LTM8029_1208 [Linear]

36VIN 600mA Step-Down μModule Converter with 5μA Quiescent Current; 36VIN 600mA降压转换器μModule与5μA静态电流
LTM8029_1208
型号: LTM8029_1208
厂家: Linear    Linear
描述:

36VIN 600mA Step-Down μModule Converter with 5μA Quiescent Current
36VIN 600mA降压转换器μModule与5μA静态电流

转换器
文件: 总20页 (文件大小:259K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM8029  
36V , 600mA Step-Down  
IN  
µModule Converter with  
5µA Quiescent Current  
DescripTion  
FeaTures  
The LTM®8029 is a 36V , 600mA step-down µModule®  
n
Complete Switch Mode Power Supply  
IN  
Low Quiescent Current Burst Mode® Operation  
converter with 5µA quiescent current. It is an adjustable  
frequency buck switching regulator that consumes only  
5μA of quiescent current. The LTM8029 can accept an  
n
5μA I at 12V to 3.3V  
Q
IN  
OUT  
n
n
n
n
n
n
n
n
n
600mA Output Current  
Wide Input Voltage Range: 4.5V to 36V (40V  
Output Voltage: 1.2V to 18V  
Excellent Dropout Performance  
Can Be Used As an Inverter  
Adjustable Switching Frequency: 200kHz to 2.2MHz  
Current Mode Control  
(e1) RoHS Compliant Package  
Tiny, Low Profile (11.25mm × 6.25mm × 3.42mm)  
Surface Mount BGA Package  
)
input as high as 36V and operates at low input voltages  
MAX  
IN  
due to its off-time skipping capability. Burst Mode opera-  
tion maintains high efficiency at low output currents while  
keeping the output ripple low. The RUN pin features an  
accurate threshold and the shutdown current is 0.9μA.  
A power good flag signals when V  
programmed output voltage.  
reaches 90% of the  
OUT  
The LTM8029 is packaged in a thermally enhanced,  
compact (11.25mm × 6.25mm) and low profile (3.42mm)  
overmolded ball grid array (BGA) package suitable for  
automated assembly by standard surface mount equip-  
ment. The LTM8029 is RoHS compliant.  
applicaTions  
n
Automotive Battery Regulation  
L, LT, LTC, LTM, Linear Technology, the Linear logo, Burst Mode and µModule are registered  
trademarks of Linear Technology Corporation. All other trademarks are the property of their  
respective owners.  
n
Power for Portable Products  
n
Distributed Supply Regulation  
n
Industrial Supplies  
n
Wall Transformer Regulation  
Typical applicaTion  
Low Quiescent Current, 5VOUT, 600mA µModule Regulator  
Minimum Input Voltage vs Output Current  
5.8  
LTM8029  
V
V
IN  
OUT  
V
V
OUT  
IN  
5.6V TO 36V  
5V  
5.7  
5.6  
5.5  
5.4  
600mA  
RUN  
BIAS  
1µF  
22µF  
PGOOD  
RT  
GND  
158k  
FB  
309k  
f = 800kHz  
8029 TA01a  
400  
OUTPUT CURRENT (mA)  
600  
0
100  
200  
300  
500  
8029 TA01b  
8029fa  
1
LTM8029  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Notes 1, 2)  
TOP VIEW  
V , RUN ..................................................................40V  
OUT  
IN  
V
IN  
5
V
, BIAS ................................................................20V  
BANK 1  
VOUT  
V + BIAS.................................................................55V  
4
3
2
1
IN  
BANK 3  
PGOOD , FB, RT..........................................................6V  
Maximum Internal Temperature ........................... 125°C  
Solder Temperature...............................................260°C  
BIAS  
FB PGOOD  
RUN RT  
GND  
BANK 2  
A
B
C
D
E
F
G
H
BGA PACKAGE  
35-LEAD (11.25mm × 6.25mm × 3.42mm)  
T
JMAX  
= 125°C, θ = 13.8°C/W, θ  
= 17.2°C/W,  
JA  
JCtop  
θ
= 3.9°C/W, θ = 9.0°C/W  
JCbottom  
JCB  
WEIGHT = 0.6g  
orDer inForMaTion  
LEAD FREE FINISH  
LTM8029EY#PBF  
LTM8029IY#PBF  
LTM8029MPY#PBF  
TRAY  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
LTM8029EY#PBF  
LTM8029IY#PBF  
LTM8029Y  
35-Lead (11.25mm × 6.25mm × 3.42mm) BGA  
35-Lead (11.25mm × 6.25mm × 3.42mm) BGA  
35-Lead (11.25mm × 6.25mm × 3.42mm) BGA  
LTM8029Y  
