TO-AMBIENT  
RESISTANCE  
RESISTANCE  
4611 F06  
Figure 6  
4611f  
ꢀꢇ  
LTM4611  
applicaTions inForMaTion  
16  
4.0  
3.5  
3.0  
2.5  
4.0  
3.5  
3.0  
2.5  
5V TO 2.5V  
IN  
5V  
OUT  
OUT  
OUT  
IN  
5V TO 3.3V  
3.3V  
2.5V  
1.8V  
1.5V  
14  
12  
IN  
IN  
IN  
IN  
IN  
3.3V TO 2.5V  
IN  
10  
8
2.0  
1.5  
2.0  
1.5  
6
4
1.0  
0.5  
0
1.0  
0.5  
0
400LFM  
200LFM  
0LFM  
2
0
65  
75  
95 105 115 125  
55  
85  
3
6
12  
3
6
12  
0
15  
0
15  
9
9
AMBIENT TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4611 F09  
4611 F08  
4611 F07  
Figure 9. 5VIN to 1.2VOUꢁ No Heat Sink  
Figure 7. 1.2VOUꢁ Power Loss  
Figure 8. 2.5VOUꢁ and 3.3VOUꢁ Power Loss  
16  
16  
16  
14  
12  
14  
12  
14  
12  
10  
8
10  
8
10  
8
6
6
6
4
4
4
400LFM  
400LFM  
400LFM  
200LFM  
0LFM  
2
2
2
200LFM  
200LFM  
0LFM  
0LFM  
0
0
0
65  
75  
95 105 115 125  
55  
85  
65  
75  
95 105 115 125  
55  
85  
65  
75  
95 105 115 125  
55  
85  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4611 F11  
4611 F12  
4611 F10  
Figure 10. 5VIN to 1.2VOUꢁ with Heat Sink Figure 11. 3.3VIN to 1.2VOUꢁ No Heat Sink Figure 12. 3.3VIN to 1.2VOUꢁ with Heat Sink  
16  
16  
16  
14  
12  
14  
12  
14  
12  
10  
8
10  
8
10  
8
6
6
6
4
4
4
400LFM  
200LFM  
0LFM  
400LFM  
200LFM  
0LFM  
400LFM  
200LFM  
0LFM  
2
2
2
0
0
0
65  
75  
95 105 115 125  
65  
75  
95 105 115 125  
55  
85  
55  
85  
65  
75  
95 105 115 125  
55  
85  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4611 F13  
4611 F14  
4611 F15  
Figure 13. 3.3VIN to 2.5VOUꢁ No Heat Sink Figure 14. 3.3VIN to 2.5VOUꢁ with Heat Sink Figure 15. 5VIN to 3.3VOUꢁ No Heat Sink  
4611f  
ꢀꢈ  
LTM4611  
applicaTions inForMaTion  
16  
ambient temperature change is factored into the derating  
curves. The junctions are maintained at 115°C maximum  
while lowering output current or power while increasing  
ambient temperature. The decreased output current will  
decreasetheinternalmodulelossasambienttemperature  
isincreased.Themonitoredjunctiontemperatureof115°C  
minus the ambient operating temperature specifies how  
much module temperature rise can be allowed. As an  
example in Figure 11, the load current is derated to ~12A  
at ~75°C with no air or heat sink and the power loss for  
the 3.3V to 1.2V at 12A output is a 2.82W loss. The 2.82W  
loss is calculated with the ~2.4W room temperature loss  
from the 3.3V to 1.2V power loss curve at 12A (Figure 7),  
and the 1.175 multiplying factor at 75°C ambient. If the  
14  
12  
10  
8
6
4
400LFM  
200LFM  
0LFM  
2
0
65  
75  
95 105 115 125  
55  
85  
AMBIENT TEMPERATURE (°C)  
4611 F16  
Figure 16. 5VIN to 3.3VOUꢁ with Heat Sink  
ꢁable 2. 1.2V Output  
DERAꢁING  
POWER LOSS  
CURVE  
AIR FLOW  
CURVE  
V
(LFM)  
HEAꢁ SINK  
None  
θ
(°C/W)  
14  
IN  
JA  
JA  
JA  
Figures 9, 11  
Figures 9, 11  
Figures 9, 11  
Figures 10, 12  
Figures 10, 12  
Figures 10, 12  
5V, 3.3V  
5V, 3.3V  
5V, 3.3V  
5V, 3.3V  
5V, 3.3V  
5V, 3.3V  
Figure 7  
Figure 7  
Figure 7  
Figure 7  
