LTM4612V [Linear]

Ultralow Noise 36VIN, 15VOUT, 5A, DC/DC μModule; 超低噪声36VIN , 15VOUT , 5A , DC / DC微型模块
LTM4612V
型号: LTM4612V
厂家: Linear    Linear
描述:

Ultralow Noise 36VIN, 15VOUT, 5A, DC/DC μModule
超低噪声36VIN , 15VOUT , 5A , DC / DC微型模块

文件: 总24页 (文件大小:365K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4612  
Ultralow Noise  
36V , 15V , 5A,  
IN  
OUT  
Module  
DC/DC  
µ
FEATURES  
DESCRIPTION  
The LTM®4612 is a complete, ultralow noise, high voltage  
inputandoutput,5AswitchingmodeDC/DCpowersupply.  
Includedinthepackagearetheswitchingcontroller,power  
FETs, inductor and all support components. Operating  
over an input voltage range of 5V to 36V, the LTM4612  
supports an output voltage range of 3.3V to 15V, set by a  
single resistor. Only bulk input and output capacitors are  
needed to finish the design.  
n
Complete Low EMI Switch Mode Power Supply  
n
CISPR 22 Class B Compliant  
n
Wide Input Voltage Range: 5V to 36V  
n
5A DC, 7A Peak Output Current  
n
3.3V to 15V Output Voltage Range  
n
Low Input and Output Referred Noise  
n
Output Voltage Tracking and Margining  
n
PLL Frequency Synchronization  
n
1.5% Set Point Accuracy  
High switching frequency and an adaptive on-time current  
mode architecture enables a very fast transient response  
to line and load changes without sacrificing stability.  
n
Power Good Tracks with Margining  
n
Current Foldback Protection (Disabled at Start-Up)  
n
Parallel/Current Sharing  
n
The onboard input filter and noise cancellation circuits  
achieve low noise coupling, thus effectively reducing the  
electromagnetic interference (EMI)—see Figures 4 and 8.  
Furthermore, the DC/DC μModuleTM can be synchronized  
with an external clock for reducing undesirable frequency  
harmonics and allows PolyPhase® operation for high load  
currents.  
Ultrafast Transient Response  
n
Current Mode Control  
n
Programmable Soft-Start  
n
Output Overvoltage Protection  
n
–55°C to 125°C Operating Temperature Range  
(LTM4612MPV)  
n
Small Surface Mount Footprint, Low Profile  
(15mm × 15mm × 2.8mm) LGA Package  
The LTM4612 is offered in a space saving and thermally  
enhanced 15mm × 15mm × 2.8mm LGA package, which  
enables utilization of unused space on the bottom of PC  
boards for high density point-of-load regulation. The  
LTM4612 is Pb-free and RoHS compliant.  
APPLICATIONS  
n
Telecom and Networking Equipment  
n
Industrial and Avionic Equipment  
n
RF Systems  
, LT, LTC, LTM and PolyPhase are registered trademarks of Linear Technology  
Corporation. μModule is a trademark of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Efficiency vs Load Current at 12V Output  
12V/5A Ultralow Noise μModule with 22V to 36V Input  
100  
95  
CLOCK SYNC  
V
IN  
22V  
90  
TO 36V  
2M  
100k  
V
PLLIN  
V
12V  
5A  
IN  
85  
80  
75  
70  
65  
60  
55  
50  
OUT  
V
OUT  
PGOOD  
RUN  
LTM4612  
100pF  
5.23k  
C
OUT  
COMP  
V
FB  
INTV  
DRV  
CC  
CC  
C
IN  
FCB  
f
SET  
MARG0  
MARG1  
MPGM  
MARGIN  
CONTROL  
TRACK/SS  
V
D
24V 12V  
IN  
OUT  
OUT  
OUT  
0.01μF  
28V 12V  
IN  
10μF  
392k  
5% MARGIN  
36V 12V  
IN  
SGND PGND  
0
1
2
3
4
5
4612 TA01  
OUTPUT CURRENT (A)  
4612 TA01b  
4612f  
1
LTM4612  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
INTV DRV .............................................0.3V to 6V  
CC,  
CC  
V
...........................................................0.3V to 16V  
OUT  
PLLIN, FCB, TRACK/SS, MPGM, MARG0,  
MARG1, PGOOD, f ...........–0.3V to INTV + 0.3V  
A
B
C
D
E
V
IN  
SET  
CC  
f
SET  
MARG0  
MARG1  
V
BANK 1  
D
RUN .............................................................0.3V to 5V  
SGND  
V , COMP................................................0.3V to 2.7V  
FB  
DRV  
CC  
PGND  
BANK 2  
V , V .......................................................0.3V to 36V  
F
V
IN  
D
FB  
G
H
J
K
L
PGOOD  
SGND  
NC  
NC  
NC  
Internal Operating Temperature Range (Note 2)  
E and I Grades ...................................–40°C to 125°C  
MP Grade...........................................–55°C to 125°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range...................–55°C to 125°C  
V
OUT  
BANK 3  
FCB  
M
1
2 3 4 5 6 7 8 9 10 11 12  
LGA PACKAGE  
133-LEAD (15mm × 15mm × 2.8mm)  
T
= 125°C, θ = 15°C/W, θ = 6°C/W  
JA JC  
JMAX  
θ
JA  
DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS  
WEIGHT = 1.7g  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM4612EV#PBF  
LTM4612IV#PBF  
LTM4612MPV#PBF  
TRAY  
PART MARKING*  
LTM4612V  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
LTM4612EV#PBF  
LTM4612IV#PBF  
LTM4612MPV#PBF  
133-Lead (15mm × 15mm × 2.8mm) LGA  
133-Lead (15mm × 15mm × 2.8mm) LGA  
133-Lead (15mm × 15mm × 2.8mm) LGA  
LTM4612V  
–40°C to 125°C  
LTM4612MPV  
–55°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C, VIN = 24V, unless otherwise noted. Per Typical Application  
(front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
Input DC Voltage  
Output Voltage  
5
36  
V
IN(DC)  
V
C
IN  
= 10μF × 3, C  
= 300μF; FCB = 0  
OUT  
OUT(DC)  
l
l
11.89  
11.89  
12.07  
12.07  
12.25  
12.25  
V
V
V
V
= 24V, V  
= 12V, I  
= 0A  
IN  
OUT  
OUT  
= 36V, V =12V, I  
= 0A  
IN  
OUT  
OUT  
Input Specifications  
V
I
Undervoltage Lockout Threshold  
Input Inrush Current at Start-Up  
I
I
= 0A  
3.2  
4.8  
V
IN(UVLO)  
OUT  
= 0A; C = 10μF × 2, C  
= 200μF;  
INRUSH(VIN)  
OUT  
IN  
OUT  
V
= 12V  
OUT  
0.6  
0.7  
A
A
V
V
= 24V  
= 36V  
IN  
IN  
4612f  
2
LTM4612  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C, VIN = 24V, unless otherwise noted. Per Typical Application  
(front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Input Supply Bias Current  
V
V
V
V
= 36V, No Switching  
4.5  
57  
mA  
mA  
mA  
mA  
μA  
Q(VIN)  
IN  
IN  
IN  
IN  
= 36V, V  
= 12V, Switching Continuous  
OUT  
= 24V, No Switching  
= 24V, V = 12V, Switching Continuous  
3.5  
48  
OUT  
Shutdown, RUN = 0, V = 36V  
50  
IN  
I
Input Supply Current  
V
IN  
V
IN  
= 36V, V  
= 24V, V  
= 12V, I  
= 12V, I  
= 5A  
= 5A  
1.85  
2.72  
A
A
S(VIN)  
OUT  
OUT  
OUT  
OUT  
V
Internal V Voltage  
V
= 36V, RUN > 2V, I = 0A  
OUT  
4.7  
0
5
5.3  
V
INTVCC  
CC  
IN  
Output Specifications  
I
Output Continuous Current Range  
Line Regulation Accuracy  
V
V
= 24V, V  
= 12V (Note 4)  
OUT  
5
A
OUT(DC)  
IN  
= 12V, FCB = 0V, V = 22V to 36V,  
ΔV  
OUT  
OUT  
IN  
OUT(LINE)  
l
I
= 0A  
0.05  
0.3  
%
V
OUT  
Load Regulation Accuracy  
Input Ripple Voltage  
V
= 12V, FCB = 0V, I  
IN  
IN  
= 0A to 5A (Note 4)  
OUT  
ΔV  
OUT  
V
V
OUT(LOAD)  
l
l
= 36V  
= 24V  
0.3  
0.3  
0.6  
0.6  
%
%
V
OUT  
V
V
I
= 0A,  
IN(AC)  
OUT  
IN  
C
= 2 × 10μF X5R Ceramic and 1 × 100μF  
Electrolytic, 1 × 10μF X5R Ceramic on V Pins  
D
V
V
= 24V, V  
= 24V, V  
= 5V  
= 12V  
7.2  
3.4  
mV  
mV  
IN  
IN  
OUT  
OUT  
P-P  
P-P  
Output Ripple Voltage  
I
= 0A,  
OUT(AC)  
OUT  
OUT  
C
= 2 × 22μF, 2 × 47μF X5R Ceramic  
V
V
= 24V, V  
= 24V, V  
= 5V  
= 12V  
17.5  
12.5  
mV  
mV  
IN  
IN  
OUT  
OUT  
P-P  
P-P  
f
S
Output Ripple Voltage Frequency  
I
= 1A, V = 24V, V = 12V  
OUT  
940  
kHz  
OUT  
IN  
Turn-On Overshoot,  
TRACK/SS = 10nF  
C
= 200μF, V  
IN  
IN  
= 12V, I  
= 0A  
ΔV  
OUT  
V
V
OUT  
OUT  
OUT(START)  
= 36V  
= 24V  
20  
20  
mV  
mV  
t
Turn-On Time, TRACK/SS = Open  
C
= 300μF, V  
OUT  
= 12V, I  
= 1A  
START  
OUT  
OUT  