–40°C to 125°C  
LTM8029MPY#PBF LTM8029Y  
–55°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
8029fa  
2
LTM8029  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, RUN = 2V unless otherwise noted (Note 2).  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
Minimum Input Voltage  
Output DC Voltage  
4.5  
V
I
I
≤ 0.6A, R Open  
1.2  
3.3  
V
V
OUT  
OUT  
FB  
≤ 0.6A, R = 576k  
FB  
Output DC Current  
3.3V  
10  
600  
9
mA  
OUT  
Quiescent Current Into V  
RUN = 0V  
No Load  
No Load  
0.9  
5
µA  
µA  
µA  
IN  
l
BIAS Current  
600mA Load  
IN  
3.6  
4.7  
mA  
mA  
V
= 32V, V  
= 20V at 100mA Load  
OUT  
Line Regulation  
Load Regulation  
5.5V < V < 36V, I  
= 600mA  
OUT  
0.3  
0.4  
10  
%
%
IN  
10mA < I  
< 600mA  
OUT  
Output RMS Voltage Ripple  
Switching Frequency  
I
= 600mA  
mV  
OUT  
R = 41.2k  
2.2  
1
200  
MHz  
MHz  
kHz  
T
R = 124k  
T
R = 768k  
T
Voltage at FB Pin  
1.185  
1.175  
1.20  
1.20  
1.215  
1.225  
V
V
l
l
l
Internal Feedback Resistor  
Minimum BIAS Voltage for Proper Operation  
RUN Pin Current  
1
1.7  
1
MΩ  
V
2.25  
30  
RUN = 2.5V  
nA  
V
RUN Threshold Voltage  
0.95  
1.3  
RUN Voltage Hysteresis  
PGOOD Threshold (at FB)  
PGOOD Leakage Current  
PGOOD Sink Current  
30  
1.1  
0.1  
100  
mV  
V
V
Rising  
OUT  
PGOOD = 6V  
1
µA  
µA  
PGOOD = 0.4V  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM8029E is guaranteed to meet performance specifications  
from 0°C to 125°C internal. Specifications over the full –40°C to  
125°C internal operating temperature range are assured by design,  
characterization and correlation with statistical process controls.  
The LTM8029I is guaranteed to meet specifications over the full –40°C  
to 125°C internal operating temperature range. The LTM8029MP is  
guaranteed to meet specifications over the full –55°C to 125°C internal  
operating temperature range. Note that the maximum internal temperature  
is determined by specific operating conditions in conjunction with board  
layout, the rated package thermal resistance and other environmental  
factors.  
8029fa  
3
LTM8029  
Typical perForMance characTerisTics  
TA = 25°C, unless otherwise noted. Configured per Table 1, where applicable.  
2.5VOUT Efficiency vs Output  
Current, BIAS = 5V  
3.3VOUT Efficiency vs Output  
Current, BIAS = 5V  
5VOUT Efficiency vs Output  
Current, BIAS = 5V  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
5V  
5V  
IN  
IN  
12V  
24V  
36V  
12V  
24V  
36V  
12V  
24V  
36V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8029 G01  
8029 G02  
8029 G03  
8VOUT Efficiency vs Output  
Current, BIAS = 5V  
12VOUT Efficiency vs Output  
Current, BIAS = 5V  
18VOUT Efficiency vs Output  
Current, BIAS = 5V  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
12V  
24V  
36V  
IN  
IN  
IN  
24V  
36V  
24V  
36V  
IN  
IN  
IN  
IN  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8029 G04  
8029 G05  
8029 G06  
Input Current vs Output Current,  
2.5VOUT, BIAS = 5V  
Input Current vs Output Current,  
3.3VOUT, BIAS = 5V  
Input Current vs Output Current,  
5VOUT, BIAS = 5V  
450  
400  
350  
300  
250  
200  
150  
100  
50  
350  
300  
250  
200  
150  
100  
50  
600  
500  
400  
300  
200  
100  
0
5V  
IN  
12V  
IN  
5V  
IN  
12V  
IN  
24V  
IN  
12V  
IN  
24V  
IN  
36V  
IN  
24V  
IN  
36V  
IN  
36V  
IN  
0
0
0
100  
200  
300  
400  
500  
600  
100  
200  
300  
400  
500  
600  
0
100  
200  
OUTPUT CURRENT (mA)  
300  
400  
500  
600  
0
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8029 G07  
8029 G09  
8029 G08  
8029fa  
4
LTM8029  
Typical perForMance characTerisTics  
TA = 25°C, unless otherwise noted. Configured per Table 1, where applicable.  