Figure 7  
Figure 7  
0
200  
400  
0
None  
11.5  
10.6  
11.5  
8.4  
None  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
200  
400  
7.5  
ꢁable 3. 2.5V Output  
DERAꢁING  
CURVE  
POWER LOSS  
CURVE  
AIR FLOW  
(LFM)  
V
HEAꢁ SINK  
None  
θ
(°C/W)  
15.5  
12.7  
12.1  
IN  
Figures 13  
Figures 13  
Figures 13  
Figures 14  
Figures 14  
Figures 14  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
Figure 8  
Figure 8  
Figure 8  
Figure 8  
Figure 8  
Figure 8  
0
200  
400  
0
None  
None  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
12.6  
10.6  
8.9  
200  
400  
ꢁable 4. 3.3V Output  
DERAꢁING  
CURVE  
POWER LOSS  
CURVE  
AIR FLOW  
(LFM)  
V
HEAꢁ SINK  
None  
θ
(°C/W)  
14  
IN  
Figures 15  
Figures 15  
Figures 15  
Figures 16  
Figures 16  
Figures 16  
5V  
5V  
5V  
5V  
5V  
5V  
Figure 8  
Figure 8  
Figure 8  
Figure 8  
Figure 8  
Figure 8  
0
200  
400  
0
None  
11.5  
10.2  
12  
None  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
200  
400  
10.1  
9.3  
4611f  
ꢁ0  
LTM4611  
applicaTions inForMaTion  
75°C ambient temperature is subtracted from the 115°C  
junction temperature, then the difference of 40°C divided  
various conditions can be multiplied by the calculated  
power loss as a function of ambient temperature to derive  
temperature rise above ambient, thus maximum junction  
temperature.Roomtemperaturepowerlosscanbederived  
from the efficiency curves in the Typical Performance  
Characteristics section and adjusted with the above ambi-  
ent temperature multiplicative factors.  
by2.82Wyieldsathermalresistance,θ ,of14.2°C/W—in  
JA  
good agreement with Table 2. Tables 2, 3 and 4 provide  
equivalent thermal resistances for 1.2V, 2.5V and 3.3V  
outputs with and without air flow and heat sinking. The  
derived thermal resistances in Tables 2, 3 and 4 for the  
ꢁable 5. Output Voltage Response Versus Component Matrix, 0A to 7.5A Load Step  
ꢁYPICAL MEASURED VALUES  
C
VENDORS  
PARꢁ NUMBER  
C
VENDORS  
OUꢁ2  
PARꢁ NUMBER  
OUꢁ1  
AVX  
12106D107MAT2A (100µF, 6.3V, 1210 Case Size)  
JMK325BJ107MM-T (100µF, 6.3V, 1210 Case Size)  
C3225X5R0J107MT (100µF, 6.3V, 1210 Case Size)  
1206D226MAT (22µF, 6.3V, 1206 Case Size)  
JMK316BJ226ML-T (22µF, 6.3V, 1206 Case Size)  
C3216X5R0J226MT (22µF, 6.3V, 1206 Case Size)  
Sanyo POSCAP  
Sanyo POSCAP  
6TPF330M9L (330µF, 6.3V, 9mΩ ESR, D3L Case Size)  
2R5TPE470M9 (470µF, 2.5V, 9mΩ ESR, D2E Case Size)  
Taiyo Yuden  
TDK  
AVX  
Taiyo Yuden  
TDK  
ꢁRANSIENꢁ  
DROOP,  
0A ꢁO 7.5A PEAK-ꢁO-PEAK,  
LOAD  
SꢁEP  
SLEW  
ꢁRANSIENꢁ  
USING  
V
V
C
*
C
*
C
C
DIFF  
LOAD SꢁEP 0A ꢁO 7.5A ꢁO 0A RECOVERY RAꢁE  
R
SEꢁ  
OUꢁ IN  
IN  
IN  
OUꢁ2  
OUꢁ1  
(V) (V) (CERAMIC) (BULK) (CERAMIC) (BULK)  
C
C
AMP FIGURE  
(mV)  
65  
63  
65  
60  
64  
54  
65  
50  
55  
47  
61  
70  
62  
68  
60  
66  
61  
63  
52  
57  
53  
62  
82  
70  
75  
64  
72  
58  
65  
(mV ꢁIME (µs) (A/µs) (kΩ)  
)
P-P  
FF  
P
0.9 1.5  
0.9 1.5  
0.9 1.8  
0.9 1.8  
0.9 1.8  
0.9 2.5  
0.9 2.5  
0.9 3.3  