Resistive Load  
V
V
= 36V  
= 24V  
0.5  
0.5  
ms  
ms  
IN  
IN  
Peak Deviation for Dynamic Load  
Load: 0% to 50% to 0% of Full Load  
= 2 × 22μF Ceramic, 150μF Bulk  
ΔV  
OUT(LS)  
C
OUT  
V
153  
37  
mV  
μs  
= 24V, V  
= 12V  
OUT  
IN  
t
I
Settling Time for Dynamic Load Step Load: 0% to 50% to 0% of Full Load, V = 24V  
IN  
SETTLE  
Output Current Limit  
C
= 200μF  
IN  
IN  
OUT(PK)  
OUT  
V
V
= 36V, V  
= 24V, V  
= 12V  
= 12V  
9
9
A
A
OUT  
OUT  
Control Section  
l
V
V
Voltage at V Pin  
I
= 0A, V = 12V  
OUT  
0.594  
1
0.6  
1.5  
–1.5  
0.6  
–1  
0.606  
1.9  
V
V
FB  
FB  
OUT  
RUN Pin On/Off Threshold  
Soft-Start Charging Current  
Forced Continuous Threshold  
Forced Continuous Pin Current  
Minimum On-Time  
RUN  
I
V
V
= 0V  
–1  
–2  
μA  
V
SS/TRACK  
SS/TRACK  
V
0.57  
0.63  
–2  
FCB  
I
t
t
= 0V  
FCB  
μA  
ns  
ns  
FCB  
(Note 3)  
(Note 3)  
50  
100  
400  
ON(MIN)  
OFF(MIN)  
Minimum Off-Time  
250  
4612f  
3
LTM4612  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the –40°C to 85°C  
operating temperature range, otherwise specifications are at TA = 25°C, VIN = 24V, unless otherwise noted. Per Typical Application  
(front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
50  
MAX  
UNITS  
kΩ  
mA  
kΩ  
V
R
PLLIN  
PLLIN Input Resistor  
I
Current into DRV Pin  
V
OUT  
= 12V, I = 1A  
OUT  
22  
30  
DRVCC  
CC  
R
FBHI  
Resistor Between V  
and V Pins  
99.5  
100  
1.18  
1.4  
100.5  
OUT  
FB  
V
V
Margin Reference Voltage  
MPGM  
, V  
MARG0, MARG1 Voltage Thresholds  
V
MARG0 MARG1  
PGOOD  
PGOOD Upper Threshold  
PGOOD Lower Threshold  
PGOOD Hysteresis  
V
V
V
Rising  
Falling  
7
10  
–10  
1.5  
13  
%
%
%
V
ΔV  
FB  
FBH  
–7  
–13  
ΔV  
FB  
FBL  
Returning  
ΔV  
FB  
FB(HYS)  
V
PGOOD Low Voltage  
I
= 5mA  
0.15  
0.4  
PGL  
PGOOD  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM4612E is guaranteed to meet performance specifications  
over the 0°C to 125°C internal operating temperature range. Specifications  
over the –40°C to 125°C internal operating temperature range are assured  
by design, characterization and correlation with statistical process  
controls. The LTM4612I is guaranteed to meet specifications over the  
–40°C to 125°C internal operating temperature range. The LTM4612MP  
is guaranteed and tested over the full –55°C to 125°C internal operating  
temperature range. Note that the maximum ambient temperature is  
determined by specific operating conditions in conjunction with board  
layout, the rated package thermal resistance and other environmental  
factors.  
Note 3: 100% tested at die level only.  
Note 4: See the Output Current Derating curves for different V , V  
IN OUT  
and T .  
A
4612f  
4
LTM4612  
TYPICAL PERFORMANCE CHARACTERISTICS (Refer to Figure 18)  
Efficiency vs Load Current with  
3.3VOUT (FCB = 0)  
Efficiency vs Load Current with  
5VOUT (FCB = 0)  
Efficiency vs Load Current with  
12VOUT (FCB = 0)  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
5V 3.3V  
20V 12V  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
12V 3.3V  
12V 5V  
24V 12V  
IN  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
24V 3.3V  
24V 5V  
28V 12V  
IN  
IN  
IN  
36V 3.3V  
IN  
36V 5V  
IN  
36V 12V  
IN  
0
1
2
3
4
5
0
1
2
3
5
0
1
2
3
4
5
4
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4612 G02  
4612 G03  
4612 G01  
Efficiency vs Load Current with  
15VOUT (FCB = 0, Refer to Figure 20)  
Transient Response from 12VIN  
to 3.3VOUT  
Transient Response from 12VIN  
to 5VOUT  
100  
95  
90  
85  
80  
75  
70  
65  
60  
2A/DIV  
2A/DIV  
100mV/DIV  
100mV/DIV  
28V 15V  
IN  
OUT  
OUT  
OUT  
32V 15V  
IN  
36V 15V  
IN  
50μs/DIV  
LOAD STEP: 0A to 3A  
4612 G05  
0
1
2
3
4
5
50μs/DIV  
4612 G06  
LOAD CURRENT (A)  
LOAD STEP: 0A to 3A  
4612 G04  
C
= 2 s 22μF CERAMIC CAPACITORS AND  
C
= 2 s 22μF CERAMIC CAPACITORS AND  
OUT  
OUT  
2 s 47μF CERAMIC CAPACITORS  
2 s 47μF CERAMIC CAPACITORS  
Transient Response from 24VIN  
to 12VOUT  
Start-Up with 24VIN to 12VOUT  
at IOUT = 0A  
Start-Up with 24VIN to 12VOUT at  
IOUT = 5A  
I
IN  
2A/DIV  
0.2A/DIV  
I
IN  
1A/DIV  
200mV/  
DIV  
V
OUT  
V
OUT  
5V/DIV  
5V/DIV  
50μs/DIV  
4612 G07  
500μs/DIV  
4612 G08  
500μs/DIV  
4612 G09  
LOAD STEP: 0A to 3A  
SOFT-START CAPACITOR: 3.9nF  
SOFT-START CAPACITOR: 3.9nF  
C
= 2 s 22μF CERAMIC CAPACITORS AND  
C
= 3 s 10μF CERAMIC CAPACITORS AND  
C
= 3 s 10μF CERAMIC CAPACITORS AND  
OUT  
IN  
IN  
2 s 47μF CERAMIC CAPACITORS  
1 s 47μF OSCON CAPACITOR  
1 s 47μF OSCON CAPACITOR  
4612f  
5
LTM4612  
TYPICAL PERFORMANCE CHARACTERISTICS  
Start-Up with 24VIN to 12VOUT at  
Short-Circuit with 24VIN to 12VOUT  
at IOUT = 0A  
Short-Circuit with 24VIN to 12VOUT  
at IOUT = 5A  
I
OUT = 5A, TA = –55°C  
I
IN  
2A/DIV  
I
IN  
V
OUT  
0.2A/DIV  
5V/DIV  
V
OUT  
V
OUT  
5V/DIV  
5V/DIV  
I
IN  
1A/DIV  
50μs/DIV  
4612 G11  
500μs/DIV  
4612 G10  
20μs/DIV  
4612 G12  
C
= 2 s 22μF CERAMIC CAPACITORS AND  
SOFT-START CAPACITOR: 3.9nF  
C
= 2 s 22μF CERAMIC CAPACITORS AND  
OUT  
OUT  
2 s 47μF CERAMIC CAPACITORS  
C
= 3 s 10μF CERAMIC CAPACITORS AND  
2 s 47μF CERAMIC CAPACITORS  
IN  
1 s 47μF OSCON CAPACITOR  
VIN to VOUT Step-Down Ratio  
Input Ripple  
Output Ripple  
36  
30  
24  
18  
12  
6
SEE FREQUENCY ADJUSTMENT SECTION  
FOR OPERATIONS OUTSIDE THIS REGION  
OPERATING REGION  
WITH DEFAULT FREQUENCY  
50mV/DIV  
10mV/DIV  
0
1μs/DIV  
4612 G14  
1μs/DIV  
4612 G15  
6
8
V
10  
(V)  
12  
14 15  
3.3  
4
V
V
C
= 24V  
V
V
C
= 24V  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
IN  
4612 G13  
= 12V AT 5A RESISTIVE LOAD  
= 3 s 10μF 50V CERAMIC 1 s 100μF BULK  
= 12V AT 5A RESISTIVE LOAD  
= 2 s 22μF 16V CERAMIC AND  
2 s 47μF 16V CERAMIC  
4612f  
6
LTM4612  
PIN FUNCTIONS (See Package Description for Pin Assignments)  
V (Bank 1): Power Input Pins. Apply input voltage be-  
low load, to INTV to enable discontinuous mode opera-  
tion at low load or to a resistive divider from a secondary  
output when using a secondary winding.  
IN  
CC  
tween these pins and PGND pins. Recommend placing  
input decoupling capacitance directly between V pins  
IN  
and PGND pins.  
TRACK/SS(PinA9):OutputVoltageTrackingandSoft-Start  
Pin. When the module is configured as a master output,  
then a soft-start capacitor is placed on this pin to ground  
to control the master ramp rate. A soft-start capacitor can  
be used for soft-start turn-on as a standalone regulator.  
Slave operation is performed by putting a resistor divider  
from the master output to the ground, and connecting the  
center point of the divider to this pin. See the Applications  
Information section.  
PGND (Bank 2): Power Ground Pins for Both Input and  
Output Returns.  
V
(Bank 3): Power Output Pins. Apply output load  
OUT  
between these pins and PGND pins. Recommend placing  
output decoupling capacitance directly between these  
pins and GND pins (see the LTM4612 Pin Configuration  
below).  
V (Pins B7, C7): Top FET Drain Pins. Add more capa-  
D
MPGM (Pins A12, B11): Programmable Margining Input.  
A resistor from these pins to ground sets a current that is  
equal to 1.18V/R. This current multiplied by 10k will equal  
a value in millivolts that is a percentage of the 0.6V refer-  
ence voltage. See the Applications Information section.  
To parallel LTM4612s, each requires an individual MPGM  
