LTM8026 [Linear]

36VIN, 5A, 2-Quadrant CVCC Step-Down; 36VIN ,5A , 2象限CVCC降压
LTM8026
型号: LTM8026
厂家: Linear    Linear
描述:

36VIN, 5A, 2-Quadrant CVCC Step-Down
36VIN ,5A , 2象限CVCC降压

文件: 总28页 (文件大小:351K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM8052  
36V , 5A, 2-Quadrant  
IN  
CVCC Step-Down  
µModule Regulator  
FeaTures  
DescripTion  
TheLTM®8052isa36V ,5A,2-quadrantconstant-voltage,  
n
Cꢆmpꢇlnl SnlpꢃDꢆwꢄ Swinch Mꢆal Pꢆwld SQppꢇy  
IN  
C5CC: Cꢆꢄsnuꢄnꢃ5ꢆꢇnugl CꢆꢄsnuꢄnꢃCQddlꢄn  
constant-current (CVCC) step-down μModule® regulator.  
Includedinthepackagearetheswitchingcontroller,power  
switches, inductor and support components. Operating  
over an input voltage range of 6V to 36V, the LTM8052  
supports an output voltage range of 1.2V to 24V. The  
LTM8052 is able to sink or source current to maintain  
voltage regulation up to the positive and negative current  
limits. This output current limit can be set by a control  
voltage, a single resistor or a thermistor.  
n
n
ꢁꢃ-Quaduꢄn: SꢆQdcls uꢄa Siꢄks OQnpQn CQddlꢄn  
n
AajQsnubꢇl OQnpQn CQddlꢄn  
Wial IꢄpQn 5ꢆꢇnugl Ruꢄgl: 65 nꢆ 365  
12ꢁ5 nꢆ ꢁ45 OQnpQn 5ꢆꢇnugl  
Forced Continuous Operation  
n
n
n
n
Selectable Switching Frequency: 100kHz to 1MHz  
n
(e4) RoHS Compliant Package with Gold Pad Finish  
n
Programmable Soft-Start  
n
Tiny, Low Profile (11.25mm × 15mm × 2.82mm)  
The LTM8052 is packaged in a thermally-enhanced, com-  
pact (11.25mm × 15mm × 2.82mm) RoHS compliant,  
overmolded land grid array (LGA) package suitable for au-  
tomated assemblybystandard surface mount equipment.  
Surface Mount LGA Package  
applicaTions  
n
PART NUMBER  
LTM8052  
BEST FOR  
Constant-Frequency Voltage Regulation Even at  
Sinking and Sourcing Output Current  
No Load  
n
LTM8026  
Sourcing more than 3A of output current.  
(Less than 3A maximum consider LTM8025.)  
Peltier Driver  
Battery Tester  
Battery/Supercap Charging and Cell Balancing  
Motor Drive Power Regulator  
High Power LED Drive  
n
n
L, LT, LTC, LTM, Linear Technology, the Linear logo and µModule are registered trademarks of  
Linear Technology Corporation. All other trademarks are the property of their respective owners.  
Protected by U.S. Patents including 7199560, 7321203 and others pending.  
n
n
Typical applicaTion  
±±Aꢀ ꢁ2±5 ꢂꢁꢃ-Quaduꢄnt ꢅMꢆaQꢇl 5ꢆꢇnugl RlgQꢇunꢆd  
OQnpQn 5ꢆꢇnugl vs OQnpQn CQddlꢄn  
3.5  
V
2.5V  
5A  
LTM8052  
OUT  
V
*
IN  
3.0  
2.5  
V
V
IN  
OUT  
6V TO 36V  
510k  
10µF  
RUN  
SS  
V
REF  
100µF  
2.0  
1.5  
1.0  
0.5  
0
SYNC  
CTL_I  
OPTIONAL  
INPUT  
+
COMP  
RT  
CTL_T  
330µF  
PROTECTION  
GND ADJ  
90.9k  
9.09k  
8052 TA01a  
*INPUT VOLTAGE PROTECTION MAY BE NECESSARY WHEN THE  
LTM8052 IS SINKING CURRENT (SEE APPLICATIONS INFORMATION)  
–5  
0
10  
–10  
5
LOAD CURRENT (A)  
8052 TA01b  
8052fa  
1
LTM8052  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
ꢂNꢆnl 1t  
TOP VIEW  
V ............................................................................40V  
IN  
ADJ, RT, COMP, CTL_I, CTL_T, V ...........................3V  
REF  
V
OUT  
..........................................................................25V  
8
RUN, SYNC, SS...........................................................6V  
Current Into RUN Pin ............................................100µA  
Internal Operating Temperature Range .. –40°C to 125°C  
Solder Temperature...............................................250°C  
Storage Temperature.............................. –55°C to 125°C  
7
SYNC  
RUN  
BANK 2 GND  
6
5
4
BANK 1  
3
V
OUT  
BANK 3  
2
1
V
IN  
J
K
L
A
B
C
D
E
F
G
H
LGA PACKAGE  
81-LEAD (15mm × 11.25mm × 2.82mm)  
= 125°C, θ = 18.6°C/W, θ = 5.4°C/W, θ = 5.6°C/W, θ  
T
= 10.8°C/W  
JMAX  
JA  
JC(bottom)  
JB  
JC(top)  
PCB WEIGHT = 1.4 GRAMS, θ VALUES DERIVED FROM A 4-LAYER 7.62cm × 7.62cm  
orDer inForMaTion  
LEAD FREE FINISH  
LTM8052EV#PBF  
LTM8052IV#PBF  
TRAY  
PART MARKING*  
LTM8052V  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
LTM8052EV#PBF  
LTM8052IV#PBF  
81-Lead (15mm × 11.25mm × 2.82mm) LGA  
81-Lead (15mm × 11.25mm × 2.82mm) LGA  
LTM8052V  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
Refer to Note 3  
elecTrical characTerisTics Thl l alꢄꢆnls nhl splcificuniꢆꢄs which uppꢇy ꢆvld nhl fQꢇꢇ iꢄnldꢄuꢇ  
ꢆplduniꢄg nlmpldunQdl duꢄglꢀ ꢆnhldwisl splcificuniꢆꢄs udl un TA = ꢁ±°C2 RUN = 35ꢀ Qꢄꢇlss ꢆnhldwisl ꢄꢆnla2 ꢂNꢆnl 3t  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
Minimum Input Voltage  
Output DC Voltage  
6
V
I
I
= 1A, R  
= 1A, R  
Open  
= 499Ω  
1.2  
24  
V
V
OUT  
OUT  
ADJ  
ADJ  
Output DC Current  
CTL_T, CTL_I = 1.5V  
–6  
5
A
Quiescent Current Into V  
V
IN  
V
IN  
= 12V, RUN = 0V  
= 12V, No Load  
0.1  
17  
3
30  
µA  
mA  
IN  
Line Regulation  
Load Regulation  
6V < V < 36V, I  
= 1A  
< 5A  
0.1  
0.7  
10  
%
%
IN  
OUT  
OUT  
V
V
= 12V, 0A < I  
IN  
IN  
Output RMS Voltage Ripple  
Switching Frequency  
= 12V, I  
= 4.5A  
mV  
OUT  
R = 40.2k  
1000  
100  
kHz  
kHz  
T
R = 453k  
T
l
Voltage at ADJ Pin  
Current Out of ADJ Pin  
RUN Pin Current  
1.16  
1.19  
100  
5.5  
1.22  
V
µA  
ADJ = 0V, V  
= 1V  
OUT  
RUN = 1.45V  
µA  
8052fa  
2
LTM8052  
elecTrical characTerisTics Thl l alꢄꢆnls nhl splcificuniꢆꢄs which uppꢇy ꢆvld nhl fQꢇꢇ iꢄnldꢄuꢇ  
ꢆplduniꢄg nlmpldunQdl duꢄglꢀ ꢆnhldwisl splcificuniꢆꢄs udl un TA = ꢁ±°C2 RUN = 35ꢀ Qꢄꢇlss ꢆnhldwisl ꢄꢆnla2 ꢂNꢆnl 3t  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.55  
160  
MAX  
UNITS  
V
RUN Threshold Voltage (Falling)  
RUN Input Hysteresis  
CTL_I Control Range  
CTL_I Pin Current  
1.49  
1.61  
mV  
V
0
1.5  
1.5  
µA  
CTL_I Positive Current Limit  
CTL_I = 1.5V  
CTL_I = 0.75V  
5.1  
2.24  
5.6  
2.8  
6.1  
3.36  
A
A
CTL_I Negative Current Limit  
CTL_I = 1.5V  
CTL_I = 0.75V  
–8.5  
–5.7  
–7.7  
–5.1  
–6.9  
–4.5  
A
A
CTL_T Control Range  
CTL_T Pin Current  
0
1.5  
1.5  
V
µA  
CTL_T Positive Current Limit  
CTL_T = 1.5V  
CTL_T = 0.75V  
5.1  
2.24  
5.6  
2.8  
6.1  
3.36  
A
A
CTL_T Negative Current Limit  
CTL_T = 1.5V  
CTL_T = 0.75V  
–8.5  
–5.5  
–7.7  
–4.9  
–6.9  
–4.3  
A
A
V
Voltage  
0.5mA Load  
1.93  
2
2.04  
0.6  
1
V
µA  
V
REF  
SS Pin Current  
11  
SYNC Input Low Threshold  
SYNC Input High Threshold  
SYNC Bias Current  
f
f
= 400kHz  
= 400kHz  
SYNC  
1.2  
V
SYNC  
SYNC = 0V  
µA  
Nꢆnl 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Nꢆnl ꢁ: This µModule regulator includes overtemperature protection that  
is intended to protect the device during momentary overload conditions.  
Internal temperature will exceed 125°C when overtemperature protection  
is active. Continuous operation above the specified maximum internal  
operating junction temperature may impair device reliability.  
Nꢆnl 3: The LTM8052E is guaranteed to meet performance specifications  
from 0°C to 125°C internal operating temperature. Specifications over the  
full –40°C to 125°C internal operating temperature range are assured by  
design, characterization and correlation with statistical process controls.  
The LTM8052I is guaranteed to meet specifications over the full –40°C  
to 125°C internal operating temperature range. Note that the maximum  
internal temperature is determined by specific operating conditions in  
conjunction with board layout, the rated package thermal resistance and  
other environmental factors.  
Typical perForMance characTerisTics TA = ꢁ±°Cꢀ Qꢄꢇlss ꢆnhldwisl ꢄꢆnla2  
12ꢁ5OUT Efficilꢄcy  
12±5OUT Efficilꢄcy  
1285OUT Efficilꢄcy  
90  
85  
80  
75  
90  
85  
80  
75  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
70  
65  
70  
65  
60  
55  
50  
60  
55  
50  
6V  
6V  
6V  
IN  
IN  
IN  
12V  
24V  
36V  
12V  
24V  
36V  
12V  
24V  
36V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