0.9 3.3  
470µF  
470µF  
220µF  
220µF  
220µF  
150µF  
150µF  
150µF  
150µF  
150µF  
150µF  
680µF  
680µF  
330µF  
330µF  
330µF  
150µF  
150µF  
150µF  
150µF  
150µF  
150µF  
1000µF  
1000µF  
470µF  
470µF  
470µF  
220µF  
220µF  
None 220pF None  
470µF 22pF None  
None 220pF None  
470µF 47pF None  
330µF 22pF None  
None 33pF 10pF  
330µF None 22pF  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
118  
15  
25  
20  
25  
30  
20  
20  
25  
20  
20  
20  
20  
25  
20  
30  
30  
25  
25  
30  
20  
25  
25  
20  
30  
25  
30  
30  
30  
25  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
481  
481  
481  
481  
481  
481  
481  
481  
481  
481  
481  
243  
243  
243  
243  
243  
243  
243  
243  
243  
243  
243  
121  
121  
121  
121  
121  
121  
121  
4611f  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
5 × 100µF  
3 × 22µF  
4 × 100µF  
3 × 22µF  
4 × 22µF  
5 × 100µF  
7 × 22µF  
4 × 100µF  
7 × 22µF  
4 × 100µF  
6 × 22µF  
5 × 100µF  
3 × 22µF  
4 × 100µF  
3 × 22µF  
4 × 22µF  
4 × 100µF  
7 × 22µF  
4 × 100µF  
7 × 22µF  
4 × 100µF  
6 × 22µF  
6 × 100µF  
2 × 22µF  
4 × 100µF  
3 × 22µF  
4 × 22µF  
4 × 100µF  
5 × 22µF  
122  
119  
113  
119  
108  
123  
104  
109  
102  
116  
128  
121  
123  
115  
123  
115  
115  
106  
111  
108  
119  
145  
133  
136  
126  
137  
114  
122  
None  
330µF  
None  
47pF None  
10pF 10pF  
47pF None  
10pF 10pF  
0.9  
0.9  
1
1
1
1
1
1
1
5
5
330µF  
1.5  
1.5  
1.8  
1.8  
1.8  
2.5  
2.5  
3.3  
3.3  
5
None 220pF None  
470µF 33pF None  
None 220pF None  
470µF 33pF None  
330µF 22pF None  
None  
330µF  
None  
330µF  
None  
47pF None  
10pF 10pF  
47pF None  
10pF 10pF  
47pF None  
10pF 10pF  
1
1
1
1
5
330µF  
1.2 1.5  
1.2 1.5  
1.2 1.8  
1.2 1.8  
1.2 1.8  
1.2 2.5  
1.2 2.5  
None 220pF None  
470µF 47pF None  
None 220pF None  
470µF 22pF None  
330µF 22pF None  
None 100pF None  
330µF  
10pF 10pF  
ꢁꢀ  
LTM4611  
applicaTions inForMaTion  
ꢁRANSIENꢁ  
DROOP,  
LOAD  
SꢁEP  
SLEW  
ꢁRANSIENꢁ  
USING  
0A ꢁO 7.5A PEAK-ꢁO-PEAK,  
V
V
C
*
C
*
C
C
DIFF  
LOAD SꢁEP 0A ꢁO 7.5A ꢁO 0A RECOVERY RAꢁE R  
SEꢁ  
OUꢁ IN  
IN  
IN  
OUꢁ2  
OUꢁ1  
(V) (V) (CERAMIC) (BULK) (CERAMIC) (BULK)  
C
C
AMP FIGURE  
(mV)  
60  
63  
47  
(mV )  
ꢁIME (µs) (A/µs) (kΩ)  
FF  
P
P-P  
1.2 3.3  
1.2 3.3  
150µF 4 x 100µF  
None  
330µF  
None  
330µF  
None 220pF None  
470µF 47pF None  
None 220pF None  
330µF 22pF 10pF  
None  
330µF 22pF None  
None 33pF 10pF  
330µF None 10pF  
None 220pF None  
330µF 22pF None  
None  
330µF 22pF None  
None 33pF 10pF  
33pF 10pF  
10pF 10pF  
47pF None  
10pF 10pF  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
20  
20  
116  
30  
20  
30  
25  
25  
40  
40  
30  
30  
30  
30  
30  
45  
35  
40  
30  
40  
30  
45  
40  
50  
45  
50  
40  
40  
50  
60  
45  
30  
40  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5 28.4  
7.5 28.4  
7.5 28.4  
7.5 28.4  
7.5 28.4  
7.5 28.4  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
121  