Input Current vs Output Current,  
8VOUT, BIAS = 5V  
Input Current vs Output Current,  
12VOUT, BIAS = 5V  
Input Current vs Output Current,  
18VOUT, BIAS = 5V  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
12V  
24V  
36V  
24V  
36V  
24V  
36V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0
0
0
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8029 G10  
8029 G11  
8029 G12  
Minimum VIN vs VOUT  
,
Input Current vs VIN,  
Output Short, BIAS = 5V  
Output Short-Circuit Current,  
BIAS = 5V  
IOUT = 600mA, BIAS = 5V  
25  
20  
15  
10  
5
1700  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
450  
400  
350  
300  
250  
200  
150  
100  
50  
f = 800kHz  
f = 800kHz  
f = 400kHz  
f = 400kHz  
0
0
0
5
10  
15  
20  
0
10  
20  
(V)  
30  
40  
0
10  
20  
(V)  
30  
40  
V
(V)  
V
V
OUT  
IN  
IN  
8029 G13  
8029 G15  
8029 G14  
IBIAS vs Output Current,  
3.3VOUT, BIAS = 5V  
IBIAS vs Output Current,  
5VOUT, BIAS = 5V  
IBIAS vs IOUT, 2.5VOUT, BIAS = 5V  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
5V  
IN  
12V  
IN  
5V  
IN  
12V  
IN  
24V  
IN  
12V  
IN  
24V  
IN  
36V  
IN  
24V  
IN  
36V  
IN  
36V  
IN  
0
100  
200  
300  
(mA)  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
I
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUT  
8029 G16  
8029 G18  
8029 G17  
8029fa  
5
LTM8029  
Typical perForMance characTerisTics  
TA = 25°C, unless otherwise noted. Configured per Table 1, where applicable.  
IBIAS vs Output Current,  
8VOUT, BIAS = 5V  
IBIAS vs Output Current,  
12VOUT, BIAS = 5V  
IBIAS vs Output Current,  
18VOUT, BIAS = 5V  
10  
9
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
12  
10  
8
12V  
24V  
36V  
24V  
36V  
24V  
36V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
6
4
2
0
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8029 G19  
8029 G20  
8029 G21  
Minimum VIN vs Output Current,  
–3.3VOUT, BIAS = GND  
Minimum VIN vs Output Current,  
–5VOUT, BIAS = GND  
Minimum VIN vs Output Current,  
–8VOUT, BIAS = GND  
8
7
6
5
4
3
2
1
0
12  
10  
8
20  
18  
16  
14  
12  
10  
8
TO START  
6
TO START  
RUNNING  
4
RUNNING  
6
TO START  
RUNNING  
4
2
2
0
0
0
100 200 300 400 500 600 700  
OUTPUT CURRENT (mA)  
8029 G22  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8029 G23  
8029 G24  
Minimum VIN vs Output Current,  
–12VOUT, BIAS = GND  
Minimum VIN vs Output Current,  
–18VOUT, BIAS = GND  
Temperature Rise vs Output  
Current, 2.5VOUT  
25  
20  
15  
10  
5
20  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
12V  
IN  
TO START  
RUNNING  
24V  
36V  
IN  
IN  
6
6
TO START  
RUNNING  
4
4
2
2
0
0
0
0
100  
200  
300  
400  
500  
0
50 100 150 200 250 300 350  
OUTPUT CURRENT (mA)  
8029 G26  
0
100  
200  
300  
400  
500  
600  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8029 G25  
8029 G27  
8029fa  
6
LTM8029  
Typical perForMance characTerisTics  
TA = 25°C, unless otherwise noted. Configured per Table 1, where applicable.  
