LTM4628EV#PBF [Linear]

LTM4628 - Dual 8A or Single 16A DC/DC µModule (Power Module) Regulator; Package: LGA; Pins: 144; Temperature Range: -40°C to 85°C;
LTM4628EV#PBF
型号: LTM4628EV#PBF
厂家: Linear    Linear
描述:

LTM4628 - Dual 8A or Single 16A DC/DC µModule (Power Module) Regulator; Package: LGA; Pins: 144; Temperature Range: -40°C to 85°C

开关
文件: 总36页 (文件大小:1024K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4628  
Dual 8A or Single 16A  
DC/DC µModule Regulator  
FEATURES  
DESCRIPTION  
The LTM®4628 is a complete dual 8A output switching  
mode DC/DC power supply and can be easily configured  
to provide a single 2-phase 16A output. Included in the  
packagearetheswitchingcontroller,powerFETs,inductor,  
and all supporting components. Operating from an input  
voltage range of 4.5V to 26.5V, the LTM4628 supports  
two outputs each with an output voltage range of 0.6V to  
5.5V, set by a single external resistor. Its high efficiency  
design delivers 8A continuous current for each output.  
Only a few input and output capacitors are needed.  
n
Complete Standalone Dual Power Supply  
n
Single 16A or Dual 8A Output  
n
Wide Input Voltage Range: 4.5V to 26.5V  
n
Output Voltage Range: 0.6V to 5.5V  
n
1.5ꢀ ꢁotal DC Output Error  
n
Differential Remote Sense Amplifier  
n
Current Mode Control/Fast ꢁransient Response  
n
Adjustable Switching Frequency  
n
n
Overcurrent Foldback Protection  
Multiphase Parallel Current Sharing with  
Multiple LꢁM4628s  
The device supports frequency synchronization, multi-  
phaseoperation,BurstModeoperationandoutputvoltage  
tracking for supply rail sequencing. It has an onboard  
temperature diode for device temperature monitoring.  
High switching frequency and a current mode architec-  
ture enable a very fast transient response to line and load  
changes without sacrificing stability.  
n
n
n
n
n
n
Frequency Synchronization  
Internal ꢁemperature Sensing Diode Output  
Selectable Burst Mode® Operation  
Soft-Start/Voltage Tracking  
Output Overvoltage Protection  
Small Surface Mount Footprint, Low Profile  
15mm × 15mm × 4.32mm LGA and  
15mm × 15mm × 4.92mm BGA Packages  
Fault protection features include overvoltage and over-  
current protection. The power module is offered in space  
saving and thermally enhanced 15mm × 15mm × 4.32mm  
LGA and 15mm × 15mm × 4.92mm BGA packages. The  
LTM4628 is available with SnPb (BGA) or RoHS compli-  
ant terminal finish.  
APPLICATIONS  
n
Telecom and Networking Equipment  
n
Storage and ATCA Cards  
n
Industrial Equipment  
L, LT, LTC, LTM, Linear Technology, the Linear logo, µModule, Burst Mode and PolyPhase  
are registered and LTpowerCAD is a trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Dual 8A, 1.5V and 1.2V Output DC/DC µModule® Regulator  
4.7µF  
Efficiency and Power Loss  
at 12V Input  
MODE_PLLIN CLKOUT INTV  
EXTV  
PGOOD1  
CC  
CC  
V
IN  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
OUT1  
1.5V AT 8A  
4.5V TO  
26.5V  
1.2V  
V
IN  
V
OUT1  
10µF  
35V  
×4  
1.5V  
EFFICIENCY  
100µF  
6.3V  
*
*
TEMP  
V
120k  
OUTS1  
470µF  
6.3V  
10k  
RUN1  
DIFFOUT  
RUN2  
SW1  
TRACK1  
TRACK2  
V
V
FB1  
FB2  
LTM4628  
5.1V ZENER  
40.2k  
f
0.1µF  
COMP1  
COMP2  
SET  
60.4k  
POWER LOSS  
PHASMD  
V
OUTS2  
V
OUT2  
1.2V AT 8A  
V
100k  
OUT2  
SW2  
100µF  
6.3V  
470µF  
6.3V  
PGOOD2  
0
1
2
3
4
5
6
7
8
SGND  
GND  
DIFFP  
DIFFN  
LOAD CURRENT (A)  
* PULL-UP RESISTOR AND  
ZENER ARE OPTIONAL.  
4628 TA01b  
4628 TA01a  
4628fe  
1
For more information www.linear.com/LTM4628  
LTM4628  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
DIFFP, DIFFN .........................................0.3V to INTV  
FB1 FB2  
V ............................................................. –0.3V to 28V  
SW1 SW2  
CC  
IN  
V
, V , COMP1, COMP2 (Note 6)........ –0.3V to 2.7V  
V
, V  
....................................................–1V to 28V  
INTV Peak Output Current................................100mA  
PGOOD1, PGOOD2, RUN1, RUN2,  
CC  
Internal Operating Temperature Range  
INTV , EXTV ........................................... –0.3V to 6V  
CC  
CC  
(Note 2).................................................. –40°C to 125°C  
Storage Temperature Range .................. –55°C to 125°C  
Peak Package Body Temperature .......................... 245°C  
MODE_PLLIN, f , TRACK1, TRACK2,  
SET  
DIFFOUT, PHASMD...............................0.3V to INTV  
OUT1 OUT2 OUTS1 OUTS2  
CC  
V
, V  
, V  
, V  
..................... –0.3V to 6V  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
M
M
V
V
IN  
IN  
L
K
J
L
K
J
EXTV  
CC  
TEMP  
EXTV  
CC  
TEMP  
INTV  
INTV  
CC  
CC  
H
G
F
H
G
F
SW1  
SW2  
SW1  
SW2  
PHASMD CLKOUT  
PGOOD2 PGOOD1  
DIFFOUT RUN2  
PHASMD CLKOUT  
PGOOD2 PGOOD1  
DIFFOUT RUN2  
SGND  
SGND  
MODE_PLLIN RUN1  
MODE_PLLIN RUN1  
GND  
GND  
GND  
GND  
TRACK1 COMP1 COMP2 DIFFP  
DIFFN  
TRACK1 COMP1 COMP2 DIFFP  
DIFFN  
E
E
V
V
FB2  
V
V
FB1  
SGND  
TRACK2  
FB1  
FB2  
SGND  
TRACK2  
D
C
B
A
D
C
B
A
V
f
V
SGND  
V
f
V
OUTS1  
SET  
OUTS2  
SGND  
OUTS1  
SET  
OUTS2  
V
VOUT2  
GND  
OUT1  
GND  
V
VOUT2  
OUT1  
1
2
3
4
5
6
7
8
9
10 11 12  
1
2
3
4
5
6
7
8
9
10 11 12  
LGA PACKAGE  
144-LEAD (15mm × 15mm × 4.32mm)  
= 125°C, θ = 17°C/W,θ = 2.75°C/W,  
BGA PACKAGE  
144-LEAD (15mm × 15mm × 4.92mm)  
= 125°C, θ = 17°C/W,θ = 2.75°C/W,  
T
T
JMAX  
θ
JCtop  
JCbottom  
JMAX  
θ
JCtop  
JCbottom  
+ θ = 11°C/W, θ = 9.5°C/W–11°C/W,  
+ θ = 11°C/W, θ = 9.5°C/W–11°C/W,  
JB  
BA  
JA  
JB BA JA  
θ
= BOARD TO AMBIENT RESISTANCE, θ VALUES DEFINED PER JESD 51-12  
θ
= BOARD TO AMBIENT RESISTANCE, θ VALUES DEFINED PER JESD 51-12  
BA  
BA  
WEIGHT = 2.7g  
WEIGHT = 2.9g  
ORDER INFORMATION  
PARꢁ MARKING*  
PACKAGE  
ꢁYPE  
MSL  
ꢁEMPERAURE RANGE  
(Note 2)  
PARꢁ NUMBER  
LTM4628EV#PBF  
LTM4628IV#PBF  
LTM4628EY#PBF  
LTM4628IY#PBF  
LTM4628IY  
PAD OR BALL FINISH  
Au (RoHS)  
DEVICE  
FINISH CODE  
RAING  
LTM4628V  
LTM4628V  
LTM4628Y  
LTM4628Y  
LTM4628Y  
e4  
e4  
e1  
e1  
e0  
LGA  
LGA  
BGA  
BGA  
BGA  
3
3
3
3
3
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
Au (RoHS)  
SAC305 (RoHS)  
SAC305 (RoHS)  
SnPb (63/37)  
Consult Marketing for parts specified with wider operating temperature  
ranges. *Device temperature grade is indicated by a label on the shipping  
container. Pad or ball finish code is per IPC/JEDEC J-STD-609.  
• Recommended LGA and BGA PCB Assembly and Manufacturing  
Procedures:  
www.linear.com/umodule/pcbassembly  
• LGA and BGA Package and Tray Drawings:  
www.linear.com/packaging  
• Terminal Finish Part Marking:  
www.linear.com/leadfree  
4628fe  
2
For more information www.linear.com/LTM4628  
LTM4628  
ELECTRICAL CHARACTERISTICS ꢁhe l denotes the specifications which apply over the full internal  
operating temperature range (Note 2). Specified as each individual output channel. ꢁA = 25°C, VIN = 12V and VRUN1, VRUN2 at 5V  
unless otherwise noted, per the typical application in Figure 28.  
SYMBOL  
PARAMEꢁER  
CONDIꢁIONS  
MIN  
4.5  
ꢁYP  
MAX UNIꢁS  
l
l
V
V
Input DC Voltage  
Output Voltage  
26.5  
5.5  
V
V
IN  
0.6  
OUT  
V
V
,
Output Voltage, Total Variation with  
Line and Load  
C
= 22µF × 3, C  
= 100µF × 1  
OUT1(DC)  
OUT2(DC)  
IN  
OUT  
Ceramic, 470µF POSCAP, MODE_PLLIN =  
GND, RFB1, RFB2 = 40.2k, V = 4.5V to 26.5V,  
l
1.477  
1.1  
1.5  
1.523  
1.40  
V
IN  
I
= 0A to 8A  
OUT  
Input Specifications  
V
V
, V  
RUN Pin On/Off Threshold  
RUN Pin On Hysteresis  
RUN Rising  
1.25  
150  
1
V
mV  
A
RUN1 RUN2  
, V  
RUN1HYS RUN2HYS  
I
Input Inrush Current at Start-Up  
I
= 0A, C = 22µF × 3,  
INRUSH(VIN)  
OUT  
IN  
C
V
= 100µF , 470µF POSCAP V  
= 1.5V,  
OUT  
OUT2  
OUT1  
= 1.5V, V = 12V, TRACK = 0.01µF  
IN  
I
Input Supply Bias Current  
Input Supply Current  
V
V
V
= 12V, V  
= 1.5V, Burst Mode Operation  
= 1.5V, Pulse-Skipping Mode  
5
mA  
mA  
mA  
µA  
Q(VIN)  
IN  
IN  
IN  
OUT  
OUT  
= 12V, V  
15  
65  
60  
= 12V, V = 1.5V, Switching Continuous  
OUT  
Shutdown, RUN = 0, V = 12V  
IN  
I
V
IN  
V
IN  
V
IN  
= 4.75V, V  
= 1.5V, I  
= 8A  
2.9  
1.18  
0.575  
A
A
A
S(VIN)  
OUT  
OUT  
= 12V, V  
= 1.5V, I  
= 8A  
OUT  
OUT  
= 26.5V, V  
= 1.5V, I  
= 8A  
OUT  
OUT  
Output Specifications  
, I  
I
Output Continuous  
Current Range  
V
V
= 12V, V = 1.5V (Note 7)  
OUT  
0
8
A
%/V  
%
OUT1(DC) OUT2(DC)  
IN  
l
l
ΔV  
ΔV  
/V  
Line Regulation Accuracy  
Load Regulation Accuracy  
Output Ripple Voltage  
= 1.5V, V from 4.5V to 26.5V  
0.010  
0.15  
15  
0.04  
0.3  
OUT1(LINE) OUT1  
OUT  
IN  
/V  
I
= 0A for Each Output,  
OUT  
OUT2(LINE) OUT2  
ΔV  
ΔV  
/V  
For Each Output, V  
= 1.5V, 0A to 8A  
OUT1(LOAD) OUT1  
OUT  
/V  
V
= 12V (Note 7)  
OUT2(LOAD) OUT2  
IN  
V
, V  
I
= 0A, C  
= 100µF X5R Ceramic,  
mV  
P-P  
OUT1(AC) OUT2(AC)  
OUT  
OUT  
470µF POSCAP  
V
IN  
= 12V, V  
= 1.5V  
OUT  
f (Each Channel)  
Output Ripple Voltage Frequency  
SYNC Capture Range  
V
IN  
= 12V, V  
= 1.5V, f = 2.5V (Note 4)  
780  
kHz  
kHz  
S
OUT  
SET  
f
400  
780  
SYNC  
(Each Channel)  
ΔV  
Turn-On Overshoot  
Turn-On Time  
C
V
= 100µF X5R Ceramic, 470µF POSCAP,  
10  
5
mV  
ms  
OUTSTART  
OUT  
OUT  
(Each Channel)  
= 1.5V, I  
= 0A V = 12V  
OUT IN  
t
C
OUT  
= 100µF X5R Ceramic, 470µF POSCAP,  
START  
(Each Channel)  
No Load, TRACK/SS with 0.01µF to GND,  
V
= 12V  
IN  
ΔV  
Peak Deviation for Dynamic Load  
Load: 0% to 50% to 0% of Full Load  
30  
mV  
OUT(LS)  
(Each Channel)  
C
= 22µF × 3 X5R Ceramic, 470µF POSCAP  
OUT  
V
= 12V, V  
= 1.5V  
IN  
OUT  
t
Settling Time for Dynamic Load Step Load: 0% to 50% to 0% of Full Load,  
20  
15  
µs  
A
SETTLE  
(Each Channel)  
V
= 12V, C  
= 100µF, C  
= 470µF  
OUT  
IN  
OUT  
I
Output Current Limit  
V
IN  
= 12V, V  
= 1.5V  
OUT(PK)  
OUT  
(Each Channel)  
Control Section  
l
l
V
, V  
Voltage at V Pins  
I
= 0A, V  
= 1.5V  
0.592  
0.64  
0.600 0.606  
V
FB1 FB2  
FB  
OUT  
OUT  
I
, I  
Leakage Current of V , V  
(Note 6)  
–5  
–20  
nA  
FB1 FB2  
FB1 FB2  
V
Feedback Overvoltage Lockout  
0.66  
0.68  
V
OVL  
4628fe  
3
For more information www.linear.com/LTM4628  
LTM4628  
ELECTRICAL CHARACTERISTICS ꢁhe l denotes the specifications which apply over the full internal  
operating temperature range (Note 2). Specified as each individual output channel. ꢁA = 25°C, VIN = 12V and VRUN1, VRUN2 at 5V  
unless otherwise noted, per the typical application in Figure 28.  
SYMBOL  
, I  
PARAMEꢁER  
CONDIꢁIONS  
MIN  
ꢁYP  
MAX UNIꢁS  
I
Track Pin Soft-Start Pull-Up Current TRACK1, TRACK2 = 0V  
1
1.25  
1.5  
µA  
TRACK1 TRACK2  
UVLO  
Undervoltage Lockout Threshold  
Minimum On-Time  
V
V
Falling  
Rising  
3.3  
3.9  
V
V
IN  
IN  
UVLO Hysteresis  
0.6  
90  
V
ns  
t
(Note 6)  
ON(MIN)  
R
, R  
Resistor Between V  
, V  
60.05  
60.4  
60.75  
0.3  
5
kΩ  
FBHI1 FBHI2  
OUTS1 OUTS2  
and V , V Pins for Each Output  
FB1 FB2  
V
PGOOD Voltage Low  
I
= 2mA  
= 5V  
0.1  
V
OL_PGOOD  
PGOOD  
(Each Channel)  
I
PGOOD Leakage Current  
PGOOD Trip Level  
V
µA  
PGOOD  
PGOOD  
V
V
V
V
with Respect to Set Output Voltage  
Ramping Negative  
Ramping Positive  
PGOOD  
FB  
FB  
FB  
–10  
10  
%
%
INꢁV Linear Regulator  
CC  
V
Internal V Voltage  
6V < V < 26.5V  
4.8  
4.5  
5
5.2  
2
V
INTVCC  
CC  
IN  
V
INTV Load Regulation  
I
CC  
= 0mA to 50mA  
0.5  
%
INTVCC  
CC  
Load Regulation  
V
V
V
EXTV Switchover Voltage  
EXTV Ramping Positive  
4.7  
50  
V
mV  
mV  
EXTVCC  
CC  
CC  
EXTV Dropout  
I
CC  
= 20mA, V = 5V  
EXTVCC  
100  
EXTVCC(DROP)  
EXTVCC(HYST)  
CC  
EXTV Hysteresis  
200  
CC  
Oscillator and Phase-Locked Loop  
f
f
f
I
Nominal Frequency  
f
f
f
= 1.2V  
450  
210  
700  
9
500  
250  
780  
10  
550  
290  
860  
11  
kHz  
kHz  
kHz  
µA  
NOM  
LOW  
HIGH  
fSET  
SET  
SET  
SET  
Lowest Frequency  
= 0V (Note 5)  
> 2.4V, Up to INTV  
Highest Frequency  
CC  
Frequency Set Current  
Mode_PLLIN Input Resistance  
R
250  
kΩ  
MODE_PLLIN  
Ph  
Phase (Relative to V  
)
PHASMD = GND  
PHASMD = Float  
PHASMD = INTV  
60  
90  
120  
Deg  
Deg  
Deg  
CLKOUT  
OUT1  
CC  
V
V