121  
121  
121  
69  
69  
69  
69  
69  
69  
69  
69  
48.1  
48.1  
48.1  
48.1  
48.1  
48.1  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
2 × 47µF  
150µF  
150µF  
150µF  
1000µF  
1000µF  
220µF  
220µF  
150µF  
150µF  
150µF  
150µF  
330µF  
330µF  
150µF  
150µF  
150µF  
150µF  
330µF  
330µF  
330µF  
150µF  
150µF  
150µF  
150µF  
150µF  
150µF  
150µF  
680µF  
680µF  
117  
105  
123  
147  
135  
122  
133  
123  
124  
122  
131  
137  
145  
118  
137  
127  
133  
143  
123  
128  
134  
115  
160  
274  
143  
119  
193  
511  
431  
7 × 22µF  
4 × 100µF  
6 × 22µF  
6 × 100µF  
2 × 22µF  
4 × 100µF  
5 × 22µF  
4 × 100µF  
4 × 22µF  
4 × 100µF  
6 × 22µF  
4 × 100µF  
5 × 22µF  
4 × 100µF  
4 × 22µF  
4 × 100µF  
6 × 22µF  
3 × 100µF  
4 × 100µF  
3 × 22µF  
3 × 100µF  
4 × 100µF  
5 × 22µF  
2 × 100µF  
3 × 100µF  
4 × 100µF  
5 × 22µF  
1 × 100µF  
7 × 22µF  
1.2  
1.2  
5
5
64  
83  
71  
64  
68  
66  
67  
59  
67  
73  
76  
57  
69  
64  
69  
71  
66  
67  
60  
54  
81  
137  
67  
56  
95  
264  
218  
1.5 1.8  
1.5 1.8  
1.5 2.5  
1.5 2.5  
1.5 3.3  
1.5 3.3  
33pF 10pF  
1.5  
1.5  
5
5
1.8 2.5  
1.8 2.5  
1.8 3.3  
1.8 3.3  
47pF 10pF  
1.8  
1.8  
5
5
330µF None 10pF  
None 100pF None  
None 100pF None  
2.5 3.3  
2.5 3.3  
2.5 3.3  
330µF  
47pF None  
2.5  
2.5  
2.5  
3.3  
3.3  
3.3  
3.3  
5
5
5
5
5
5
5
5
5.5  
5.5  
None 100pF None  
None 100pF None  
330µF 22pF None  
None  
None  
None 100pF None  
330µF 22pF None  
None  
None  
22pF None  
47pF None  
19.3  
19.3  
19.3  
19.3  
11.5  
11.5  
10pF None  
None None  
5
HEAꢁ SINK MANUFACꢁURER  
Wakefield Engineering  
AAVID Thermalloy  
PARꢁ NUMBER  
WEBSIꢁE  
LTN20069  
www.wakefield.com  
375424B00034G  
www.aavidthermalloy.com  
ꢁHERMALLY CONDUCꢁIVE ADHESIVE  
ꢁAPE MANUFACꢁURER  
PARꢁ NUMBER  
WEBSIꢁE  
Chromerics  
T411  
www.chromerics.com  
*Thequantityandqualityofbulkinputbypasscapacitance  
needed, particularly for low dropout scenarios (V – V  
< 600mV) is mainly dependent on the output impedance  
and dynamic response of the power source feeding the  
LTM4611(s). Consider, in the extreme: for a heavy load  
step, the full transient on LTM4611’s output is directly  
referred to its input, and the LTM4611 can only deliver  
to its output whatever the source supply and local input  
caps can provide. Sluggish source supplies will call for  
more bulk capacitance placed locally to the LTM4611’s  
input, to assist the source supply in riding through severe  
IN  
OUT  
transient load steps.  
4611f  
ꢁꢁ  
LTM4611  
applicaTions inForMaTion  
Safety Considerations  
• Tominimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
The LTM4611 modules do not provide galvanic isolation  
from V to V . There is no internal fuse. If required,  
IN  
OUT  
a slow blow fuse with a rating twice the maximum input  
current needs to be provided to protect each unit from  
catastrophic failure. The device does support overvoltage  
protection and overcurrent protection.  
