LTM4627 [Linear]

15A DC/DC μModule Regulator; 15A DC / DC微型模块稳压器
LTM4627
型号: LTM4627
厂家: Linear    Linear
描述:

15A DC/DC μModule Regulator
15A DC / DC微型模块稳压器

稳压器
文件: 总28页 (文件大小:366K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4627  
15A DC/DC µModule  
Regulator  
FEATURES  
DESCRIPTION  
The LTM®4627 is a complete 15A output high efficiency  
switch mode DC/DC power supply. Included in the pack-  
age are the switching controller, power FETs, inductor and  
compensationcomponents.Operatingoveraninputvoltage  
range from 4.5V to 20V, the LTM4627 supports an output  
voltagerangeof0.6Vto5V,setbyasingleexternalresistor.  
Only a few input and output capacitors are needed.  
n
Complete 15A Switch Mode Power Supply  
n
Wide Input Voltage Range: 4.5V to 20V  
n
0.6V to 5V Output Range  
n
1.5ꢀ ꢁotal DC Output Error (–40°C to 125°C)  
n
Differential Remote Sense Amplifier for Precision  
Regulation  
n
Current Mode Control/ Fast ransient Response  
n
Frequency Synchronization  
Current mode operation allows precision current sharing  
of up to four LTM4627 regulators to obtain 60A output.  
Highswitchingfrequencyandacurrentmodearchitecture  
enable a very fast transient response to line and load  
changes without sacrificing stability. The device supports  
frequency synchronization, multiphase/current sharing  
operation, BurstModeoperationandoutputvoltagetrack-  
ing for supply rail sequencing.  
n
Parallel Current Sharing (Up to 60A)  
Selectable Pulse-Skipping or Burst Mode® Operation  
n
n
Soft-Start/Voltage Tracking  
Up to 93% Efficiency (12V , 3.3V  
Overcurrent Foldback Protection  
Output Overvoltage Protection  
Small Surface Mount Footprint, Low Profile  
15mm × 15mm × 4.32mm LGA Package  
n
)
IN  
OUT  
n
n
n
The LTM4627 is offered in a thermally enhanced 15mm ×  
15mm × 4.32mm LGA package. The LTM4627 is PB-free  
and RoHS compliant.  
L, LT, LTC, LTM, Linear Technology, the Linear logo, Burst Mode and μModule are registered  
trademarks of Linear Technology Corporation. PolyPhase is a registered trademark of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Protected by U.S. Patents, including 5481178, 5847554, 6580258, 6304066, 6476589,  
6774611, 6677210.  
APPLICATIONS  
n
Telecom Servers and Networking Equipment  
n
ATCA and Storage Cards  
n
Industrial Equipment  
Medical Systems  
n
TYPICAL APPLICATION  
1.2V, 15A DC/DC μModule® Regulator  
Efficiency vs Load Current  
95  
90  
85  
V
IN  
4.5V TO 16V  
22μF  
16V  
×3  
150pF  
10k  
V
EXTV  
CC  
INTV  
PGOOD  
CC  
IN  
V
1.2V  
15A  
OUT  
80  
75  
70  
65  
60  
55  
50  
0.1μF  
COMP  
V
OUT  
V
OUT_LCL  
+
470μF  
6.3V  
TRACK/SS  
RUN  
LTM4627  
GND  
DIFF_OUT  
+
100μF*  
6.3V  
82pF  
f
V
V
SET  
OSNS  
100k  
MODE_PLLIN  
OSNS  
V
12V , 1.2V  
IN  
OUT  
FB  
SGND  
5V , 1.2V  
IN OUT  
R
**  
FB  
60.4k  
0
2
4
6
8
10 12 14 16  
*
SEE TABLE 4  
4627 TA01a  
LOAD CURRENT (A)  
** SEE TABLE 1  
4627 TA01b  
4627f  
1
LTM4627  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V ............................................................. –0.3V to 22V  
IN  
MODE_PLLIN  
CC  
INTV , V  
(V  
≤ 3.3V with  
INTV  
TRACK/SS COMP  
CC OUT OUT  
V
IN  
1
2
3
4
5
6
7
8
9
10  
11  
12  
DIFF AMP), V  
, PGOOD, EXTV ....... –0.3V to 6V  
OUT_LCL  
CC  
A
B
C
D
E
MODE_PLLIN, f , TRACK/SS,  
RUN  
SET  
V
IN  
+
f
SET  
V
, V  
FB  
, DIFF_OUT...................–0.3V to INTV  
OSNS  
OSNS CC  
COMP, V ................................................ –0.3V to 2.7V  
INTV  
CC  
RUN (Note 5) ............................................... –0.3V to 5V  
EXTV  
CC  
INTV Peak Output Current (Note 6)..................100mA  
CC  
PGOOD  
F
V
FB  
Internal Operating Temperature Range  
GND  
G
H
J
PGOOD  
(Note 2).................................................. –40°C to 125°C  
Storage Temperature Range .................. –55°C to 125°C  
Reflow (Peak Body) Temperature..........................250°C  
SGND  
+
V
OSNS  
K
L
DIFF_OUT  
V
OUT  
V
OUT_LCL  
M
V
OSNS  
V
OUT  
LGA PACKAGE  
133-LEAD (15mm s 15mm s 4.32mm)  
T
= 125°C, θ = 13°C/W, θ  
= 2.3°C/W, θ  
= 11°C/W to 13°C/W,  
J(MAX)  
JA  
JCbottom  
JCtop  
θ
DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS; WEIGHT = 2.6g  
JA  
θ VALUES DETERMINED PER JESD51-12  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM4627EV#PBF  
LTM4627IV#PBF  
ꢁRAY  
PARꢁ MARKING*  
LTM4627V  
PACKAGE DESCRIPꢁION  
ꢁEMPERAURE RANGE  
–40°C to 125°C  
LTM4627EV#PBF  
LTM4627IV#PBF  
133-Lead (15mm × 15mm × 4.32mm) LGA  
133-Lead (15mm × 15mm × 4.32mm) LGA  
LTM4627V  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
ELECTRICAL CHARACTERISTICS ꢁhe l denotes the specifications which apply over the full internal operating  
temperature range, otherwise specifications are at ꢁA = 25°C (Note 2), VIN = 12V, per the typical application in Figure 18.  
SYMBOL  
PARAMEꢁER  
CONDIꢁIONS  
MIN  
4.5  
ꢁYP  
MAX  
20  
UNIꢁS  
l
l
V
Input DC Voltage  
V
V
IN  
V
Output Voltage, Total  
Variation with Line and Load  
1.477  
1.50  
1.523  
C
C
= 22μF × 3  
OUT  
OUT(DC)  
IN  
= 100μF Ceramic, 470μF POSCAP  
= 40.2k, MODE_PLLIN = GND  
R
FB  
IN  
V
= 5V to 20V, I  
= 0A to 15A (Note 4)  
OUT  
Input Specifications  
V
RUN Pin On Threshold  
RUN Pin On Hysteresis  
V
Rising  
1.1  
1.25  
130  
1.4  
V
RUN  
RUN  
V
mV  
RUNHYS  
4627f  
2
LTM4627  
ELECTRICAL CHARACTERISTICS ꢁhe l denotes the specifications which apply over the full internal operating  
temperature range, otherwise specifications are at ꢁA = 25°C (Note 2), VIN = 12V, per the typical application in Figure 18.  
SYMBOL  
PARAMEꢁER  
CONDIꢁIONS  
MIN  
ꢁYP  
MAX  
UNIꢁS  
I
Input Supply Bias Current  
V
V
V
= 12V, V  
= 12V, V  
= 12V, V  
= 1.5V, Burst Mode Operation, I  
= 1.5V, Pulse-Skipping Mode, I  
= 1.5V, Switching Continuous, I  
= 0.1A  
= 0.1A  
= 0.1A  
17  
25  
54  
40  
mA  
mA  
mA  
μA  
Q(VIN)  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
Shutdown, RUN = 0, V = 12V  
IN  
I
Input Supply Current  
V
V
= 5V, V  
= 1.5V, I = 15A  
OUT  
OUT  
5.05  
2.13  
A
A
S(VIN)  
IN  
IN  
OUT  
= 12V, V  
= 1.5V, I  
= 15A  
OUT  
Output Specifications  
I
Output Continuous Current  
Range  
V
= 12V, V  
= 1.5V (Note 4)  
0
15  
A
%/V  
%
OUT(DC)  
IN  
OUT  
l
l
ΔV  
(Line)  
OUT  
Line Regulation Accuracy  
Load Regulation Accuracy  
Output Ripple Voltage  
Turn-On Overshoot  
V
I
= 1.5V, V from 4.5V to 20V  
OUT  
= 0A  
0.02  
0.2  
15  
0.06  
0.45  
OUT  
V
IN  
OUT  
ΔV  
(Load)  
OUT  
V
= 1.5V, I  
= 0A to 15A, V = 12V (Note 4)  
OUT IN  
OUT  
V
OUT  
V
I
= 0A, C  
= 100μF Ceramic, 470μF POSCAP  
= 1.5V  
mV  
P-P  
OUT(AC)  
OUT  
OUT  
OUT  
V
= 12V, V  
IN  
ΔV  
C
V
= 100μF Ceramic, 470μF POSCAP,  
= 1.5V, I  
20  
mV  
ms  
mV  
OUT(START)  
OUTLS  
OUT  
OUT  
= 0A, V = 12V  
IN  
OUT  
t
Turn-On Time  
C
= 100μF Ceramic, 470μF POSCAP,  
50  
START  
OUT  
No Load, TRACK/SS = 0.001μF, V = 12V  
IN  
ΔV  
Peak Deviation for Dynamic Load: 0% to 50% to 0% of Full Load  
Load  
60  
C
V
= 100μF Ceramic, 470μF POSCAP,  
OUT  
= 12V, V  
= 1.5V  
OUT  
IN  
t
I
Settling Time for Dynamic  
Load Step  
Load: 0% to 50% to 0% of Full Load V = 5V,  
OUT  
20  
μs  
SETTLE  
IN  
C
= 100μF Ceramic, 470μF POSCAP  
Output Current Limit  
V
IN  
V
IN  
= 12V, V = 1.5V  
OUT  
25  
25  
A
A
OUTPK  
= 5V, V  
= 1.5V  
OUT  
Control Section  
l
l
V
Voltage at V Pin  
I
= 0A, V = 1.5V  
OUT  
0.594  
0.60  
–12  
0.606  
–25  
V
nA  
V
FB  
FB  
OUT  
I
FB  
Current at V Pin  
(Note 7)  
FB  
V
Feedback Overvoltage  
Lockout  
0.65  
1.0  
0.67  
0.69  
OVL  
I
t
Track Pin Soft-Start Pull-Up  
Current  
TRACK/SS = 0V  
(Note 3)  
1.2  
1.4  
μA  
TRACK/SS  
Minimum On-Time  
90  
ns  
ON(MIN)  
R
Resistor Between V  
60.05  
0
60.40  
60.75  
4
kΩ  
FBHI  
OUT_LCL  
and V Pins  
FB  
+
V
V
,
Common Mode Input Range  
V
IN  
= 12V, Run > 1.4V  
V
OSNS  
OSNS CM RANGE  
V
V
A
Maximum DIFF_OUT Voltage  