Clock High Output Voltage  
Clock Low Output Voltage  
2
V
V
OH_CLKOUT  
OL_CLKOUT  
0.2  
3
Differential Amplifier  
A
Voltage Gain  
1
V/V  
kΩ  
mV  
dB  
V
R
Input Resistance  
Measured at DIFFP Input  
= V = 1.5V, I  
80  
IN  
V
Input Offset Voltage  
V
DIFFP  
= 100µA  
DIFFOUT  
OS  
DIFFOUT  
PSRR  
Power Supply Rejection Ratio  
Maximum Output Current  
Maximum Output Voltage  
Gain Bandwidth Product  
5V < V < 20V  
90  
3
IN  
I
mA  
V
CL  
DIFFOUT (MAX)  
GBW  
I
= 300µA  
INTV – 1.4V  
CC  
DIFFOUT  
3
MHz  
4628fe  
4
For more information www.linear.com/LTM4628  
LTM4628  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: Two outputs are tested separately and the same testing condition  
is applied to each output.  
Note 4: The switching frequency is programmable for 400kHz to 750kHz.  
Note 5: LTM4628 device is designed to operate from 400kHz to 750kHz  
Note 6: 100% tested at wafer level.  
Note 2: The LTM4628 is tested under pulsed load conditions such that  
T ≈ T . The LTM4628E is guaranteed to meet specifications from  
J
A
Note 7: See output current derating curves for different V , V  
and T .  
A
IN OUT  
0°C to 125°C internal temperature. Specifications over the –40°C to  
125°C internal operating temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LTM4628I is guaranteed over the full –40°C to 125°C internal operating  
temperature range. Note that the maximum ambient temperature  
consistent with these specifications is determined by specific operating  
conditions in conjunction with board layout, the rated package thermal  
impedance and other environmental factors.  
TYPICAL PERFORMANCE CHARACTERISTICS  
5VIN Efficiency  
12VIN Efficiency  
24VIN Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
100  
95  
90  
85  
80  
75  
70  
65  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
FREQ = 500kHz, 700kHz for 3.3V AND 5V  
FREQ = 500kHz, 700kHz for 3.3V AND 5V  
FREQ = 500kHz  
5V  
OUT  
3.3V  
2.5V  
1.5V  
1.2V  
0.8V  
3.3V  
2.5V  
1.5V  
1.2V  
0.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
5V  
OUT  
3.3V  
2.5V  
1.5V  
OUT  
OUT  
OUT  
4
5
0
1
2
3
6
7
8
4
5
4
5
0
1
2
3
6
7
8
0
1
2
3
6
7
8
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4628 G02  
4628 G01  
4628 G03  
Burst Mode Pulse-Skipping  
Efficiency  
0.8V Load ransient  
1.2V Load ransient  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Burst Mode OPERATION  
V
V
OUT  
OUT  
50mV/DIV  
50mV/DIV  
I
I
OUT  
OUT  
2A/DIV  
2A/DIV  
4628 G05  
4628 G06  
PULSE-SKIPPING MODE  
100µs/DIV  
100µs/DIV  
12V , 0.8V  
OUT1  
, 0A TO 4A LOAD STEP AT 4A/µs  
IN  
OUT  
12V , 1.2V  
OUT1  
, 0A TO 4A LOAD STEP AT 4A/µs  
OUT  
IN  
C
4× 100µF 6.3V X5R CERAMIC 1210 CASE SIZE  
C
, 4× 100µF 6.3V X5R CERAMIC 1210 CASE SIZE  
0.01  
OUTPUT CURRENT (A)  
SWITCHING FREQUENCY 400kHz  
CAPACITOR = 47pF  
0.001  
0.1  
1
10  
SWITCHING FREQUENCY 500kHz  
CAPACITOR = 47pF  
C
FF  
C
FF  
4628 G04  
4628fe  
5
For more information www.linear.com/LTM4628  
LTM4628  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.5V Load ransient  
1.8V Load ransient  
2.5V Load ransient  
V
OUT  
100mV/DIV  
V
V
OUT  
OUT  
50mV/DIV  
50mV/DIV  
I
I
OUT  
I
OUT  
OUT  
2A/DIV  
2A/DIV  
2A/DIV  
4628 G07  
4628 G08  
4628 G09  
100µs/DIV  
100µs/DIV  
100µs/DIV  
12V , 1.5V  
OUT1  
, 0A TO 4A LOAD STEP AT 4A/µs  
12V , 1.8V  
OUT1  
, 0A TO 4A LOAD STEP AT 4A/µs  
12V , 2.5V  
OUT1  
SWITCHING FREQUENCY 500kHz  
C CAPACITOR = 47pF  
FF  
, 0A TO 4A LOAD STEP AT 4A/µs  
OUT  
IN  
OUT  
IN  
OUT  
IN  
C
4× 100µF 6.3V X5R CERAMIC 1210 CASE SIZE  
C
4× 100µF 6.3V X5R CERAMIC 1210 CASE SIZE  
C
, 4× 100µF 6.3V X5R CERAMIC 1210 CASE SIZE  
SWITCHING FREQUENCY 500kHz  
CAPACITOR = 47pF  
SWITCHING FREQUENCY 500kHz  
CAPACITOR = 47pF  
C
C
FF  
FF  
3.3V Load ransient  
Output Start-Up  
Output Start-Up  
V
OUT  
100mV/DIV  
V
V
OUT  
OUT  
1V/DIV  
1V/DIV  
5ms/DIV  
5ms/DIV  
INPUT  
CURRENT  
1A/DIV  
INPUT  
CURRENT  
1A/DIV  
I
OUT  
2A/DIV  
4628 G10  
4628 G12  
4628 G11  
100µs/DIV  
20ms/DIV  
20ms/DIV  
V
V
I
= 12V  
V
V
I
= 12V  
IN  
IN  
12V , 3.3V  
OUT1  
, 0A TO 4A LOAD STEP AT 4A/µs  
OUT  
, 4× 100µF 6.3V X5R CERAMIC 1210 CASE SIZE  
IN  
= 2.5V  
= 8A  
= 2.5V  
= 0A  
OUT  
OUT  
OUT  
OUT  
C
SWITCHING FREQUENCY 500kHz  
CAPACITOR = 47pF  
C
FF  
Output Short-Circuit  
Output Short-Circuit  
Coincident racking  
V
V
OUT  
OUT  
1V/DIV  
1V/DIV  
5ms/DIV  
5ms/DIV  
INPUT  
CURRENT  
2A/DIV  
INPUT  
CURRENT  
2A/DIV  
4628 G13  
4628 G14  
4628 G15  
50µs/DIV  
50µs/DIV  
10ms/DIV  
= 1.8V AT 8A  
= 1.2V AT 8A  
V
V
I
= 12V  
V
= 12V  
IN  
IN  
V
V
OUT1  
OUT2  
= 2.5V  
= 0A  
V
I
= 2.5V  
OUT  
= 8A  
OUT  
OUT  
OUT  
4628fe  
6
For more information www.linear.com/LTM4628  
LTM4628  
TYPICAL PERFORMANCE CHARACTERISTICS  
COMP1 and COMP2  
vs Output Current  
IOUꢁ1 and IOUꢁ2 vs ꢁotal Current  
for Parallel Operation  
9
8
7
6
5
4
3
2
1
0
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
I
I
V
ITH2  
OUT1  
OUT2  
ITH1  
V
8
10  
0
2
4
6
12 14 16  
3
4
0
1
2
5
6
7
8
9
TOTAL OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4628 G16  
4628 G17  
(Recommended to Use ꢁest Points to Monitor Signal Pin Connections.)  
PIN FUNCTIONS  
V
(A1-A5, B1-B5, C1-C4): Power Output Pins. Apply  
f
(C6): Frequency Set Pin. A 10µA current is sourced  
OUꢁ1  
SEꢁ  
outputloadbetweenthesepinsandGNDpins.Recommend  
placing output decoupling capacitance directly between  
these pins and GND pins. Review Table 4.  
from this pin. A resistor from this pin to ground sets a  
voltage that in turn programs the operating frequency.  
Alternatively, this pin can be driven with a DC voltage  
that can set the operating frequency. See the Applications  
Information section.  
GND (A6-A7, B6-B7, D1-D4, D9-D12, E1-E4, E10-E12,  
F1-F3, F10-F12, G1, G3, G10, G12, H1-H7, H9-H12, J1,  
J5, J8, J12, K1, K5-K8, K12, L1, L12, M1 , M12): Power  
Ground Pins for Both Input and Output Returns.  
SGND(C7, D6, G6-G7, F6-F7):SignalGroundPin. Return  
ground path for all analog and low power circuitry. Tie a  
single connection to the output capacitor GND in the ap-  
plication. See layout guidelines in Figure 27.  
V
(A8-A12, B8-B12, C9-C12): Power Output Pins.  
OUꢁ2  
Apply output load between these pins and GND pins. Rec-  
ommend placing output decoupling capacitance directly  
between these pins and GND pins. Review Table 4.  
V
, V  
(D5, D7): The Negative Input of the Error  
FB1  
FB2  
Amplifier for Each Channel. Internally, this pin is con-  
nected to V or V with a 60.4kΩ precision  
OUTS1  
OUTS2  
V
, V  
(C5, C8): This pin is connected to the top  
OUꢁS1 OUꢁS2  
resistor. Different output voltages can be programmed  
of the internal top feedback resistor for each output. The  
pin can be directly connected to its specific output, or  
connected to DIFFOUT when the remote sense amplifier  
with an additional resistor between V and GND pins. In  
FB  
PolyPhase® operation, tying the V pins together allows  
FB  
for parallel operation. See the Applications Information  
section for details.  
is used. In paralleling modules, one of the V  
pins is  
OUTS  
connectedtotheDIFFOUTpininremotesensingordirectly  
to V with no remote sensing. It is very important to  
OUT  
connect these pins to either the DIFFOUT or V  
since  
OUT  
this is the feedback path, and cannot be left open. See the  
Applications Information section.  
4628fe  
7
For more information www.linear.com/LTM4628  
LTM4628  
PIN FUNCTIONS (Recommended to Use ꢁest Points to Monitor Signal Pin Connections.)  
ꢁRACK1, ꢁRACK2 (E5, D8): Output Voltage Tracking Pin  
and Soft-Start Inputs. Each channel has a 1.3µA pull-up  
current source. When one channel is configured to be  
master of the two channels, then a capacitor from this pin  
to ground will set a soft-start ramp rate. The remaining  
channel can be set up as the slave, and have the master’s  
output applied through a voltage divider to the slave out-  
put’s track pin. This voltage divider is equal to the slave  
output’s feedback divider for coincidental tracking. See  
the Applications Information section.  
DIFFOUꢁ (F8): Internal Remote Sense Amplifier Output.  
Connect this pin to V or V depending on which  
OUTS1  
OUTS2  
output is using remote sense. In parallel operation con-  
nect one  
of the V  
pin to DIFFOUT for remote sensing.  
OUTS  
Leave floating if the remote sense amplifier is not used.  
SW1, SW2 (G2, G11): Switching node of each channel  
that is used for testing purposes. Also an R-C snubber  
network can be applied to reduce or eliminate switch node  
ringing, otherwise leave floating. See the Applications  
Information section.  
COMP1, COMP2 (E6, E7): Current control threshold and  
error amplifier compensation point for each channel. The  
current comparator threshold increases with this control  
voltage. Tie the COMP pins together for parallel operation.  
The device is internal compensated.  
PHASMD(G4):ConnectthispintoSGND,INTV ,orfloat-  
CC  
ing this pin to select the phase of CLKOUT to 60 degrees,  
120 degrees, and 90 degrees respectively.  
CLKOUꢁ (G5): Clock output with phase control using the  
PHASMD pin to enable multiphase operation between  
devices. See the Applications Information section.  
DIFFP (E8): Positive input of the remote sense amplifier.  
Thispinisconnectedtotheremotesensepointoftheoutput  
voltage. Use of the remote sense amplifier is limited to an  
outputvoltagebetween0.6Vand3.3Vinclusive.Connectto  
GNDifnotused. SeetheApplicationsInformationsection.  
PGOOD1, PGOOD2 (G9, G8): Output Voltage Power  
Good Indicator. Open drain logic output that is pulled to  
ground when the output voltage is not within 7.5% of  
the regulation point.  
DIFFN (E9): Negative input of the remote sense amplifier.  
This pin is connected to the remote sense point of the  
output GND. See the Applications Information section.  
INꢁV (H8): Internal 5V Regulator Output. The control  
CC  
circuits and internal gate drivers are powered from this  
voltage. INTV is controlled and enabled when RUN1 or  
CC  
MODE_PLLIN (F4): Force Continuous Mode, Burst Mode  
Operation, or Pulse-Skipping Mode Selection Pin and  
External Synchronization Input to Phase Detector Pin.  
Connect this pin to SGND to force both channels into  
RUN2 is activated high. Decouple this pin to PGND with  
a 4.7µF low ESR tantalum or ceramic.  
ꢁEMP (J6): Onboard Temperature Diode for Monitoring  
the VBE Junction Voltage Change with Temperature. See  
the Applications Information section.  
force continuous mode of operation. Connect to INTV  
CC  
to enable pulse-skipping mode of operation. Leaving the  
pin floating will enable Burst Mode operation. A clock on  
the pin will force both channels into continuous mode of  
operation and synchronized to the external clock applied  
to this pin.  
EXꢁV (J7): External power input that is enabled through  
CC  
a switch to INTV whenever EXTV is greater than 4.7V.  
CC  
CC  
Do not exceed 6V on this input, and connect this pin to  
V when operating V on 5V. An efficiency increase will  
IN  
IN  
occur that is a function of the (V – INTV ) multiplied by  
RUN1, RUN2 (F5, F9): Run Control Pin. A voltage above  
1.25V will turn on each channel in the module. A voltage  
below 1.25V on the RUN pin will turn off the related chan-  
nel. Each RUN pin has a 1µA pull-up current, once the  
RUN pin reaches 1.2V an additional 4.5µA pull-up current  
is added to this pin.  
IN  
CC  
powerMOSFETdrivercurrent.Typicalcurrentrequirement  
is 30mA. V must be applied before EXTV , and EXTV  
IN  
CC  
CC  
must be removed before V .  
IN  
V (M2-M11, L2-L11, J2-J4, J9-J11, K2-K4, K9-K11):  
IN  
Power Input Pins. Apply input voltage between these pins  
and GND pins. Recommend placing input decoupling  
capacitance directly between V pins and GND pins.  
IN  
4628fe  
8
For more information www.linear.com/LTM4628  
LTM4628  
SIMPLIFIED BLOCK DIAGRAM  
PGOOD1  
TRACK1  
SS CAP  
V
IN  
C
10µF  
35V  
C
10µF  
35V  
IN1  
IN2  
1µF  
GND  
R
T
V
TEMP  
CLKOUT  