1
2
4
0
1
2
4
0
1
2
4
0
5
5
5
3
3
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8052 G01  
8052 G02  
8052 G03  
8052fa  
3
LTM8052  
Typical perForMance characTerisTics TA = ꢁ±°Cꢀ Qꢄꢇlss ꢆnhldwisl ꢄꢆnla2  
ꢁ2±5OUT Efficilꢄcy  
3235OUT Efficilꢄcy  
±5OUT Efficilꢄcy  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
6V  
8V  
IN  
6V  
IN  
IN  
12V  
24V  
36V  
12V  
24V  
36V  
12V  
24V  
36V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0
1
2
4
0
1
2
4
5
5
3
3
0
1
2
4
5
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8052 G05  
8052 G06  
8052 G04  
85OUT Efficilꢄcy  
1ꢁ5OUT Efficilꢄcy  
185OUT Efficilꢄcy  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
10V  
IN  
IN  
IN  
IN  
15V  
24V  
36V  
22V  
24V  
36V  
12V  
24V  
36V  
IN  
IN  
IN  
IN  
IN  
IN  
0
1
2
4
0
1
2
4
0
1
2
4
5
5
5
3
3
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8052 G07  
8052 G08  
8052 G09  
ꢁ45OUT Efficilꢄcy  
–3235OUT Efficilꢄcy  
–±5OUT Efficilꢄcy  
90  
85  
80  
75  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
70  
65  
60  
55  
50  
60  
55  
50  
12V  
12V  
24V  
31V  
IN  
IN  
IN  
IN  
IN  
IN  
24V  
28V  
36V  
IN  
IN  
32.5V  
0
1
2
4
5
3
0
1
2
0
1
2
4
4
5
3
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8052 G11  
8052 G10  
8052 G12  
8052fa  
4
LTM8052  
Typical perForMance characTerisTics TA = ꢁ±°Cꢀ Qꢄꢇlss ꢆnhldwisl ꢄꢆnla2  
IꢄpQn CQddlꢄn vs OQnpQn CQddlꢄn  
12ꢁ5OUT  
–85OUT Efficilꢄcy  
–1ꢁ5OUT Efficilꢄcy  
1.0  
90  
85  
80  
75  
90  
85  
80  
75  
0.8  
0.6  
0.4  
0.2  
70  
65  
70  
65  
0
–0.2  
–0.4  
60  
55  
50  
60  
55  
50  
12V  
24V  
28V  
12V  
24V  
36V  
IN  
IN  
IN  
IN  
IN  
IN  
12V  
24V  
IN  
IN  
–0.6  
0
1
2
4
0
1
2
4
–8 –6  
–4  
–2  
0
2
4
6
5
5
3
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8052 G13  
8052 G14  
8052 G15  
IꢄpQn CQddlꢄn vs OQnpQn CQddlꢄn  
12±5OUT  
IꢄpQn CQddlꢄn vs OQnpQn CQddlꢄn  
1285OUT  
IꢄpQn CQddlꢄn vs OQnpQn CQddlꢄn  
ꢁ2±5OUT  
1.2  
1.0  
2.0  
1.5  
1.0  
0.8  
0.6  
0.8  
1.0  
0.5  
0.6  
0.4  
0.2  
0.4  
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–0.5  
–1.0  
–0.2  
–0.4  
12V  
24V  
36V  
12V  
24V  
36V  
12V  
24V  
36V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
–1.5  
–0.6  
0
4
6
–8 –6  
–4  
–2  
2
–6  
–4  
0
2
4
6
–8  
–4  
–2  
0
2
6
–8  
–2  
–6  
4
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8052 G18  
8052 G16  
8052 G17  
IꢄpQn CQddlꢄn vs OQnpQn CQddlꢄn  
3235OUT  
IꢄpQn CQddlꢄn vs OQnpQn CQddlꢄn  
±5OUT  
IꢄpQn CQddlꢄn vs OQnpQn CQddlꢄn  
85OUT  
5
4
3
2
1
0
2
1
3
2
1
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–1  
12V  
24V  
36V  
12V  
24V  
36V  
12V  
24V  
36V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
–2  
–8  
–6  
–4  
–2  
0
2
4
6
0
4
6
0
6
–8 –6  
–4  
–2  
2
–8 –6  
–4  
–2  
2
4
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8052 G19  
8052 G20  
8052 G21  
8052fa  
5
LTM8052  
Typical perForMance characTerisTics TA = ꢁ±°Cꢀ Qꢄꢇlss ꢆnhldwisl ꢄꢆnla2  
IꢄpQn CQddlꢄn vs OQnpQn CQddlꢄn  
1ꢁ5OUT  
IꢄpQn CQddlꢄn vs OQnpQn CQddlꢄn  
185OUT  
IꢄpQn CQddlꢄn vs OQnpQn CQddlꢄn  
ꢁ45OUT  
4
3
4
3
5
4
3
2
2
2
1
36V  
IN  
1
1
0
0
0
–1  
–2  
–3  
–4  
–1  
–2  
–3  
–1  
–2  
–3  
24V  
36V  
24V  
36V  
IN  
IN  
IN  
IN  
–4  
2
6
–6  
–4  
–2  
0
4
–5  
–2  
0
1
2
3
4
5
–4 –3  
–1  
–6  
–4  
–2  
0
6
2
4
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8052 G22  
8052 G24  
8052 G23  
IꢄpQn CQddlꢄn vs IꢄpQn 5ꢆꢇnugl  
ꢂOQnpQn Shꢆdnlat  
IꢄpQn CQddlꢄn vs OQnpQn CQddlꢄn  
–3235OUT  
IꢄpQn CQddlꢄn vs OQnpQn CQddlꢄn  
–±5OUT  
2
1
700  
600  
500  
1.5  
1.0  
0.5  
400  
300  
200  
100  
0
0
0
–0.5  
–1.0  
–1.5  
–1  
–2  
24V  
12V  
IN  
IN  
24V  
IN  
IN  
12V  
10  
20  
40  
–6  
–4  
0
2
4
0
30  
–2  
–6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
OUTPUT CURRENT (A)  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (A)  
8052 G25  
8052 G27  
8052 G26  
IꢄpQn CQddlꢄn vs OQnpQn CQddlꢄn  
–85OUT  
IꢄpQn CQddlꢄn vs OQnpQn CQddlꢄn  
–1ꢁ5OUT  
MiꢄimQm RlqQidla IꢄpQn RQꢄꢄiꢄg  
5ꢆꢇnugl vs Nlgunivl OQnpQn 5ꢆꢇnugl  
3
2
25  
20  
15  
10  
2.0  
1.5  
I
I
I
I
= 4A  
= 3A  
= 2A  
= 1A  
OUT  
OUT  
OUT  
OUT  
1.0  
0.5  
1
0
24V  
IN  
0
–0.5  
–1.0  
–1.5  
–2.0  
–1  
–2  
–3  
5
0
24V  
12V  
IN  
IN  
–2.5  
–6  
–4  
–2  
0
2
4
0
–5  
–10  
–15  
–6  
2
4
–4  
–2  
0
OUTPUT CURRENT (A)  
OUTPUT VOLTAGE (V)  
OUTPUT CURRENT (A)  
8052 G28  
8052 G30  
8052 G29  
8052fa  
6
LTM8052  
Typical perForMance characTerisTics TA = ꢁ±°Cꢀ Qꢄꢇlss ꢆnhldwisl ꢄꢆnla2  
MiꢄimQm RlqQidla IꢄpQn RQꢄꢄiꢄg  
5ꢆꢇnugl vs OQnpQn 5ꢆꢇnuglꢀ  
IOUT = ±A  
MiꢄimQm RlqQidla IꢄpQn 5ꢆꢇnugl  
vs Lꢆua 3235OUT uꢄa Blꢇꢆw  
MiꢄimQm RlqQidla IꢄpQn 5ꢆꢇnugl  
vs Lꢆua ±5OUT  
30  
25  
20  
15  
10  
5
6.4  
6.2  
6.0  
5.8  
5.6  
7.2  
7.0  
6.8  
6.6  
6.4  
0
0
10  
15  
20  
25  
30  
5
0
1
3
4
2
5
0
1
2
3
4
5
OUTPUT VOLTAGE (V)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
8052 G33  
8052 G32  
8052 G31  
MiꢄimQm RlqQidla IꢄpQn 5ꢆꢇnugl  
vs Lꢆua 85OUT  
MiꢄimQm RlqQidla IꢄpQn 5ꢆꢇnugl  
vs Lꢆua 1ꢁ5OUT  
MiꢄimQm RlqQidla IꢄpQn 5ꢆꢇnugl  
vs Lꢆua 185OUT  
10.0  
9.8  
9.6  
9.4  
9.2  
9.0  
14.4  
14.2  
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
14.0  
13.8  
13.6  
13.4  
13.2  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
8052 G34  
8052 G35  
8052 G36  
MiꢄimQm RlqQidla IꢄpQn 5ꢆꢇnugl  
vs Lꢆua ꢁ45OUT  
MiꢄimQm RlqQidla IꢄpQn 5ꢆꢇnugl  
vs Lꢆua –3235OUT  
MiꢄimQm RlqQidla IꢄpQn 5ꢆꢇnugl  
vs Lꢆua –±5OUT  
28.0  
27.5  
27.0  
26.5  
26.0  
25.5  
35  
30  
35  
30  
TO START  
TO RUN  
TO START  
TO RUN  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
0
1
2
3
4
5
1
2
3
5
0
4
1
2
3
5
0
4
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
8052 G3  
8052 G38  
8052 G39  
8052fa  
7
LTM8052  
Typical perForMance characTerisTics TA = ꢁ±°Cꢀ Qꢄꢇlss ꢆnhldwisl ꢄꢆnla2  
MiꢄimQm RlqQidla IꢄpQn 5ꢆꢇnugl  
vs Lꢆua –85OUT  
MiꢄimQm RlqQidla IꢄpQn 5ꢆꢇnugl  
vs Lꢆua –1ꢁ5OUT  
TlmpldunQdl Risl vs Lꢆua CQddlꢄn  
ꢁ2±5OUT  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
36V  
24V  
12V  
TO START  
TO RUN  
IN  
IN  
IN  
TO START  
TO RUN  
6V  
IN  
0
0
1
2
3
5
1
2
3
4
0
4
0
1
2
3
5
0
4
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
8052 G40  
8052 G4  
8052 G42  
TlmpldunQdl Risl vs Lꢆua CQddlꢄn  
3235OUT  
TlmpldunQdl Risl vs Lꢆua CQddlꢄn  
±5OUT  
TlmpldunQdl Risl vs Lꢆua CQddlꢄn  
85OUT  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
70  
60  
50  
40  
30  
20  
10  
0
36V  
IN  
36V  
IN  
36V  
IN  
24V  
IN  
24V  
IN  
24V  
IN  
12V  
IN  
12V  
IN  
12V  
IN  
6V  
IN  
7V  
IN  
0
1
2
3
5
0
4
1
2
3
5
0
4
0
4
5
1
2
3
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
8052 G43  
8052 G44  
8052 G45  
TlmpldunQdl Risl vs Lꢆua CQddlꢄn  
1ꢁ5OUT  
TlmpldunQdl Risl vs Lꢆua CQddlꢄn  
185OUT  
TlmpldunQdl Risl vs Lꢆua CQddlꢄn  
ꢁ45OUT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
36V  
IN  
28V  
IN  
36V  
IN  
36V  
IN  
24V  
IN  
24V  
15V  
IN  
IN  
1
2
3
5
1
2
3
5
1
3
0
4
0
4
0
2
4
5
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
8052 G46  
8052 G47  
8052 G48  
8052fa  
8
LTM8052  
Typical perForMance characTerisTics TA = ꢁ±°Cꢀ Qꢄꢇlss ꢆnhldwisl ꢄꢆnla2  
TlmpldunQdl Risl vs Lꢆua CQddlꢄn  
–3235OUT  
TlmpldunQdl Risl vs Lꢆua CQddlꢄn  
–±5OUT  
TlmpldunQdl Risl vs Lꢆua CQddlꢄn  
–85OUT  
90  
80  
70  
60  
50  
40  
30  
20  
10  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
28V  
IN  
31V  
IN  
32.5V  
IN  
24V  
IN  
24V  
IN  
24V  
IN  
12V  
IN  
12V  
IN  
12V  
IN  
40  
30  
20  
10  
0
0
1
2
3
5
0
1
2
4
5
0
4
3
0
4
5
1
2
3
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
8052 G49  
8052 G50  
8052 G51  
TlmpldunQdl Risl vs Lꢆua CQddlꢄn  