Input Offset Voltage  
Differential Gain  
I
= 300μA  
INTV – 1.4  
V
mV  
DIFF_OUT(MAX)  
DIFF_OUT  
+
CC  
V
= V  
= 1.5V, I = 100μA  
DIFF_OUT  
2
OS  
V
OSNS  
DIFF_OUT  
1
2
V/V  
V/μs  
MHz  
dB  
SR  
Slew Rate  
GBP  
CMRR  
Gain Bandwidth Product  
Common Mode Rejection  
DIFF_OUT Current  
3
(Note 7)  
Sourcing  
60  
I
2
mA  
DIFF_OUT  
4627f  
3
LTM4627  
ELECTRICAL CHARACTERISTICS ꢁhe l denotes the specifications which apply over the full internal operating  
temperature range, otherwise specifications are at ꢁA = 25°C (Note 2), VIN = 12V, per the typical application in Figure 18.  
SYMBOL  
PARAMEꢁER  
CONDIꢁIONS  
5V < V < 20V (Note 7)  
MIN  
ꢁYP  
MAX  
UNIꢁS  
PSRR  
Power Supply Rejection  
Ratio  
100  
dB  
IN  
R
Input Resistance  
PGOOD Trip Level  
V
V
+ to GND  
OSNS  
80  
kΩ  
IN  
V
With Respect to Set Output  
PGOOD  
FB  
V
V
–10  
10  
%
%
Ramping Negative  
Ramping Positive  
FB  
FB  
V
PGOOD Voltage Low  
I
= 2mA  
PGOOD  
0.1  
0.3  
5.2  
V
PGL  
INꢁV Linear Regulator  
CC  
V
V
V
Internal V Voltage  
6V < V < 20V  
4.8  
4.5  
5
V
%
INTVCC  
INTVCC  
EXTVCC  
CC  
IN  
Load Reg INTV Load Regulation  
I
= 0 to 50mA  
CC  
0.5  
4.7  
50  
CC  
l
External V Switchover  
EXTV Ramping Positive  
V
CC  
CC  
VLDO Ext  
EXTV Voltage Drop  
I
= 25mA, V = 5V  
EXTVCC  
100  
mV  
CC  
CC  
Oscillator and Phase-Locked Loop  
f
SYNC Capture Range  
Nominal Frequency  
250  
450  
800  
550  
kHz  
kHz  
SYNC  
Frequency  
Nominal  
V
= 1.2V  
500  
fSET  
Frequency Low  
Frequency High  
Lowest Frequency  
Highest Frequency  
Frequency Set Current  
V
V
= 1V  
350  
700  
9
400  
770  
10  
450  
850  
11  
kHz  
kHz  
μA  
fSET  
≥ 2.4V  
fSET  
I
FREQ  
R
Mode_PLLIN Input  
Resistance  
250  
kΩ  
MODE_PLLIN  
V
V
Clock Input Level High  
Clock Input Level Low  
2.0  
V
V
IH_MODE_PLLIN  
IL_MODE_PLLIN  
0.8  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
maximum ambient temperature consistent with these specifications is  
determined by specific operating conditions in conjunction with board  
layout, the rated package thermal resistance and other environmental  
factors.  
Note 3: The minimum on-time condition is specified for a peak-to-peak  
Note 2: The LTM4627 is tested under pulsed load conditions such that  
inductor ripple current of ~40% of I  
Information section)  
Load. (See the Applications  
MAX  
T ≈ T . The LTM4627E is guaranteed to meet performance specifications  
J
A
over the 0°C to 125°C internal operating temperature range. Specifications  
over the full –40°C to 125°C internal operating temperature range are  
assured by design, characterization and correlation with statistical process  
controls. The LTM4627I is guaranteed to meet specifications over the  
full –40°C to 125°C internal operating temperature range. Note that the  
Note 4: See output current derating curves for different V , V  
and T .  
A
IN OUT  
Note 5: Limit current into the RUN pin to less than 2mA.  
Note 6: Guaranteed by design.  
Note 7: 100% tested at wafer level.  
4627f  
4
LTM4627  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs Load Current  
with 8VIN  
Efficiency vs Load Current  
with 12VIN  
Efficiency vs Load Current  
with 5VIN  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
1V  
AT 400kHz  
1V  
AT 400kHz  
AT 400kHz  
OUT  
OUT  
OUT  
1V  
OUT  
AT 400kHz  
1.2V  
1.5V  
2.5V  
3.3V  
5V  
AT 400kHz  
AT 400kHz  
AT 500kHz  
AT 600kHz  
1.2V  
1.5V  
2.5V  
3.3V  
5V  
OUT  
OUT  
OUT  
OUT  
1.2V  
1.5V  
2.5V  
3.3V  
AT 400kHz  
AT 400kHz  
AT 400kHz  
AT 650kHz  
AT 400kHz  
AT 650kHz  
AT 650kHz  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
AT 600kHz  
AT 700kHz  
OUT  
OUT  
0
2
4
6
8
10 12 14 16  
LOAD CURRENT (A)  
0
2
4
6
8
10 12 14 16  
LOAD CURRENT (A)  
0
2
4
6
8
10 12 14 16  
LOAD CURRENT (A)  
4627 G01  
4627 G02  
4627 G03  
Burst Mode Efficiency  
Pulse-Skipping Mode Efficiency  
1.0V ransient Response  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
5V , 2.5V  
IN  
OUT  
5V , 2.5V  
Burst Mode OPERATION  
PULSE-SKIPPING MODE  
IN  
OUT  
50mV/DIV  
12V , 2.5V  
Burst Mode OPERATION  
IN  
OUT  
7.5A  
LOAD STEP  
12V , 2.5V  
IN  
OUT  
4627 G06  
PULSE-SKIPPING MODE  
100μs/DIV  
V
= 12V, V  
= 1.0V, C = 82pF, C  
= 33pF  
COMP  
IN  
OUT  
FF  
OUTPUT CAPACITOR = 5 s 100μF CERAMIC X5R  
0.1  
0.2  
0.5  
1
1.5  
2
0.1  
0.2  
0.5  
1
1.5  
2
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4627 G04  
4627 G05  
1.2V ransient Response  
1.5V ransient Response  
1.8V ransient Response  
50mV/DIV  
50mV/DIV  
50mV/DIV  
7.5A  
LOAD STEP  
7.5A  
LOAD STEP  
7.5A  
LOAD STEP  
4627 G07  
4627 G08  
4627 G09  
100μs/DIV  
100μs/DIV  
100μs/DIV  
V
= 12V, V  
= 1.2V, C = 82pF, C = 33pF  
COMP  
V
= 12V, V  
= 1.5V, C = 82pF, C  
= 33pF  
V
= 12V, V  
= 1.8V, C = 82pF, C  
= 33pF  
COMP  
IN  
OUT  
FF  
IN  
OUT  
FF  
COMP  
IN  
OUT  
FF  
OUTPUT CAPACITOR = 5 s 100μF CERAMIC X5R  
OUTPUT CAPACITOR = 5 s 100μF CERAMIC X5R  
OUTPUT CAPACITOR = 4 s 100μF CERAMIC X5R  
4627f  
5
LTM4627  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.5V ransient Response  
3.3V ransient Response  
5.0V ransient Response  
50mV/DIV  
50mV/DIV  
50mV/DIV  
7.5A  
LOAD STEP  
7.5A  
LOAD STEP  
7.5A  
LOAD STEP  
4627 G12  
4627 G10  
4627 G11  
100μs/DIV  
100μs/DIV  
100μs/DIV  
V
= 12V, V  
= 5V, C = 82pF, C = 33pF  
COMP  
V
= 12V, V  
= 2.5V, C = 82pF, C = 33pF  
COMP  
V
= 12V, V  
= 3.3V, C = 82pF, C = 33pF  
COMP  
IN  
OUT  
FF  
IN  
OUT  
FF  
IN  
OUT  
FF  
OUTPUT CAPACITOR = 2 s 100μF CERAMIC X5R  
OUTPUT CAPACITOR = 4 s 100μF CERAMIC X5R  
OUTPUT CAPACITOR = 2 s 100μF CERAMIC X5R  
Start-Up with Soft-Start  
Short-Circuit Protection No Load  
Short-Circuit Protection 15A Load  
V
OUT  
V
OUT  
V
I
OUT  
OUT  
500mV/DIV  
1A/DIV  
500mV/DIV  
5A/DIV  
500mV/DIV  
1A/DIV  
I
IN  
I
IN  
4627 G15  
4627 G14  
4627 G13  
4ms/DIV  
4ms/DIV  
100μs/DIV  
V
= 12V, V  
= 1.5V, I  
= 15A  
OUT  
V
= 12V, V  
= 1.5V, I  
= 0A  
OUT  
V
= 12V, V  
= 1.5V, I  
= 15A  
OUT  
IN  
OUT  
IN  
OUT  
IN  
OUT  
INPUT CAP 150μF SANYO ELECTROLYTIC CAP  
AND 22μF s 2 X5R CERAMIC CAP  
OUTPUT CAP 1 s 100μF X5R CERAMIC AND 470μF  
0.1μF CAP FROM TRACK/SS TO GND  
PIN FUNCTIONS  
PGOOD(F11,G12):OutputVoltagePowerGoodIndicator.  
Open-drain logic output that is pulled to ground when the  
output voltage exceeds a 10% regulation window. Both  
pins are tied together internally.  
V (A1-A6, B1-B6, C1-C6):PowerInputPins. Applyinput  
IN  
voltage between these pins and GND pins. Recommend  
placing input decoupling capacitance directly between V  
pins and GND pins.  
IN  
SGND(G11,H11,H12):SignalGroundPin.Returnground  
path for all analog and low power circuitry. Tie a single  
connection to the output capacitor GND in the application.  
See layout guidelines in Figure 17.  
V
(J1-J10, K1-K11, L1-L11, M1-M11): Power Output  
OUꢁ  
Pins. Apply output load between these pins and GND  
pins. Recommend placing output decoupling capacitance  
directly between these pins and GND pins. Review Table 4.  
GND (B7, B9, C7, C9, D1-D6, D8, E1-E7, E9, F1-F9, G1-G9,  
H1-H9): Power Ground Pins for Both Input and Output  
Returns.  
4627f  
6
LTM4627  
PIN FUNCTIONS  
RUN:(A10)RunControlPin.Avoltageabove1.4Vwillturn  
on the module. A 5.1V Zener diode to ground is internal  
to the module for limiting the voltage on the RUN pin to  
MODE_PLLIN(A8):ForcedContinuousMode,BurstMode  
Operation, or Pulse-Skipping Mode Selection Pin and  
External Synchronization Input to Phase Detector Pin.  
5V, and allowing a pull-up resistor to V for enabling the  
Connect this pin to INTV to enable pulse-skipping mode  
IN  
CC  
device. Limit current into the RUN pin to ≤ 2mA.  
ofoperation.Connecttogroundtoenableforcedcontinuous  
modeofoperation.FloatingthispinwillenableBurstMode  
operation. A clock on this pin will enable synchronization  