RUN1  
IN  
100µA =  
V
IN  
MTOP1  
MBOT1  
R
T
SW1  
V
0.68µH  
1.5V/8A  
OUT1  
+
MODE_PLLIN  
PHASEMD  
2.2µF  
C
OUT1  
GND  
V
OUTS1  
COMP1  
60.4k  
V
FB1  
INTERNAL  
COMP  
R
FB1  
40.2k  
SGND  
POWER  
CONTROL  
PGOOD2  
TRACK2  
V
IN  
INTV  
CC  
C
10µF  
35V  
C
10µF  
35V  
IN3  
IN4  
SS CAP  
1µF  
4.7µF  
EXTV  
GND  
CC  
MTOP2  
MBOT2  
SW2  
V
0.68µH  
1.2V/8A  
OUT2  
+
RUN2  
2.2µF  
C
OUT2  
GND  
V
OUTS2  
60.4k  
COMP2  
XI  
V
FB2  
+
R
FB2  
60.4k  
INTERNAL  
COMP  
f
SET  
INTERNAL  
FILTER  
R
fSET  
SGND  
DIFFOUT  
DIFFN  
DIFFP  
4628 BD  
Figure 1. Simplified LꢁM4628 Block Diagram  
A = 25°C. Use Figure 1 configuration.  
CONDIꢁIONS  
DECOUPLING REQUIREMENTS  
SYMBOL  
PARAMEꢁER  
MIN  
ꢁYP  
MAX  
UNIꢁS  
External Input Capacitor Requirement  
C
C
, C  
IN2 IN4  
(V = 4.5V to 26.5V, V  
= 1.5V)  
= 1.5V)  
I
I
= 8A  
= 8A  
22  
22  
µF  
µF  
IN1 IN3  
IN1  
OUT1  
OUT2  
OUT1  
OUT2  
, C  
(V = 4.5V to 26.5V, V  
IN2  
External Output Capacitor Requirement  
C
C
(V = 4.5V to 26.5V, V  
= 1.5V)  
= 1.5V)  
I
I
= 8A  
= 8A  
300  
300  
µF  
µF  
OUT1  
OUT2  
IN1  
OUT1  
OUT2  
OUT1  
OUT2  
(V = 4.5V to 26.5V, V  
IN2  
4628fe  
9
For more information www.linear.com/LTM4628  
LTM4628  
OPERATION  
Power Module Description  
The LTM4628 is internally compensated to be stable over  
all operating conditions. Table 2 provides a guideline  
for input and output capacitances for several operating  
conditions. LTpowerCAD™ is available for transient and  
The LTM4628 is a dual-output standalone nonisolated  
switching mode DC/DC power supply. It can provide two  
8A outputs with few external input and output capacitors  
and setup components. This module provides precisely  
regulated output voltages programmable via external  
stability analysis. The V pin is used to program the  
FB  
output voltage with a single external resistor to ground.  
A differential remote sense amplifier is available for sens-  
ing the output voltage accurately on one of the outputs at  
the load point, or in parallel operation sensing the output  
voltage at the load point.  
resistors from 0.6V to 5V over 4.5V to 26.5V input  
DC  
DC  
voltages. The typical application schematic is shown in  
Figure 28.  
TheLTM4628hasdualintegratedconstant-frequencycur-  
rent mode regulators and built-in power MOSFET devices  
withfastswitchingspeed. Thetypicalswitchingfrequency  
is 550kHz. For switching-noise sensitive applications, it  
can be externally synchronized from 400kHz to 780kHz.  
A resistor can be used to program a free run frequency  
Multiphase operation can be easily employed with the  
MODE_PLLIN, PHASMD, and CLKOUT pins. Up to 12  
phases can be cascaded to run simultaneously with re-  
spect to each other by programming the PHASMD pin to  
different levels. See the Applications Information section.  
on the f pin. See the Applications Information section.  
High efficiency at light loads can be accomplished with  
selectable Burst Mode operation or pulse-skipping  
operation using the MODE_PLLIN pin. These light load  
features will accommodate battery operation. Efficiency  
graphs are provided for light load operation in the Typical  
PerformanceCharacteristics section.SeetheApplications  
Information section for details.  
SET  
With current mode control and internal feedback loop  
compensation, the LTM4628 module has sufficient stabil-  
ity margins and good transient performance with a wide  
range of output capacitors, even with all ceramic output  
capacitors.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limitandfoldbackcurrentlimitinanovercurrentcondition.  
Internal overvoltage and undervoltage comparators pull  
the open-drain PGOOD outputs low if the output feedback  
voltageexitsa 7.5%windowaroundthe regulationpoint.  
If the output voltage exceeds 10% above its normal op-  
erating point then the bottom power MOSFET will try to  
clamp the output to protect it.  
Atemperaturediodeisincludedinsidethemoduletomoni-  
tor the temperature of the module. See the Applications  
Information section for details.  
The switch pins are available for functional operation  
monitoring and a resistor-capacitor snubber circuit can  
be carefully placed on the switch pin to ground to dampen  
any high frequency ringing on the transition edges. See  
the Applications Information section for details.  
Pulling the RUN pins below 1.1V forces the regulators into  
ashutdownstate,byturningoffbothMOSFETs.TheTRACK  
pinsareusedforprogrammingtheoutputvoltagerampand  
voltage tracking during start-up or used for soft-starting  
the regulator. See the Applications Information section.  
4628fe  
10  
For more information www.linear.com/LTM4628  
LTM4628  
APPLICATIONS INFORMATION  
The typical LTM4628 application circuit is shown in  
Figure 28. External component selection is primarily  
determined by the maximum load current and output  
voltage. Refer to Table 4 for specific external capacitor  
requirements for particular applications.  
In parallel operation the V pins have an I current of  
FB FB  
20nA maximum each channel. To reduce output voltage  
error due to this current, an additional V pin can be  
OUTS  
tied to V , and an additional R resistor can be used  
OUT  
FB  
to lower the total Thevenin equivalent resistance seen by  
this current. For example in Figure 2, the total Thevenin  
equivalentresistanceoftheV pinis(60.4k//R ), which  
V to V  
Step-Down Ratios  
IN  
OUꢁ  
FB  
FB  
is 30.2k where R is equal to 60.4k for a 1.2V output.  
FB  
There are restrictions in the maximum V and V  
step-  
IN  
OUT  
Four phases connected in parallel equates to a worse case  
down ratio that can be achieved for a given input voltage.  
feedbackcurrentof4•I equals80nAmaximum.Thevolt-  
FB  
Each output of the LTM4628 is capable of 98% duty cycle,  
age error is 80nA30.2k = 2.4mV. If V  
is connected  
OUTS2  
but the V to V  
minimum dropout is still shown as a  
OUT  
IN  
as shown in Figure 2 to V , and another 60.4k resistor is  
OUT  
function of its load current and will limit output current  
connected from V to ground, then the voltage error is  
FB2  
capability related to high duty cycle on the top side switch.  
Minimum on-time t  
reduced to 1.2mV. If the voltage error is acceptable then  
is another consideration in  
ON(MIN)  
no additional connections are necessary. The onboard  
operating at a specified duty cycle while operating at a  
certain frequency due to the fact that t < D/f  
60.4k resistor is 0.5% accurate and the V resistor can  
FB  
,
SW  
ON(MIN)  
be chosen by the user to be as accurate as needed.  
where D is duty cycle and f is the switching frequency.  
SW  
t
is specified in the electrical parameters as 90ns.  
AllCOMPpinsaretiedtogetherforcurrentsharingbetween  
thephases.TheTRACKpinscanbetiedtogetherandasingle  
soft-start capacitor can be used to soft-start the regula-  
tor. The soft-start equation will need to have the soft-start  
current parameter increased by the number of paralleled  
channels. See the Output Voltage Tracking section.  
ON(MIN)  
Output Voltage Programming  
ThePWM controllerhasaninternal0.6Vreferencevoltage.  
AsshownintheBlockDiagram,a60.4kinternalfeedback  
resistor connects between the V  
to V and V  
OUTS1  
FB1 OUTS2  
to V . It is very important that these pins be connected  
FB2  
4 PARALLELED OUTPUTS  
FOR 1.2V AT 32A  
to their respective outputs for proper feedback regulation.  
LTM4628  
60.4k  
V
V
COMP1  
COMP2  
OUT1  
OUT2  
OvervoltagecanoccuriftheseV  
andV  
pinsare  
OUTS1  
OUTS2  
left floating when used as individual regulators, or at least  
one of them is used in paralleled regulators. The output  
voltage will default to 0.6V with no feedback resistor on  
V
OUTS1  
OUTS2  
V
OPTIONAL CONNECTION  
OPTIONAL  
V
FB1  
either V or V . Adding a resistor R from V pin to  
FB1  
FB2  
FB  
FB  
60.4k  
TRACK1  
TRACK2  
GND programs the output voltage:  
V
FB2  
60.4k + RFB  
R
FB  
60.4k  
VOUT = 0.6V •  
RFB  
LTM4628  
60.4k  
V
COMP1  
COMP2  
OUT1  
OUT2  
USED TO LOWER TOTAL  
V
THEVENIN EQUIVALENT TO  
ꢁable 1. VFB Resistor ꢁable vs Various Output Voltages  
0.6V 1.0V 1.2V 1.5V 1.8V 2.5V 3.3V  
Open 90.9k 60.4k 40.2k 30.2k 19.1k 13.3k 8.25k  
LOWER I VOLTAGE ERROR  
FB  
V
V
OUTS1  
OUTS2  
V
5.0V  
OUꢁ  
R
FB  
V
FB1  
60.4k  
For parallel operation of multiple channels the same feed-  
back setting resistor can be used for the parallel design.  
TRACK1  
TRACK2  
V
FB2  
0.1µF  
R
FB  
This is done by connecting the V  
to the output as  
4628 F02  
OUTS1  
60.4k  
shown in Figure 2, thus tying one of the internal 60.4k  
resistors to the output. All of the V pins tie together with  
FB  
Figure 2. 4-Phase Parallel Configurations  
one programming resistor as shown in Figure 2.  
4628fe  
11  
For more information www.linear.com/LTM4628  
LTM4628  
APPLICATIONS INFORMATION  
Input Capacitors  
to optimize the transient performance. Stability criteria  
are considered in the Table 4 matrix, and LTpowerCAD™  
is available for stability analysis. Multiphase operation will  
reduce effective output ripple as a function of the num-  
ber of phases. Application Note 77 discusses this noise  
reduction versus output ripple current cancellation, but  
the output capacitance should be considered carefully as  
afunctionofstabilityandtransientresponse.LTpowerCAD  
can calculate the output ripple reduction as the number of  
implemented phases increases by N times. A small value  
The LTM4628 module should be connected to a low ac-  
impedance DC source. For the regulator input three 22µF,  
or four 10µF input ceramic capacitors are used for RMS  
ripple current. A 47µF to 100µF surface mount aluminum  
electrolytic bulk capacitor can be used for more input bulk  
capacitance. This bulk input capacitor is only needed if  
the input source impedance is compromised by long in-  
ductive leads, traces or not enough source capacitance.  
If low impedance power planes are used, then this bulk  
capacitor is not needed.  
10Ω to 50Ω resistor can be placed in series from V  
OUT  
to the V  
pin to allow for a bode plot analyzer to inject  
OUTS  
For a buck converter, the switching duty-cycle can be  
estimated as:  
a signal into the control loop and validate the regulator  
stability. The same resistor could be placed in series from  
V
toDIFFPandabodeplotanalyzercouldinjectasignal  
OUT  
VOUT  
into the control loop and validate the regulator stability.  
D =  
V
IN  
Burst Mode Operation  
Without considering the inductor current ripple, for each  
output, the RMS current of the input capacitor can be  
estimated as:  
The LTM4628 is capable of Burst Mode operation on  
each regulator in which the power MOSFETs operate  
intermittentlybasedonloaddemand,thussavingquiescent  
current. For applications where maximizing the efficiency  
at very light loads is a high priority, Burst Mode operation  
should be applied. Burst Mode operation is enabled with  
the MODE_PLLIN pin floating. During this operation, the  
peak current of the inductor is set to approximately one  
third of the maximum peak current value in normal opera-  
tion even though the voltage at the COMP pin indicates  
a lower value. The voltage at the COMP pin drops when  
the inductor’s average current is greater than the load  
requirement. As the COMP voltage drops below 0.5V, the  
Burst comparator trips, causing the internal sleep line to  
go high and turn off both power MOSFETs.  
IOUT(MAX)  
ICIN(RMS)  
=
• D • 1D  
(
)
η%  
Intheaboveequation,η%istheestimatedefficiencyofthe  
power module. The bulk capacitor can be a switcher-rated  
aluminum electrolytic capacitor or a Polymer capacitor.  
Output Capacitors  
The LTM4628 is designed for low output voltage ripple  
noise and good transient response. The bulk output  
capacitors defined as C  
are chosen with low enough  
OUT  
effective series resistance (ESR) to meet the output volt-  
age ripple and transient requirements. C can be a low  
OUT  
ESR tantalum capacitor, the low ESR polymer capacitor  