• Do not put vias directly on the pad, unless they are  
capped or plated over.  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to GND underneath the unit.  
Layout Checklist/Example  
• For parallel modules, tie the respective COMP, V ,  
FB  
The high integration of LTM4611 makes the PCB board  
layout very simple and easy. However, to optimize its  
electrical and thermal performance, some layout consid-  
erations are still necessary.  
V
, TRACK/SS and RUN pins together. Use an  
OUT_LCL  
internal layer to closely connect these pins together.  
Figure 17 gives a good example of the recommended  
layout. Figures 18 and 19 show schematics of the  
LTM4611 devices operating in parallel.  
• Use large PCB copper areas for high current paths,  
including V , GND and V . It helps to minimize the  
IN  
OUT  
• To facilitate stuffing verification, test and debug activi-  
ties, consider routing control signals of the LTM4611  
with short traces to localized test points, test pads or  
test vias–as PCB layout space permits. Both in-house  
and contract manufacturers enjoy gaining electrical  
access to all non low impedance (>10Ω) pins of an  
IC or µModule device to improve in-circuit test (ICT)  
coverage.  
PCB conduction loss and thermal stress.  
• Place high frequency ceramic input and output capaci-  
tors next to the V , GND and V  
pins to minimize  
IN  
OUT  
high frequency noise.  
• Place a dedicated power ground layer underneath the  
unit.  
V
IN  
CONTROL  
C
C
IN  
IN  
GND  
SIGNAL  
GROUND  
C
C
OUT  
OUT  
V
V
OUT  
OUT  
4611 F17  
Figure 17. Recommended PCB Layouts  
4611f  
ꢁꢂ  
LTM4611  
Typical applicaTions  
V
IN  
INTV  
CC  
V
1.2V  
60A  
OUT  
1.5V TO 5.5V  
C
22µF  
10V  
C
22µF  
10V  
IN1  
IN2  
V
INTV  
PGOOD  
IN  
CC  
CC  
CC  
CC  
C
SS  
0.1µF  
R1  
10k  
COMP  
V
OUT  
V
OUT_LCL  
+
C
*
C
*
OUT2  
OUT1  
TRACK/SS  
RUN  
470µF  
6.3V  
100µF  
6.3V  
DIFFV  
OUT  
+
LTM4611  
PLLFLTR/f  
V
V
SET  
OSNS  
C
C
*
FF1  
MODE_PLLIN  
OSNS  
V
FB  
SGND  
GND  
R
FB  
*
P1  
30.1k  
R2  
100k  
4-PHASE CLOCK  
INTV  
CC  
+
SET  
LTC6902  
V
C1  
1µF  
MOD  
DIV  
C
22µF  
10V  
C
22µF  
10V  
IN3  
IN4  
GND  
PH  
V
IN  
INTV  
PGOOD  
OUT4  
OUT3  
OUT1  
OUT2  
COMP  
V
OUT  
V
OUT_LCL  
+
+
+
C
*
*
*
C
*
OUT3  
470µF  
6.3V  
OUT4  
100µF  
6.3V  
TRACK/SS  
RUN  
C
*
FF2  
DIFFV  
OUT  
+
LTM4611  
PLLFLTR/f  
V
V
SET  
OSNS  
MODE_PLLIN  
OSNS  
INTV  
CC  
V
FB  
SGND  
GND  
C
*
P2  
C
22µF  
10V  
C
22µF  
10V  
IN5  
IN6  
V
IN  
INTV  
LTM4611  
GND  
PGOOD  
COMP  
V
OUT  
V
OUT_LCL  
C
C
*
OUT5  
470µF  
6.3V  
OUT6  
100µF  
6.3V  
TRACK/SS  
RUN  
C
C
*
FF3  
DIFFV  
OUT  
+
PLLFLTR/f  
V
V
SET  
OSNS  
MODE_PLLIN  
OSNS  
INTV  
CC  
V
FB  
SGND  
*
P3  
C
22µF  
10V  
C
22µF  
10V  
IN7  
IN8  
V
IN  
INTV  
PGOOD  
COMP  
V
OUT  
V
OUT_LCL  
C
C
*
OUT8  
100µF  
6.3V  
OUT7  
470µF  
6.3V  
TRACK/SS  
RUN  
C
*
FF4  
DIFFV  
OUT  
+
LTM4611  
PLLFLTR/f  
V
V
SET  
OSNS  
MODE_PLLIN  
OSNS  
INTV  
CC  
V
FB  
SGND  
GND  
C
*