with forced continuous operation. See the Applications  
Information section.  
INꢁV : (A7, D9) Internal 5V LDO for Driving the Control  
CC  
Circuitry and the Power MOSFET Drivers. Both pins are  
internally connected. The 5V LDO has a 100mA current  
limit.  
f
(B12): A resistor can be applied from this pin to  
SEꢁ  
EXꢁV (E12): External power input to an internal control  
CC  
ground to set the operating frequency, or a DC voltage  
can be applied to set the frequency. See the Applications  
Information section.  
switchallowsanexternalsourcegreaterthan4.7V,butless  
than6VtosupplyICpowerandbypasstheinternalINTV  
LDO. See the Applications Information section.  
CC  
ꢁRACK/SS (A9): Output Voltage Tracking Pin and Soft-  
Start Inputs. The pin has a 1.2μA pull-up current source.  
A capacitor from this pin to ground will set a soft-start  
ramp rate. In tracking, the regulator output can be tracked  
to a different voltage. The different voltage is applied to  
a voltage divider then the slave output’s track pin. This  
voltage divider is equal to the slave output’s feedback  
divider for coincidental tracking. See the Applications  
Information section.  
V
: (L12) This pin connects to V  
through a 1M  
OUT  
OUꢁ_LCL  
resistor, and to V with a 60.4k resistor. The remote sense  
FB  
amplifier output DIFF_OUT is connected to V  
, and  
OUT_LCL  
drives the 60.4k top feedback resistor in remote sensing  
applications. When the remote sense amplifier is used,  
DIFF_OUT effectively eliminates the 1MΩ from V  
to  
OUT  
V
. When the remote sense amplifier is not used,  
OUT_LCL  
then connect V  
to V  
directly.  
OUT_LCL  
OUT  
+
V
: (J12) (+) Input to the Remote Sense Amplifier.  
OSNS  
V
(F12): The Negative Input of the Error Amplifier.  
FB  
This pin connects to the output remote sense point. The  
Internally, this pin is connected to V  
with a  
OUT_LCL  
remote sense amplifier is used for V  
≤ 3.3V.  
OUT  
60.4k precision resistor. Different output voltages can  
be programmed with an additional resistor between V  
V
: (M12) (–) Input to the Remote Sense Amplifier.  
OSNS  
FB  
and ground pins. In PolyPhase® operation, tying the  
This pin connects to the ground remote sense point. The  
remote sense amplifier is used for V ≤ 3.3V.  
OUT  
V
pins together allows for parallel operation. See the  
FB  
Applications Information section for details.  
DIFF_OU: (K12) Output of the Remote Sense Amplifier.  
This pin connects to the V  
applications. Otherwise float when not used.  
pin for remote sense  
OUT_LCL  
COMP(A11):CurrentControlThresholdandErrorAmplifier  
Compensation Point. The current comparator threshold  
increases with this control voltage. Tie all COMP pins  
together for parallel operation. The device is internally  
compensated.  
MꢁP1, MꢁP2, MꢁP3, MꢁP4, MꢁP5, MꢁP6, MꢁP7, MꢁP8  
(A12, B11, C10, C11, C12, D10, D11, D12):Extramount-  
ing pads used for increased solder integrity strength.  
Leave floating.  
4627f  
7
LTM4627  
BLOCK DIAGRAM  
INTV  
CC  
V
OUT_LCL  
V
OUT  
10k  
1M  
V
IN  
PGOOD  
> 1.4V = ON  
< 1.1V = OFF  
MAX = 5V  
R1  
R2  
V
IN  
RUN  
V
IN  
4.5V TO 20V  
+
+
1.5μF  
C
IN  
5.1V  
COMP  
60.4k  
M1  
M2  
INTERNAL  
COMP  
0.4μH  
V
OUT  
V
OUT  
1V  
SGND  
POWER  
CONTROL  
15A  
10μF  
C
OUT  
V
FB  
f
SET  
GND  
90.9k  
R
fSET  
100k  
INTERNAL  
LOOP  
FILTER  
INTV  
CC  
C SOFT-START  
TRACK/SS  
V
MODE_PLLIN  
OSNS  
+
DIFF  
AMP  
250k  
V
+
+
OSNS  
INTV  
EXTV  
CC  
CC  
C
DIFF_OUT  
4627 F01  
Figure 1. Simplified LꢁM4627 Block Diagram  
DECOUPLING REQUIREMENTS A = 25°C. Use Figure 1 configuration.  
SYMBOL  
PARAMEꢁER  
CONDIꢁIONS  
MIN  
66  
ꢁYP  
MAX  
UNIꢁS  
C
External Input Capacitor Requirement  
I
= 15A  
μF  
IN  
OUT  
(V = 4.5V to 20V, V  
= 1.5V)  
OUT  
IN  
C
OUT  
External Output Capacitor Requirement  
(V = 4.5V to 20V, V = 1.5V)  
I
= 15A  
200  
μF  
OUT  
IN  
OUT  
4627f  
8
LTM4627  
OPERATION  
Power Module Description  
overvoltage >10%. The top MOSFET is turned off and the  
bottom MOSFET is turned on until the output is cleared.  
The LTM4627 is a high performance single output stand-  
alone nonisolated switching mode DC/DC power supply.  
It can provide a 15A output with few external input and  
outputcapacitors.Thismoduleprovidespreciselyregulated  
output voltages programmable via external resistors from  
Pulling the RUN pin below 1.1V forces the regulator into a  
shutdown state. The TRACK/SS pin is used for program-  
ming the output voltage ramp and voltage tracking during  
start-up. See the Application Information section.  
0.6V to 5V over a 4.5V to 20V input range. The typical  
DC  
DC  
application schematic is shown in Figure 18.  
The LTM4627 is internally compensated to be stable over  
all operating conditions. Table 4 provides a guideline for  
input and output capacitances for several operating con-  
ditions. The Linear Technology μModule Power Design  
Tool will be provided for transient and stability analysis.  
TheLTM4627hasanintegratedconstant-frequencycurrent  
moderegulator,powerMOSFETs,0.4μHinductor,andother  
supportingdiscretecomponents.Theswitchingfrequency  
range is from 400kHz to 800kHz, and the typical operating  
frequency is 500kHz. For switching noise-sensitive appli-  
cations, it can be externally synchronized from 400kHz to  
800kHz.Asingleresistorisusedtoprogramthefrequency.  
See the Applications Information section.  
The V pin is used to program the output voltage with a  
FB  
single external resistor to ground.  
Aremotesenseamplifierisprovidedforaccuratelysensing  
output voltages 3.3V at the load point.  
With current mode control and internal feedback loop  
compensation, the LTM4627 module has sufficient stabil-  
ity margins and good transient performance with a wide  
range of output capacitors, even with all ceramic output  
capacitors.  
Multiphase operation can be easily employed with the  
synchronization inputs using an external clock source.  
See application examples.  
High efficiency at light loads can be accomplished with  
selectable Burst Mode operation using the MODE_PLLIN  
pin. These light load features will accommodate battery  
operation. Efficiency graphs are provided for light load  
operation in the Typical Performance Characteristics  
section.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limit in an overcurrent condition. An internal overvoltage  
monitor protects the output voltage in the event of an  
4627f  
9
LTM4627  
APPLICATIONS INFORMATION  
The typical LTM4627 application circuit is shown in Fig-  
ure 18. External component selection is primarily deter-  
mined by the maximum load current and output voltage.  
RefertoTable4forspecificexternalcapacitorrequirements  
for particular applications.  
For parallel operation of N LTM4627s, the following equa-  
tion can be used to solve for R :  
FB  
60.4 /N  
RFB=  
V
0.6  
OUT  
–1  
Tie the V pins together for each parallel output. The  
FB  
V to V  
Step-Down Ratios  
IN  
OUꢁ  
COMP pins must be tied together also.  
There are restrictions in the V to V  
step-down ratio  
IN  
OUT  
Input Capacitors  
that can be achieved for a given input voltage. The V to  
IN  
V
OUT  
minimum dropout is a function of load current and  
The LTM4627 module should be connected to a low  
AC-impedance DC source. Additional input capacitors  
are needed for the RMS input ripple current rating. The  
at very low input voltage and high duty cycle applications  
output power may be limited as the internal top power  
MOSFET is not rated for 15A operation at higher ambient  
temperatures. At very low duty cycles the minimum 90ns  
on-time must be maintained. See the Frequency Adjust-  
ment section and temperature derating curves.  
I
equation which follows can be used to calculate  
CIN(RMS)  
the input capacitor requirement. Typically 22μF X7R ce-  
ramics are a good choice with RMS ripple current ratings  