orceramiccapacitor.Thetypicaloutputcapacitancerange  
for each output is from 200µF to 470µF. Additional output  
filtering may be required by the system designer, if further  
reduction of output ripples or dynamic transient spikes  
is required. Table 4 shows a matrix of different output  
voltages and output capacitors to minimize the voltage  
droop and overshoot during a 4A/µs transient. The table  
optimizes total equivalent ESR and total bulk capacitance  
In sleep mode, the internal circuitry is partially turned off,  
reducing the quiescent current to about 450µA for each  
output. The load current is now being supplied from the  
output capacitors. When the output voltage drops, caus-  
ing COMP to rise above 0.5V, the internal sleep line goes  
low, and the LTM4628 resumes normal operation. The  
next oscillator cycle will turn on the top power MOSFET  
and the switching cycle repeats. Either regulator can be  
configured for Burst Mode operation.  
4628fe  
12  
For more information www.linear.com/LTM4628  
LTM4628  
APPLICATIONS INFORMATION  
Pulse-Skipping Mode Operation  
should be used. Forced continuous operation can be  
enabled by tying the MODE_PLLIN pin to SGND. In this  
mode, inductor current is allowed to reverse during low  
output loads, the COMP voltage is in control of the current  
comparator threshold throughout, and the top MOSFET  
alwaysturnsonwitheachoscillatorpulse.Duringstart-up,  
forced continuous mode is disabled and inductor current  
is prevented from reversing until the LTM4628’s output  
voltage is in regulation. Either regulator can be configured  
for forced continuous mode.  
Inapplicationswherelowoutputrippleandhighefficiency  
at intermediate currents are desired, pulse-skipping  
mode should be used. Pulse-skipping operation allows  
the LTM4628 to skip cycles at low output loads, thus  
increasing efficiency by reducing switching loss. Tying  
the MODE_PLLIN pin to INTV enables pulse-skipping  
CC  
operation. At light loads the internal current comparator  
may remain tripped for several cycles and force the top  
MOSFETtostayoffforseveralcycles,thusskippingcycles.  
The inductor current does not reverse in this mode. This  
modewillmaintainhighereffectivefrequenciesthuslower  
output ripple and lower noise than Burst Mode operation.  
Eitherregulatorcanbeconfiguredforpulse-skippingmode.  
Multiphase Operation  
For output loads that demand more than 8A of current,  
two outputs in LTM4628 or even multiple LTM4628s can  
be paralleled to run out of phase to provide more output  
currentwithoutincreasinginputandoutputvoltageripple.  
TheMODE_PLLINpinallowstheLTM4628tosynchronize  
to an external clock (between 400kHz and 780kHz) and  
theinternalphase-lockedloopallowstheLTM4628tolock  
Forced Continuous Operation  
In applications where fixed frequency operation is more  
critical than low current efficiency, and where the lowest  
output ripple is desired, forced continuous operation  
PHASMD PIN STATUS AND CORRESPONDING  
PHASE RELATIONSHIP  
2-PHASE DESIGN  
FLOAT  
CLKOUT  
MODE_PLLIN  
PHASMD SGND FLOAT INTV  
CC  
CONTROLLER1  
CONTROLLER2  
CLKOUT  
0°  
0°  
0°  
180°  
60°  
180°  
90°  
240°  
120°  
0 PHASE  
180 PHASE  
V
OUT1  
V
OUT2  
SGND OR FLOAT  
PHASMD  
4-PHASE DESIGN  
90 DEGREE  
CLKOUT  
MODE_PLLIN  
CLKOUT  
MODE_PLLIN  
0 PHASE  
FLOAT  
180 PHASE  
90 PHASE  
270 PHASE  
V
OUT1  
V
V
OUT1  
V
OUT2  
OUT2  
FLOAT  
PHASMD  
PHASMD  
6-PHASE DESIGN  
60 DEGREE  
60 DEGREE  
CLKOUT  
MODE_PLLIN  
CLKOUT  
CLKOUT  
MODE_PLLIN  
MODE_PLLIN  
0 PHASE  
SGND  
180 PHASE  
60 PHASE  
SGND  
240 PHASE  
120 PHASE  
FLOAT  
300 PHASE  
V
OUT1  
V
V
V
V
OUT1  
V
OUT2  
OUT2  
OUT1  
OUT2  
PHASMD  
PHASMD  
PHASMD  
4628 F03  
Figure 3. Examples of 2-Phase, 4-Phase, and 6-Phase Operation with PHASMD ꢁable  
4628fe  
13  
For more information www.linear.com/LTM4628  
LTM4628  
APPLICATIONS INFORMATION  
onto incoming clock phase as well. The CLKOUT signal  
can be connected to the MODE_PLLIN pin of the following  
stage to line up both the frequency and the phase of the  
thanthenumberofphasesusedtimestheoutputvoltage).  
Theoutputrippleamplitudeisalsoreducedbythenumber  
of phases used when all of the outputs are tied together  
to achieve a single high output current design.  
entire system. Tying the PHASMD pin to INTV , SGND,  
CC  
or left floating generates a phase difference (between  
MODE_PLLIN and CLKOUT) of 120 degrees, 60 degrees,  
or 90 degrees respectively. A total of 12 phases can be  
cascadedtorunsimultaneouslywithrespecttoeachother  
byprogrammingthePHASMDpinofeachLTM4628chan-  
nel to different levels. Figure 3 shows a 2-phase design,  
4-phase design and a 6-phase design example for clock  
phasing with the PHASMD table.  
The LTM4628 device is an inherently current mode con-  
trolled device, so parallel modules will have very good  
current sharing. This will balance the thermals on the  
design. Figure 31 shows an example of parallel operation  
and pin connection.  
Input RMS Ripple Current Cancellation  
Application Note 77 provides a detailed explanation of  
multiphaseoperation.TheinputRMSripplecurrentcancel-  
lationmathematicalderivationsarepresented,andagraph  
isdisplayedrepresentingtheRMSripplecurrentreduction  
asafunctionofthenumberofinterleavedphases. Figure4  
shows this graph.  
A multiphase power supply significantly reduces the  
amount of ripple current in both the input and output ca-  
pacitors. The RMS input ripple current is reduced by, and  
the effective ripple frequency is multiplied by, the number  
of phases used (assuming that the input voltage is greater  
0.60  
1-PHASE  
2-PHASE  
3-PHASE  
4-PHASE  
6-PHASE  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY CYCLE (V /V  
)
OUT IN  
4628 F04  
Figure 4. Input RMS Current Ratios to DC Load Current as a Function of Duty Cycle  
4628fe  
14  
For more information www.linear.com/LTM4628  
LTM4628  
APPLICATIONS INFORMATION  
Frequency Selection and Phase-Locked Loop  
The output of the PLL phase detector has a pair of comple-  
mentary current sources that charge and discharge the  
internal filter network. When the external clock is applied  
(MODE_PLLIN and f Pins)  
SEꢁ  
TheLTM4628deviceisoperatedoverarangeoffrequencies  
toimprovepowerconversionefficiency.Itisrecommended  
to operate the lower output voltages or lower duty cycle  
conversions at lower frequencies to improve efficiency by  
lowering power MOSFET switching losses. Higher output  
voltages or higher duty cycle conversions can be operated  
at higher frequencies to limit inductor ripple current. The  
efficiencygraphswillshowanoperatingfrequencychosen  
for that condition.  
thef frequencyresistorisdisconnectedwithaninternal  
SET  
switch, and the current sources control the frequency  
adjustment to lock to the incoming external clock. When  
no external clock is applied, then the internal switch is on,  
thus connecting the external f  
for free run operation.  
frequency set resistor  
SET  
Minimum On-ꢁime  
Minimum on-time t is the smallest time duration that  
ON  
The LTM4628 switching frequency can be set with an  
the LTM4628 is capable of turning on the top MOSFET on  
either channel. It is determined by internal timing delays,  
and the gate charge required to turn on the top MOSFET.  
Low duty cycle applications may approach this minimum  
on-time limit and care should be taken to ensure that:  
external resistor from the f  
pin to SGND. An accurate  
SET  
10µA current source into the resistor will set a voltage  
that programs the frequency or a DC voltage can be  
applied. Figure 5 shows a graph of frequency setting  
verses programming voltage. An external clock can be  
VOUT  
applied to the MODE_PLLIN pin from 0V to INTV over  
CC  
> tON(MIN)  
a frequency range of 400kHz to 780kHz. The clock input  
high threshold is 1.6V and the clock input low threshold  
is 0.5V. The LTM4628 has the PLL loop filter components  
on board. The frequency setting resistor should always  
be present to set the initial switching frequency before  
locking to an external clock. Both regulators will operate  
in continuous mode while being externally clocked.  
V FREQ  
IN  
If the duty cycle falls below what can be accommodated  
by the minimum on-time, the controller will begin to skip  
cycles.Theoutputvoltagewillcontinuetoberegulated,but  
the output ripple and current will increase. The minimum  
on-time can be increased by lowering the switching fre-  
quency. A good rule of thumb is to use an 110ns on-time.  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
0.5  
1
1.5  
2
2.5  
f
PIN VOLTAGE (V)  
SET  
4628 F05  
Figure 5. Operating Frequency vs fSEꢁ Pin Voltage  
4628fe  
15  
For more information www.linear.com/LTM4628  
LTM4628  
APPLICATIONS INFORMATION  
INTV  
CC  
C10  
4.7µF  
R2  
10k  
PGOOD  
5V TO 16V INTERMEDIATE BUS  
MODE_PLLIN CLKOUT INTV  
EXTV  
PGOOD1  
CC  
CC  
1.5V AT 8A  
V
V
OUT1  
IN  
C3  
22µF  
25V  
C2  
22µF  
25V  
C1  
22µF  
25V  
R1  
10k  
R6  
120k  
C6  
100µF  
6.3V  
C8  
TEMP  
V
OUTS1  
SW1  
470µF  
6.3V  
RUN1  
RUN2  
V
V
FB1  
FB2  
TRACK1  
TRACK2  
D1  
MASTER  
LTM4628  
R
FB  
40.2k  
COMP1  
COMP2  
5.1V ZENER  
60.4k  
C
SS  
R
R
TA  
TB  
f
SET  
0.1µF  
60.4k  
60.4k  
PHASMD  
V
OUTS2  
1.2V AT 8A  
SLAVE  
V
OUT2  
SW2  
1.5V  
PGOOD  
C4  
C7  
470µF  
6.3V  
R4  
100k  
100µF  
6.3V  
RAMP TIME  
t
PGOOD2  
DIFFN DIFFOUT  
= (C /1.3µA) • 0.6V  
SS  
SOFTSTART  
INTV  
CC  
SGND  
GND  
DIFFP  
R9  
10k  
4628 F06  
Figure 6. Example of Output racking Application Circuit  
Output Voltage racking  
Output voltage tracking can be programmed externally  
using the TRACK pins. The output can be tracked up  
and down with another regulator. The master regulator’s  
output is divided down with an external resistor divider  
that is the same as the slave regulator’s feedback divider  
to implement coincident tracking. The LTM4628 uses an  
accurate 60.4k resistor internally for the top feedback  
resistor for each channel. Figure 6 shows an example of  
coincident tracking. Equations:  
MASTER OUTPUT  
SLAVE OUTPUT  
TIME  
60.4k  
RTA  
4628 F07  
VOUT _SLAVE = 1+  
• V  
TRACK  
Figure 7. Output Coincident racking Waveform  
V
V
is the track ramp applied to the slave’s track pin.  
has a control range of 0V to 0.6V, or the internal  
TRACK  
TRACK  
TheTRACKpinofthemastercanbecontrolledbyacapaci-  
tor placed on the master regulator TRACK pin to ground.  
A 1.3µA current source will charge the TRACK pin up to  
reference voltage. When the master’s output is divided  
down with the same resistor values used to set the slave’s  
output, then the slave will coincident track with the master  
until it reaches its final value. The master will continue to  
its final value from the slave’s regulation point. Voltage  
thereferencevoltageandthenproceeduptoINTV . After  
CC  
the 0.6V ramp, the TRACK pin will no longer be in con-  
trol, and the internal voltage reference will control output  
regulation from the feedback divider. Foldback current  
limit is disabled during this sequence of turn-on during  
tracking or soft-starting. The TRACK pins are pulled low  
tracking is disabled when V  
is more than 0.6V. R  
TRACK  
TA  
in Figure 6 will be equal to the R for coincident tracking.  
FB  
Figure 7 shows the coincident tracking waveforms.  
4628fe  
16  
For more information www.linear.com/LTM4628  
LTM4628  
APPLICATIONS INFORMATION  
when the RUN pin is below 1.2V. The total soft-start time  
can be calculated as:  
rate is chosen to be fast enough so that the slave output  
voltage will reach it final value before the master output.  
For example, MR = 1.5V/1ms, and SR = 1.2V/1ms. Then  
CSS  
1.3µA  
tSOFT-START  
=
• 0.6V  
R
= 76.8k. Solve for R to equal to 49.9k.  
TB  
TA  
Each of the TRACK pins will have the 1.3µA current source  
on when a resistive divider is used to implement tracking  
on that specific channel. This will impose an offset on the  