resistor. Do not tie MPGM pins together.  
citors between V and ground to handle the input RMS  
D
current and reduce the input ripple further.  
DRV (Pins C10, E11, E12): These pins normally con-  
CC  
nect to INTV for powering the internal MOSFET drivers.  
CC  
They can be biased up to 6V from an external supply with  
about 50mA capability. This improves efficiency at the  
higher input voltages by reducing power dissipation in  
the module.  
f
(Pin B12): Frequency Set Internally to 850kHz at 12V  
SET  
Output. An external resistor can be placed from this pin to  
ground to increase frequency. This pin can be decoupled  
with a 1000pF capacitor. See the Applications Information  
section for frequency adjustment.  
INTV (Pin A7): This pin is for additional decoupling of  
CC  
the 5V internal regulator.  
PLLIN(PinA8):ExternalClockSynchronizationInputtothe  
Phase Detector. This pin is internally terminated to SGND  
with a 50k resistor. Apply a clock above 2V and below  
V
(Pin F12): The Negative Input of the Error Amplifier.  
FB  
Internally, this pin is connected to V  
with a 100k preci-  
OUT  
INTV . See the Applications Information section.  
CC  
sionresistor.Differentoutputvoltagescanbeprogrammed  
FCB(PinM12):ForcedContinuousInput.Connectthispin  
to SGND to force continuous synchronization operation at  
TOP VIEW  
withanadditionalresistorbetweentheV andSGNDpins.  
FB  
See the Applications Information section.  
MARG0 (Pin C12): LSB Logic Input for the Margining  
Function. Together with the MARG1 pin, the MARG0 pin  
will determine if a margin high, margin low, or no margin  
state is applied. The pin has an internal pull-down resistor  
of 50k. See the Applications Information section.  
A
V
IN  
f
B
C
D
E
SET  
V
BANK 1  
D
MARG0  
MARG1  
DRV  
SGND  
CC  
PGND  
BANK 2  
F
V
MARG1(PinsC11, D12):MSBLogicInputfortheMargin-  
ingFunction.TogetherwiththeMARG0pin,theMARG1pin  
will determine if a margin high, margin low, or no margin  
stateisapplied.Thepinshaveaninternalpull-downresistor  
of 50k. See the Applications Information section.  
FB  
G
H
J
K
L
PGOOD  
SGND  
NC  
NC  
NC  
V
OUT  
BANK 3  
FCB  
M
1
2 3 4 5 6 7 8 9 10 11 12  
SGND (Pins D9, H12): Signal Ground Pins. These pins  
LGA PACKAGE  
133-LEAD (15mm × 15mm × 2.8mm)  
connect to PGND at output capacitor point.  
LTM4612 Pin Configuration  
4612f  
7
LTM4612  
PIN FUNCTIONS  
COMP (Pins A11, D11): Current Control Threshold and  
Error Amplifier Compensation Point. The current com-  
parator threshold increases with this control voltage. The  
voltage ranges from 0V to 2.4V with 0.7V corresponding  
to zero sense voltage (zero current).  
RUN (Pins A10, B9): Run Control Pins. A voltage above  
1.9V will turn on the module, and below 1V will turn off  
the module. A programmable UVLO function can be ac-  
complished with a resistor from V to this pin that is has  
IN  
a 5.1V zener to ground. Maximum pin voltage is 5V.  
PGOOD (Pin G12): Output Voltage Power Good Indicator.  
Open-drain logic output that is pulled to ground when the  
output voltage is not within 10% of the regulation point,  
after a 25μs power bad mask timer expires.  
NC (Pins J12, K12, L12): No Connect Pins.  
BLOCK DIAGRAM  
> 1.9V = ON  
< 1V = OFF  
MAX = 5V  
V
OUT  
RUN  
PGOOD  
COMP  
INPUT  
FILTER  
V
IN  
20V TO 36V  
+
5.1V  
ZENER  
1μF  
C
C
IN  
100k  
V
D
INTERNAL  
COMP  
D
POWER CONTROL  
M1  
M2  
SGND  
V
OUT  
12V  
MARG1  
MARG0  
AT 4A  
NOISE  
CANCEL-  
LATION  
V
FB  
10μF  
50k 50k  
+
f
SET  
R
FB  
5.23k  
C
OUT  
93.1k  
PGND  
FCB  
10k  
MPGM  
TRACK/SS  
PLLIN  
C
SS  
50k  
4.7μF  
INTV  
DRV  
CC  
CC  
Figure 1. Simplified Block Diagram  
DECOUPLING REQUIREMENTS Specifications are at TA = 25°C. Use Figure 1 configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
External Input Capacitor Requirement  
I
= 4A  
10  
μF  
IN  
OUT  
(V = 20V to 36V, V  
= 12V)  
IN  
OUT  
C
OUT  
External Output Capacitor Requirement  
(V = 20V to 36V, V = 12V)  
I
= 4A  
100  
150  
μF  
OUT  
IN  
OUT  
4612f  
8
LTM4612  
OPERATION  
Power Module Description  
Input filter and noise cancellation circuitry reduce the  
noise coupling to I/O sides, and ensure the electromag-  
netic interference (EMI) meets the limits of CISPR 22 and  
CISPR 25.  
The LTM4612 is a standalone nonisolated switching mode  
DC/DC power supply. It can deliver 5A of DC output  
current with some external input and output capacitors.  
This module provides precisely regulated output voltage  
Pulling the RUN pin below 1V forces the controller into its  
shutdown state, turning off both M1 and M2. At low load  
currents, discontinuous mode (DCM) operation can be  
enabled to achieve higher efficiency compared to continu-  
ous mode (CCM) by setting FCB pin higher than 0.6V.  
programmable via one external resistor from 3.3V to  
DC  
15V over a 5V to 36V wide input voltage. The typical  
DC  
application schematic is shown in Figure 18.  
The LTM4612 has an integrated constant on-time current  
mode regulator, ultralow R  
FETs with fast switch-  
WhentheDRV pinisconnectedtoINTV , anintegrated  
CC CC  
DS(ON)  
ing speed and integrated Schottky diodes. The typical  
switching frequency is 850kHz at full load. With current  
mode control and internal feedback loop compensation,  
the LTM4612 module has sufficient stability margins and  
good transient performance under a wide range of operat-  
ing conditions and with a wide range of output capacitors,  
even all ceramic output capacitors.  
5V linear regulator powers the internal gate drivers. If a  
5V external bias supply is applied on DRV pin, then an  
CC  
efficiencyimprovementwilloccurduetothereducedpower  
loss in the internal linear regulator. This is especially true  
at the higher input voltage range.  
The MPGM, MARG0, and MARG1 pins are used to sup-  
port voltage margining, where the percentage of margin  
is programmed by the MPGM pin, and the MARG0 and  
MARG1 selected margining. The PLLIN pin provides fre-  
quency synchronization of the device to an external clock.  
The TRACK/SS pin is used for power supply tracking and  
soft-start programming.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limiting. Moreover, foldback current limiting is provided  
in an overcurrent condition while V drops. Internal  
overvoltage and undervoltage comparators pull the open-  
drainPGOODoutputlowiftheoutputfeedbackvoltageexits  
a 10%windowaroundtheregulationpoint.Furthermore,  
in an overvoltage condition, internal top FET M1 is turned  
off and bottom FET M2 is turned on and held on until the  
overvoltage condition clears.  
FB  
4612f  
9
LTM4612  
APPLICATIONS INFORMATION  
The typical LTM4612 application circuit is shown in  
Figure 18. External component selection is primarily  
determined by the maximum load current and output  
voltage. Refer to Table 2 for specific external capacitor  
requirements for a particular application.  
The output margining will be margining of the value.  
This is controlled by the MARG0 and MARG1 pins. See  
the truth table below:  
MARG1  
LOW  
MARG0  
LOW  
MODE  
NO MARGIN  
MARGIN UP  
MARGIN DOWN  
NO MARGIN  
LOW  
HIGH  
LOW  
V to V  
Stepdown Ratios  
IN  
OUT  
HIGH  
HIGH  
There are restrictions in the maximum V and V  
step  
IN  
OUT  
HIGH  
down ratio that can be achieved for a given input voltage.  