of ~ 2A each. A 47μF to 100μF surface mount aluminum  
electrolytic bulk capacitor can be used for more input bulk  
capacitance. This bulk input capacitor is only needed if  
the input source impedance is compromised by long in-  
ductive leads, traces or not enough source capacitance.  
If low impedance power planes are used, then this bulk  
capacitor is not needed.  
Output Voltage Programming  
The PWM controller has an internal 0.6V 1% reference  
voltage. As shown in the Block Diagram, a 60.4k internal  
feedback resistor connects the V  
and V pins  
OUT_LCL  
FB  
together. When the remote sense amplifier is used, then  
DIFF_OUT is connected to the V pin. If the remote  
OUT_LCL  
For a buck converter, the switching duty cycle can be  
estimated as:  
sense amplifier is not used, then V  
connects to  
OUT_LCL  
V
. The output voltage will default to 0.6V with no feed-  
OUT  
back resistor. Adding a resistor R from V to ground  
V
OUT  
VIN  
FB  
FB  
D=  
programs the output voltage:  
60.4k +RFB  
Without considering the inductor ripple current, for each  
V
OUT = 0.6V •  
RFB  
output, the RMS current of the input capacitor can be  
estimated as:  
ꢁable 1. VFB Resistor ꢁable vs Various Output Voltages  
(V) 0.6 1.0 1.2 1.5 1.8 2.5 3.3  
Open 90.9 60.4 40.2 30.1 19.1 13.3 8.25  
IOUT(MAX)  
V
5.0  
OUꢁ  
ICIN(RMS)  
=
D(1D)  
η%  
R
(k)  
FB  
Inthepreviousequation,η%istheestimatedefficiencyofthe  
power module. The bulk capacitor can be a switcher-rated  
electrolytic aluminum capacitor or a Polymer capacitor.  
4627f  
10  
LTM4627  
APPLICATIONS INFORMATION  
Output Capacitors  
greater than the load requirement. As the COMP voltage  
drops below 0.5V, the burst comparator trips, causing  
the internal sleep line to go high and turn off both power  
MOSFETs.  
The LTM4627 is designed for low output voltage ripple  
noise. The bulk output capacitors defined as C  
are  
OUT  
chosen with low enough effective series resistance (ESR)  
to meet the output voltage ripple and transient require-  
In sleep mode, the internal circuitry is partially turned  
off, reducing the quiescent current. The load current is  
now being supplied from the output capacitors. When the  
output voltage drops, causing COMP to rise, the internal  
sleep line goes low, and the LTM4627 resumes normal  
operation. The next oscillator cycle will turn on the top  
power MOSFET and the switching cycle repeats.  
ments. C  
canbealowESRtantalumcapacitor, lowESR  
OUT  
Polymercapacitororceramiccapacitors.Thetypicaloutput  
capacitancerangeisfrom200μFto800μF.Additionaloutput  
filtering may be required by the system designer if further  
reduction of output ripple or dynamic transient spikes is  
required.Table4showsamatrixofdifferentoutputvoltages  
and output capacitors to minimize the voltage droop and  
overshoot during a 7A/μs transient. The table optimizes  
totalequivalentESRandtotalbulkcapacitancetooptimize  
thetransientperformance.Stabilitycriteriaareconsidered  
in the Table 4 matrix, and the Linear Technology μModule  
Power Design Tool will be provided for stability analysis.  
Multiphase operation will reduce effective output ripple  
as a function of the number of phases. Application Note  
77 discusses this noise reduction versus output ripple  
current cancellation, but the output capacitance should be  
consideredcarefullyasafunctionofstabilityandtransient  
response. The Linear Technology μModule Power Design  
Toolcancalculatetheoutputripplereductionasthenumber  
of implemented phase’s increases by N times.  
Pulse-Skipping Mode Operation  
In applications where low output ripple and high effi-  
ciencyatintermediatecurrentsaredesired,pulse-skipping  
mode should be used. Pulse-skipping operation allows  
the LTM4627 to skip cycles at low output loads, thus  
increasing efficiency by reducing switching loss. Tying  
the MODE_PLLIN pin to INTV enables pulse-skipping  
CC  
operation. With pulse-skipping mode at light load, the  
internalcurrentcomparatormayremaintrippedforseveral  
cycles,thusskippingoperationcycles.Thismodehaslower  
ripple than Burst Mode operation and maintains a higher  
frequency operation than Burst Mode operation.  
Forced Continuous Operation  
Burst Mode Operation  
In applications where fixed frequency operation is more  
critical than low current efficiency, and where the lowest  
output ripple is desired, forced continuous operation  
should be used. Forced continuous operation can be  
enabled by tying the MODE_PLLIN pin to ground. In this  
mode, inductor current is allowed to reverse during low  
output loads, the COMP voltage is in control of the current  
comparator threshold throughout, and the top MOSFET  
alwaysturnsonwitheachoscillatorpulse.Duringstart-up,  
forced continuous mode is disabled and inductor current  
is prevented from reversing until the LTM4627’s output  
voltage is in regulation.  
The LTM4627 is capable of Burst Mode operation in which  
the power MOSFETs operate intermittently based on load  
demand, thus saving quiescent current. For applications  
where maximizing the efficiency at very light loads is a  
high priority, Burst Mode operation should be applied. To  
enableBurstModeoperation,simplyoattheMODE_PLLIN  
pin. During Burst Mode operation, the peak current of the  
inductorissettoapproximately30%ofthemaximumpeak  
current value in normal operation even though the voltage  
at the COMP pin indicates a lower value. The voltage at the  
COMP pin drops when the inductor’s average current is  
4627f  
11  
LTM4627  
APPLICATIONS INFORMATION  
Multiphase Operation  
The relationship of f voltage to switching frequency is  
SET  
shown in Figure 3. For low output voltages from 0.8V to  
1.5V,400kHzoperationisanoptimalfrequencyforthebest  
powerconversionefficiencywhilemaintainingtheinductor  
current to about 30% to 40% of maximum load current.  
For output voltages from 1.8V to 3.0V, 500kHz to 600kHz  
is optimal. For output voltages from 3.0V to 5.0V, 750kHz  
operation is optimal, but due to the higher ripple current  
at 5V operation the output current is limited to 10A.  
For outputs that demand more than 15A of load current,  
multiple LTM4627 devices can be paralleled to provide  
more output current without increasing input and output  
voltage ripple. The MODE_PLLIN pin allows the LTM4627  
to be synchronized to an external clock (between 400kHz  
to 800kHz) and the internal phase-locked loop allows the  
LTM4627 to lock onto input clock phase as well. The f  
SET  
resistorisselectedfornormalfrequency,thentheincoming  
clock can synchronize the device over the specified range.  
See Figure 20 for a synchronizing example circuit.  
TheLTM4627canbesynchronizedfrom400kHzto800kHz  
with an input clock that has a high level above 2V and  
a low level below 0.8V. The 400kHz low end operation  
limit is put in place to limit inductor ripple current. See the  
TypicalApplicationssectionforsynchronizationexamples.  
TheLTM4627minimumon-timeislimitedtoapproximately  
90ns. Guardband the on-time to 130ns. The on-time can  
be calculated as:  
A multiphase power supply significantly reduces the  
amount of ripple current in both the input and output ca-  
pacitors. The RMS input ripple current is reduced by, and  
the effective ripple frequency is multiplied by, the number  
of phases used (assuming that the input voltage is greater  
thanthenumberofphasesusedtimestheoutputvoltage).  
Theoutputrippleamplitudeisalsoreducedbythenumber  
of phases used. See Application Note 77.  
VOUT  
VIN  
1
tON(MIN)  
=
FREQ  
The LTM4627 device is an inherently current mode con-  
trolled device, so parallel modules will have good current  
sharing. This will balance the thermals in the design. Tie  
Output Voltage racking  
Output voltage tracking can be programmed externally  
usingtheTRACK/SSpin. Theoutputcanbetrackedupand  