TRACK pin input. Smaller values resistors with the same  
ratios as the resistor values calculated from the above  
equation can be used. For example, where the 60.4k is  
used then a 6.04k can be used to reduce the TRACK pin  
offset to a negligible value.  
RegardlessofthemodeselectedbytheMODE_PLLINpin,  
the regulator channels will always start in pulse-skipping  
mode up to TRACK = 0.5V. Between TRACK = 0.5V and  
0.54V,itwilloperateinforcedcontinuousmodeandrevert  
to the selected mode once TRACK > 0.54V. In order to  
track with another channel once in steady state operation,  
the LTM4628 is forced into continuous mode operation  
as soon as V is below 0.54V regardless of the setting  
FB  
Power Good  
on the MODE_PLLIN pin.  
The PGOOD pins are open drain pins that can be used to  
monitor valid output voltage regulation. This pin monitors  
a 7.5% window around the regulation point. A resistor  
can be pulled up to a particular supply voltage no greater  
than 6V maximum for monitoring.  
Ratiometric tracking can be achieved by a few simple cal-  
culations and the slew rate value applied to the master’s  
TRACK pin. As mentioned above, the TRACK pin has a  
control range from 0 to 0.6V. The master’s TRACK pin  
slew rate is directly equal to the master’s output slew rate  
in Volts/Time. The equation:  
Stability Compensation  
MR  
SR  
The module has already been internally compensated for  
alloutputvoltages.Table4isprovidedformostapplication  
requirements. LTpowerCAD is available for other control  
loop optimization.  
• 60.4k = RTB  
where MR is the master’s output slew rate and SR is the  
slave’s output slew rate in Volts/Time. When coincident  
tracking is desired, then MR and SR are equal, thus R  
TB  
Run Enable  
is equal the 60.4k. R is derived from equation:  
TA  
TheRUNpinshaveanenablethresholdof1.4Vmaximum,  
typically 1.25V with 150mV of hysteresis. They control  
the turn-on of each of the channels. These pins can be  
0.6V  
RTA  
=
VTRACK  
RTB  
V
V
FB  
FB  
+
60.4k RFB  
pulled up to V for 5V operation, or a 5V Zener diode can  
IN  
be placed on the pins and a 10k to 100k resistor can be  
placed up to higher than 5V input for enabling the chan-  
nels. The RUN pins can also be used for output voltage  
sequencing. In parallel operation the RUN pins can be  
tie together and controlled from a single control. See the  
Typical Application circuits in Figure 28. The RUN pin can  
also be left floating. The RUN pin has a 1µA pull-up cur-  
rent source that increases by an additional 4.5µA during  
ramp-up once above the on/off threshold.  
where V is the feedback voltage reference of the regula-  
FB  
tor, and V  
is 0.6V. Since R is equal to the 60.4k  
TRACK  
TB  
top feedback resistor of the slave regulator in equal slew  
rate or coincident tracking, then R is equal to R with  
TA  
FB  
V
= V  
. Therefore R = 60.4k, and R = 60.4k in  
TRACK TB TA  
FB  
Figure 6.  
Inratiometrictracking, adifferentslewratemaybedesired  
for the slave regulator. R can be solved for when SR  
TB  
is slower than MR. Make sure that the slave supply slew  
4628fe  
17  
For more information www.linear.com/LTM4628  
LTM4628  
APPLICATIONS INFORMATION  
INꢁV and EXꢁV  
inductance in combination with the MOSFET interconnect  
bond wire inductance.  
CC  
CC  
The LTM4628 module has an internal 5V low dropout  
regulator that is derived from the input voltage. This  
regulator is used to power the control circuitry and the  
power MOSFET drivers. This regulator can source up to  
70mA, and typically uses ~30mA for powering the device  
at the maximum frequency.  
First the SW pin can be monitored with a wide bandwidth  
scope with a high frequency scope probe. The ring fre-  
quency can be measured for its value. The impedance Z  
can be calculated:  
Z = 2πfL,  
L
EXTV allowsanexternal5VsupplytopowertheLTM4628  
CC  
where f is the resonant frequency of the ring, and L is the  
total parasitic inductance in the switch path. If a resistor  
is selected that is equal to Z, then the ringing should be  
dampened. The snubber capacitor value is chosen so that  
itsimpedanceisequaltotheresistorattheringfrequency.  
andreducepowerdissipationfromtheinternallowdropout  
5Vregulator. Thepowerlosssavingscanbecalculatedby:  
(V – 5V) • 30mA = P  
IN  
LOSS  
EXTV has a threshold of 4.7V for activation, and a maxi-  
CC  
Calculatedby:Z =1/(2πfC).Thesevaluesareagoodplace  
C
mum rating of 6V. When using a 5V input, connect this  
to start with. Modification to these components should  
be made to attenuate the ringing with the least amount  
the power loss.  
5V input to EXTV also to maintain a 5V gate drive level.  
CC  
V has to be sequenced on before EXTV , and EXTV  
IN  
CC  
CC  
must be sequenced off before V .  
IN  
ꢁemperature Diode Monitoring  
Differential Remote Sense Amplifier  
The LTM4628 has anonboard1N4148 silicon diode at the  
TEMP pin that can be used to monitor temperature. The  
diode is mounted very close to internal power switches.  
The forward voltage of a silicon diode is temperature  
dependent based on the following equation:  
Anaccuratedifferentialremotesenseamplifierisprovided  
to sense low output voltages accurately at the remote  
load points. This is especially true for high current loads.  
The amplifier can be used on one of the two channels, or  
on a single parallel output. It is very important that the  
DIFFP and DIFFN are connected properly at the output,  
VD  
η • V  
and DIFFOUT is connected to either V  
or V  
.
OUTS1  
OUTS2  
I = I • e  
D
S
In parallel operation, the DIFFP and DIFFN are connected  
properly at the output, and DIFFOUT is connected to  
T
or  
one of the V  
pins. Review the parallel schematics in  
OUTS  
I
VD = η • VT ln D  
Figure 31 and review Figure 2.  
I
S  
SW Pins  
where I is the diode current, V is the diode voltage, η is  
D
D
The SW pins are generally for testing purposes by moni-  
toring these pins. These pins can also be used to dampen  
out switch node ringing caused by LC parasitic in the  
switched current paths. Usually a series R-C combina-  
tion is used, called a snubber circuit. The resistor will  
dampen the resonance and the capacitor is chosen to  
only affect the high frequency ringing across the resistor.  
If the stray inductance or capacitance can be measured or  
approximated then a somewhat analytical technique can  
be used to select the snubber values. The inductance is  
usuallyeasiertopredict.Itcombinesthepowerpathboard  
the ideality factor (typically close to 1.0) and I (satura-  
S
tion current) is a process dependent parameter. V can  
T
be broken out to:  
k • T  
q
VT =  
where T is the diode junction temperature in Kelvin, q is  
the electron charge and k is Boltzmann’s constant. V is  
T
approximately 26mV at room temperature (298K) and  
scales linearly with Kelvin temperature. It is this linear  
4628fe  
18  
For more information www.linear.com/LTM4628  
LTM4628  
APPLICATIONS INFORMATION  
It is important that the bias current source be accurate and  
powered from a high impedance source. This is because  
the forward voltage drop is also a function of the current  
through the diode.  
temperature relationship that makes diodes suitable  
temperature sensors. The I term in the equation above  
S
is the extrapolated current through a diode junction when  
the diode has zero volts across the terminals. The I term  
S
varies from process to process, varies with temperature,  
The below equations show that when currents are a de-  
and by definition must always be less than I . Combining  
D
cade apart the V difference is 60mV; therefore the 10µA  
D
all of the constants into one term:  
current source error will affect the diode forward voltage  
at temperature.  
η k  
q
KD =  
kT/q = 26mV  
−5  
V
– V = kT/q ln(I )/(I )  
D2 D1 D2  
where K = 8.62 , and knowing ln(I /I ) is always posi-  
D1  
D
D S  
tive because I is always greater than I , leaves us with  
the equation that:  
D
S
where V – V is the difference in the diode forward  
voltage with the I and I current difference.  
D1  
D2  
D1  
D2  
I
IS  
VD = T(KELVIN)KD ln D  
Several 1N4148 diodes were tested with 100µA of current  
and Figure 9 shows the results. The 100µA current source  
provided the best repeatability for each diode.  
where V appears to increase with temperature. It is com-  
D
Thetesteddiodesareverycloseto2.2mV/°Cto2.4mV/°C  
slope while each are biased with 100µA through a 120k  
pull-up resistor to 12V. The Figure 9 graph can be used  
to calibrate and measure LTM4628 internal temperature  
mon knowledge that a silicon diode biased with a current  
source has an approximate –2mV/°C temperature rela-  
tionship (Figure 8), which is at odds with the equation. In  
fact, the I term increases with temperature, reducing the  
S
by measuring the diode V value.  
D
ln(I /I ) absolute value yielding an approximate –2mV/°C  
D S  
composite diode voltage slope.  
1.4  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
I
= 10µA  
D
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–273  
–173  
–73  
27  
127  
227  
–100 –50  
0
50  
100  
150  
200  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4628 F08  
4628 F09  
Figure 8. Silicon Diode Voltage VD vs ꢁemperature  
Figure 9. ꢁhe 1N4148 Diode Voltage VD vs ꢁemperature  
4628fe  
19  
For more information www.linear.com/LTM4628  
LTM4628  
APPLICATIONS INFORMATION  
ꢁhermal Considerations and Output Current Derating  
2 θ  
, the thermal resistance from junction to the  
JCbottom  
bottom of the product case, is determined with all of  
the component power dissipation flowing through the  
bottomofthepackage.InthetypicalµModuleregulator,  
the bulk of the heat flows out the bottom of the pack-  
age, but there is always heat flow out into the ambient  
environment. As a result, this thermal resistance value  
may be useful for comparing packages but the test  
conditionsdon’tgenerallymatchtheuser’sapplication.  
The thermal resistances reported in the Pin Configura-  
tion section of the data sheet are consistent with those  
parameters defined by JESD 51-12 and are intended for  
use with finite element analysis (FEA) software modeling  
tools that leverage the outcome of thermal modeling,  
simulation, and correlation to hardware evaluation per-  
formed on a µModule package mounted to a hardware  
test board defined by JESD 51-9 (“Test Boards for Area  
Array Surface Mount Package Thermal Measurements”).  
The motivation for providing these thermal coefficients is  
foundinJESD51-12(“GuidelinesforReportingandUsing  
Electronic Package Thermal Information”).  
3 θ  
, the thermal resistance from junction to top of  
JCtop  
the product case, is determined with nearly all of the  
componentpowerdissipationflowingthroughthetopof  
the package. As the electrical connections of the typical  
µModule regulator are on the bottom of the package, it  
is rare for an application to operate such that most of  
the heat flows from the junction to the top of the part.  
As in the case of θ  
for comparing packages but the test conditions don’t  
generally match the user’s application.  
Many designers may opt to use laboratory equipment  
and a test vehicle such as the demo board to anticipate  
the µModule regulator’s thermal performance in their ap-  
plicationatvariouselectricalandenvironmentaloperating  
conditions to compliment any FEA activities. Without FEA  
software, the thermal resistances reported in the Pin Con-  
figuration section are in-and-of themselves not relevant  
to providing guidance of thermal performance; instead,  
the derating curves provided later in this data sheet can  
be used in a manner that yields insight and guidance per-  
taining to one’s application-usage, and can be adapted to  
correlate thermal performance to one’s own application.  
, this value may be useful  
JCbottom  
4 θ , the thermal resistance from junction to the printed  
JB  
circuit board, is the junction-to-board thermal resis-  
tance where almost all of the heat flows through the  