–1ꢁ5OUT  
Swinchiꢄg FdlqQlꢄcy vs RT 5uꢇQl  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
120  
100  
80  
60  
40  
20  
0
24V  
12V  
IN  
IN  
0
1
2
3
4
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
LOAD CURRENT (A)  
SWITCHING FREQUENCY (MHz)  
8052 G52  
8052 G53  
CTL_I 5ꢆꢇnugl vs MuximQm  
OQnpQn CQddlꢄnꢀ CTL_T = ꢁ5  
CTL_T 5ꢆꢇnugl vs MuximQm  
OQnpQn CQddlꢄnꢀ CTL_I = ꢁ5  
6
4
6
4
2
2
0
0
–2  
–4  
–6  
–8  
–2  
–4  
–6  
–8  
1
1.5  
0
0.25  
0.5  
0.75  
1.25  
1
1.5  
0
0.25  
0.5  
0.75  
1.25  
CTL_I VOLTAGE (V)  
CTL_T VOLTAGE (V)  
8052 G54  
8052 G55  
8052fa  
9
LTM8052  
pin FuncTions  
COMP ꢂPiꢄ H8t: Compensation Pin. This pin is generally  
not used. The LTM8052 is internally compensated, but  
some rare situations may arise that require a modifica-  
tion to the control loop. This pin connects directly to the  
input PWM comparator of the LTM8052. In most cases,  
no adjustment is necessary. If this function is not used,  
leave this pin open.  
5
ꢂBuꢄk 1t: Power Output Pins. Apply the output filter  
OUT  
capacitor and the output load between these pins and  
GND pins. When reverse current is being driven into the  
LTM8052’soutputbytheload,theenergyisdeliveredback  
throughtheLTM8052andouttotheV pins.Caremustbe  
IN  
taken to prevent excessive voltage if other devices on the  
V bus cannot absorb this energy. See Input Precautions  
IN  
in the Applications Information section for more details  
SS ꢂPiꢄ J8t: Soft-Start Pin. Place an external capacitor to  
ground to ramp the output voltage during start-up condi-  
tions. The soft-start pin has an 11µA charging current.  
and circuit suggestions.  
GND ꢂBuꢄk ꢁt: Tie these GND pins to a local ground plane  
below the LTM8052 and the circuit components. In most  
applications, the bulk of the heat flow out of the LTM8052  
is through these pads, so the printed circuit design has a  
large impact on the thermal performance of the part. See  
the PCB Layout and Thermal Considerations sections for  
ADJPiK8t:TheLTM8052regulatesitsADJpinto1.19V.  
Connect the adjust resistor from this pin to ground. The  
value of R  
is given by the equation:  
ADJ  
11.9  
VOUT 1.19  
RADJ  
=
moredetails.Returnthefeedbackdivider(R )tothisnet.  
ADJ  
5 ꢂBuꢄk3t:TheV pinssupplycurrenttotheLTM8052’s  
IN  
IN  
where R  
is in kΩ.  
ADJ  
internal regulator and to the internal power switches. This  
pin must be locally bypassed with an external, low ESR  
capacitor; see Table 1 for recommended values.  
RUNPiL6t:TheRUNpinactsasanenablepinandturns  
on the internal circuitry. It may also be used to implement  
a precision UVLO. See the Applications Information sec-  
tion for details. The RUN pin is internally clamped, so it  
may be pulled up to a voltage source that is higher than  
the absolute maximum voltage of 6V through a resistor,  
provided the pin current does not exceed 100µA. Do not  
leave this pin open.  
CTL_TPiD8t:Connectaresistor/NTCthermistornetwork  
to the CTL_T pin to reduce the maximum regulated output  
current of the LTM8052 in response to temperature. The  
maximum control voltage is 1.5V. If this function is not  
used, tie this pin to V  
.
REF  
CTL_I ꢂPiꢄ E8t: The CTL_I pin reduces the maximum  
regulated output current of the LTM8052. The maximum  
control voltage is 1.5V. If this function is not used, tie  
SYNC ꢂPiꢄ L7t: Frequency Synchronization Pin. This pin  
allows the switching frequency to be synchronized to an  
external clock. The R resistor should be chosen to oper-  
T
this pin to V  
.
REF  
ate the internal clock at 20% lower than the SYNC pulse  
frequency. This pin should be grounded when not in use.  
Do not leave this pin floating. When laying out the board,  
avoid noise coupling to or from the SYNC trace. See the  
Synchronization section in Applications Information.  
5
ꢂPiꢄ F8t: Buffered 2V Reference Capable of 0.5mA  
REF  
Drive. It is valid when V > 6V and RUN is active high.  
IN  
RT ꢂPiꢄ G8t: The RT pin is used to program the switching  
frequency of the LTM8052 by connecting a resistor from  
thispintoground.TheApplicationsInformationsectionof  
the data sheet includes a table to determine the resistance  
valuebasedonthedesiredswitchingfrequency. Whenus-  
ing the SYNC function, apply a resistor value equivalent to  
20% lower than the clock frequency applied to the SYNC  
pin. Do not leave this pin open.  
8052fa  
10  
LTM8052  
block DiagraM  
2.2µH  
R
SENSE  
V
V
OUT  
IN  
0.2µF  
2.2µF  
10k  
RUN  
SS  
SYNC  
CURRENT  
MODE  
CONTROLLER  
V
REF  
INTERNAL  
REGULATOR  
V
IN  
CTL_I  
CTL_T  
COMP  
10k  
2.2nF  
GND  
RT  
ADJ  
8026 BD  
operaTion  
TheLTM8052isastandalonenonisolatedconstant-voltage,  
constant-current step-down switching DC/DC power sup-  
ply that can deliver up to 5A of positive or 6A of negative  
outputcurrent.ThisµModuleregulatorprovidesaprecisely  
regulated output voltage programmable via one external  
resistor from 1.2V to 24V. The input voltage range is 6V  
to 36V. Given that the LTM8052 is a step-down converter,  
make sure that the input voltage is high enough to support  
the desired output voltage and load current.  
the LTM8052 will sink current to keep the output voltage  
in regulation.  
It should be clear that the above situation is only possible  
if the load is providing energy to the LTM8052 output.  
The LTM8052 will be able to maintain the output voltage  
at the target regulation point as long as the current from  
the load does not exceed its negative current limit. If  
the current does exceed the negative current limit, the  
LTM8052 output will start to rise. If the output continues  
to rise, the LTM8052’s output overvoltage protection  
circuitry will turn off the internal power switches, and  
the output will be free to rise. If this voltage rises above  
the LTM8052 input voltage, current will flow through an  
internal diode, and the output will be clamped to a diode  
drop above the input.  
The LTM8052 is a 2-quadrant device, meaning that it  
can both source and sink current in order to regulate its  
outputvoltage. Mosttraditionalvoltageregulatorsareone  
quadrant; that is, they only source current. If the load, for  
whateverreason,forcescurrentintoatraditionalregulator,  
the output voltage will typically rise. In a similar situation,  
8052fa  
11  
LTM8052  
operaTion  
When the LTM8052 is sinking current, it maintains its  
output voltage regulation by power conversion, not power  
dissipation. This means that the energy provided to the  
LTM8052 is in turn delivered to its input power bus. There  
must be something on this power bus to accept or use  
the energy, or the LTM8052’s input voltage will rise. Left  
unchecked, the energy can raise the input voltage above  
theabsolutemaximumvoltageanddamagetheLTM8052.  
PleaseseetheInputPrecautionssectionforfurtherdetails.  
Forapplicationswhereonlysourcingcurrent(onequadrant  
operation) is desired, use LTM8026.  
The output current loop has two control inputs, deter-  
mined by the voltage at the analog control pins, CTL_I  
and CTL_T. CTL_I is typically used to set the maximum  
allowable current output of the LTM8052, while CTL_T  
is typically used with a NTC thermistor to reduce the  
output current in response to temperature. The lower of  
the two analog voltages on CTL_I and CTL_T determines  
the regulated output current. The analog control range  
of both the CTL_I and CTL_T pin is from 0V to 1.5V. As  
shownintheTypicalPerformanceCharacteristicssection,  
the positive and negative currents are not symmetric. The  
negative current limit is offset by approximately 2A.  
The LTM8052 operates in forced continuous mode. This  