These constraints are shown in the Typical Performance  
Operating Frequency  
Characteristic curve labeled “V to V  
Step-Down  
OUT  
IN  
The operating frequency of the LTM4612 is optimized to  
achieve the compact package size and the minimum  
output ripple voltage while still keeping high efficiency.  
As shown in Figure 2, the frequency is linearly increased  
with larger output voltages to keep the low output cur-  
rent ripple. Figure 3 shows the inductor current ripple ΔI  
with different output voltages. In most applications, no  
additional frequency adjusting is required.  
Ratio.” Note that additional thermal derating may be ap-  
plied. See the Thermal Considerations and Output Current  
Derating section in this data sheet.  
Output Voltage Programming and Margining  
ThePWMcontrollerhasaninternal0.6Vreferencevoltage.  
As shown in the Block Diagram, a 100k internal feedback  
resistorconnectstheV  
andV pinstogether. Addinga  
OUT  
FB  
1200  
1000  
800  
resistor, R , from the V pin to the SGND pin programs  
FB  
FB  
the output voltage.  
100k +RFB  
VOUT = 0.6V •  
RFB  
600  
Table 1. RFB Standard 1% Resistor Values vs VOUT  
V
(V)  
3.3  
5
6
8
10  
12  
14  
15  
OUT  
400  
22.1 13.7  
11  
8.06 6.34 5.23 4.42 4.12  
R
(kΩ)  
FB  
200  
The MPGM pin programs a current that when multiplied  
by an internal 10k resistor sets up the 0.6V reference  
offset for margining. A 1.18V reference divided by the  
10  
14  
16  
2
4
6
8
12  
V
(V)  
OUT  
4612 F02  
Figure 2. Operating Frequency vs Output Voltage  
R
resistor on the MPGM pin programs the current.  
PGM  
Calculate V  
:
3.5  
3.0  
OUT(MARGIN)  
%VOUT  
100  
VOUT(MARGIN)  
=
• VOUT  
V
= 36V  
IN  
2.5  
2.0  
1.5  
1.0  
0.5  
Where %V  
and V  
is the percentage of V  
OUT(MARGIN)  
to be margined,  
OUT  
OUT  
V
= 28V  
IN  
is the margin quantity in volts:  
V
= 20V  
IN  
VOUT  
1.18V  
10k  
RPGM  
=
0.6V VOUT(MARGIN)  
6
8
10  
(V)  
12  
14  
16  
2
4
Where R  
is the resistor value to place on the MPGM  
PGM  
pin to ground.  
V
OUT  
4612 F03  
Figure 3. Inductor Current Ripple vs Output Voltage  
4612f  
10  
LTM4612  
APPLICATIONS INFORMATION  
If lower output ripple is required, the operating frequency  
In this equation, η is the estimated efficiency of the  
power module. Note the capacitor ripple current ratings  
are often based on temperature and hours of life. This  
makes it advisable to properly derate the input capacitor,  
or choose a capacitor rated at a higher temperature than  
required. Always contact the capacitor manufacturer for  
derating requirements.  
f can be increased by adding a resistor R  
pin and SGND, as shown in Figure 19.  
between f  
fSET  
SET  
VOUT  
f =  
1.5 • 1010  
R
(
|| 93.1k  
fSET  
)
For output voltages more than 12V, the frequency can be  
higherthan1MHz,thusreducingtheefficiencysignificantly.  
Additionally, the minimum off time 400ns normally limits  
the operation when the input voltage is close to the output  
voltage. Therefore, it is recommended to lower the fre-  
In a typical 5A output application, one very low ESR, X5R  
or X7R, 10μF ceramic capacitor is recommended for C1.  
This decoupling capacitor should be placed directly adja-  
cent to the module V pins in the PCB layout to minimize  
D
quencyintheseconditionsbyconnectingaresistor(R  
)
fSET  
the trace inductance and high frequency AC noise. Each  
10μF ceramic is typically good for 2A to 3A of RMS ripple  
current. Refer to your ceramics capacitor catalog for the  
RMS current ratings.  
from the f pin to V , as shown in Figure 20.  
SET  
IN  
VOUT  
f =  
3 RfSET • 93.1k  
5 • 1011  
Toattenuatethehighfrequencynoise,extrainputcapacitors  
R
3 • 93.1k  
fSET  
should be connected to the V pads and placed before the  
IN  
high frequency inductor to form the π filter. One of these  
low ESR ceramic input capacitors is recommended to be  
close to the connection into the system board. A large  
bulk 100μF capacitor is only needed if the input source  
impedance is compromised by long inductive leads or  
traces. Figure 4 shows the conducted EMI testing results  
to meet the Level 5 of the CISPR 25 limit. For different  
applications, input capacitance may be varied to meet  
different conducted EMI limits.  
Theloadcurrentcanaffectthefrequencyduetoitsconstant  
on-time control. If constant frequency is a necessity, the  
PLLIN pin can be used to synchronize the frequency of  
the LTM4612 to an external clock, as shown in Figures  
21 to 23.  
Input Capacitors  
LTM4612 is designed to achieve the low input conducted  
EMInoiseduetothefastswitchingofturn-onandturn-off.  
In the LTM4612, a high-frequency inductor is integrated  
80  
into the input line for noise attenuation. V and V pins  
D
IN  
70  
are available for external input capacitors to form a high  
CIS25QP  
60  
frequency π filter. As shown in Figure 18, the ceramic  
50  
40  
30  
20  
10  
0
capacitor C1 on the V pins is used to handle most of  
D
the RMS current into the converter, so careful attention  
is needed for capacitor C1 selection.  
For a buck converter, the switching duty cycle can be  
estimated as:  
VOUT  
0.15  
1
10  
30  
D=  
V
FREQUENCY (MHz)  
4612 F04  
IN  
Figure 4. Conducted Emission Scan with 24VIN to  
12VOUT at 5A (3 10μF Ceramic Capacitors on VIN  
Pads and 1 10μF Ceramic Capacitor on VD Pads).  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
×
×
IOUT(MAX)  
ICIN(RMS)  
=
D 1D  
(
)
η
4612f  
11  
LTM4612  
APPLICATIONS INFORMATION  
Output Capacitors  
ripple current to the inductor ripple current as functions  
of duty cycle and the number of paralleled phases. Pick  
the corresponding duty cycle and the number of phases  
to get the correct output ripple current value. For example,  
each phase’s inductor ripple current DIr at zero duty cycle  
is ~4.3A for a 36V to 12V design. The duty cycle is about  
0.33. The 2-phase curve has a ratio of ~0.33 for a duty  
cycle of 0.33. This 0.33 ratio of output ripple current to  
the inductor ripple current DIr at 4.3A equals 1.4A of the  
The LTM4612 is designed for low output voltage ripple.  
The bulk output capacitors defined as C  
are chosen  
OUT  
with low enough effective series resistance (ESR) to meet  
theoutputvoltagerippleandtransientrequirements. C  
OUT  
can be low ESR tantalum capacitor, low ESR polymer  
capacitor or ceramic capacitor. The typical capacitance is  
150μF if all ceramic output capacitors are used. Additional  
output filtering may be required by the system designer,  
if further reduction of output ripple or dynamic transient  
spikeisrequired.Table2showsamatrixofdifferentoutput  
voltages and output capacitors to minimize the voltage  
droop and overshoot during a 2A/μs transient. The table  
optimizes total equivalent ESR and total bulk capacitance  
to maximize transient performance.  
output ripple current (ΔI ).  
L
The output voltage ripple has two components that are  
related to the amount of bulk capacitance and effective  
series resistance (ESR) of the output bulk capacitance.  
The equation is:  
ΔIL  
8 • f N • C  
ΔVOUT(PP)  
+ ESR • ΔIL  
Multiphase operation with multiple LTM4612 devices in  
parallel will also lower the effective output ripple current  
due to the phase interleaving operation. Refer to Figure 5  
for the normalized output ripple current versus the duty  
cycle. Figure 5 provides a ratio of peak-to-peak output  