bottom of the µModule regulator and into the board,  
and is really the sum of the θ  
and the thermal  
JCbottom  
resistance of the bottom of the part through the solder  
joints and through a portion of the board. The board  
temperature is measured a specified distance from the  
package, using a two sided, two layer board. This board  
is described in JESD 51-9.  
The Pin Configuration section gives four thermal coeffi-  
cients explicitly defined in JESD 51-12; these coefficients  
are quoted or paraphrased below:  
1 θ , the thermal resistance from junction to ambient, is  
JA  
the natural convection junction-to-ambient air thermal  
resistance measured in a one cubic foot sealed enclo-  
sure.Thisenvironmentissometimesreferredtoasstill  
airalthoughnaturalconvectioncausestheairtomove.  
This value is determined with the part mounted to a  
JESD 51-9 defined test board, which does not reflect  
an actual application or viable operating condition.  
A graphical representation of the aforementioned thermal  
resistances is given in Figure 10; blue resistances are  
contained within the µModule regulator, whereas green  
resistances are external to the µModule package.  
4628fe  
20  
For more information www.linear.com/LTM4628  
LTM4628  
APPLICATIONS INFORMATION  
JUNCTION-TO-AMBIENT RESISTANCE (JESD 51-9 DEFINED BOARD)  
JUNCTION-TO-CASE (TOP)  
RESISTANCE  
CASE (TOP)-TO-AMBIENT  
RESISTANCE  
JUNCTION-TO-BOARD RESISTANCE  
JUNCTION  
AMBIENT  
JUNCTION-TO-CASE  
(BOTTOM) RESISTANCE  
CASE (BOTTOM)-TO-BOARD  
RESISTANCE  
BOARD-TO-AMBIENT  
RESISTANCE  
4628 F10  
µMODULE DEVICE  
Figure 10. Graphical Representation of JESD 51-12 ꢁhermal Coefficients  
As a practical matter, it should be clear to the reader that  
no individual or sub-group of the four thermal resistance  
parameters defined by JESD 51-12 or provided in the  
Pin Configuration section replicates or conveys normal  
operatingconditionsofaµModuleregulator. Forexample,  
in normal board-mounted applications, never does 100%  
of the device’s total power loss (heat) thermally conduct  
exclusively through the top or exclusively through bot-  
tom of the µModule package—as the standard defines  
the LTM4628 and the specified PCB with all of the cor-  
rect material coefficients along with accurate power loss  
source definitions; (2) this model simulates a software-  
defined JEDEC environment consistent with JESD 51-12  
to predict power loss heat flow and temperature readings  
at different interfaces that enable the calculation of the  
JEDEC-defined thermal resistance values; (3) the model  
and FEA software is used to evaluate the LTM4628 with  
heat sink and airflow; (4) having solved for and analyzed  
these thermal resistance values and simulated various  
operating conditions in the software model, a thorough  
laboratory evaluation replicates the simulate conditions  
with thermocouples within a controlled environment  
chamber while operating the device at the same power  
loss as that which was simulated. The outcome of this  
process and due diligence yields a set of derating curves  
provided in other sections of this data sheet. After these  
laboratory tests have been performed the θ and θ are  
for θ  
and θ  
, respectively. In practice, power  
JCtop  
JCbottom  
loss is thermally dissipated in both directions away from  
the package—granted, in the absence of a heat sink and  
airflow, a majority of the heat flow is into the board.  
Within the LTM4628, be aware there are multiple power  
devices and components dissipating power, with a con-  
sequence that the thermal resistances relative to different  
junctions of components or die are not exactly linear with  
respect to total package power loss. To reconcile this  
complication without sacrificing modeling simplicity—  
but also, not ignoring practical realities—an approach  
has been taken using FEA software modeling along with  
laboratory testing in a controlled-environment chamber  
to reasonably define and correlate the thermal resistance  
valuessuppliedinthisdatasheet:(1)Initially,FEAsoftware  
is used to accurately build the mechanical geometry of  
JB  
BA  
summedtogethertocorrelatequitewellwiththeLTM4628  
model with no airflow or heat sinking in a properly de-  
fined chamber. This θ + θ value is shown in the Pin  
JB  
BA  
Configuration section and should accurately equal the θ  
JA  
value because approximately 100% of power loss flows  
from the junction through the board into ambient with no  
airflow or top mounted heat sink.  
4628fe  
21  
For more information www.linear.com/LTM4628  
LTM4628  
APPLICATIONS INFORMATION  
The 1.0V and 3.3V power loss curves in Figures 11 and 12  
can be used in coordination with the load current derating  
curves in Figures 13 to 24 for calculating an approximate  
no air or heat sink and the power loss for the 12V to 1.0V  
at12Aoutputisabout3.65W.The3.65Wlossiscalculated  
with the ~2.7W room temperature loss from the 12V to  
1.0V power loss curve at 12A, and the 1.35 multiplying  
θ thermal resistance for the LTM4628 with various heat  
JA  
sinking and airflow conditions. The power loss curves are  
taken at room temperature, and are increased with mul-  
tiplicative factors according to the ambient temperature.  
The approximate factors are: 1.35 for 115°C and 1.4 for  
-
factor at 120°C junction. If the 80°C ambient tempera  
ture is subtracted from the 120°C junction temperature,  
then the difference of 40°C divided by 3.65W equals a  
10.9°C/W θ thermal resistance. Table 2 specifies a  
JA  
120°C. The derating curves are plotted with V  
OUT2  
and  
9.5°C/W to 10°C/W value which is very close. Table 2 and  
Table 3provideequivalentthermalresistancesfor1.0Vand  
3.3V outputs with and without airflow and heat sinking.  
The derived thermal resistances in Tables 2 and 3 for the  
various conditions can be multiplied by the calculated  
power loss as a function of ambient temperature to derive  
temperature rise above ambient, thus maximum junction  
OUT1  
V
in parallel single output operation starting at 16A  
and the ambient temperature at 40°C. The output volt-  
ages are 1.0V, and 3.3V. These are chosen to include the  
lower and higher output voltage ranges for correlating  
the thermal resistance. Thermal models are derived from  
several temperature measurements in a controlled tem-  
perature chamber along with thermal modeling analysis.  
The junction temperatures are monitored while ambi-  
ent temperature is increased with and without airflow.  
Thepowerlossincreasewithambienttemperaturechange  
is factored into the derating curves. The junctions are  
maintained at 115°C to 120°C maximum while lowering  
output current or power with increasing ambient tem-  
perature. The decreased output current will decrease the  
internal module loss as ambient temperature is increased.  
The monitored junction temperature of 120°C minus  
the ambient operating temperature specifies how much  
temperature rise can be allowed. As an example, in  
Figure 14 the load current is derated to ~12A at ~80°C with  
temperature. Theno-airflowθ  
valueshavesomevariation  
JA  
from9.5°C/Wto11°C/Wdependingonthe115°Cto120°C  
holding junction temperature. All other airflow thermal  
resistance values are more accurate. Room temperature  
power loss can be derived from the efficiency curves in  
the Typical Performance Characteristics section and ad  
-
justed with the above ambient temperature multiplicative  
factors. The printed circuit board is a 1.6mm thick four  
layer board withtwo ounce copper for the two outer layers  
and one ounce copper for the two inner layers. The PCB  
dimensions are 95mm × 76mm. The BGA heat sinks are  
listed in Table 3.  
4628fe  
22  
For more information www.linear.com/LTM4628  
LTM4628  
APPLICATIONS INFORMATION  
8
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
16  
14  
12  
10  
8
24V TO 1V  
12V TO 1V  
5V TO 1V  
24V TO 3.3V POWER LOSS  
12V TO 3.3V POWER LOSS  
5V TO 3.3V POWER LOSS  
0 LFM  
200 LFM  
400 LFM  
6
4
2
0
0
2
4
6
8
10 12 14 16  
0
2
4
6
8
10 12 14 16  
0
20  
40  
60  
80  
100  
120  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
AMBIENT TEMPERATURE (°C)  
4628 F12  
4628 F11  
4628 F13  
Figure 11. 1V Power Loss  
Figure 12. 3.3V Power Loss  
Figure 13. 5V to 1V Derating  
Curves, No Heat Sink  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
16  
14  
12  
10  
8
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
6
6
6
4
4
4
2
2
2
0
0
0
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4628 F16  
4628 F15  
4628 F14  
Figure 16. 5V to 1V Derating  
Curves, with BGA Heat Sink  
Figure 15. 24V to 1V Derating  
Curves, No Heat Sink  
Figure 14. 12V to 1V Derating  
Curves, No Heat Sink  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
16  
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
14  
12  
10  
8
6
6
6
4
4
4
2
2
2
0
0
0
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 19. 5V to 3.3V Derating4628 F19  
Curves, No Heat Sink  
4628 F18  
4628 F17  
Figure 18. 24V to 1V Derating  
Curves with BGA Heat Sink  
Figure 17. 12V to 1V Derating  
with BGA Heat Sink  
4628fe  
23  
For more information www.linear.com/LTM4628  
LTM4628  
APPLICATIONS INFORMATION  
16  
16  
14  
12  
10  
8
16  
0 LFM  
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
200 LFM  
14  
14  
400 LFM  
12  
12  
10  
10  
8
8
6
6
6
4
4
4
2
2
2
0
0
0
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 20. 12V to 3.3V Deratin4g628 F20  
Curves, No Heat Sink  
4628 F21  
Figure 21. 24V to 3.3V Derating  
Curves, No Heat Sink  
Figure 22. 5V to 3.3V Derating4628 F22  
Curves with Heat Sink  
16  
14  
12  
10  
8
16  
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
14  
400 LFM  
12  
10  
8
6
6
4
4
2
2
0
0
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 23. 12V to 3.3V Deratin4g628 F23  
Curves, with Heat Sink  
Figure 24. 24V to 3.3V Deratin4g628 F24  
Curves with Heat Sink  
4628fe  
24  
For more information www.linear.com/LTM4628  
LTM4628  
APPLICATIONS INFORMATION  
ꢁable 2. 1.0V Output  
DERAING CURVE  
Figures 13, 14, 15  
Figures 13, 14, 15  
Figures 13, 14, 15  
Figures 16, 17, 18  
Figures 16, 17, 18  
Figures 16, 17, 18  
V
(V)  
POWER LOSS CURVE  
Figure 11  
AIR FLOW (LFM)  
HEASINK  
None  
θ
(°C/W)  
IN  
JA  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
0
9.5 to 11  
6.4  
Figure 11  
200  
400  
0
None  
Figure 11  
None  
5.6  
Figure 11  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
9.0 to 10.5  
6.5  
Figure 11  
200  
400  
Figure 11  
4.8  
ꢁable 3. 3.3V Output  
DERAING CURVE  
Figures 19, 20, 21  
Figures 19, 20, 21  
Figures 19, 20, 21  
Figures 22, 23, 24  
Figures 22, 23, 24  
Figures 22, 23, 24  
V
(V)  
POWER LOSS CURVE  
Figure 12  
AIR FLOW (LFM)  
HEASINK  
None  
θ
(°C/W)  
IN  
JA  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
0
9.5 to 11  
6.75  
Figure 12  
200  
400  
0
None  
Figure 12  
None  
6.4  
Figure 12  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
9.0 to 10.5  
6.3  
Figure 12  
200  
400  
Figure 12  
4.8  
HEASINK MANUFACꢁURER  
PARꢁ NUMBER  
WEBSIꢁE  
www.aavid.com  
Aavid Thermalloy  
375424B00034G  
4628fe  
25  
For more information www.linear.com/LTM4628  
LTM4628  
APPLICATIONS INFORMATION  
ꢁable 4 Output Voltage Response vs Component Matrix (Refer to Figure 28) 0A to 4A Load Step ꢁypical Measured Values  
C
AND C  
C
AND C  
C
IN  
PARꢁ  
NUMBER  
OUꢁ1  
OUꢁ2  
OUꢁ1  
OUꢁ2  
CERAMIC VENDORS  
VALUE  
PARꢁ NUMBER  
BULK VENDORS  
VALUE  
PARꢁ NUMBER (BULK)  
VENDORS  
AVX  
10µF 35V 1812DD106KAT  
Sanyo POSCAP 470µF 2R5 2R5TPD470M5 47µF 35V 35SVPD47M Sanyo Oscon  
Murata  
TDK  
22µF 16V GRM43ER61C226KE01 Sanyo POSCAP 470µF 6.3V  
100µF 6.3V C4532X5R0J107MZ  
6TPD470M  
Murata  
AVX  
100µF 6.3V GRM32ER60J107M  
100µF 6.3V 18126D107MAT  
P-P  
LOAD  
V
C
C
C
C
C
V
DROOP Deviation RECOVERY SꢁEP  
R
FB  
Freq.  
(kHz)  
OUꢁ  
IN  
IN  
OUꢁ1  
OUꢁ2  
FF  
IN  
(V)  
(CERAMIC)  
22µF × 3  
22µF × 3  
22µF × 3  
22µF × 3  
22µF × 3  