means that the part will not skip cycles when the load  
approaches zero amps. This may be particularly useful in  
applications where the synchronization function is used,  
or any time discontinuous switching is undesirable. The  
LTM8052 will not operate in forced continuous mode  
when an input UVLO, output OVLO or minimum duty cycle  
violation occurs.  
The RUN pin functions as a precision shutdown pin. When  
the voltage at the RUN pin is lower than 1.55V, switch-  
ing is terminated. Below the turn-on threshold, the RUN  
pin sinks 5.5µA. This current can be used with a resistor  
between RUN and V to set a hysteresis. During start-  
IN  
up, the SS pin is held low until the part is enabled, after  
which the capacitor at the soft-start pin is charged with  
an 11µA current source.  
As shown in the Block Diagram, the LTM8052 contains a  
current mode controller, power switches, power inductor,  
and a modest amount of input and output capacitance.  
The LTM8052 is equipped with a thermal shutdown to  
protectthedeviceduringmomentaryoverloadconditions.  
It is set above the 125°C absolute maximum internal tem-  
perature rating to avoid interfering with normal specified  
operation, so internal device temperatures will exceed  
the absolute maximum rating when the overtemperature  
protection is active. So, continuous or repeated activation  
of the thermal shutdown may impair device reliability.  
During thermal shutdown, all switching is terminated and  
the SS pin is driven low.  
The LTM8052 utilizes fixed frequency, average current  
mode control to accurately regulate the inductor current,  
independent from the output voltage. This is an ideal solu-  
tion for applications requiring a regulated current source.  
The control loop will regulate the current in the internal  
inductor. Once the output has reached the regulation  
voltage determined by the resistor from the ADJ pin to  
ground, the inductor current will be reduced by the volt-  
age regulation loop.  
The switching frequency is determined by a resistor at  
the RT pin. The LTM8052 may also be synchronized to an  
external clock through the use of the SYNC pin.  
8052fa  
12  
LTM8052  
applicaTions inForMaTion  
For most applications, the design process is straight  
forward, summarized as follows:  
Whilethesecomponentcombinationshavebeentestedfor  
proper operation, it is incumbent upon the user to verify  
properoperation overthe intended system’sline, loadand  
environmentalconditions. Bearinmindthatthemaximum  
output current is limited by junction temperature, the  
relationship between the input and output voltage mag-  
nitude and polarity and other factors. Please refer to the  
1. Look at Table 1 and find the row that has the desired  
input range and output voltage.  
2. Apply the recommended C , C , R  
and R  
T
IN  
OUT  
ADJ  
values.  
Tubꢇl 12 Rlcꢆmmlꢄala Cꢆmpꢆꢄlꢄn 5uꢇQls uꢄa CꢆꢄfigQduniꢆꢄ2  
ꢂTA = ꢁ±°C2 Sll Typicuꢇ Pldfꢆdmuꢄcl Chuducnldisnics fꢆd Lꢆua Cꢆꢄainiꢆꢄst  
5
IN  
5
C
C
CERAMIC ELECTROLYTIC  
C
R
f
R
f
R
TꢂMINt  
OUT  
IN  
OUT  
OUT  
ADJ  
OPTIMAL  
TꢂOPTIMALt  
MAX  
6V to 36V 1.2 10µF, 50V, 1210 100µF, 6.3V, 1210 470µF, 6.3V, 9mΩ, Chemi-Con,  
APXF6R3ARA471MH80G  
6V to 36V 1.5 10µF, 50V, 1210 100µF, 6.3V, 1210 470µF, 6.3V, 9mΩ, Chemi-Con,  
APXF6R3ARA471MH80G  
6V to 36V 1.8 10µF, 50V, 1210 100µF, 6.3V, 1210 470µF, 6.3V, 9mΩ, Chemi-Con,  
APXF6R3ARA471MH80G  
Open 200kHz  
38.3k 300kHz  
19.6k 350kHz  
210k  
250kHz 169k  
350kHz 118k  
400kHz 102k  
140k  
118k  
6V to 36V 2.5 10µF, 50V, 1210 100µF, 6.3V, 1210 330µF, 4V, 27mΩ, OS-CON, 4SVPC330M  
6V to 36V 3.3 10µF, 50V, 1210 100µF, 6.3V, 1210 330µF, 4V, 27mΩ, OS-CON, 4SVPC330M  
9.09k 450kHz  
5.62k 550kHz  
3.09k 600kHz  
90.9k  
75.0k  
68.1k  
64.9k  
61.9k  
59.0k  
57.6k  
210k  
525kHz 78.7k  
625kHz 64.9k  
700kHz 57.6k  
750kHz 53.6k  
800kHz 49.9k  
900kHz 44.2k  
7V to 36V  
10V to 36V  
5
8
10µF, 50V, 1210 100µF, 6.3V, 1210 120µF, 16V, 27mΩ, OS-CON, 16SVPC120M  
10µF, 50V, 1210 100µF, 10V, 1210 120µF, 16V, 27mΩ, OS-CON, 16SVPC120M 1.74k 625kHz  
15V to 36V 12 10µF, 50V, 1210 47µF, 16V, 1210 120µF, 16V, 27mΩ, OS-CON, 16SVPC120M 1.10k 650kHz  
22V to 36V 18 10µF, 50V, 1210 22µF, 25V, 1210 47µF, 20V, 45mΩ, OS-CON, 20SVPS47M  
28V to 36V 24 4.7µF, 50V, 1210 10µF, 50V, 1206 47µF, 35V, 30mΩ, OS-CON, 35SVPC47M  
9V to 15V 1.2 10µF, 50V, 1210 100µF, 6.3V, 1210 470µF, 6.3V, 9mΩ, Chemi-Con,  
APXF6R3ARA471MH80G  
9V to 15V 1.5 10µF, 50V, 1210 100µF, 6.3V, 1210 470µF, 6.3V, 9mΩ, Chemi-Con,  
APXF6R3ARA471MH80G  
604 675kHz  
523 700kHz  
Open 200kHz  
1MHz  
39.2k  
525kHz 78.7k  
650kHz 61.9k  
800kHz 49.9k  
38.3k 300kHz  
19.6k 350kHz  
140k  
118k  
9V to 15V 1.8 10µF, 50V, 1210 100µF, 6.3V, 1210 470µF, 6.3V, 9mΩ, Chemi-Con,  
APXF6R3ARA471MH80G  
9V to 15V 2.5 10µF, 50V, 1210 100µF, 6.3V, 1210 330µF, 4V, 27mΩ, OS-CON, 4SVPC330M  
9V to 15V 3.3 10µF, 50V, 1210 100µF, 6.3V, 1210 330µF, 4V, 27mΩ, OS-CON, 4SVPC330M  
9.09k 450kHz  
5.62k 550kHz  
90.9k  
75.0k  
68.1k  
64.9k  
210k  
1MHz  
1MHz  
1MHz  
1MHz  
250kHz 169k  
350kHz 118k  
400kHz 102k  
39.2k  
39.2k  
39.2k  
39.2k  
9V to 15V  
10V to 15V  
5
8
10µF, 50V, 1210 100µF, 6.3V, 1210 120µF, 16V, 27mΩ, OS-CON, 16SVPC120M 3.09k 600kHz  
10µF, 50V, 1210 100µF, 10V, 1210 120µF, 16V, 27mΩ, OS-CON, 16SVPC120M 1.74k 625kHz  
18V to 36V 1.2 10µF, 50V, 1210 100µF, 6.3V, 1210 470µF, 6.3V, 9mΩ, Chemi-Con,  
APXF6R3ARA471MH80G  
18V to 36V 1.5 10µF, 50V, 1210 100µF, 6.3V, 1210 470µF, 6.3V, 9mΩ, Chemi-Con,  
APXF6R3ARA471MH80G  
18V to 36V 1.8 10µF, 50V, 1210 100µF, 6.3V, 1210 470µF, 6.3V, 9mΩ, Chemi-Con,  
APXF6R3ARA471MH80G  
Open 200kHz  
38.3k 300kHz  
19.6k 350kHz  
140k  
118k  
18V to 36V 2.5 10µF, 50V, 1210 100µF, 6.3V, 1210 330µF, 4V, 27mΩ, OS-CON, 4SVPC330M  
18V to 36V 3.3 10µF, 50V, 1210 100µF, 6.3V, 1210 330µF, 4V, 27mΩ, OS-CON, 4SVPC330M  
9.09k 450kHz  
5.62k 550kHz  
90.9k  
75.0k  
68.1k  
64.9k  
61.9k  
75.0k  
525kHz 78.7k  
625kHz 64.9k  
700kHz 57.6k  
750kHz 53.6k  
800kHz 49.9k  
625kHz 64.9k  
18V to 36V  
18V to 36V  
5
8
10µF, 50V, 1210 100µF, 6.3V, 1210 120µF, 16V, 27mΩ, OS-CON, 16SVPC120M 3.09k 600kHz  
10µF, 50V, 1210 100µF, 10V, 1210 120µF, 16V, 27mΩ, OS-CON, 16SVPC120M 1.74k 625kHz  
18V to 36V 12 10µF, 50V, 1210 47µF, 16V, 1210 120µF, 16V, 27mΩ, OS-CON, 16SVPC120M 1.10k 650kHz  
2.7V to  
32.5V*  
–3.3 10µF, 50V, 1210 100µF, 6.3V, 1210 330µF, 4V, 27mΩ, OS-CON, 4SVPC330M  
5.62k 550kHz  
2V to 31V* –5 10µF, 50V, 1210 100µF, 6.3V, 1210 120µF, 16V, 27mΩ, OS-CON, 16SVPC120M 3.09k 600kHz  
2V to 28V* –8 10µF, 50V, 1210 100µF, 10V, 1210 120µF, 16V, 27mΩ, OS-CON, 16SVPC120M 1.74k 625kHz  
3V to 24V* –12 10µF, 50V, 1210 47µF, 16V, 1210 120µF, 16V, 27mΩ, OS-CON, 16SVPC120M 1.10k 650kHz  
68.1k  
64.9k  
61.9k  
700kHz 57.6k  
750kHz 53.6k  
800kHz 49.9k  
*Running voltage. See the Typical Performance Characteristics section for starting requirements.  
Note: An input bulk capacitor is required.  
8052fa  
13  
LTM8052  
applicaTions inForMaTion  
graphs in the Typical Performance Characteristics section  
for guidance.  
input voltage can ring to twice its nominal value, possi-  
bly exceeding the device’s rating. This situation is easily  
avoided; see the Hot Plugging Safely section.  
The maximum frequency (and attendant R value) at  
T
which the LTM8052 should be allowed to switch is given  
Pdꢆgdummiꢄg Swinchiꢄg FdlqQlꢄcy  
in Table 1 in the f  
column, while the recommended  
MAX  
The LTM8052 has an operational switching frequency  
range between 100kHz and 1MHz. This frequency is  
programmed with an external resistor from the RT pin to  
ground.Donotleavethispinopenunderanycircumstance.  
See Table 2 for resistor values and the corresponding  
switching frequencies.  