P4  
4611 F18  
*FOR BEST NOISE IMMUNITY, DISTRIBUTE CAPACITORS WITH  
CONNECTIONS AMONGST ALL PARALLELED LTM4611s  
V
FB  
Figure 18. 1.2V, 60A, Current Sharing with 4-Phase Operation  
4611f  
ꢁꢃ  
LTM4611  
Typical applicaTions  
V
IN  
INTV  
CC  
1.5V TO 5.5V  
C
22µF  
10V  
C
22µF  
10V  
C
22µF  
10V  
IN1  
IN2  
IN3  
V
INTV  
PGOOD  
IN  
CC  
V
C
SS  
OUT  
1V  
0.1µF  
COMP  
V
OUT  
V
OUT_LCL  
30A  
+
R1  
10k  
C
*
C
*
OUT1  
OUT2  
TRACK/SS  
RUN  
470µF  
6.3V  
100µF  
6.3V  
LTM4611  
DIFFV  
OUT  
+
INTV  
CC  
PLLFLTR/f  
V
V
SET  
OSNS  
C
C
*
FF1  
CLOCK SYNC 0 PHASE  
+
MODE_PLLIN  
OUT1  
V
OSNS  
C1  
1µF  
R2  
LTC6908-1  
V
FB  
OUT2  
MOD  
GND  
SET  
SGND  
GND  
R
FB  
121k  
*
P1  
200k  
C
22µF  
10V  
C
22µF  
10V  
C
22µF  
10V  
IN4  
IN5  
IN6  
V
IN  
INTV  
PGOOD  
CC  
COMP  
V
OUT  
V
OUT_LCL  
+
C
*
C
*
OUT3  
OUT4  
TRACK/SS  
RUN  
C
*
FF2  
470µF  
6.3V  
100µF  
6.3V  
LTM4611  
DIFFV  
OUT  
+
PLLFLTR/f  
V
V
SET  
OSNS  
CLOCK SYNC 180 PHASE  
INTV  
*
MODE_PLLIN  
CC  
OSNS  
V
FB  
SGND  
GND  
C
P2  
4611 F19  
*FOR BEST NOISE IMMUNITY, DISTRIBUTE CAPACITORS WITH  
CONNECTIONS AMONGST ALL PARALLELED LTM4611s  
V
FB  
Figure 19. 1V at 30A LꢁM4611 ꢁwo Parallel Outputs with 2-Phase Operation  
5V  
C
22µF  
10V  
C
22µF  
10V  
C
22µF  
10V  
IN1  
IN2  
IN3  
V
INTV  
PGOOD  
IN  
CC  
C
SS  
0.1µF  
3.3V  
15A  
COMP  
V
OUT  
V
OUT_LCL  
R1  
10k  
+
C
*
C
47µF  
6.3V  
*
OUT1  
OUT2  
TRACK/SS  
RUN  
C *  
FF  
220µF  
6.3V  
DIFFV  
OUT  
+
LTM4611  
PLLFLTR/f  
V
V
SET  
OSNS  
INTV  
CC  
MODE_PLLIN  
CONTINUOUS  
MODE  
OSNS  
V
FB  
SGND  
GND  
R
FB  
19.1k  
C *  
P
*SEE TABLE 5  
4611 F20  
Figure 20. 3.3V at 15A Design, Example of Not Using Differential Remote Sense  
4611f  
ꢁꢄ  
LTM4611  
package phoTograph  
package DescripTion  
Pin Assignment ꢁable  
(Arranged by Pin Number)  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
E1 GND  
PIN NAME  
F1 GND  
A1  
A2  
A3  
A4  
A5  
A6  
V
V
V
V
V
V
B1  
B2  
B3  
B4  
B5  
B6  
V
V
V
V
V
V
C1  
C2  
C3  
C4  
C5  
C6  
V
V
V
V
V
V
D1 GND  
D2 GND  
D3 GND  
D4 GND  
D5 GND  
D6 GND  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
E2 GND  
E3 GND  
E4 GND  
E5 GND  
E6 GND  
E7 GND  
F2 GND  
F3 GND  
F4 GND  
F5 GND  
F6 GND  
F7 GND  
F8 GND  
F9 GND  
A7 INTV  
B7 GND  
A8 MODE_PLLIN B8  
C7 GND  
C8  
D7  
-
CC  
-
-
D8 GND  
D9 INTV  
E8  
-
A9 TRACK/SS  
A10 RUN  
B9 GND  
B10  
C9 GND  
C10 MTP3  
C11 MTP4  
C12 MTP5  
E9 GND  
CC  
-
D10 MTP6  
D11 MTP7  
D12 MTP8  
E10  
E11  
-
-
F10  
F11 PGOOD  
F12  
-
A11 COMP  
A12 MTP1  
B11 MTP2  
B12 PLLFLTR/f  
E12 MTP9  
V
FB  
SET  
PIN NAME  
G1 GND  
G2 GND  
G3 GND  
G4 GND  
G5 GND  
G6 GND  
G7 GND  
G8 GND  
G9 GND  
PIN NAME  
H1 GND  
H2 GND  
H3 GND  
H4 GND  
H5 GND  
H6 GND  
H7 GND  
H8 GND  
H9 GND  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
J1  
V
V
V
V
V
V
V
V
V
V
-
K1  
V
V
V
V
V
V
V
V
V
V
V
L1  
V
V
V
V
V
V
V
V
V
V
V
V
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