22µF × 3  
22µF × 3  
22µF × 3  
22µF × 3  
22µF × 3  
22µF × 3  
22µF × 3  
22µF × 3  
(BULK)*  
47µF  
47µF  
47µF  
47µF  
47µF  
47µF  
47µF  
47µF  
47µF  
47µF  
47µF  
47µF  
47µF  
(CERAMIC)  
(BULK)  
(pF)  
(V)  
(mV)  
(mV)  
120  
100  
120  
110  
120  
120  
120  
130  
140  
140  
160  
200  
200  
ꢁIME (µs) (A/µs)  
(kΩ)  
90.9  
90.9  
60.4  
60.4  
40.2  
40.2  
30.1  
30.1  
19.1  
19.1  
13.3  
13.3  
8.25  
1
100µF  
470µF  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
12  
60  
30  
20  
30  
20  
30  
20  
30  
20  
30  
30  
30  
30  
30  
4
4
4
4
4
4
4
4
4
4
4
4
4
400  
400  
500  
500  
500  
500  
500  
500  
500  
500  
700  
700  
750  
1
100µF × 4  
100µF  
47  
50  
1.2  
1.2  
1.5  
1.5  
1.8  
1.8  
2.5  
2.5  
3.3  
3.3  
5
470µF  
470µF  
470µF  
60  
100µF × 4  
100µF  
47  
55  
60  
100µF × 4  
100µF  
47  
66  
60  
100µF × 4  
100µF × 4  
100µF  
47  
47  
65  
70  
470µF  
470µF  
70  
100µF  
80  
100µF  
47  
47  
100  
125  
100µF  
220µF  
* Bulk capacitance is optional if V has very low input impedance.  
IN  
4628fe  
26  
For more information www.linear.com/LTM4628  
LTM4628  
APPLICATIONS INFORMATION  
Figures 25 and 26 show thermal images of the LTM4628  
in LGA package with or without BGA heat sink and no air  
flow or 200LFM air flow.  
These images equate to a paralleled 3.3V output at 16A  
design operating at 92% efficiency from 12V input.  
Figure 25a.12VIN to 3.3VOUꢁ, 16A, No Heat Sink, No Air Flow  
Figure 25  
Figure 25b.12VIN to 3.3VOUꢁ, 16A, No Heat Sink, 200LFM  
Figure 26a. 12VIN to 3.3VOUꢁ,16A, with Heat Sink, No Air Flow  
Figure 26  
Figure 26b. 12VIN to 3.3VOUꢁ,16A, with Heat Sink, 200LFM  
4628fe  
27  
For more information www.linear.com/LTM4628  
LTM4628  
APPLICATIONS INFORMATION  
Safety Considerations  
• Place a dedicated power ground layer underneath the  
unit.  
The LTM4628 modules do not provide galvanic isolation  
from V to V . There is no internal fuse. If required,  
• To minimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
IN  
OUT  
a slow blow fuse with a rating twice the maximum input  
current needs to be provided to protect each unit from  
catastrophic failure. The device does support thermal  
shutdown and over current protection. A temperature  
diode is provided for monitoring internal temperature.  
• Do not put via directly on the pad, unless they are  
capped or plated over.  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to GND underneath the unit.  
Layout Checklist/Example  
The high integration of LTM4628 makes the PCB board  
layout very simple and easy. However, to optimize its  
electrical and thermal performance, some layout consid-  
erations are still necessary.  
• For parallel modules, tie the V , V , and COMP pins  
OUT FB  
together. Use an internal layer to closely connect these  
pins together. The TRACK pin can be tied a common  
capacitor for regulator soft-start.  
• Use large PCB copper areas for high current paths,  
including V , GND, V  
and V . It helps to mini-  
• Bring out test points on the signal pins for monitoring.  
IN  
OUT1  
OUT2  
mize the PCB conduction loss and thermal stress.  
Figure 27 gives a good example of the recommended  
layout. LGA and BGA PCB layouts are identical with the  
exceptionofcirclepadsforBGA(seePackageDescription).  
• Place high frequency ceramic input and output capaci-  
tors next to the V , PGND and V  
pins to minimize  
IN  
OUT  
high frequency noise.  
C
C
IN1  
IN2  
V
IN  
M
L
K
J
GND  
GND  
H
G
F
SGND  
C
C
OUT2  
OUT1  
E
D
C
B
A
1
2
3
4
5
6
7
8
9
10  
11  
12  
V
GND  
V
OUT2  
OUT1  
4628 F27  
CNTRL  
CNTRL  
Figure 27. Recommended PCB Layout (LGA Shown, for BGA Use Circle Pads)  
4628fe  
28  
For more information www.linear.com/LTM4628  
LTM4628  
TYPICAL APPLICATIONS  
INTV  
CC  
C10  
4.7µF  
R2  
10k  
PGOOD1  
MODE_PLLIN CLKOUT INTV  
EXTV  
PGOOD1  
CC  
CC  
7V TO 16V  
1.5V AT 8A  
V
IN  
V
INTERMEDIATE  
OUT1  
C
C
22µF  
25V  
C
22µF  
25V  
C
22µF  
25V  
C
OUT1  
IN1  
IN2  
IN3  
OUT2  
BUS  
R1  
10k  
R6  
120k  
TEMP  
V
100µF  
6.3V  
OUTS1  
470µF  
6.3V  
RUN1  
SW1  
RUN2  
V
V
FB1  
FB2  
TRACK1  
D1  
TRACK1  
LTM4628  
R6  
R8  
C
FF  
TRACK2  
COMP1  
COMP2  
5.1V ZENER  
40.2k  
60.4k  
TRACK2  
100pF  
1.2V  
C5  
0.1µF  
f
SET  
C9  
0.1µF  
PHASMD  
V
OUTS2  
1.2V AT 8A  
V
OUT2  
SW2  
R4  
100k  
INTV  
C4  
C7  
470µF  
6.3V  
CC  
100µF  
10k  
PGOOD2  
6.3V  
PGOOD2  
DIFFN DIFFOUT  
SGND  
GND  
DIFFP  
4628 F28  
Figure 28. 7VIN to 16VIN, 1.5V and 1.2V Outputs  
INTV  
CC  
C10  
4.7µF  
R2  
5k  
PGOOD1  
7V TO 16V  
INTERMEDIATE BUS  
MODE_PLLIN CLKOUT INTV  
EXTV  
PGOOD1  
CC  
CC  
V
V
OUT1  
IN  
C3  
C11  
22µF  
25V  
C2  
22µF  
25V  
C1  
22µF  
25V  
C6  
100µF  
6.3V  
C8  
470µF  
6.3V  
+
+
R1  
R6  
TEMP  
V
OUTS1  
SW1  
22µF  
10k  
25V  
120k  
RUN1  
RUN2  
V
V
FB1  
FB2  
R5  
TRACK1  
TRACK1  
TRACK2  
D1  
LTM4628  
40.2k  
COMP1  
COMP2  
5.1V ZENER  
C9  
0.1µF  
f
SET  
PHASMD  
V
OUTS2  
1.5V  
AT 16A  
V
OUT2  
SW2  
C4  
100µF  
6.3V  
C7  
470µF  
6.3V  
R4  
100k  
PGOOD2  
DIFFN DIFFOUT  
PGOOD1  
SGND  
GND  
DIFFP  
4628 F29  
Figure 29. wo Phases, 1.5V at 16A Design  
4628fe  
29  
For more information www.linear.com/LTM4628  
LTM4628  
TYPICAL APPLICATIONS  
INTV  
CC  
C10  
4.7µF  
R2  
10k  
PGOOD1  
MODE_PLLIN CLKOUT INTV  
EXTV  
PGOOD1  
CC  
CC  
5V TO 16V  
INTERMEDIATE BUS  
1.2V AT 8A  
V
IN  
V
OUT1  
C3  
22µF  
25V  
C2  
22µF  
25V  
C1  
22µF  
25V  
+
R1  
10k  
C6  
100µF  
6.3V  
C8  
470µF  
6.3V  
R6  
120k  
TEMP  
V
OUTS1  
SW1  
RUN1  
RUN2  
V
V
FB1  
FB2  
TRACK1  
TRACK2  
D1  
LTM4628  
R5  
60.4k  
R8  
90.9k  
COMP1  
COMP2  
5.1V ZENER  
C5  
0.1µF  
R7  
90.9k  
R9  
60.4k  
f
SET  
PHASMD  
V
OUTS2  
1V AT 8A  
V
OUT2  
SW2  
1.2V  
INTV  
+
CC  
C4  
100µF  
6.3V  
C7  
470µF  
6.3V  
R4  
100k  
10k  
PGOOD2  
PGOOD2  
DIFFN DIFFOUT  
SGND  
GND  
DIFFP  
4628 F30  
Figure 30. 1.2V and 1V Output racking  
4628fe  
30  
For more information www.linear.com/LTM4628  
LTM4628  
TYPICAL APPLICATIONS  
INTV  
CC  
C10  
4.7µF  
R2  
5k  
CLK1  
PGOOD1  
7V TO 16V  
INTERMEDIATE BUS  
MODE_PLLIN CLKOUT INTV  
EXTV  
PGOOD1  
CC  
CC  
V
V
OUT1  
IN  
C3  
22µF  
25V  
C2  
22µF  
25V  
C1  
22µF  
25V  
C6  
100µF  
6.3V  
C8  
470µF  
6.3V  
+
R1  
10k  
R6  
10k  
TEMP  
V
OUTS1  
SW1  
RUN1  
RUN  
V
V
FB1  
RUN2  
FB  
V
R5  
FB2  
TRACK1  
TRACK1  
TRACK2  
D1  
LTM4628  
60.4k  
COMP1  
COMP2  
5.1V ZENER  
f
COMP  
SET  
PHASMD  
V
OUTS2  
V
OUT2  
SW2  
C4  
100µF  
6.3V  
C7  
470µF  
6.3V  
+
R4  
100k  
PGOOD2  
DIFFN DIFFOUT  
PGOOD1  
SGND  
GND  
DIFFP  
1.2V  
AT 32A  
C16  
4.7µF  
CLK1  
PGOOD1  
MODE_PLLIN CLKOUT INTV  
EXTV  
PGOOD1  
CC  
CC  
7V TO 16V INTERMEDIATE BUS  
V
V
OUT1  
IN  
C12  
22µF  
25V  
C15  
22µF  
25V  
C5  
22µF  
25V  
C13  
100µF  
6.3V  
C14  
470µF  
6.3V  
+
+
R9  
TEMP  
V
OUTS1  
SW1  
10k  
RUN1  
RUN1  
RUN2  
V
V
V
FB  
FB1  
FB2  
TRACK1  
TRACK1  
TRACK2  
LTM4628  
COMP1  
COMP2  
COMP  
C19  
0.22µF  
f
SET  
PHASMD  
V
OUTS2  
V
OUT2  
SW2  
C17  
100µF  
6.3V  
C18  
470µF  
6.3V  
R10  
100k  
PGOOD2  
PGOOD1  
SGND  
GND  
DIFFP  
DIFFN DIFFOUT  
4628 F31  
INTVCC  
Figure 31. 4-Phase, 1.2V at 32A  
4628fe  
31  
For more information www.linear.com/LTM4628  
LTM4628  
PACKAGE DESCRIPTION  
ꢁable 5. LꢁM4628 Component Pinout  
PIN ID FUNCꢁION PIN ID FUNCꢁION  
PIN ID FUNCꢁION  
PIN ID  
B1  
FUNCꢁION  
VOUT1  
VOUT1  
VOUT1  
VOUT1  
VOUT1  
GND  
PIN ID  
E1  
FUNCꢁION  
GND  
PIN ID  
F1  
FUNCꢁION  
GND  
A1  
A2  
VOUT1  
VOUT1  
VOUT1  
VOUT1  
VOUT1  
GND  
C1  
C2  
VOUT1  
VOUT1  
VOUT1  
VOUT1  
VOUT1S  
D1  
D2  
GND  
GND  
B2  
E2  
GND  
F2  
GND  
A3  
B3  
C3  
D3  
GND  
E3  
GND  
F3  
GND  
A4  
B4  
C4  
D4  
GND  
E4  
GND  
F4  
MODE_PLLIN  
RUN1  
A5  
B5  
C5  
D5  
VFB1  
SGND  
VFB2  
TRACK2  
GND  
E5  
TRACK1  
COMP1  
COMP2  
DIFFP  
DIFFN  
GND  
F5  
A6  
B6  
C6  
f
D6  
E6  
F6  
SGND  
SET  
A7  
GND  
B7  
GND  
C7  
SGND  
VOUT2S  
VOUT2  
VOUT2  
VOUT2  
VOUT2  
D7  
E7  
F7  
SGND  
A8  
VOUT2  
VOUT2  
VOUT2  
VOUT2  
VOUT2  
B8  
VOUT2  
VOUT2  
VOUT2  
VOUT2  
VOUT2  
C8  
D8  
E8  
F8  
DIFFOUT  
RUN2  
A9  
B9  
C9  
D9  
E9  
F9  
A10  
A11  
A12  
B10  
B11  
B12  
C10  
C11  
C12  
D10  
D11  
D12  
GND  
E10  
E11  
E12  
F10  
F11  
F12  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
PIN ID FUNCꢁION  
PIN ID  
H1  
FUNCꢁION  
GND  
PIN ID  
J1  
FUNCꢁION PIN ID FUNCꢁION  
PIN ID  
L1  
FUNCꢁION  
GND  
VIN  
PIN ID  
M1  
FUNCꢁION  
GND  
VIN  
G1  
G2  
GND  
SW1  
GND  
VIN  
K1  
K2  
GND  
VIN  
H2  
GND  
J2  
L2  
M2  
G3  
GND  
H3  
GND  
J3  
VIN  
K3  
VIN  
L3  
VIN  
M3  
VIN  
G4  
PHASMD  
CLKOUT  
SGND  
SGND  
PGOOD2  
PGOOD1  
GND  
H4  
GND  
J4  
VIN  
K4  
VIN  
L4  
VIN  
M4  
VIN  
G5  
H5  
GND  
J5  
GND  
TEMP  
EXTVCC  
GND  
VIN  
K5  
GND  
GND  
GND  
GND  
VIN  
L5  
VIN  
M5  
VIN  
G6  
H6  
GND  
J6  
K6  
L6  
VIN  
M6  
VIN  
G7  
H7  
GND  
J7  
K7  
L7  
VIN  
M7  
VIN  
G8  
H8  
INTVCC  
GND  
J8  
K8  
L8  
VIN  
M8  
VIN  
G9  
H9  
J9  
K9  
L9  
VIN  
M9  
VIN  
G10  
G11  
G12  
H10  
H11  
H12  
GND  
J10  
J11  
J12  
VIN  
K10  
K11  
K12  
VIN  
L10  
L11  
L12  
VIN  
M10  
M11  
M12  
VIN  
SW2  
GND  
VIN  
VIN  
VIN  
VIN  
GND  
GND  
GND  
GND  
GND  
GND  
PACKAGE PHOTOS  
4.32mm  
4.92mm  
15mm  
15mm  
15mm  
15mm  
LGA  
BGA  
4628fe  
32  
For more information www.linear.com/LTM4628  
LTM4628  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
Z
b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
4628fe  
33  
For more information www.linear.com/LTM4628  
LTM4628  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
Z
/ / b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
a a a  
Z
4628fe  
34  
For more information www.linear.com/LTM4628  
LTM4628  
REVISION HISTORY  
REV  
DAE  
DESCRIPꢁION  
PAGE NUMBER  
A
06/11 Updated Typical Application Efficiency graph  
Updated Pin Configuration  
1
2
Updated Electrical Characteristics  
Updated Pin Functions section  
3, 4  
7, 8  
Updated Decoupling Requirements table  
Updated Figure 3  
9
13  
Various text updated in Applications Information section  
Updated Figures 29 and 31  
11 to 22  
30, 32  
B
C
7/11  
8/12  
Changed Typical value of R  
, R  
to 60.4kΩ  
3
9
FBHI1 FBHI2  
Updated Decoupling Requirements table  
Updated Pin Configuration to add the BGA package.  
Added V – V formula.  
2
19  
2
D1  
D2  
D
E
11/12 Updated the Pin Configuration section.  
02/14 Add SnPb BGA package option  
1, 2  
4628fe  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
35  
LTM4628  
TYPICAL APPLICATION  
5V  
C10  
4.7µF  
R2  
10k  
PGOOD1  
24V  
MODE_PLLIN CLKOUT INTV  
EXTV  
PGOOD1  
CC  
CC  
5V AT 8A  
V
V
OUT1  
IN  
C8  
10µF  
35V  
C3  
10µF  
35V  
C2  
10µF  
35V  
C1  
10µF  
35V  
R1  
10k  
R6  
240k  
C
C
OUT2  
TEMP  
OUT1  
V
OUTS1  
SW1  
100µF  
6.3V  
470µF  
RUN1  
6.3V  
RUN2  
V
V
FB1  
FB2  
TRACK1  
TRACK2  
D1  
TRACK1  
LTM4628  
R6  
R8  
COMP1  
COMP2  
5.1V ZENER  
8.25k  
13.3k  
TRACK2  
C5  
0.1µF  
INTV  
f
CC  
SET  
C9  
0.1µF  
PHASMD  
V
OUTS2  
3.3V AT 8A  
C4  
100µF  
6.3V  
V
OUT2  
SW2  
C7  
470µF  
6.3V  
3.3V  
10k  
PGOOD2  
PGOOD2  
DIFFN DIFFOUT  
SGND  
GND  
DIFFP  
4628 F32  
Figure 32. 24VIN, 5V and 3.3V Outputs  
RELATED PARTS  
PARꢁ NUMBER  
LTM4619  
DESCRIPꢁION  
Dual 26V , 4A DC/DC µModule Regulator  
COMMENꢁS  
4.5V ≤ V ≤ 26.5V; 0.8V ≤ V ≤ 5V  
OUT  
IN  
IN  
LTM4615  
Triple Low V , 4A DC/DC µModule Regulator  
2.375 ≤ V ≤ 5.5V; Two 4A and One 1.5A Output  
IN  
IN  
LTM4616  
Dual 8A, Low V , DC/DC µModule Regulator  
2.7V ≤ V ≤ 5.5V; 0.6V ≤ V  
≤ 5V  
OUT  
IN  
IN  
LTM4614  
Dual 4A, Low V , DC/DC µModule Regulator  
2.375V ≤ V ≤ 5.5V; 0.8V ≤ V  
≤ 5V  
OUT  
IN  
IN  
LTM4627  
15A DC/DC µModule Regulator  
4.5V ≤ V ≤ 20V; 0.6V ≤ V  
≤ 5V  
OUT  
IN  
4628fe  
LT 0214 REV E • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
36  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTM4628  
LINEAR TECHNOLOGY CORPORATION 2010  