downwithanotherregulator.Themasterregulator’soutput  
is divided down with an external resistor divider that is the  
sameastheslaveregulator’sfeedbackdividertoimplement  
coincident tracking. The LTM4627 uses an accurate 60.4k  
resistor internally for the top feedback resistor. Figure 4  
shows an example of coincident tracking.  
the COMP and V pins of each LTM4627 together to  
FB  
share the current evenly. Figure 20 shows a schematic of  
the parallel design.  
Input RMS Ripple Current Cancellation  
Application Note 77 provides a detailed explanation of  
multiphase operation. The input RMS ripple current can-  
cellation mathematical derivations are presented, and a  
graph is displayed representing the RMS ripple current  
reductionasafunctionofthenumberofinterleavedphases  
(see Figure 2).  
60.4k  
RTA  
VOUT(SLAVE) = 1+  
• VTRACK  
V
TRACK  
is the track ramp applied to the slave’s track pin.  
has a control range of 0V to 0.6V, or the internal  
TRACK  
V
PLL, Frequency Adjustment and Synchronization  
TheLTM4627switchingfrequencyissetbyaresistor(R  
)
)
fSET  
FREQ  
reference voltage. When the master’s output is divided  
down with the same resistor values used to set the slave’s  
output, then the slave will coincident track with the master  
until it reaches its final value. The master will continue to  
from the f pin to signal ground. A 10μA current (I  
SET  
flowingoutofthef pinthroughR  
developsavoltage  
SET  
fSET  
on f . R  
can be calculated as:  
SET fSET  
FREQ(kHz)  
4.5  
RfSET(kΩ)=  
+ 2kHz  
4627f  
12  
LTM4627  
APPLICATIONS INFORMATION  
0.60  
1 PHASE  
2 PHASE  
0.55  
3 PHASE  
4 PHASE  
6 PHASE  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY FACTOR (V /V  
)
OUT IN  
4627 F02  
Figure 2. Normalized Input RMS Ripple Current vs Duty Factor for One to Six μModule Regulators (Phases)  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
0.5  
1
1.5  
2
2.5  
f
PIN VOLTAGE (V)  
SET  
4627 F03  
Figure 3. Relationship Between Switching  
Frequency and Voltage at the fSEꢁ Pin  
4627f  
13  
LTM4627  
APPLICATIONS INFORMATION  
its final value from the slave’s regulation point. Voltage  
hasacontrolrangefrom0Vto0.6V.Themaster’sTRACK/SS  
pin slew rate is directly equal to the master’s output slew  
rate in volts/time. The equation:  
tracking is disabled when V  
is more than 0.6V. R in  
TRACK  
TA  
Figure 4 will be equal to the R for coincident tracking.  
FB  
The TRACK/SS pin of the master can be controlled by an  
external ramp or the soft-start function of that regulator  
canbeusedtodevelopthatmasterramp.TheLTM4627can  
be used as a master by setting the ramp rate on its track  
pin using a soft-start capacitor. A 1.2μA current source  
is used to charge the soft-start capacitor. The following  
equation can be used:  
MR  
SR  
60.4k = RTB  
where MR is the master’s output slew rate and SR is the  
slave’s output slew rate in volts/time. When coincident  
tracking is desired, then MR and SR are equal, thus R  
is equal to 60.4k. R is derived from equation:  
TB  
TA  
CSS  
1.2µA  
0.6V  
tSOFT-START = 0.6 •  
RTA =  
VTRACK  
RTB  
VFB  
VFB  
60.4k RFB  
+
Ratiometric tracking can be achieved by a few simple  
calculationsandtheslewratevalueappliedtothemaster’s  
TRACK/SS pin. As mentioned above, the TRACK/SS pin  
where V is the feedback voltage reference of the regula-  
FB  
tor, and V  
is 0.6V. Since R is equal to the 60.4k  
TB  
TRACK  
V
6V  
IN  
TO 16V  
C7  
22μF  
16V  
C10  
22μF  
16V  
150pF  
SOFT-START  
CAPACITOR  
C9  
PGOOD  
V
EXTV  
INTV  
CC CC  
IN  
22μF  
16V  
V
OUT2  
COMP  
V
C
OUT  
R2  
10k  
SS  
1.5V AT 15A  
+
C8  
470μF  
6.3V  
C11  
100μF  
6.3V  
TRACK/SS  
RUN  
V
OUT_LCL  
LTM4627  
DIFF_OUT  
+
82pF  
f
V
V
SET  
OSNS  
R4  
100k  
MODE_PLLIN  
OSNS  
V
FB  
SGND  
GND  
R
FB1  
40.2k  
V
6V  
IN  
TO 16V  
MASTER RAMP  
OR OUTPUT  
C3  
22μF  
16V  
C2  
22μF  
16V  
150pF  
PGOOD  
V
EXTV  
INTV  
CC CC  
IN  
V
1.2V  
15A  
C1  
22μF  
16V  
OUT1  
R
TB  
R
TA  
COMP  
V
OUT  
60.4k  
60.4k  
R1  
10k  
+
C4  
470μF  
6.3V  
C6  
100μF  
6.3V  
TRACK/SS  
RUN  
V
OUT_LCL  
LTM4627  
DIFF_OUT  
+
82pF  
f
V
V
SET  
OSNS  
R3  
100k  
MODE_PLLIN  
OSNS  
V
FB  
SGND  
GND  
R
FB  
60.4k  
4627 F04  
Figure 4. Dual Outputs (1.5V and 1.2V) with ꢁracking  
4627f  
14  
LTM4627  
APPLICATIONS INFORMATION  
top feedback resistor of the slave regulator in equal slew  
electronic circuit breaker or fuse can be sized to be tripped  
or cleared when the bottom MOSFET is turned on to pro-  
tect against the overvoltage. Foldback current limiting is  
disabled during soft-start or tracking start-up.  
rate or coincident tracking, then R is equal to R with  
TA  
FB  
V
= V  
. Therefore R = 60.4k, and R = 60.4k in  
TRACK TB TA  
FB  
Figure 4.  
Inratiometrictracking, adifferentslewratemaybedesired  
Run Enable  
for the slave regulator. R can be solved for when SR is  
TB  
The RUN pin is used to enable the power module or  
sequence the power module. The threshold is 1.25V, and  
the pin has an internal 5.1V Zener to protect the pin. The  
RUN pin can be used as an undervoltage lockout (UVLO)  
function by connecting a resistor divider from the input  
supply to the RUN pin:  
slower than MR. Make sure that the slave supply slew rate  
ischosentobefastenoughsothattheslaveoutputvoltage  
will reach its final value before the master output.  
For example, MR = 1.5V/ms, and SR = 1.2V/ms. Then R  
TB  
= 75k. Solve for R to equal 51.1k.  
TA  
For applications that do not require tracking or sequenc-  
V
UVLO  
= ((R1+R2)/R2) • 1.25V.  
ing, simply tie the TRACK/SS pin to INTV to let RUN  
CC  
See the Block Diagram for the example of use.  
control the turn on/off. When the RUN pin is below its  
thresholdortheV undervoltagelockout,thenTRACK/SS  
IN  
INꢁV Regulator  
CC  
is pulled low.  
The LTM4627 has an internal low dropout regulator from  
V
IN  
called INTV . This regulator output has a 4.7μF  
CC  
ceramic capacitor internal. This regulator powers the  
internal controller and MOSFET drivers. The gate driver  
currentis~20mAfor750kHzoperation. Theregulatorloss  
can be calculated as:  
MASTER OUTPUT  
OUTPUT  
VOLTAGE  
SLAVE OUTPUT  
(VIN– 5V)20mA =PLOSS  
EXTV external voltage source ≥ 4.7V can be applied to  
CC  
4627 F05  
this pin to eliminate the internal INTV LDO power loss  
TIME  
CC  
and increase regulator efficiency. A 5V supply can be  
applied to run the internal circuitry and power MOSFET  
driver. If unused, leave pin floating.  
Figure 5. Output Voltage Coincident racking  
Overcurrent and Overvoltage Protection  
Stability Compensation  
The LTM4627 has overcurrent protection (OCP) in a short  
circuit. The internal current comparator threshold folds  
back during a short to reduce the output current. An  
overvoltage condition (OVP) above 10% of the regulated  
output voltage will force the top MOSFET off and the bot-  
tom MOSFET on until the condition is cleared. An input  
The module has already been internally compensated  
for all output voltages. Table 4 is provided for most ap-  
plication requirements. The Linear Technology μModule  
Power Design Tool will be provided for other control loop  
optimization.  
4627f  
15  
LTM4627  
APPLICATIONS INFORMATION  
ꢁhermal Considerations and Output Current Derating  
thermal resistance value may be useful for comparing  
packages but the test conditions don’t generally match  
the user’s application.  
The thermal resistances reported in the Pin Configuration  
section of the data sheet are consistent with those param-  
eters defined by JESD51-9 and are intended for use with  
finite element analysis (FEA) software modeling tools that  
leverage the outcome of thermal modeling, simulation,  
and correlation to hardware evaluation performed on a  
μModulepackagemountedtoahardwaretestboard—also  
defined by JESD51-9 (“Test Boards for Area Array Surface  