V
V
V
V
V
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT_LCL  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OSNS  
J2  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
L2  
L3  
L4  
J3  
J4  
J5  
L5  
L6  
L7  
J6  
J7  
J8  
L8  
L9  
L10  
L11  
L12  
J9  
G10  
-
H10  
-
J10  
J11  
J12  
M10 V  
M11 V  
M12 V  
G11 SGND  
H11 SGND  
H12 SGND  
+
G12 PGOOD  
V
K12 DIFFV  
OUT  
OSNS  
4611f  
ꢁꢅ  
LTM4611  
package DescripTion  
Z
b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
4611f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresenta-  
tionthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
ꢁꢆ  
LTM4611  
Typical applicaTion  
V
IN  
INTV  
CC  
1.5V TO 5.5V*  
C
22µF  
10V  
C
22µF  
10V  
C
22µF  
10V  
IN1  
IN2  
IN3  
PGOOD  
CC  
V
INTV  
IN  
C
V
SS  
OUT  
0.1µF  
1V  
COMP  
V
OUT  
V
OUT_LCL  
C
*
15A  
OUT2  
R1  
10k  
+
C
*
OUT1  
TRACK/SS  
RUN  
22µF  
6.3V  
s2  
C
*
FF  
220µF  
6.3V  
LTM4611  
DIFFV  
OUT  
+
PLLFLTR/f  
V
V
SET  
OSNS  
CONTINUOUS MODE  
MODE_PLLIN  
OSNS  
V
FB  
SGND  
GND  
R
FB  
C *  
P
240k  
4611 F21  
*SEE TABLE 5  
Figure 21. 1.5V to 5.5VIN, 1V at 15A Design  
relaTeD parTs  
PARꢁ NUMBER  
DESCRIPꢁION  
COMMENꢁS  
LTM4600  
10A DC/DC µModule  
Basic 10A DC/DC µModule  
LTM4601A  
12A DC/DC µModule with PLL, Output Tracking/  
Margining and Remote Sensing  
Synchronizable, PolyPhase Operation to 48A, Pin Compatible with the  
LTM4611 and LTM4617  
LTM4602  
LTM4603  
6A DC/DC µModule  
Pin Compatible with the LTM4600  
6A DC/DC µModule with PLL and Output Tracking/  
Margining and Remote Sensing  
Synchronizable, PolyPhase Operation, LTM4603-1 Version has no  
Remote Sensing, Pin Compatible with the LTM4601  
LTM4604A  
4A Low Voltage DC/DC µModule  
2.375V ≤ V ≤ 5.5V; 0.8V ≤ V  
≤ 5V,  
OUT  
IN  
9mm × 15mm × 2.3mm (Ultrathin) LGA Package  
LTM4605  
LTM4606  
LTM4607  
LTM4608A  
LTM4609  
LTM4612  
LTM8023  
LTM8032  
Buck-Boost DC/DC µModule Family  
Ultralow Noise 6A DC/DC µModule  
Buck-Boost DC/DC µModule Family  
8A Low Voltage DC/DC µModule  
Buck-Boost DC/DC µModule Family  
All Pin Compatible; Up to 5A; Up to 36V , 34V  
15mm × 15mm × 2.8mm  
OUT  
IN  
4.5V ≤ V ≤ 28V, 0.6V ≤ V  
≤ 5V, 15mm × 15mm × 2.8mm Package  
OUT  
IN  
All Pin Compatible; Up to 5A; Up to 36V , 34V  
15mm × 15mm × 2.8mm  
OUT  
IN  
2.7V ≤ V ≤ 5.5V; 0.6V ≤ V  
≤ 5V; 9mm × 15mm × 2.8mm LGA Package  
OUT  
IN  
All Pin Compatible; Up to 5A; Up to 36V , 34V  
15mm × 15mm × 2.8mm  
OUT  
IN  
Ultralow Noise High V  
DC/DC µModule  
5A, 5V ≤ V ≤ 36V, 3.3V ≤ V  
≤ 15V, 15mm × 15mm × 2.8mm Package  
OUT  
OUT  
IN  
36V, 2A DC/DC µModule  
Ultralow Noise 36V, 2A DC/DC µModule  
3.6V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 10V, 9mm × 11.25mm × 2.8mm Package  
OUT  
IN  
EN55022 Class B Compliant; 0.8V ≤ V  
9mm × 15mm × 2.8mm  
≤ 10V; 3.6V ≤ V ≤ 36V;  
IN  
OUT  
4611f  
LT 0510 • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
ꢁꢇ  
LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM4612