OUT  
Where f is the frequency and N is the number of paral-  
leled phases.  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1-PHASE  
2-PHASE  
3-PHASE  
4-PHASE  
6-PHASE  
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY CYCLE (V /V  
)
IN  
4612 F05  
O
Figure 5. Normalized Output Ripple Current vs Duty Cycle, Dlr = VOT/LI  
4612f  
12  
LTM4612  
APPLICATIONS INFORMATION  
Fault Conditions: Current Limit and  
Overcurrent Foldback  
Output Voltage Tracking  
Output voltage tracking can be programmed externally  
using the TRACK/SS pin. The output can be tracked up  
and down with another regulator. The master regulator’s  
output is divided down with an external resistor divider  
that is the same as the slave regulator’s feedback divider.  
Figure 6 shows an example of coincident tracking. Ra-  
tiometric modes of tracking can be achieved by selecting  
differentresistorvaluestochangetheoutputtrackingratio.  
The master output must be greater than the slave output  
for the tracking to work. Figure 7 shows the coincident  
output tracking.  
LTM4612 has a current mode controller, which inherently  
limitsthecycle-by-cycleinductorcurrentnotonlyinsteady  
state operation, but also in transient.  
To further limit current in the event of an overload condi-  
tion,theLTM4612providesfoldbackcurrentlimiting.Ifthe  
output voltage falls by more than 50%, then the maximum  
output current is progressively lowered to about one sixth  
of its full current limit value.  
Soft-Start and Tracking  
The TRACK/SS pin provides a means to either soft-start  
the regulator or track it to a different power supply. A  
capacitor on this pin will program the ramp rate of the  
output voltage. A 1.5μA current source will charge up the  
external soft-start capacitor to 80% of the 0.6V internal  
voltagereferenceminusanymargindelta.Thiswillcontrol  
the ramp of the internal reference and the output voltage.  
The total soft-start time can be calculated as:  
RUN Enable  
The RUN pin is used to enable the power module. The  
pin has an internal 5.1V zener to ground. The pin can be  
driven with 5V logic levels.  
The RUN pin can also be used as an undervoltage lockout  
(UVLO) function by connecting a resistor divider from  
the input supply to the RUN pin. The equation for UVLO  
threshold:  
CSS  
1.5µA  
tSOFTSTART 0.8 • 0.6V – V  
(
)
OUT(MARGIN)  
R1+R2  
VUVLO  
=
1.5V  
R2  
If the RUN pin falls below 2.5V, then the soft-start pin  
is reset to allow for the proper soft-start again. Current  
foldback and force continuous mode are disabled during  
the soft-start process. The soft-start function can also  
be used to control the output ramp rising time, so that  
another regulator can be easily tracked.  
where R1 is the top resistor, and R2 is the bottom resistor.  
Power Good  
The PGOOD pin is an open-drain pin that can be used to  
monitor valid output voltage regulation. This pin monitors  
a 10% window around the regulation point, and tracks  
with margining.  
V
IN  
10μF  
100k  
V
V
PLLIN  
V
OUT  
D
IN  
SLAVE  
OUTPUT  
MASTER OUTPUT  
PGOOD  
RUN  
V
FB  
C
OUT  
C
COMP  
FCB  
MARG0  
MARG1  
MPGM  
IN  
LTM4612  
SLAVE OUTPUT  
INTV  
CC  
CC  
OUTPUT  
VOLTAGE  
MASTER  
OUTPUT  
DRV  
R2  
100k  
f
SET  
TRACK/SS  
SGND PGND  
TRACK  
CONTROL  
5.23k  
R1  
5.23k  
4612 F06  
4612 F07  
TIME  
Figure 6. Coincident Tracking  
Figure 7. Coincident Output Tracking  
4612f  
13  
LTM4612  
APPLICATIONS INFORMATION  
COMP Pin  
Parallel Operation  
The pin is the external compensation pin. The module  
has already been internally compensated for most output  
voltages. An Excel design tool from Linear Technology will  
be provided for more control loop optimization.  
The LTM4612 device is an inherently current mode con-  
trolled device. This allows the paralleled modules to have  
very good current sharing and balanced thermal on the  
design.Figure21showsaschematicoftheparalleldesign.  
The voltage feedback equation changes with the variable  
N as modules are paralleled. The equation:  
FCB Pin  
The FCB pin determines whether the bottom MOSFET  
remains on when current reverses in the inductor. Tying  
this pin above its 0.6V threshold enables discontinuous  
operation where the bottom MOSFET turns off when in-  
ductor current reverses. FCB pin below the 0.6V threshold  
forcescontinuoussynchronousoperation,allowingcurrent  
to reverse at light loads and maintaining high frequency  
operation.  
100k  
+RFB  
N
VOUT = 0.6V  
RFB  
N is the number of paralleled modules.  
Radiated EMI Noise  
High radiated EMI noise is a disadvantage for switching  
regulators by nature. Fast switching turn-on and turn-off  
make the large di/dt change in the converters, which act  
as the radiation sources in most systems. LTM4612 inte-  
grates the feature to minimize the radiated EMI noise to  
meet the most applications with low noise requirements.  
An optimized gate driver for the MOSFET and a noise  
cancellation network are installed inside the LTM4612  
to achieve the low radiated EMI noise. Figure 8 shows a  
typical example for the LTM4612 to meet the Class B of  
CISPR 22 radiated emission limit.  
PLLIN Pin  
The power module has a phase-locked loop comprised  
of an internal voltage controlled oscillator and a phase  
detector. This allows the internal top MOSFET turn-on  
to be locked to the rising edge of the external clock.  
The frequency range is 30% around the set operating  
frequency. A pulse detection circuit is used to detect a  
clock on the PLLIN pin to turn on the phase-locked loop.  
The pulse width of the clock has to be at least 400ns, and  
2V in amplitude. During the start-up of the regulator, the  
phase-locked loop function is disabled.  
90  
70  
INTV and DRV Connection  
CC  
CC  
50  
An internal low dropout regulator produces an internal  
5V supply that powers the control circuitry and DRV  
CISPR22, CLASS B  
CC  
30  
10  
0
for driving the internal power MOSFETs. Therefore, if  
the system does not have a 5V power rail, the LTM4612  
can be directly powered by V . The gate driver current  
IN  
through the LDO is about 20mA. The internal LDO power  
0
100 200 300 400 500 600 700 800 900 1000  
FREQUENCY (MHz)  
4612 F08  
dissipation can be calculated as:  
Figure 8. Radiated Emission Scan with 24VIN to  
12VOUT at 5A Measured in 10 Meter Chamber  
P
= 20mA (V – 5V)  
IN  
LDO_LOSS  
TheLTM4612alsoprovidestheexternalgatedrivervoltage  
Thermal Considerations and Output Current Derating  
pin DRV . If there is a 5V rail in the system, it is recom-  
CC  
In different applications, LTM4612 operates in a variety  
of thermal environments. The maximum output current is  
limited by the environment thermal condition. Sufficient  
mended to connect the DRV pin to the external 5V rail.  
CC  
This is especially true for higher input voltages. Do not  
apply more than 6V to the DRV pin.  
CC  
cooling should be provided to help ensure reliable opera-  
4612f  
14  
LTM4612  
APPLICATIONS INFORMATION  
tion. When the cooling is limited, proper output current  
derating is necessary, considering ambient temperature,  
airflow, input/output condition, and the need for increased  
reliability.  
125°C maximum. This will maintain the maximum operat-  
ing temperature below 125°C. Each of the derating curves  
and the power loss curve that corresponds to the correct  