相关型号:

LTM4628IV#PBF

LTM4628 - Dual 8A or Single 16A DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 144; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4628IVPBF

Dual 8A or Single 16A DC/DC μModule Regulator
LINEAR_DIMENS

LTM4630

25A DC/DC Step-Down μModule Regulator
Linear

LTM4630-1

25A DC/DC Step-Down μModule Regulator
Linear

LTM4630-1A

Dual, Multiphase Current Mode Synchronous Controller for Sub-Milliohm DCR Sensing
Linear

LTM4630-1B

Dual, Multiphase Current Mode Synchronous Controller for Sub-Milliohm DCR Sensing
Linear

LTM4630A

25A DC/DC Step-Down μModule Regulator
Linear

LTM4630EY#PBF

LTM4630 - Dual 18A or Single 36A DC/DC &#181;Module (Power Module) Regulator; Package: BGA; Pins: 144; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4630_15

Dual 18A or Single 36A DC/DC Module Regulator
Linear

LTM4631

25A DC/DC Step-Down μModule Regulator
Linear

LTM4632

Ultrathin, Triple Output, Step-Down μModule Regulator for DDR-QDR4 Memory
Linear

LTM4632EV#PBF

LTM4632 - Ultrathin, Triple Output, Step-Down &#181;Module Regulator for DDR-QDR4 Memory; Package: LGA; Pins: 25; Temperature Range: -40&deg;C to 85&deg;C
Linear