frequency (and R value) for optimal efficiency over the  
T
given input condition is given in the f  
column.  
OPTIMAL  
There are additional conditions that must be satisfied if  
the synchronization function is used. Please refer to the  
Synchronization section for details.  
Cupucinꢆd Slꢇlcniꢆꢄ Cꢆꢄsialduniꢆꢄs  
Tubꢇl ꢁ2 RT Rlsisnꢆd 5uꢇQls uꢄa Thlid RlsQꢇnuꢄn Swinchiꢄg  
FdlqQlꢄcils  
The C and C  
capacitor values in Table 1 are the  
IN  
OUT  
SWITCHING FRE-UENCY ꢂMHzt  
R ꢂkΩt  
T
minimum recommended values for the associated oper-  
ating conditions. Applying capacitor values below those  
indicated in Table 1 is not recommended, and may result  
in undesirable operation. Using larger values is generally  
acceptable, and can yield improved dynamic response, if  
necessary. Again, it is incumbent upon the user to verify  
properoperationover theintended system’s line, load and  
environmental conditions.  
1
39.2  
53.6  
82.5  
140  
210  
453  
0.75  
0.5  
0.3  
0.2  
0.1  
In addition, the Typical Performance Characteristics sec-  
tion contains a graph that shows the switching frequency  
Ceramiccapacitorsaresmall,robustandhaveverylowESR.  
However, not all ceramic capacitors are suitable. X5R and  
X7Rtypesarestableovertemperature,appliedvoltageand  
give dependable service. Other types, including Y5V and  
Z5U have very large temperature and voltage coefficients  
ofcapacitance.Inanapplicationcircuittheymayhaveonly  
a small fraction of their nominal capacitance resulting in  
much higher output voltage ripple than expected.  
versus R value.  
T
Swinchiꢄg FdlqQlꢄcy TdualꢃOffs  
It is recommended that the user apply the optimal R  
T
value given in Table 1 for the input and output operating  
condition. System level or other considerations, however,  
may necessitate another operating frequency. While the  
LTM8052isflexibleenoughtoaccommodateawiderange  
of operating frequencies, a haphazardly chosen one may  
result in undesirable operation under certain operating or  
fault conditions. A frequency that is too high can reduce  
efficiency, generate excessive heat or even damage the  
LTM8052 in some fault conditions. A frequency that is too  
low can result in a final design that has too much output  
ripple or too large of an output capacitor.  
Many of the output capacitances given in Table 1 specify  
an electrolytic capacitor. Ceramic capacitors may also be  
used in the application, but it may be necessary to use  
more of them. Many high value ceramic capacitors have a  
large voltage coefficient, so the actual capacitance of the  
component at the desired operating voltage may be only  
a fraction of the specified value. Also, the very low ESR of  
ceramic capacitors may necessitate additional capacitors  
for acceptable stability margin.  
Swinchiꢄg FdlqQlꢄcy Syꢄchdꢆꢄizuniꢆꢄ  
The nominal switching frequency of the LTM8052 is  
determined by the resistor from the RT pin to GND and  
may be set from 100kHz to 1MHz. The internal oscillator  
may also be synchronized to an external clock through  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LTM8052. A  
ceramic input capacitor combined with trace or cable  
inductance forms a high Q (under damped) tank circuit.  
If the LTM8052 circuit is plugged into a live supply, the  
the SYNC pin. The external clock applied to the SYNC pin  
8052fa  
14  
LTM8052  
applicaTions inForMaTion  
must have a logic low below 0.6V, a logic high greater  
than 1.2V and frequency between 100kHz and 1MHz. The  
input frequency must be 20% higher than the frequency  
determined by the resistor at the RT pin. Input signals  
outside of these specified parameters may cause erratic  
switching behavior and subharmonic oscillations. The  
SYNC pin must be tied to GND if synchronization to an  
external clock is not required. When SYNC is grounded,  
the switching frequency is determined by the resistor at  
the RT pin.  
current limit can be set as shown in Figure 1 with the  
following equation:  
7.467 R2  
R1+R2  
IMAX  
=
Amps Positive Current  
(
)
7.467 R2  
R1+R2  
IMAX = −  
+ 2.1 Amps Negative Current  
(
)
Lꢆua CQddlꢄn Dlduniꢄg Usiꢄg nhl CTL_T Piꢄ  
Inhighcurrentapplications,deratingthemaximumcurrent  
basedonoperatingtemperaturemaypreventdamagetothe  
load.Inaddition,manyapplicationshavethermallimitations  
that will require the regulated current to be reduced based  
on the load and/or board temperature. To achieve this,  
the LTM8052 uses the CTL_T pin to reduce the effective  
regulated current in the load. While CTL_I programs the  
regulated current in the load, CTL_T can be configured to  
reduce this regulated current based on the analog voltage  
at the CTL_T pin. The load/board temperature derating is  
programmed using a resistor network with a temperature  
dependant resistance (Figure 2). When the board/load  
temperature rises, the CTL_T voltage will decrease. To  
reduce the regulated current, the CTL_T voltage must be  
Swinchiꢄg Mꢆal  
The LTM8052 operates in forced continuous mode. This  
means that the part will not skip cycles when the load  
approaches zero amps. This may be particularly useful in  
applications where the synchronization function is used,  
or any time discontinuous switching is undesirable. The  
LTM8052 will not operate in forced continuous mode  
when an input UVLO, output OVLO or minimum duty cycle  
violation occurs.  
SꢆfnꢃSnudn  
The soft-start function controls the slew rate of the power  
supply output voltage during start-up. A controlled output  
voltagerampminimizesoutputvoltageovershoot,reduces  
lower than the voltage at the CTL_I pin. V  
may be  
CTL_T  
higher than V  
, but then it will have no effect.  
CTL_I  
inrush current from the V supply, and facilitates supply  
IN  
sequencing. A capacitor connected from the SS pin to  
GND programs the slew rate. The capacitor is charged  
froman internal11µA currentsource toproduce a ramped  
output voltage.  
V
2V  
REF  
LTM8052  
CTL_I OR CTL_T  
R1  
R2  
MuximQm OQnpQn CQddlꢄn AajQsn  
8052 F01  
To adjust the regulated load current, an analog voltage  
is applied to the CTL_I pin or CTL_T pins. Varying the  
voltage between 0V and 1.5V adjusts the maximum  
current between the minimum and the maximum current,  
typically 5.6A positive and 7.7A negative. Graphs of the  
output current vs CTL_I and CTL_T voltages are given  
in the Typical Performance Characteristics section. The  
LTM8052providesa2Vreferencevoltageforconveniently  
applying resistive dividers to set the current limit. The  
FigQdl 12 Slnniꢄg nhl OQnpQn CQddlꢄn Limin  
R
R
V
V
V
REF  
R
R
R
R
R
R
X
LTM8052  
NTC  
NTC  
X
NTC  
NTC  
R1  
CTL_T  
8052 F02  
R2  
(OPTION A TO D)  
A
B
C
D
FigQdl ꢁ2 Lꢆua CQddlꢄn Dlduniꢄg vs  
TlmpldunQdl Usiꢄg NTC Rlsisnꢆd  
8052fa  
15  
LTM8052  
applicaTions inForMaTion  
5ꢆꢇnugl RlgQꢇuniꢆꢄ uꢄa OQnpQn Ovldvꢆꢇnugl Pdꢆnlcniꢆꢄ  
functionality in the specified operating range. This means  
that internal temperatures will exceed the 125°C absolute  
maximum rating when the overtemperature protection is  
active, possibly impairing the device’s reliability.  
The LTM8052 uses the ADJ pin to regulate the output  
voltage and to provide a high speed overvoltage lockout  
to avoid high voltage conditions. If the output voltage  
exceeds 125% of the regulated voltage level (1.5V at the  
ADJ pin), the LTM8052 terminates switching and shuts  
down switching for a brief time before restarting. The  
regulated output voltage must be greater than 1.19V and  
is set by the equation:  
U5LO uꢄa ShQnaꢆwꢄ  
TheLTM8052hasaninternalUVLOthatterminatesswitch-  
ing,resetsalllogic,anddischargesthesoft-startcapacitor  
whentheinputvoltageisbelow6V. TheLTM8052alsohas  