Temperature Rise vs Output  
Current, 3.3VOUT  
Temperature Rise vs Output  
Current, 5VOUT  
Temperature Rise vs Output  
Current, 8VOUT  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
18  
16  
14  
12  
10  
8
12V  
IN  
12V  
IN  
12V  
IN  
24V  
IN  
24V  
IN  
24V  
IN  
36V  
IN  
36V  
IN  
36V  
IN  
6
4
2
0
0
0
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8029 G29  
8029 G30  
8029 G28  
Temperature Rise vs Output  
Current, 12VOUT  
Temperature Rise vs Output  
Current, 18VOUT  
Temperature Rise vs Output  
Current, –3.3VOUT  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
24V  
36V  
24V  
36V  
12V  
24V  
IN  
IN  
IN  
IN  
IN  
IN  
0
0
0
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8029 G31  
8029 G32  
8029 G33  
Temperature Rise vs Output  
Current, –5VOUT  
Temperature Rise vs Output  
Current, –8VOUT  
Temperature Rise vs Output  
Current, –12VOUT  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
12V  
24V  
12V  
24V  
12V  
24V  
IN  
IN  
IN  
IN  
IN  
IN  
0
0
0
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8029 G34  
8029 G35  
8029 G36  
8029fa  
7
LTM8029  
pin FuncTions  
V (Bank1):TheV pinssupplycurrenttotheLTM8029’s  
FB (Pin A2): The LTM8029 regulates its FB pin to 1.2V.  
IN  
IN  
internal regulator and to the internal power switch. This  
pin must be locally bypassed with an external, low ESR  
capacitor; see Table 1 for recommended values.  
Connect the output feedback resistor from this pin to  
ground. The value of R is given by the equation R  
=
FB  
FB  
1200/(V  
– 1.2), where R is in kΩ.  
OUT  
FB  
V
(Bank 3): Power Output Pins. Apply the output filter  
RT (Pin B1): The RT pin is used to program the switching  
frequency of the LTM8029 by connecting a resistor from  
thispintoground.TheApplicationsInformationsectionof  
the data sheet includes a table to determine the resistance  
value based on the desired switching frequency.  
OUT  
capacitor and the output load between these pins and  
GND pins.  
GND (Bank 2): Tie these GND pins to a local ground plane  
below the LTM8029 and the circuit components. In most  
applications the bulk of the heat flow out of the LTM8029  
is through these pads, so the printed circuit design has a  
large impact on the thermal performance of the part. See  
the PCB Layout and Thermal Considerations sections for  
PGOOD (Pin B2): The PGOOD pin is the open-collector  
output of an internal comparator that monitors the FB pin.  
PGOOD remains low until the FB pin is within 10% of the  
final regulation voltage. PGOOD output is valid when V  
IN  
moredetails.Returnthefeedbackresistor(R )tothisnet.  
is above 4.5V and RUN is high. If this function is not used,  
FB  
leave this pin floating.  
RUN (Pin A1): Pull the RUN pin below 0.95V to shut down  
the LTM8029. Tie to 1.3V or more for normal operation.  
BIAS (Pin H3): The BIAS pin powers internal circuitry.  
Connect to a power source greater than 2.25V and less  
than 20V. If the output is greater than 2.25V, connect this  
If the shutdown feature is not used, tie this pin to V .  
IN  
pin there. Also, make sure that BIAS + V is less than 55V.  
IN  
block DiagraM  
22µH  
V
V
IN  
OUT  
1M  
1%  
0.1µF  
47pF  
1µF  
BIAS  
CURRENT  
MODE  
CONTROLLER  
RUN  
GND  
RT  
PGOOD  
FB  
8029 BD  
8029fa  
8
LTM8029  
operaTion  
The LTM8029 is a standalone non-isolated step-down  
switchingDC/DCpowersupplythatcandeliverupto600mA  
ofoutputcurrent.Thisdevicefeaturesaverylowquiescent  
current and provides a precisely regulated output voltage  
from 1.2V to 18V. The input voltage range is 4.5V to 36V.  