MountPackageThermalMeasurements”).Themotivation  
for providing these thermal coefficients in found in JESD  
51-12 (“Guidelines for Reporting and Using Electronic  
Package Thermal Information”).  
3 θ  
, the thermal resistance from junction to top of  
JCtop  
the product case, is determined with nearly all of the  
component power dissipation flowing through the top  
of the package. As the electrical connections of the  
typical μModule are on the bottom of the package, it  
is rare for an application to operate such that most of  
the heat flows from the junction to the top of the part.  
As in the case of θ  
, this value may be useful  
JCbottom  
for comparing packages but the test conditions don’t  
generally match the user’s application.  
Many designers may opt to use laboratory equipment  
and a test vehicle such as the demo board to anticipate  
the μModule regulator’s thermal performance in their ap-  
plicationatvariouselectricalandenvironmentaloperating  
conditions to compliment any FEA activities. Without FEA  
software, the thermal resistances reported in the Pin Con-  
figuration section are in-and-of themselves not relevant to  
providing guidance of thermal performance; instead, the  
derating curves provided in the data sheet can be used in  
a manner that yields insight and guidance pertaining to  
one’s application-usage, and can be adapted to correlate  
thermal performance to one’s own application.  
4 θ , the thermal resistance from junction to the printed  
JB  
circuitboard,isthejunction-to-boardthermalresistance  
where almost all of the heat flows through the bottom  
of the μModule and into the board, and is really the  
sum of the θ  
and the thermal resistance of the  
JCbottom  
bottomofthepartthroughthesolderjointsandthrough  
a portion of the board. The board temperature is mea-  
sured a specified distance from the package, using a  
two sided, two layer board. This board is described in  
JESD 51-9.  
A graphical representation of the aforementioned thermal  
resistances is given in Figure 6; blue resistances are  
contained within the μModule regulator, whereas green  
resistances are external to the μModule.  
The Pin Configuration section typically gives four thermal  
coefficients explicitly defined in JESD 51-12; these coef-  
ficients are quoted or paraphrased below:  
As a practical matter, it should be clear to the reader that  
no individual or sub-group of the four thermal resistance  
parameters defined by JESD 51-12 or provided in the  
Pin Configuration section replicates or conveys normal  
operatingconditionsofaμModule.Forexample,innormal  
board-mounted applications, never does 100% of the  
device’s total power loss (heat) thermally conduct exclu-  
sivelythroughthetoporexclusivelythroughbottomofthe  
1 θ , the thermal resistance from junction to ambient, is  
JA  
the natural convection junction-to-ambient air thermal  
resistance measured in a one cubic foot sealed enclo-  
sure. This environment is sometimes referred to as  
“still air” although natural convection causes the air to  
move. Thisvalueisdeterminedwiththepartmountedto  
a JESD 51-9 defined test board, which does not reflect  
an actual application or viable operating condition.  
μModule—asthestandarddefinesforθ  
andθ  
,
JCtop  
JCbottom  
respectively.Inpractice,powerlossisthermallydissipated  
inbothdirectionsawayfromthepackage—granted, inthe  
absence of a heat sink and airflow, a majority of the heat  
flow is into the board.  
2 θ  
, the thermal resistance from junction to the  
JCbottom  
bottom of the product case, is the junction-to-board  
thermal resistance with all of the component power  
dissipation flowing through the bottom of the package.  
In the typical μModule, the bulk of the heat flows out  
the bottom of the package, but there is always heat  
flow out into the ambient environment. As a result, this  
Within a SIP (system-in-package) module, be aware there  
are multiple power devices and components dissipating  
power, with a consequence that the thermal resistances  
4627f  
16  
LTM4627  
APPLICATIONS INFORMATION  
JUNCTION-TO-AMBIENT RESISTANCE (JESD 51-9 DEFINED BOARD)  
JUNCTION-TO-CASE (TOP)  
RESISTANCE  
CASE (TOP)-TO-AMBIENT  
RESISTANCE  
JUNCTION-TO-BOARD RESISTANCE  
JUNCTION  
A
t
JUNCTION-TO-CASE  
(BOTTOM) RESISTANCE  
CASE (BOTTOM)-TO-BOARD  
RESISTANCE  
BOARD-TO-AMBIENT  
RESISTANCE  
80421 F05  
μMODULE DEVICE  
Figure 6. Graphical Representation of JESD 51-12 ꢁhermal Coefficients  
relative to different junctions of components or die are not  
exactly linear with respect to total package power loss. To  
reconcile this complication without sacrificing modeling  
simplicity—but also, not ignoring practical realities—an  
approach has been taken using FEA software modeling  
along with laboratory testing in a controlled-environment  
chamber to reasonably define and correlate the thermal  
resistance values supplied in this data sheet: (1) Initially,  
FEA software is used to accurately build the mechanical  
geometry of the μModule and the specified PCB with all  
of the correct material coefficients along with accurate  
power loss source definitions; (2) this model simulates  
a software-defined JEDEC environment consistent with  
JSED51-9topredictpowerlossheatowandtemperature  
readingsatdifferentinterfacesthatenablethecalculationof  
theJEDEC-definedthermalresistancevalues;(3)themodel  
and FEA software is used to evaluate the μModule with  
heat sink and airflow; (4) having solved for and analyzed  
these thermal resistance values and simulated various  
operating conditions in the software model, a thorough  
laboratory evaluation replicates the simulated conditions  
with thermocouples within a controlled-environment  
chamber while operating the device at the same power  
loss as that which was simulated. An outcome of this  
process and due-diligence yields a set of derating curves  
provided in other sections of this data sheet. After these  
laboratory test have been performed and correlated to the  
θ + θ value is shown in the Pin Configuration section  
JB  
BA  
and should accurately equal the θ value because ap-  
JA  
proximately 100% of power loss flows from the junction  
through the board into ambient with no airflow or top  
mounted heat sink.  
The 1.2V and 3.3V power loss curves in Figures 7 and 8  
can be used in coordination with the load current derating  
curves in Figures 9 to 16 for calculating an approximate  
θ thermal resistance for the LTM4627 with various heat  
JA  
sinking and airflow conditions. The power loss curves  
are taken at room temperature, and are increased with  
multiplicative factors according to the ambient tempera-  
ture. These approximate factors are: 1 for 40°C; 1.05 for  
50°C; 1.1 for 60°C; 1.15 for 70°C; 1.2 for 80°C; 1.25 for  
90°C; 1.3 for 100°C; 1.35 for 110°C and 1.4 for 120°C.  
The derating curves are plotted with the output current  
starting at 15A and the ambient temperature at 40°C. The  
output voltages are 1.2V, and 3.3V. These are chosen to  
include the lower and higher output voltage ranges for  
correlating the thermal resistance. Thermal models are  
derivedfromseveraltemperaturemeasurementsinacon-  
trolledtemperaturechamberalongwiththermalmodeling  
analysis. The junction temperatures are monitored while  
ambienttemperatureisincreasedwithandwithoutairflow.  
Thepowerlossincreasewithambienttemperaturechange  
is factored into the derating curves. The junctions are  
maintained at 120°C maximum while lowering output  
current or power with increasing ambient temperature.  
The decreased output current will decrease the inter-  
μModulemodel,thentheθ andθ aresummedtogether  
JB  
BA  
to correlate quite well with the μModule model with no  
airflow or heat sinking in a properly define chamber. This  
4627f  
17  
LTM4627  
APPLICATIONS INFORMATION  