output voltage can be used to solve for the approximate  
θ of the condition. Each figure has three curves that are  
JA  
The power loss curves in Figures 9 and 10 can be used  
in coordination with the load current derating curves in  
taken at three different air flow conditions. Each of the  
derating curves in Figures 11 to 16 can be used with the  
appropriate power loss curve in either Figure 9 or Figure  
Figures 11 to 16 for calculating an approximate θ for  
JA  
the module. Graph designation delineates between no  
heat sink, and a BGA heat sink. Each of the load current  
derating curves will lower the maximum load current as a  
function of the increased ambient temperature to keep the  
maximum junction temperature of the power module at  
10 to derive an approximate θ . Table 3 provides the ap-  
JA  
proximateθ forFigures11to16.Acompleteexplanation  
JA  
of the thermal characteristics is provided in the thermal  
application note, AN110.  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
5.0  
200  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
LFM  
36V TO 15V  
IN  
OUT  
0LFM  
400LFM  
36V TO 5V  
IN  
OUT  
24V TO 12V  
IN  
OUT  
2
3
4
5
0
1
2
3
4
5
0
1
25 35  
55 65 75 85 95 105  
AMBIENT TEMPERATURE (°C)  
45  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4612 F10  
4612 F09  
4612 F11  
Figure 9. Power Loss at  
12VOUT and 15VOUT  
Figure 10. Power Loss at 5VOUT  
Figure 11. No Heat Sink  
with 36VIN to 5VOUT  
5.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
200  
200  
200  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
LFM  
LFM  
LFM  
0LFM  
400LFM  
0LFM  
400LFM  
0LFM  
400LFM  
25 35  
55 65 75 85 95 105  
AMBIENT TEMPERATURE (°C)  
25 35  
55 65 75 85 95 105  
AMBIENT TEMPERATURE (°C)  
25 35  
55 65 75 85 95 105  
AMBIENT TEMPERATURE (°C)  
45  
45  
45  
4612 F12  
4612 F13  
4612 F14  
Figure 12. BGA Heat Sink  
with 36VIN to 5VOUT  
Figure 13. No Heat Sink  
with 24VIN to 12VOUT  
Figure 14. BGA Heat Sink  
with 24VIN to 12VOUT  
4612f  
15  
LTM4612  
APPLICATIONS INFORMATION  
5.0  
4.5  
4.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
25  
35  
45  
55  
65  
75  
85  
95  
25  
35  
45  
55  
65  
75  
85  
95  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4612 F15  
4612 F16  
Figure 15. No Heat Sink  
with 36VIN to 15VOUT  
Figure 16. BGA Heat Sink  
with 36VIN to 15VOUT  
Table 2. Output Voltage Response Versus Component Matrix (Refer to Figure 20)  
TYPICAL MEASURED VALUES  
VENDORS  
Murata  
PART NUMBER  
VENDORS  
Murata  
TDK  
PART NUMBER  
GRM32ER61C476KEI5L (47μF, 16V)  
GRM32ER61C226KE20L (22μF, 16V)  
GRM32ER71H106K (10μF, 50V)  
C3225X5RIC226M (22μF, 16V)  
Murata  
V
(V)  
C
C
C
C
V
DROOP  
(mV)  
PEAK-TO-  
PEAK (mV)  
RECOVERY  
TIME (μs)  
LOAD STEP  
(A/μs)  
R
FB  
OUT  
IN  
IN  
OUT1  
OUT2  
IN  
(CERAMIC)  
2 × 10μF 50V  
2 × 10μF 50V  
2 × 10μF 50V  
2 × 10μF 50V  
2 × 10μF 50V  
2 × 10μF 50V  
2 × 10μF 50V  
2 × 10μF 50V  
2 × 10μF 50V  
2 × 10μF 50V  
2 × 10μF 50V  
2 × 10μF 50V  
2 × 10μF 50V  
2 × 10μF 50V  
(BULK)  
(CERAMIC)  
2 × 22μF 16V  
4 × 47μF 16V  
2 × 22μF 16V  
4 × 47μF 16V  
2 × 22μF 16V  
4 × 47μF 16V  
2 × 22μF 16V  
4 × 47μF 16V  
2 × 22μF 16V  
4 × 47μF 16V  
2 × 22μF 16V  
4 × 47μF 16V  
2 × 22μF 16V  
4 × 47μF 16V  
(BULK)  
150μF 25V  
None  
(V)  
12  
12  
24  
24  
36  
36  
24  
24  
36  
36  
24  
36  
28  
36  
(kΩ)  
13.7  
13.7  
13.7  
13.7  
13.7  
13.7  
6.34  
6.34  
6.34  
6.34  
5.23  
5.23  
4.12  
4.12  
5
100μF 50V  
100μF 50V  
100μF 50V  
100μF 50V  
100μF 50V  
100μF 50V  
100μF 50V  
100μF 50V  
100μF 50V  
100μF 50V  
100μF 50V  
100μF 50V  
100μF 50V  
100μF 50V  
86  
156  
178  
166  
169  
178  
172  
209  
325  
197  
288  
281  
375  
338  
250  
26  
14.8  
27  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
5
86  
5
150μF 25V  
None  
83  
5
86  
14.8  
25  
5
150μF 25V  
None  
86  
5
86  
15.2  
30  
10  
10  
10  
10  
12  
12  
15  
15  
150μF 25V  
None  
111  
171  
108  
153  
153  
184  
178  
134  
35  
150μF 25V  
None  
35  
39  
150μF 25V  
None  
37  
34.4  
70  
150μF 25V  
None  
70  
Table 3. 12V and 15V Outputs  
DERATING CURVE  
Figures 11, 13, 15  
V
(V)  
POWER LOSS CURVE  
Figure 9  
AIR FLOW (LFM)  
HEAT SINK  
θ
JA  
(°C/W)  
IN  
24, 36  
24, 36  
24, 36  
24, 36  
24, 36  
24, 36  
0
None  
None  
None  
13  
9.3  
8.3  
Figures 11, 13, 15  
Figure 9  
200  
400  
0
Figures 11, 13, 15  
Figure 9  
Figures 12, 14, 16  
Figure 9  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
12.2  
8.6  
Figures 12, 14, 16  
Figure 9  
200  
400  
Figures 12, 14, 16  
Figure 9  
7.7  
4612f  
16  
LTM4612  
APPLICATIONS INFORMATION  
Table 4. 5V Output  
DERATING CURVE  
Figures 18, 21  
V
IN  
(V)  
POWER LOSS CURVE  
Figure 10  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
36  
0
14.9  
11.1  
10  
Figures 18, 21  
36  
36  
36  
36  
36  
Figure 10  
200  
400  
0
None  
Figures 18, 21  
Figure 10  
None  
Figures 10, 13, 16  
Figures 10, 13, 16  
Figures 10, 13, 16  
Figure 10  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
14  
Figure 10  
200  
400  
10.4  
9.3  
Figure 10  
Heat Sink Manufacturer  
Wakefield Engineering  
Part No: LTN20069  
Phone: 603-635-2800  
Safety Considerations  
• Do not put vias directly on pads.  
The LTM4612 modules do not provide isolation from V  
• If vias are placed onto the pads, the the vias must be  
capped.  
IN  
to V . There is no internal fuse. If required, a slow blow  
OUT  
fuse with a rating twice the maximum input current needs  
to be provided to protect each unit from catastrophic  
failure.  
• Interstitialvia placementcan also beused if necessary.  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to PGND underneath the unit.  
Layout Checklist/Example  
• Place one or more high frequency ceramic capacitors  
close to the connection into the system board.  
The high integration of LTM4612 makes the PCB board  
layout very simple and easy. However, to optimize its  
electrical and thermal performance, some layout consid-  
erations are still necessary.  
Figure 17 gives a good example of the recommended  
layout.  
• Use large PCB copper areas for high current path, in-  
cluding V , PGND and V . It helps to minimize the  
IN  
OUT  
V
IN  
C
C
IN  
PCB conduction loss and thermal stress.  
IN  
• Place high frequency ceramic input and output capaci-  
tors next to the V , PGND and V  
pins to minimize  
D
OUT  
GND  
high frequency noise.  
SIGNAL  
GND  
• Place a dedicated power ground layer underneath the  
unit.  
• UseroundcornersforthePCBcopperlayertominimize  
the radiated noise.  
C
OUT  
C
OUT  
V
OUT  
4612 F17  
• To minimize the EMI noise and reduce module thermal  
stress, use multiple vias for interconnection between  
top layer and other power layers.  
Figure 17. Recommended PCB Layout  
4612f  
17  
LTM4612  
APPLICATIONS INFORMATION  
V
OUT  
CLOCK SYNC  
V
IN  
22V TO 36V  
C1  
10μF  
50V  
R4  
100k  
R3  
100k  
R5  
2M  
V
V
IN  
PLLIN  
D
V
12V  
5A  
OUT  
V
OUT  
PGOOD  
RUN  
COMP  
C3  
C
22μF  
16V  
C
OUT2  
220μF  
16V  
LTM4612  
OUT1  
22pF  
+
ON/OFF  
V
FB  
R
FB  
5.23k  
INTV  
CC  
CC  
FCB  
DRV  
MARG0  
MARG1  
MPGM  
f
MARGIN  
SET  
C
IN  
CONTROL  
TRACK/SS  
REFER TO TABLE 2  
10μF  
50V CERAMIC  
C4  
0.01μF  
SGND PGND  
R1  
392k  
5% MARGIN  
4612 F18  