Ultralow Noise 36VIN, 15VOUT, 5A, DC/DC μModule
Linear

LTM4612EV#PBF

LTM4612 - Ultralow Noise 36VIN, 15VOUT, 5A, DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 133; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4612EV-PBF

Ultralow Noise 36VIN, 15VOUT, 5A, DC/DC μModule
Linear

LTM4612IV#PBF

LTM4612 - Ultralow Noise 36VIN, 15VOUT, 5A, DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 133; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4612IV-PBF

Ultralow Noise 36VIN, 15VOUT, 5A, DC/DC μModule
Linear

LTM4612MPV

Ultralow Noise 36VIN, 15VOUT, 5A, DC/DC μModule
Linear

LTM4612MPV-PBF

Ultralow Noise 36VIN, 15VOUT, 5A, DC/DC μModule
Linear

LTM4612V

Ultralow Noise 36VIN, 15VOUT, 5A, DC/DC μModule
Linear

LTM4612_1

EN55022B Compliant 36VIN, 15VOUT, 5A, DC/DC Module Regulator
Linear

LTM4613

符合 EN55022B 規格的36VIN、15VOUT、8A、DC/DC μModule 穩壓器,LTM®4613 是一款完整、超低噪聲、8A 開關模式 DC/DC電源。
Linear

LTM4613EV#PBF

LTM4613 - EN55022B Compliant 36VIN, 15VOUT, 8A, DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 133; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4613EY#PBF

暂无描述
Linear