a precision RUN function that enables switching when the  
voltage at the RUN pin rises to 1.68V and shuts down the  
LTM8052 when the RUN pin voltage falls to 1.55V. There  
is also an internal current source that provides 5.5μA of  
pull-downcurrenttoprogramadditionalUVLOhysteresis.  
For RUN rising, the current source is sinking 5.5µA until  
RUN = 1.68V, after which the current source turns off.  
For RUN falling, the current source is off until the RUN =  
1.55V, after which it sinks 5.5µA. The following equations  
determine the voltage divider resistors for programming  
10k  
VOUT = 1.19V 1+  
R
ADJ   
where R  
is shown in Figure 3.  
ADJ  
V
OUT  
V
OUT  
LTM8052  
ADJ  
R
ADJ  
the falling UVLO voltage and rising enable voltage (V  
as configured in Figure 4.  
)
ENA  
8052 F03  
FigQdl 32 5ꢆꢇnugl RlgQꢇuniꢆꢄ uꢄa Ovldvꢆꢇnugl Pdꢆnlcniꢆꢄ  
Fllabuck Cꢆꢄꢄlcniꢆꢄs  
1.55V R2  
R1=  
UVLO1.55V  
In situations where the output of the LTM8052 is required  
to sink current (that is, the load is driving current into the  
LTM8052 output), the μModule regulator will maintain  
voltage regulation as long as the negative current limit is  
not exceeded. If the current limit is exceeded, the output  
voltage may begin to rise. If the output voltage rises more  
than 125% of the target regulation voltage, the output  
overvoltage protection will engage, and the LTM8052 will  
stop switching. In this situation, the load will be free to  
pull up the LTM8052 output. If the voltage exceeds the  
LTM8052 input, an internal power diode will clamp the  
output to a diode drop above the input.  
V
ENA 1.084UVLO  
R2 =  
5.5µA  
The RUN pin has an absolute maximum voltage of 6V.  
To accommodate the largest range of applications, there  
is an internal Zener diode that clamps this pin, so that it  
can be pulled up to a voltage higher than 6V through a  
resistor that limits the current to less than 100µA. For  
applications where the supply range is greater than 4:1,  
size R2 greater than 375k.  
V
V
IN  
IN  
Thldmuꢇ ShQnaꢆwꢄ  
LTM8052  
RUN  
R2  
R1  
If the part is too hot, the LTM8052 engages its thermal  
shutdown, terminates switching and discharges the soft-  
startcapacitor.Whentheparthascooled,thepartautomati-  
cally restarts. This thermal shutdown is set to engage at  
temperaturesabovethe125°Cabsolutemaximuminternal  
operating rating to ensure that it does not interfere with  
8052 F04  
FigQdl 42 U5LO CꢆꢄfigQduniꢆꢄ  
8052fa  
16  
LTM8052  
applicaTions inForMaTion  
IꢄpQn PdlcuQniꢆꢄs  
As mentioned, the LTM8052 sinks current by energy  
conversion and not dissipation. Thus, no matter what  
protectioncircuitthatisused,theamountofpowerthatthe  
protection circuit must absorb depends upon the amount  
of power at the input. For example, if the output voltage is  
2.5V and can sink 5A, the input protection circuit should  
be designed to absorb at least 7.5W. In Figures 5a and 5b,  
let us say that the protection activation threshold is 30V.  
Then the circuit must be designed to be able to dissipate  
7.5W and accept 7.5W/30V = 250mA.  
When the LTM8052 is sinking current, it maintains its  
output voltage regulation by power conversion, not power  
dissipation. This means that the energy provided to the  
LTM8052 is in turn delivered to its input power bus.  
There must be something on this power bus to accept or  
use the energy, or the LTM8052’s input voltage will rise.  
Left unchecked, the energy can raise the input voltage  
above the absolute maximum voltage rating and damage  
the LTM8052.  
In many cases, the system load on the LTM8052 input  
bus will be sufficient to absorb the energy delivered by the  
μModule regulator. The power required by other devices  
will consume more than enough to make up for what the  
LTM8052 delivers. In cases where the LTM8052 is the  
largest or only power converter, this may not be true and  
some means may be need to be devised to prevent the  
LTM8052’s input from rising too high. Figure 5a shows a  
passive crowbar circuit that will dissipate energy during  
momentary input overvoltage conditions. The breakdown  
voltage of the zener diode is chosen in conjunction with  
the resistor R to set the circuit’s trip point. The trip point  
LOAD  
CURRENT  
V
V
OUT  
IN  
ZENER  
DIODE  
LTM8052  
GND  
SOURCING  
LOAD  
Q
R
8052 F05a  
FigQdl ±u2 Thl MOSFET - Dissipunls Mꢆmlꢄnudy Eꢄldgy nꢆ  
GND2 Thl Zlꢄld Diꢆal uꢄa Rlsisnꢆd Adl Chꢆslꢄ nꢆ EꢄsQdl Thun  
nhl MOSFET TQdꢄs Oꢄ Abꢆvl nhl MuximQm 5IN 5ꢆꢇnugl Uꢄald  
Nꢆdmuꢇ Oplduniꢆꢄ  
is typically set well above the maximum V voltage under  
IN  
normal operating conditions. This circuit does not have a  
precisionthreshold,andissubjecttobothpart-to-partand  
temperaturevariations,soitisnotsuitableforapplications  
where high accuracy is required or large voltage margins  
are not available.  
LOAD  
CURRENT  
V
V
V
OUT  
IN  
OPTIONAL  
HYSTERESIS  
RESISTOR  
LTM8052  
REF  
GND  
SOURCING  
LOAD  
The circuit in Figure 5b also dissipates energy during mo-  
mentary overvoltage conditions, but is more precise than  
that in Figure 5a. It uses an inexpensive comparator and  
+
Q
the V output of the LTM8052 to establish a reference  
REF  
voltage.Theoptionalhysteresisresistorinthecomparator  
circuit avoids MOSFET chatter. Figure 5c shows a circuit  
that latches on and crowbars the input in an overvoltage  
event. The SCR latches when the input voltage threshold  
is exceeded, so this circuit should be used with a fuse, as  
shown, or employ some other method to interrupt current  
from the load.  
8052 F05b  
FigQdl ±b2 Thl Cꢆmpudunꢆd iꢄ This CidcQin Acnivunls nhl -  
MOSFET un u Mꢆdl Pdlcisl 5ꢆꢇnugl Thuꢄ nhl Oꢄl Shꢆwꢄ iꢄ  
FigQdl ±u2 Thl Rlfldlꢄcl fꢆd nhl Cꢆmpudunꢆd is Dldivla fdꢆm  
nhl 5REF Piꢄ ꢆf nhl LTM80±ꢁ  
8052fa  
17  
LTM8052  
applicaTions inForMaTion  
2
Figures 5a through 5c are crowbar circuits, which attempt  
to prevent the input voltage from rising above some level  
by clamping the input to GND through a power device. In  
some cases, it is possible to simply turn off the LTM8052  
when the input voltage exceeds some threshold. This  
is possible when the voltage power source that drives  
capacitance must absorb is 1/2 LI = 27.5μJ. Suppose  
the comparator circuit in Figure 5d is set to pull the RUN  
pin down when V  
= 15V. The input voltage will rise  
TRIP  
according to the capacitor energy equation:  
1
2
C(V 2VTRIP 2) = 27.5µJ  
IN  
current into V  
never exceeds V . An example of this  
OUT  
IN  
circuit is shown in Figure 5d. When the power source on  
If the total input capacitance is 10μF, the input voltage  
will rise to:  
the output drives V above a predetermined threshold,  
IN  
the comparator pulls down on the RUN pin and stops  
switching in the LTM8052. When this happens, the input  
capacitance needs to absorb the energy stored within the  
LTM8052’s internal inductor, resulting in an additional  
voltage rise. As shown in the Block Diagram, the internal  
inductor value is 2.2uH. If the LTM8052 negative current  
limit is set to 5A, for example, the energy that the input  
1
2
27.5µJ = 10µF(V 215V2)  
IN  
V = 15.2V  
IN  
Forapplicationswhereonlysourcingcurrent(onequadrant  
operation) is desired, use LTM8026.  
LOAD  
CURRENT  
V
V
OUT  
IN  
FUSE  
ZENER  
DIODE  
LTM8052  
GND  
SCR  
SOURCING  
LOAD  
8052 F05a  
FigQdl ±c2 Thl SCR Lunchls Oꢄ Whlꢄ nhl Acnivuniꢆꢄ Thdlshꢆꢇa is  
Rluchlaꢀ Sꢆ u FQsl ꢆd Sꢆml Onhld Mlnhꢆa ꢆf Discꢆꢄꢄlcniꢄg nhl  
Lꢆua ShꢆQꢇa bl Usla  
LOAD  
CURRENT  
V
V
OUT  
IN  
LTM8052  
GND  
RUN  
SOURCING  
LOAD  
10µF  
+
EXTERNAL  
REFERENCE  
VOLTAGE  
8052 F05d  
FigQdl ±a2 This Cꢆmpudunꢆd CidcQin TQdꢄs Off nhl LTM80±ꢁ if  
nhl IꢄpQn Risls Abꢆvl u Pdlalnldmiꢄla Thdlshꢆꢇa2 Whlꢄ nhl  