Figure 18. Typical 22V to 36VIN, 12V at 5A Design  
V
OUT  
CLOCK SYNC  
V
IN  
5V TO 36V  
C1  
10μF  
50V  
R4  
100k  
R3  
100k  
V
V
PLLIN  
D
IN  
V
3.3V  
5A  
OUT  
V
OUT  
PGOOD  
RUN  
COMP  
C3  
C
C
22μF  
6.3V  
C
IN  
OUT1  
OUT2  
22pF  
+
ON/OFF  
10μF  
50V CERAMIC  
220μF  
6.3V  
V
FB  
LTM4612  
R
FB  
22.1k  
INTV  
CC  
FCB  
DRV  
EXTERNAL 5V SUPPLY  
IMPROVES EFFICIENCY—  
ESPECIALLY FOR HIGH  
INPUT VOLTAGES  
CC  
REFER TO TABLE 2  
MARG0  
MARG1  
MPGM  
f
MARGIN  
SET  
CONTROL  
TRACK/SS  
R
191k  
1%  
fSET  
SGND PGND  
R1  
392k  
5% MARGIN  
C4  
0.01μF  
4612 F19  
Figure 19. Typical 5V to 36VIN, 3.3V at 5A Design with 400kHz Frequency  
4612f  
18  
LTM4612  
APPLICATIONS INFORMATION  
V
OUT  
CLOCK SYNC  
V
IN  
26V TO 36V  
C1  
10μF  
50V  
R4  
100k  
R3  
100k  
V
V
PLLIN  
D
IN  
V
15V  
4A  
OUT  
V
PGOOD  
RUN  
COMP  
OUT  
C3  
C
22μF  
16V  
C
OUT2  
220μF  
16V  
LTM4612  
OUT1  
22pF  
+
ON/OFF  
V
FB  
R
FB  
4.12k  
INTV  
DRV  
CC  
CC  
R
fSET  
FCB  
806k, 1%  
MARG0  
MARG1  
MPGM  
f
MARGIN  
SET  
CONTROL  
TRACK/SS  
C
IN  
10μF  
SGND PGND  
R1  
392k  
5% MARGIN  
50V  
CERAMIC  
C4  
0.01μF  
4612 F20  
Figure 20. 26V to 36VIN, 15V at 4A Design with Reduced Frequency  
V
OUT  
V
IN  
20V TO 36V  
C1  
10μF  
50V  
CLOCK SYNC  
0° PHASE  
R2  
100k  
R4  
100k  
V
OUT  
12V, 10A  
V
V
PLLIN  
V
OUT  
D
IN  
PGOOD  
RUN  
COMP  
INTV  
DRV  
C6  
47pF  
LTM4612  
C3  
22μF  
16V  
+
C4  
V
FB  
FCB  
220μF  
16V  
CC  
CC  
C2  
10μF  
50V  
f
MARG0  
MARG1  
MPGM  
MARGIN  
CONTROL  
SET  
TRACK/SS  
C5  
100μF  
50V  
+
C7  
0.33μF  
R1  
392k  
R
FB  
2.61k  
SGND PGND  
2-PHASE  
OSCILLATOR  
+
5% MARGIN  
100k/N + R  
V
OUT1  
FB  
V
OUT  
= 0.6V •  
R
FB  
GND OUT2  
SET MOD  
C11  
0.1μF  
R5  
124k  
C11  
10μF  
50V  
LTC6908-1  
CLOCK SYNC  
180° PHASE  
V
D
V
IN  
PLLIN  
V
OUT  
PGOOD  
RUN  
LTM4612  
C9  
22μF  
16V  
C10  
220μF  
16V  
+
V
FCB  
COMP  
INTV  
CC  
FB  
C8  
10μF  
50V  
MARG0  
MARG1  
MPGM  
DRV  
CC  
f
SET  
TRACK/SS  
R6  
392k  
SGND PGND  
4612 F21  
Figure 21. 2-Phase, Parallel 12V at 10A Design  
4612f  
19  
LTM4612  
APPLICATIONS INFORMATION  
12V  
V
IN  
22V TO 36V  
C1  
10μF  
50V  
CLOCK SYNC  
0° PHASE  
R4  
100k  
R2  
100k  
V
V
IN  
PLLIN  
D
12V AT 5A  
PGOOD  
RUN  
COMP  
V
OUT  
C6  
22pF  
C3  
22μF  
16V  
LTM4612  
C4  
220μF  
16V  
+
V
FB  
FCB  
INTV  
CC  
CC  
DRV  
C2  
10μF  
50V  
f
MARG0  
MARG1  
MPGM  
MARGIN  
SET  
CONTROL  
TRACK/SS  
C5  
100μF  
50V  
+
R1  
392k  
R
FB1  
5.23k  
C7  
0.15μF  
SGND PGND  
2-PHASE  
OSCILLATOR  
+
5% MARGIN  
10V  
V
OUT1  
GND OUT2  
SET MOD  
C11  
0.1μF  
R5  
118k  
C11  
10μF  
50V  
LTC6908-1  
CLOCK SYNC  
180° PHASE  
R7  
100k  
R3  
100k  
V
V
PLLIN  
D
IN  
10V AT 5A  
V
PGOOD  
RUN  
OUT  
C1  
22pF  
C9  
22μF  
16V  
LTM4612  
C10  
220μF  
16V  
+
V
COMP  
FB  
FCB  
INTV  
CC  
12V TRACK  
MARG0  
MARG1  
MPGM  
MARGIN  
DRV  
R8  
CC  
C8  
10μF  
50V  
CONTROL  
100k  
f
SET  
TRACK/SS  
R6  
392k  
R
R9  
6.24k  
FB2  
SGND PGND  
6.24k  
4612 F22  
Figure 22. 2-Phase, 12V and 10V at 5A Design  
4612f  
20  
LTM4612  
APPLICATIONS INFORMATION  
5V  
V
IN  
7V TO 36V  
C1  
CLOCK SYNC  
0° PHASE  
10μF  
50V  
R4  
100k  
R2  
100k  
V
V
PLLIN  
OUT  
D
IN  
5V AT 5A  
V
PGOOD  
RUN  
C6  
22pF  
LTM4612  
C3  
22μF  
6.3V  
C4  
220μF  
6.3V  
+
V
FB  
COMP  
INTV  
CC  
C2  
FCB  
10μF  
50V  
DRV  
CC  
MARG0  
MARG1  
MPGM  
f
MARGIN  
SET  
CONTROL  
TRACK/SS  
C5  
100μF  
50V  
+
R
fSET1  
150k  
R1  
392k  
R
FB1  
13.7k  
C7  
0.15μF  
SGND PGND  
2-PHASE  
OSCILLATOR  
+
5% MARGIN  
3.3V  
V
OUT1  
GND OUT2  
SET MOD  
C11  
0.1μF  
R5  
200k  
C11  
10μF  
50V  
CLOCK SYNC  
180° PHASE  
LTC6908-1  
R7  
100k  
R3  
100k  
V
V
PLLIN  
D
IN  
3.3V AT 5A  
V
PGOOD  
RUN  
OUT  
C1  
22pF  
C9  
22μF  
6.3V  
C10  
220μF  
6.3V  
+
V
COMP  
FB  
LTM4612  
FCB  
INTV  
CC  
5V TRACK  
MARG0  
MARG1  
MPGM  
MARGIN  
DRV  
R8  
CC  
C8  
10μF  
50V  
CONTROL  
100k  
f
SET  
TRACK/SS  
R6  
392k  
R
R9  
R
fSET2  
FB2  
SGND PGND  
22.1k  
22.1k 100k  
4612 F23  
Figure 23. 2-Phase, 5V and 3.3V at 5A Design with 500kHz Frequency  
4612f  
21  
LTM4612  
PACKAGE DESCRIPTION  
Pin Assignment Tables  
(Arranged by Pin Function)  
PIN NAME  
PIN NAME  
PGND  
PIN NAME  
PIN NAME  
A1  
A2  
A3  
A4  
A5  
A6  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
D1  
D2  
D3  
D4  
D5  
D6  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
J10  
J11  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
A7  
INTV  
CC  
PLLIN  
PGND  
PGND  
PGND  
PGND  
PGND  
A8  
A9  
TRACK/SS  
RUN  
A10  
A11  
A12  
COMP  
MPGM  
B1  
B2  
B3  
B4  
B5  
B6  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
B7  
V
-
D
B8  
B9  
RUN  
-
B10  
B11  
B12  
MPGM  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
f
SET  
C1  
C2  
C3  
C4  
C5  
C6  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
C7  
V
-
D
C8  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
C9  
-
C10  
C11  
C12  
DRV  
CC  
MARG1  
MARG0  
D7  
-
-
D8  
D9  
SGND  
-
D10  
D11  
D12  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
L10  
L11  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
COMP  
MARG1  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
E9  
-
-
E10  
E11  
E12  
DRV  
CC  
DRV  
CC  
F10  
F11  
F12  
-
-
V
FB  
G12  
H12  
J12  
K12  
L12  
M12  
PGOOD  
SGND  
NC  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
NC  
NC  
FCB  
4612f  
22  
LTM4612  
PACKAGE DESCRIPTION  
Z
b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
4612f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTM4612  
PACKAGE PHOTOGRAPH  
15mm  
2.8mm  
15mm  
4612 F24  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC2900  
Quad Supply Monitor with Adjustable Reset Timer  
10A DC/DC μModule  
Monitors Four Supplies; Adjustable Reset Timer  
Basic 10A DC/DC μModule, LGA Package  
LTM4600  
LTM4600HVMP  
Military Plastic 10A DC/DC μModule  
Guaranteed Operation from –55°C to 125°C Ambient, LGA Package  
LTM4601/  
LTM4601A  
12A DC/DC μModule with PLL, Output Tracking/  
Margining and Remote Sensing  
Synchronizable, PolyPhase Operation, LTM4601-1/LTM4601A-1 Version Has  
No Remote Sensing, LGA Package  
LTM4602  
LTM4603  
6A DC/DC μModule  
Pin Compatible with the LTM4600, LGA Package  
6A DC/DC μModule with PLL and Output Tracking/ Synchronizable, PolyPhase Operation, LTM4603-1 Version Has No Remote  
Margining and Remote Sensing  
Sensing, Pin Compatible with the LTM4601, LGA Package  
LTM4604A  
LTM4606  
Low V 4A DC/DC μModule  
2.375V ≤ V ≤ 5.5V, 0.8V ≤ V ≤ 5V, 9mm × 15mm × 2.3mm LGA Package  
IN  
IN  
OUT  
Ultralow Noise 6A, DC/DC μModule  
Ultralow Noise, with PLL, Output Tracking and Margining, LTM4612  
Pin Compatible  
LTM4608A  
LTM8020  
LTM8021  
Low V 8A DC/DC μModule  
2.4V ≤ V ≤ 5.5V; 0.6V ≤ V  
≤ 5V; 9mm × 15mm × 2.8mm LGA Package  
OUT  
IN  
IN  
High V 0.2A DC/DC Step-Down μModule  
4V ≤ V ≤ 36V, 1.25V ≤ V  
≤ 5V 6.25mm × 6.25mm × 2.3mm LGA Package  
≤ 5V 6.25mm × 11.25mm × 2.8mm LGA Package  
OUT  
IN  
IN  
OUT  
High V 0.5A DC/DC Step-Down μModule  
3V ≤ V ≤ 36V, 0.8V ≤ V  
IN  
IN  
LTM8022/LTM8023 36V , 1A and 2A DC/DC μModule  
Pin Compatible; 4.5V ≤ V ≤ 36V; 9mm × 11.25mm × 2.8mm LGA Package  
IN  
IN  
4612f  
LT 0808 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM4612_1