nal module loss as ambient temperature is increased.  
The monitored junction temperature of 120°C minus  
the ambient operating temperature specifies how much  
module temperature rise can be allowed. As an example in  
Figure 11 the load current is derated to ~12A at ~80°C with  
no air or heat sink and the power loss for the 12V to 1.2V  
at 12A output is about 2.8W. The 2.8W loss is calculated  
with the ~2.35W room temperature loss from the 12V to  
1.2V power loss curve at 12A, and the 1.2 multiplying  
factor at 80°C ambient. If the 80°C ambient temperature  
is subtracted from the 120°C junction temperature, then  
the difference of 40°C divided by 2.8W equals a 14°C/W  
thermal resistances for 1.2V and 3.3V outputs with and  
without airflow and heat sinking. The derived thermal re-  
sistances in Tables 2 and 3 for the various conditions can  
be multiplied by the calculated power loss as a function  
of ambient temperature to derive temperature rise above  
ambient, thus maximum junction temperature. Room  
temperaturepowerlosscanbederivedfromtheefficiency  
curves in the Typical Performance Characteristics section  
andadjustedwiththeaboveambienttemperaturemultipli-  
cative factors. The printed circuit board is a 1.6mm thick  
four layer board with two ounce copper for the two outer  
layers and one ounce copper for the two inner layers. The  
PCB dimensions are 95mm × 76mm. The BGA heat sinks  
are listed in Table 4.  
θ
thermal resistance. Table 2 specifies a 13°C/W value  
JA  
which is very close. Table 2 and Table 3 provide equivalent  
6
3.0  
5V TO 1.2V  
POWER LOSS  
POWER LOSS  
OUT  
5V TO 3.3V  
POWER LOSS  
POWER LOSS  
OUT  
IN  
OUT  
IN  
OUT  
12V TO 1.2V  
12V TO 3.3V  
IN  
IN  
5
4
2.5  
2.0  
3
2
1.5  
1.0  
1
0
0.5  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
0
0
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4627 F08  
4627 F07  
Figure 7. 1.2VOUꢁ Power Loss  
Figure 8. 3.3VOUꢁ Power Loss  
16  
16  
14  
12  
10  
8
14  
12  
10  
8
6
6
4
4
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
2
2
0
0
50 60 70 80 90 100 110 120 130  
AMBIENT TEMPERATURE (°C)  
4627 F10  
40  
40 50 60 70 80 90 100 110 120 130  
AMBIENT TEMPERATURE (°C)  
4627 F09  
Figure 9. 5VIN to 1.2VOUꢁ No Heat Sink  
Figure 10. 5VIN to 1.2VOUꢁ with Heat Sink  
4627f  
18  
LTM4627  
APPLICATIONS INFORMATION  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
4
4
0 LFM  
200 LFM  
400 LFM  
0 LFM  
2
2
200 LFM  
400 LFM  
0
0
50 60 70 80 90 100 110 120 130  
AMBIENT TEMPERATURE (°C)  
4627 F12  
50 60 70 80 90 100 110 120 130  
AMBIENT TEMPERATURE (°C)  
4627 F10  
40  
40  
Figure 11. 12VIN to 1.2VOUꢁ No Heat Sink  
Figure 12. 12VIN to 1.2VOUꢁ with Heat Sink  
14  
12  
10  
8
14  
12  
10  
8
6
6
4
4
0 LFM  
200 LFM  
0 LFM  
200 LFM  
2
2
400 LFM  
0
400 LFM  
0
50 60 70 80 90 100 110 120 130  
AMBIENT TEMPERATURE (°C)  
4627 F13  
50 60 70 80 90 100 110 120 130  
AMBIENT TEMPERATURE (°C)  
4627 F14  
40  
40  
Figure 13. 5VIN to 3.3VOUꢁ No Heat Sink  
Figure 14. 5VIN to 3.3VOUꢁ with Heat Sink  
16  
16  
14  
12  
10  
8
14  
12  
10  
8
6
6
4
4
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
2
2
0
0
50 60 70 80 90 100 110 120 130  
AMBIENT TEMPERATURE (°C)  
4627 F15  
50 60 70 80 90 100 110 120 130  
AMBIENT TEMPERATURE (°C)  
4627 F16  
40  
40  
Figure 15. 12VIN to 3.3VOUꢁ No Heat Sink  
Figure 16. 12VIN to 3.3VOUꢁ with Heat Sink  
4627f  
19  
LTM4627  
APPLICATIONS INFORMATION  
ꢁable 2. 1.2V Output  
DERAꢁING  
CURVE  
POWER LOSS  
AIRFLOW  
(LFM)  
V
CURVE  
Figure 7  
Figure 7  
Figure 7  
Figure 7  
Figure 7  
Figure 7  
HEAꢁ SINK  
None  
θ
JA  
(°C/W)  
IN  
Figures 9, 11  
Figures 9, 11  
Figures 9, 11  
Figures 10, 12  
Figures 10, 12  
Figures 10, 12  
5V, 12V  
5V, 12V  
5V, 12V  
5V, 12V  
5V, 12V  
5V, 12V  
0
13  
11  
8
200  
400  
0
None  
None  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
12  
8
200  
400  
7
ꢁable 3. 3.3V Output  
DERAꢁING  
CURVE  
POWER LOSS  
CURVE  
AIRFLOW  
(LFM)  
V
HEAꢁ SINK  
None  
θ
JA  
(°C/W)  
IN  
Figures 13, 15  
Figures 13, 15  
Figures 13, 15  
Figures 14, 16  
Figures 14, 16  
Figures 14, 16  
5V, 12V  
5V, 12V  
5V, 12V  
5V, 12V  
5V, 12V  
5V, 12V  
Figure 8  
Figure 8  
Figure 8  
Figure 8  
Figure 8  
Figure 8  
0
13  
11  
8
200  
400  
0
None  
None  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
12  
8
200  
400  
7
4627f  
20  
LTM4627  
APPLICATIONS INFORMATION  
ꢁable 4. Output Voltage Response vs Component Matrix (Refer to Figure 18) 0A to 7.5A Load Step  
C
AND C  
C
AND C  
OUꢁ2  
C
IN  
OUꢁ1  
OUꢁ2  
OUꢁ1  
CERAMIC VENDOR  
VALUE  
PARꢁ NUMBER  
BULK VENDOR  
VALUE  
PARꢁ NUMBER BULK VENDOR VALUE PARꢁ NUMBER  
TDK  
22μF 6.3V  
22μF 16V  
C3216X7SOJ226M  
Sanyo POSCAP  
1000μF 2.5V 2R5TPD1000M5  
Sanyo  
56μF 25V  
25SVP56M  
Murata  
GRM31CR61C226KE15L Sanyo POSCAP  
470μF 2.5V  
470μF 6.3V  
2R5TPD470M5  
6TPD470M  
Sanyo POSCAP  
Sanyo POSCAP  
TDK  
100μF 6.3V C4532X5ROJ107MZ  
100μF 6.3V GRM32ER60J107M  
Murata  
PEAK ꢁO  
PEAK  
LOAD  
V
C
C
C
OUꢁ2  
(CERAMIC) AND  
C
C
V
DROOP DEVIAION RECOVERY SꢁEP  
R
FB  
FREQ.  
(kHz)  
OUꢁ  
IN  
IN  
OUꢁ1  
FF  
COMP  
IN  
(V)  
(V) (CERAMIC) (BULK)**  
C
(CER AND BULK) (pF)  
(pF)  
150  
150  
33  
(mV)  
(mV)  
100  
100  
108  
80  
ꢁIME(μs)  
(A/μs)  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
(kΩ)  
90.9  
90.9  
90.9  
60.4  
60.4  
60.4  
60.4  
40.2  
40.2  
40.2  
40.2  
30.1  
30.1  
30.1  
19.1  
19.1  
13.3  
13.3  
8.25  
8.25  
1
56μF  
56μF  
56μF  
56μF  
56μF  
56μF  
56μF  
56μF  
56μF  
56μF  
56μF  
56μF  
56μF  
56μF  
56μF  
56μF  
56μF  
56μF  
56μF  
56μF  
68  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
68  
82  
82  
82  
82  
82  
82  
68  
47  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
12  
50  
30  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
500  
500  
600  
600  
700  
700  
22μF × 3  
22μF × 3  
22μF × 3  
22μF × 3  
22μF × 3  
22μF × 3  
22μF × 3  
22μF × 3  
22μF × 3  
22μF × 3  
22μF × 3  
22μF × 3  
22μF × 3  
22μF × 3  
22μF × 3  
22μF × 3  
22μF × 3  
22μF × 3  
22μF × 3  
22μF × 3  
100μF × 2, 1000μF  
1
50  
20  
100μF × 2, 470μF × 2  
100μF × 4  
1
52  
18  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
2.5  
2.5  
3.3  
3.3  
5
150  
150  
150  
33  
40  
20  
100μF × 2, 1000μF  
100μF, 470μF  
100μF × 2, 470μF × 2  
100μF × 4  
60  
120  
80  
20  
40  
25  
50  
114  
120  
130  
120  
130  
130  
135  
132  
164  
200  
200  
200  
250  
250  
20  
150  
47  
60  
23  
100μF × 2, 1000μF  
100μF, 470μF  
100μF × 2, 470μF × 2  
100μF × 3  
67  
20  
150  
33  
60  
25  
65  
20  
150  
150  
none  
none  
150  
none  
150  
none  
150  
64  
25  
100μF × 2, 1000μF  
100μF, 470μF  
100μF × 2  
76  
22  
66  
20  
88  
30  
100μF × 2  
100μF, 470μF  
100μF × 2  
100  
100  
100  
125  
125  
25  
30  
100μF, 470μF  
100μF × 2  
30  
20  
5
470μF  
12  
25  
** Bulk capacitance is optional if V has very low input impedance.  
IN  
HEAꢁ SINK MANUFACꢁURER  
Wakefield Engineering  
AAVID Thermalloy  
PARꢁ NUMBER  
WEBSIꢁE  
LTN20069  
www.wakefield.com  
www.aavidthermalloy.com  
375424B00034G  
4627f  
21  
LTM4627  
APPLICATIONS INFORMATION  
Safety Considerations  
• Place a dedicated power ground layer underneath the  
unit.  
The LTM4627 modules do not provide isolation from V  
IN  
to V . There is no internal fuse. If required, a slow blow  
• Tominimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
OUT  
fuse with a rating twice the maximum input current needs  
to be provided to protect each unit from catastrophic  
failure. The device does support overvoltage protection  
and overcurrent protection.  
• Do not put vias directly on the pad, unless they are  
capped or plated over.  
Layout Checklist/Example  
• Place test points on signal pins for testing.  
The high integration of the LTM4627 makes the PCB  