LTM80±ꢁ TQdꢄs Offꢀ nhl Eꢄldgy Snꢆdla iꢄ nhl Iꢄnldꢄuꢇ IꢄaQcnꢆd  
Wiꢇꢇ Ruisl 5IN u Smuꢇꢇ AmꢆQꢄn Abꢆvl nhl Thdlshꢆꢇa2  
8052fa  
18  
LTM8052  
applicaTions inForMaTion  
Nꢆ OQnpQn CQddlꢄn Shudiꢄg  
3. Place the C  
capacitor as close as possible to the  
OUT  
V
and GND connection of the LTM8052.  
OUT  
The LTM8052 is a two quadrant device, able to both sink  
and source current to maintain voltage regulation. It is  
therefore not suitable for current sharing.  
4. Place the C and C  
capacitors such that their  
OUT  
IN  
ground currents flow directly adjacent or underneath  
the LTM8052.  
PCB LuyꢆQn  
5. Connect all of the GND connections to as large a copper  
pour or plane area as possible on the top layer. Avoid  
breaking the ground connection between the external  
components and the LTM8052.  
Most of the headaches associated with PCB layout have  
been alleviated or even eliminated by the high level of  
integration of the LTM8052. The LTM8052 is neverthe-  
less a switching power supply, and care must be taken to  
minimize EMI and ensure proper operation. Even with the  
high level of integration, you may fail to achieve specified  
operation with a haphazard or poor layout. See Figure 6  
for a suggested layout. Ensure that the grounding and  
heat sinking are acceptable.  
6. Use vias to connect the GND copper area to the board’s  
internal ground planes. Liberally distribute these GND  
vias to provide both a good ground connection and  
thermal path to the internal planes of the printed circuit  
board. Pay attention to the location and density of the  
thermal vias in Figure 6. The LTM8052 can benefit from  
theheatsinkingaffordedbyviasthatconnecttointernal  
GND planes at these locations, due to their proximity  
to internal power handling components. The optimum  
number of thermal vias depends upon the printed  
circuit board design. For example, a board might use  
very small via holes. It should employ more thermal  
vias than a board that uses larger holes.  
A few rules to keep in mind are:  
1. Place the R and R resistors as close as possible to  
ADJ  
T
their respective pins.  
2. Place the C capacitor as close as possible to the V  
IN  
IN  
and GND connection of the LTM8052.  
SYNC  
RUN  
GND  
C
OUT  
V
V
V
IN  
OUT  
GND  
V
OUT  
C
IN  
GND  
THERMAL AND INTERCONNECT VIAS  
IN  
8052 F06  
FigQdl 62 LuyꢆQn Shꢆwiꢄg SQgglsnla Exnldꢄuꢇ Cꢆmpꢆꢄlꢄnsꢀ  
GND Pꢇuꢄl uꢄa Thldmuꢇ 5ius2  
8052fa  
19  
LTM8052  
applicaTions inForMaTion  
Hꢆn PꢇQggiꢄg Suflꢇy  
For increased accuracy and fidelity to the actual applica-  
tion, many designers use finite element analysis (FEA) to  
predict thermal performance. To that end, Page 2 of the  
data sheet typically gives four thermal coefficients:  
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
bypass capacitor of LTM8052. However, these capacitors  
can cause problems if the LTM8052 is plugged into a live  
input supply (see Application Note 88 for a complete dis-  
cussion). The low loss ceramic capacitor combined with  
stray inductance in series with the power source forms an  
θ
θ
– Thermal resistance from junction to ambient  
JA  
– Thermal resistance from junction to the  
JCbottom  
bottom of the product case  
θ
– Thermal resistance from junction to top of the  
underdamped tank circuit, and the voltage at the V pin  
JCtop  
product case  
IN  
of the LTM8052 can ring to more than twice the nominal  
input voltage, possibly exceeding the LTM8052’s rating  
and damaging the part. If the input supply is poorly con-  
trolled or the user will be plugging the LTM8052 into an  
energized supply, the input network should be designed  
to prevent this overshoot. This can be accomplished by  
θ
– Thermal resistance from junction to the printed  
JB  
circuit board.  
While the meaning of each of these coefficients may seem  
to be intuitive, JEDEC has defined each to avoid confusion  
and inconsistency. These definitions are given in JESD  
51-12, and are quoted or paraphrased below:  
installing a small resistor in series to V , but the most  
IN  
popular method of controlling input voltage overshoot is  
to add an electrolytic bulk capacitor to the V net. This  
θ
JA  
is the natural convection junction-to-ambient air  
IN  
capacitor’s relatively high equivalent series resistance  
damps the circuit and eliminates the voltage overshoot.  
The extra capacitor improves low frequency ripple filter-  
ing and can slightly improve the efficiency of the circuit,  
though it is physically large.  
thermal resistance measured in a one cubic foot sealed  
enclosure. This environment is sometimes referred to as  
“still air” although natural convection causes the air to  
move. This value is determined with the part mounted to  
a JESD 51-9 defined test board, which does not reflect an  
actual application or viable operating condition.  
Thldmuꢇ Cꢆꢄsialduniꢆꢄs  
θ
is the junction-to-board thermal resistance with  
JCbottom  
The LTM8052 output current may need to be derated if it  
is required to operate in a high ambient temperature. The  
amount of current derating is dependent upon the input  
voltage, output power and ambient temperature. The  
temperature rise curves given in the Typical Performance  
Characteristicssectioncanbeusedasaguide.Thesecurves  
allofthecomponentpowerdissipationflowingthroughthe  
bottom of the package. In the typical µModule regulator,  
the bulk of the heat flows out the bottom of the package,  
but there is always heat flow out into the ambient envi-  
ronment. As a result, this thermal resistance value may  
be useful for comparing packages but the test conditions  
don’t generally match the user’s application.  
2
were generated by the LTM8052 mounted to a 58cm  
4-layer FR4 printed circuit board. Boards of other sizes  
and layer count can exhibit different thermal behavior, so  
it is incumbent upon the user to verify proper operation  
over the intended system’s line, load and environmental  
operating conditions.  
θ
JCtop  
isdeterminedwithnearlyallofthecomponentpower  
dissipation flowing through the top of the package. As the  
electrical connections of the typical µModule regulator are  
on the bottom of the package, it is rare for an application  
to operate such that most of the heat flows from the junc-  
tion to the top of the part. As in the case of θ  
, this  
JCbottom  
value may be useful for comparing packages but the test  
conditions don’t generally match the user’s application.  
8052fa  
20  
LTM8052  
applicaTions inForMaTion  
analysis, such as FEA, which considers all of the thermal  
resistances simultaneously.  
θ
is the junction-to-board thermal resistance where  
JB  
almost all of the heat flows through the bottom of the  
µModule regulator and into the board, and is really the  
sum of the θ  
A graphical representation of these thermal resistances  
is given in Figure 7.  
and the thermal resistance of the  
JCbottom  
bottom of the part through the solder joints and through a  
portion of the board. The board temperature is measured  
a specified distance from the package, using a 2-sided,  
2-layer board. This board is described in JESD 51-9.  
The blue resistances are contained within the µModule  
device, and the green are outside.  
The die temperature of the LTM8052 must be lower than  
the maximum rating of 125°C, so care should be taken in  
the layout of the circuit to ensure good heat sinking of the  
LTM8052. The bulk of the heat flow out of the LTM8052  
is through the bottom of the module and the LGA pads  
into the printed circuit board. Consequently a poor printed  
circuit board design can cause excessive heating, result-  