EN55022B Compliant 36VIN, 15VOUT, 5A, DC/DC Module Regulator
Linear

LTM4613

符合 EN55022B 規格的36VIN、15VOUT、8A、DC/DC μModule 穩壓器,LTM®4613 是一款完整、超低噪聲、8A 開關模式 DC/DC電源。
Linear

LTM4613EV#PBF

LTM4613 - EN55022B Compliant 36VIN, 15VOUT, 8A, DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 133; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4613EY#PBF

暂无描述
Linear

LTM4613IV#PBF

LTM4613 - EN55022B Compliant 36VIN, 15VOUT, 8A, DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 133; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4613IY

LTM4613 - EN55022B Compliant 36VIN, 15VOUT, 8A, DC/DC &#181;Module (Power Module) Regulator; Package: BGA; Pins: 133; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4613IY#PBF

暂无描述
Linear

LTM4613MPV#PBF

LTM4613 - EN55022B Compliant 36VIN, 15VOUT, 8A, DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 133; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM4614

Dual 4A per Channel Low VIN DC/DC μModule Regulator
Linear

LTM4614

Dual 8A or Single 16A DC/DC μModule Regulator
LINEAR_DIMENS

LTM4614EV

Dual 4A per Channel Low VIN DC/DC μModule Regulator
Linear

LTM4614EVPBF

Dual 4A per Channel Low VIN DC/DC μModule Regulator
Linear