board layout very simple and easy. However, to optimize  
its electrical and thermal performance, some layout con-  
siderations are still necessary.  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to GND underneath the unit.  
• For parallel modules, tie the COMP and V pins to-  
FB  
• Use large PCB copper areas for high current paths,  
gether. Use an internal layer to closely connect these  
pins together. Figure 17 gives a good example of the  
recommended layout.  
including V , GND and V . It helps to minimize the  
IN  
OUT  
PCB conduction loss and thermal stress.  
• Place high frequency ceramic input and output capaci-  
tors next to the V , GND and V  
pins to minimize  
IN  
OUT  
high frequency noise.  
V
IN  
CONTROL  
C
C
IN  
IN  
GND  
SIGNAL  
GROUND  
C
C
OUT  
OUT  
V
V
OUT  
OUT  
4627 F17  
Figure 17. Recommended PCB Layout  
4627f  
22  
LTM4627  
TYPICAL APPLICATIONS  
V
IN  
4.5V TO 20V  
C3  
C2  
C
COMP  
22μF  
25V  
22μF  
25V  
150pF  
C1  
PGOOD  
V
EXTV  
INTV  
CC CC  
22μF  
25V  
IN  
C7  
V
1.5V  
15A  
OUT  
R1  
10k  
0.1μF  
COMP  
V
OUT  
V
OUT_LCL  
+
C
C
*
OUT1  
OUT2  
TRACK/SS  
RUN  
470μF  
6.3V  
s2  
100μF  
6.3V  
LTM4627  
DIFF_OUT  
+
C
FF  
82pF  
f
V
V
SET  
OSNS  
R3  
120k  
MODE_PLLIN  
OSNS  
CONTINUOUS  
MODE  
V
FB  
SGND  
GND  
R
FB  
40.2k  
4627 TA02  
*SEE TABLE 4  
Figure 18. 4.5V to 20VIN, 1.5V at 15A Design  
4627f  
23  
LTM4627  
TYPICAL APPLICATIONS  
4627f  
24  
LTM4627  
TYPICAL APPLICATIONS  
V
IN  
7V TO 16V  
V
OUT  
INTV  
CC  
1.2V AT 60A  
C22  
22μF  
16V  
V
EXTV  
INTV  
CC CC  
PGOOD  
IN  
C28  
0.1μF  
C20  
22μF  
16V  
R1  
10k  
COMP  
V
OUT  
+
C21  
470μF  
6.3V  
C24  
100μF  
6.3V  
TRACK/SS  
RUN  
V
OUT_LCL  
LTM4627  
DIFF_OUT  
+
270pF  
f
V
V
SET  
OSNS  
MODE_PLLIN  
OSNS  
V
100k  
100k  
100k  
100k  
FB  
SGND  
GND  
R
FB2  
15k  
INTV  
CC  
R2  
100k  
4-PHASE CLOCK  
+
150pF  
SET  
V
LTC6902  
C2  
1μF  
MOD  
DIV  
PH  
C18  
22μF  
16V  
GND  
V
EXTV  
INTV  
CC  
PGOOD  
IN  
CC  
C14  
22μF  
16V  
OUT4  
OUT3  
OUT1  
OUT2  
COMP  
V
OUT  
+
C15  
C18  
TRACK/SS  
RUN  
V
OUT_LCL  
470μF  
6.3V  
100μF  
6.3V  
LTM4627  
DIFF_OUT  
+
f
V
V
SET  
OSNS  
MODE_PLLIN  
OSNS  
V
INTV  
CC  
FB  
SGND  
GND  
C9  
22μF  
16V  
V
EXTV  
INTV  
PGOOD  
CC  
IN  
CC  
C7  
22μF  
16V  
COMP  
V
OUT  
+
C8  
C11  
100μF  
6.3V  
TRACK/SS  
RUN  
V
OUT_LCL  
470μF  
6.3V  
LTM4627  
DIFF_OUT  
+
f
V
V
SET  
OSNS  
MODE_PLLIN  
OSNS  
V
INTV  
CC  
FB  
SGND  
GND  
150pF  
C1  
22μF  
16V  
V
EXTV  
INTV  
CC CC  
PGOOD  
IN  
C3  
22μF  
16V  
COMP  
V
OUT  
+
C4  
470μF  
6.3V  
C6  
100μF  
6.3V  
TRACK/SS  
RUN  
V
OUT_LCL  
LTM4627  
DIFF_OUT  
+
f
V
V
SET  
OSNS  
MODE_PLLIN  
OSNS  
V
INTV  
CC  
FB  
SGND  
GND  
4627 TA04  
Figure 20. 1.2V, 60A, Current Sharing with 4-Phase Operation  
4627f  
25  
LTM4627  
PACKAGE DESCRIPTION  
Pin Assignment ꢁable  
(Arranged by Pin Number)  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
E1 GND  
PIN NAME  
F1 GND  
A1  
A2  
A3  
A4  
A5  
A6  
V
V
V
V
V
V
B1  
B2  
B3  
B4  
B5  
B6  
V
V
V
V
V
V
C1  
C2  
C3  
C4  
C5  
C6  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
D1 GND  
D2 GND  
D3 GND  
D4 GND  
D5 GND  
D6 GND  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
E2 GND  
E3 GND  
E4 GND  
E5 GND  
E6 GND  
E7 GND  
F2 GND  
F3 GND  
F4 GND  
F5 GND  
F6 GND  
F7 GND  
F8 GND  
F9 GND  
A7 INTV  
B7 GND  
A8 MODE_PLLIN B8  
C7 GND  
C8  
D7  
-
CC  
-
-
D8 GND  
D9 INTV  
E8  
-
A9 TRACK/SS  
A10 RUN  
B9 GND  
B10  
B11 MTP2  
B12  
C9 GND  
C10 MTP3  
C11 MTP4  
C12 MTP5  
E9 GND  
CC  
-
D10 MTP6  
D11 MTP7  
D12 MTP8  
E10  
E11  
-
-
F10  
F11 PGOOD  
F12  
-
A11 COMP  
A12 MTP1  
f
E12 EXTV  
V
FB  
SET  
CC  
PIN NAME  
G1 GND  
G2 GND  
G3 GND  
G4 GND  
G5 GND  
G6 GND  
G7 GND  
G8 GND  
G9 GND  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
H1 GND  
H2 GND  
H3 GND  
H4 GND  
H5 GND  
H6 GND  
H7 GND  
H8 GND  
H9 GND  
J1  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
-
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
L10  
L11  
V
V
V
V
V
V
V
V
V
V
V
V
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
V
V
V
V
V
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT_LCL  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OSNS  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
G10  
-
H10  
-
J10  
J11  
J12  
M10 V  
M11 V  
M12 V  
G11 SGND  
H11 SGND  
H12 SGND  
+
G12 PGOOD  
V
K12 DIFF_OUT L12  
OSNS  
PACKAGE PHOTO  
4627f  
26  
LTM4627  
PACKAGE DESCRIPTION  
Z
b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
4627f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTM4627  
TYPICAL APPLICATION  
3.3V at 10A Design  
5V  
C3  
C2  
22μF  
16V  
22μF  
16V  
PGOOD  
V
EXTV  
INTV  
CC CC  
IN  
V
3.3V  
10A  
C7  
OUT  
C1  
22μF  
16V  
0.1μF  
COMP  
V
OUT  
R1  
10k  
C4  
100μF  
X5R  
C6  
TRACK/SS  
RUN  
V
OUT_LCL  
100μF  
X5R  
6.3V  
LTM4627  
DIFF_OUT  
+
82pF  
f
V
V
SET  
OSNS  
5V  
R3  
174k  
MODE_PLLIN  
OSNS  
V
CONTINUOUS  
MODE  
FB  
SGND  
GND  
R
C5  
47pF  
FB  
13.3k  
4627 TA05  
RELATED PARTS  
PARꢁ NUMBER  
DESCRIPꢁION  
COMMENꢁS  
Basic 10A DC/DC μModule  
LTM4600  
10A DC/DC μModule Regulator  
LTM4601A  
12A DC/DC μModule Regulator with PLL,  
Output Tracking/ Margining and Remote Sensing  
Synchronizable, PolyPhase Operation to 48A, Pin Compatible with the  
LTM4627  
LTM4602  
LTM4603  
6A DC/DC μModule Regulator  
Pin Compatible with the LTM4600  
6A DC/DC μModule Regulator with PLL and  
Output Tracking/Margining and Remote Sensing  
Synchronizable, PolyPhase Operation, LTM4603-1 Version Has No  
Remote Sensing, Pin Compatible with the LTM4601  
LTM4604A  
4A Low Voltage DC/DC μModule Regulator  
2.375V ≤ V ≤ 5.5V; 0.8V ≤ V  
≤ 5V,  
OUT  
IN  
9mm × 15mm × 2.3mm (Ultrathin) LGA Package  
LTM4605  
LTM4606  
LTM4607  
LTM4608A  
LTM4609  
LTM4612  
LTM8023  
LTM8032  
Buck-Boost DC/DC μModule Family  
Ultralow Noise 6A DC/DC μModule Regulator  
Buck-Boost DC/DC μModule Family  
8A Low Voltage DC/DC μModule Regulator  
Buck-Boost DC/DC μModule Family  
All Pin Compatible; Up to 5A; Up to 36V , 34V  
15mm × 15mm × 2.8mm  
OUT  
IN  
4.5V ≤ V ≤ 28V, 0.6V ≤ V  
≤ 5V, 15mm × 15mm × 2.8mm Package  
OUT  
IN  
All Pin Compatible; Up to 5A; Up to 36V , 34V  
15mm × 15mm × 2.8mm  
IN  
OUT  
2.7V ≤ V ≤ 5.5V; 0.6V ≤ V  
≤ 5V; 9mm × 15mm × 2.8mm LGA Package  
IN  
OUT  
All Pin Compatible; Up to 5A; Up to 36V , 34V  
15mm × 15mm × 2.8mm  
IN  
OUT  
Ultralow Noise High V  
DC/DC μModule Regulator  
5A, 5V ≤ V ≤ 36V, 3.3V ≤ V  
≤ 15V, 15mm × 15mm × 2.8mm Package  
OUT  
IN  
OUT  
36V, 2A DC/DC μModule Regulator  
3.6V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 10V, 9mm × 11.75mm × 2.8mm Package  
OUT  
IN  
Ultralow Noise 36V, 2A DC/DC μModule Regulator  
EN55022 Class B Compliant; 0.8V ≤ V  
≤ 10V; 3.6V ≤ V ≤ 36V;  
OUT IN  
9mm × 15mm × 2.8mm  
4627f  
LT 0810 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM4627EV#PBF

暂无描述
Linear

LTM4627EVPBF

15A DC/DC μModule Regulator
Linear

LTM4627IVPBF

15A DC/DC μModule Regulator
Linear

LTM4628

Low VIN, 8A DC/DC μModule Regulator
Linear

LTM4628

Dual 8A per Channel Low VIN DC/DC μModule Regulator
LINEAR_DIMENS

LTM4628EV#PBF

LTM4628 - Dual 8A or Single 16A DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 144; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4628IV#PBF

LTM4628 - Dual 8A or Single 16A DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 144; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4628IVPBF

Dual 8A or Single 16A DC/DC μModule Regulator
LINEAR_DIMENS

LTM4630

25A DC/DC Step-Down μModule Regulator
Linear

LTM4630-1

25A DC/DC Step-Down μModule Regulator
Linear

LTM4630-1A

Dual, Multiphase Current Mode Synchronous Controller for Sub-Milliohm DCR Sensing
Linear

LTM4630-1B

Dual, Multiphase Current Mode Synchronous Controller for Sub-Milliohm DCR Sensing
Linear