ing in impaired performance or reliability. Please refer to  
the PCB Layout section for printed circuit board design  
suggestions.  
Giventhesedefinitions,itshouldnowbeapparentthatnone  
of these thermal coefficients reflects an actual physical  
operating condition of a µModule regulator. Thus, none  
of them can be individually used to accurately predict the  
thermal performance of the product. Likewise, it would  
be inappropriate to attempt to use any one coefficient to  
correlate to the junction temperature vs load graphs given  
in the product’s data sheet. The only appropriate way to  
use the coefficients is when running a detailed thermal  
JUNCTION-TO-AMBIENT RESISTANCE (JESD 51-9 DEFINED BOARD)  
JUNCTION-TO-CASE (TOP)  
RESISTANCE  
CASE (TOP)-TO-AMBIENT  
RESISTANCE  
JUNCTION-TO-BOARD RESISTANCE  
JUNCTION  
AMBIENT  
JUNCTION-TO-CASE  
(BOTTOM) RESISTANCE  
CASE (BOTTOM)-TO-BOARD  
RESISTANCE  
BOARD-TO-AMBIENT  
RESISTANCE  
8052 F07  
µMODULE DEVICE  
FigQdl 72 Thldmuꢇ Rlsisnuꢄcls Amꢆꢄg ꢅMꢆaQꢇl Dlviclꢀ  
Pdiꢄnla CidcQin Bꢆuda uꢄa Eꢄvidꢆꢄmlꢄn  
8052fa  
21  
LTM8052  
Typical applicaTions  
365INꢀ 3235OUT SnlpꢃDꢆwꢄ C5CC Cꢆꢄvldnld  
V
3.3V  
5A  
LTM8052  
OUT  
V
IN  
V
V
IN  
OUT  
6V TO 36V  
510k  
10µF  
RUN  
SS  
+
V
REF  
330µF  
SYNC  
CTL_I  
OPTIONAL  
100µF  
INPUT  
COMP  
CTL_T  
PROTECTION  
RT GND ADJ  
5.62k  
75.0k  
8052 TA02  
365INꢀ LTM80±ꢁ Chudgls Twꢆ ꢁ2±5 Sldils SQpldcupucinꢆds un ±26A  
V
5V  
5A  
LTM8052  
OUT  
V
IN  
V
V
IN  
OUT  
7V TO 36V  
510k  
10µF  
RUN  
SS  
2.5V  
2.2F  
V
REF  
47µF  
SYNC  
CTL_I  
OPTIONAL  
2.5V  
2.2F  
INPUT  
COMP  
CTL_T  
PROTECTION  
RT GND ADJ  
3.09k  
68.1k  
8052 TA03  
8052fa  
22  
LTM8052  
Typical applicaTions  
365INꢀ 1ꢁ5OUT SnlpꢃDꢆwꢄ C5CC Cꢆꢄvldnld  
V
LTM8052  
OUT  
V
IN  
12V  
V
V
IN  
OUT  
16V TO 36V  
510k  
3.5A  
10µF  
RUN  
SS  
+
V
REF  
120µF  
SYNC  
CTL_I  
OPTIONAL  
47µF  
INPUT  
COMP  
CTL_T  
PROTECTION  
RT GND ADJ  
1.1k  
61.9k  
8052 TA04  
365INꢀ –±5OUT Nlgunivl C5CC Cꢆꢄvldnld  
LTM8052  
V
IN  
V
V
IN  
OUT  
7V TO 31V  
510k  
10µF  
RUN  
SS  
+
V
120µF  
REF  
SYNC  
CTL_I  
OPTIONAL  
100µF  
INPUT  
COMP  
CTL_T  
PROTECTION  
RT GND ADJ  
3.09k  
68.1k  
V
–5V  
3A  
OUT  
8052 TA05  
8052fa  
23  
LTM8052  
Typical applicaTions  
Twꢆ LTM80±ꢁs Usla nꢆ RlgQꢇunl Pꢆsinivl ꢆd Nlgunivl 5ꢆꢇnugl  
ꢂuꢄa CQddlꢄnt Acdꢆss u Plꢇnild Dlvicl  
V
IN  
V
OUT  
2V TO 8V  
V
V
OUT  
IN  
10V TO 36V  
383k  
RUN  
SS  
LTM8052  
GND  
V
REF  
CTL_I  
CTL_T  
ADJ  
SYNC  
COMP  
RT  
PELTIER  
100µF  
10µF  
+
100µF  
(OPTIONAL)  
330µF  
118k  
1.74k to  
14.7k  
FIXED  
5V  
V
V
OUT  
IN  
RUN  
SS  
LTM8052  
GND  
V
REF  
CTL_I  
CTL_T  
ADJ  
SYNC  
COMP  
RT  
100µF  
10µF  
+
120µF  
68.1k  
3.09k  
8052 TA06  
Snuck Twꢆ LTM80±ꢁs nꢆ Chudgl uꢄa Acnivlꢇy Buꢇuꢄcl SQpldcupucinꢆds ꢂꢆd Bunnldilst  
V
IN  
V
V
V
OUT  
OUT  
IN  
8.5V TO 36V  
383k  
RUN  
SS  
LTM8052  
GND  
V
REF  
CTL_I  
CTL_T  
ADJ  
SYNC  
COMP  
RT  
2.5V SUPERCAP  
10µF  
47µF  
90.9k  
9.09k  
V
V
OUT  
IN  
RUN  
SS  
LTM8052  
GND  
10µF  
V
REF  
CTL_I  
CTL_T  
ADJ  
SYNC  
COMP  
RT  
2.5V SUPERCAP  
47µF  
90.9k  
9.09k  
8052 TA07  
8052fa  
24  
LTM8052  
package DescripTion  
Pꢇlusl dlfld nꢆ hnnp://www2ꢇiꢄlud2cꢆm/alsigꢄnꢆꢆꢇs/puckugiꢄg/ fꢆd nhl mꢆsn dlclꢄn puckugl aduwiꢄgs2  
Z
/ / b b b  
Z
4 . 4 4 5  
3 . 1 7 5  
1 . 9 0 5  
0 . 6 3 5  
0 . 6 3 5  
0 . 0 0 0  
1 . 9 0 5  
3 . 1 7 5  
4 . 4 4 5  
a a a  
Z
8052fa  
25  
LTM8052  
package DescripTion  
Tubꢇl 32 Piꢄ Assigꢄmlꢄn Tubꢇl ꢂAdduꢄgla by Piꢄ NQmbldt  
PIN ID  
A1  
FUNCTION  
PIN ID  
B1  
FUNCTION PIN ID  
FUNCTION PIN ID FUNCTION  
PIN ID  
E1  
FUNCTION PIN ID  
FUNCTION  
GND  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
V
V
V
V
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
CTL_I  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
OUT  
OUT  
OUT  
OUT  
A2  
B2  
E2  
GND  
A3  
B3  
E3  
GND  
A4  
B4  
E4  
GND  
A5  
GND  
GND  
GND  
GND  
B5  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
E5  
GND  
A6  
B6  
E6  
GND  
A7  
B7  
GND  
E7  
GND  
A8  
B8  
CTL_T  
E8  
V
REF  
PIN ID  
G1  
FUNCTION  
GND  
PIN ID  
FUNCTION PIN ID  
FUNCTION PIN ID FUNCTION  
PIN ID  
L1  
FUNCTION  
J1  
J2  
J3  
V
IN  
V
IN  
V
IN  
K1  
K2  
K3  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
G2  
GND  
L2  
G3  
GND  
L3  
G4  
GND  
G5  
GND  
H5  
H6  
H7  
H8  
GND  
GND  
GND  
COMP  
J5  
J6  
J7  
J8  
GND  
GND  
GND  
SS  
K5  
K6  
K7  
K8  
GND  
GND  
GND  
ADJ  
L5  
GND  
RUN  
SYNC  
GND  
G6  
GND  
L6  
G7  
GND  
L7  
G8  
RT  
L8  
package phoTo  
8052fa  
26  
LTM8052  
revision hisTory  
RE5  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
3/12  
Modified the Description section.  
1
2
Updated the Absolute Maximum Ratings and Pin Configuration sections.  
Corrected the pin name on schematics using two LTM8052s.  
Updated the Related Parts table.  
24  
28  
8052fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTM8052  
Typical applicaTion  
365INꢀ 3235OUT SnlpꢃDꢆwꢄ Cꢆꢄvldnld winh 427±A AccQdunl CQddlꢄn Limin  
LTM8052  
V
OUT  
V
IN  
V
V
3.3V  
IN  
OUT  
6V TO 36V  
510k  
4.75A  
10µF  
RUN  
SS  
V
REF  
+
SYNC  
CTL_I  
100µF  
330µF  
OPTIONAL  
INPUT  
COMP  
CTL_T  
PROTECTION  
RT GND ADJ  
71.5k  
127k  
75k  
5.62k  
8052 TA08  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
6V ≤ V ≤ 36V, 1.2V ≤ V  
LTM8026  
36V , 5A Step-Down µModule Regulator with  
≤ 24V, Adjustable Current Limit, Parallelable  
OUT  
IN  
IN  
Adjustable Current Limit  
Outputs, CLK Input, 11.25mm × 15mm × 2.82mm LGA Package  
LTM8025  
36V , 3A Step-Down µModule Regulator  
3.6V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 24V, CLK Input, 9mm × 15mm × 4.32mm  
IN  
IN  
OUT  
LGA Package  
LTM8062/  
LTM8062A  
32V , 2A µModule Battery Charger with Maximum  
Adjustable V  
up to 14.4V (18.8V for the LTM8062A), C/10 or Timer  
IN  
BATT  
Peak Power Tracking (MPPT)  
Termination, 9mm × 15mm × 4.32mm LGA Package  
LTM8027  
LTM4613  
60V , 4A DC/DC Step-Down µModule Regulator  
IN  
4.5V ≤ V ≤ 60V, 2.5V ≤ V ≤ 24V, 15mm × 15mm × 4.32mm LGA Package  
IN  
OUT  
EN55022B Compliant 36V , 8A Step-Down µModule  
5V ≤ V ≤ 36V, 3.3V ≤ V  
≤ 15V, Synchronizable, Parallelable,  
IN  
IN  
OUT  
Regulator  
15mm × 15mm × 4.32mm LGA Package  
8052fa  
LT 0312 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
LINEAR TECHNOLOGY CORPORATION 2011  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM8026EV#PBF

LTM8026 - 36VIN, 5A CVCC Step-Down &#181;Module (Power Module) Regulator; Package: LGA; Pins: 81; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8026IV#PBF

LTM8026 - 36VIN, 5A CVCC Step-Down &#181;Module (Power Module) Regulator; Package: LGA; Pins: 81; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8026IY#PBF

LTM8026 - 36VIN, 5A CVCC Step-Down &#181;Module (Power Module) Regulator; Package: BGA; Pins: 81; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8026MPY

LTM8026 - 36VIN, 5A CVCC Step-Down &#181;Module (Power Module) Regulator; Package: BGA; Pins: 81; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM8026_1208

36VIN, 5A CVCC Step-Down μModule Regulator
Linear

LTM8027

60V, 4A DC/DC Module Regulator
Linear

LTM8027EV

60V, 4A DC/DC Module Regulator
Linear

LTM8027EV#PBF

LTM8027 - 60V, 4A DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 113; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8027EVPBF

60V, 4A DC/DC Module Regulator
Linear

LTM8027IV

60V, 4A DC/DC Module Regulator
Linear

LTM8027IV#PBF

LTM8027 - 60V, 4A DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 113; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8027IVPBF

60V, 4A DC/DC Module Regulator
Linear