Given that the LTM8029 is a step-down converter, make  
sure that the input voltage is high enough to support the  
desired output voltage and load current.  
typically 5μA at no load and 12V . Since the LTM8029 is  
IN  
mostly shut down between bursts, the effective switching  
frequency will be lower than that programmed at the RT  
pin. For the same reason, the output ripple will be differ-  
ent than when the part is running at the full programmed  
frequency.  
The LTM8029 contains a power good comparator which  
trips when the FB pin is at roughly 90% of its regulated  
value. The PGOOD output is an open-collector transistor  
that is off when the output is in regulation, allowing an  
external resistor to pull the PGOOD pin high. Power good  
As shown in the Block Diagram, the LTM8029 contains a  
current mode controller, power switching element, power  
inductor, power Schottky diode and a modest amount of  
input and output capacitance. The LTM8029 is a fixed  
frequency PWM regulator. The switching frequency is set  
by simply connecting the appropriate resistor value from  
the RT pin to GND. An internal regulator provides power  
to the control circuitry.  
is valid when the LTM8029 is enabled and V is above  
IN  
4.5V. The LTM8029 features the ability to skip the off-time  
in switching cycles when the input voltage approaches the  
target output. This allows the LTM8029 to operate at input  
voltages lower than other step-down regulators.  
The internal regulator normally draws power from the V  
In an overload or short-circuit condition, the LTM8029  
will protect itself by limiting its peak switching current  
and decreasing the operating frequency to reduce overall  
power consumption. The LTM8029 is also equipped with  
a thermal shutdown that will inhibit power switching at  
highjunctiontemperatures.Theactivationthresholdofthis  
function,however,isabove125°Ctoavoidinterferingwith  
normal operation. Thus, prolonged or repetitive operation  
underaconditioninwhichthethermalshutdownactivates  
may damage or impair the reliability of the device.  
IN  
pin, but if the BIAS pin is connected to an external volt-  
age higher than 2.25V, bias power will be drawn from the  
external source (typically the regulated output voltage).  
This improves efficiency.  
The RUN pin is used to place the LTM8029 in shutdown.  
To optimizeefficiency,theLTM8029automaticallyswitches  
to Burst Mode operation in light load situations. Between  
bursts, all circuitry associated with controlling the output  
switch is shut down reducing the input supply current to  
8029fa  
9
LTM8029  
applicaTions inForMaTion  
For most applications, the design process is straight  
forward, summarized as follows:  
Capacitor Selection Considerations  
The C and C capacitor values in Table 1 are the  
IN  
OUT  
1. Look at Table 1 and find the row that has the desired  
input range and output voltage.  
minimum recommended values for the associated oper-  
ating conditions. Applying capacitor values below those  
indicated in Table 1 is not recommended, and may result  
in undesirable operation. Using larger values is generally  
acceptable, and can yield improved dynamic response,  
if it is necessary. It is incumbent upon the user to verify  
properoperation overthe intended system’sline, loadand  
environmental conditions.  
2. Apply the recommended C , C , R and R values.  
IN OUT FB  
T
3. Connect BIAS as indicated.  
While these component combinations have been tested  
for proper operation, it is incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental conditions. Bear in mind that the  
maximum output current is limited by junction tempera-  
ture, therelationshipbetweentheinputandoutputvoltage  
magnitude and polarity and other factors. Please refer to  
the graphs in the Typical Performance Characteristics  
section for guidance.  
Ceramic capacitors are small, robust and have very low  
ESR. However, not all ceramic capacitors are suitable.  
X5R and X7R types are stable over temperature and ap-  
plied voltage and give dependable service. Other types,  
including Y5V and Z5U have very large temperature and  
voltage coefficients of capacitance. In an application cir-  
cuit they may have only a small fraction of their nominal  
capacitance resulting in much higher output voltage ripple  
than expected.  
Themaximumfrequency(andattendantR value)atwhich  
T
the LTM8029 should be allowed to switch is given in  
Table 1 in the f  
column, while the recommended fre-  
MAX  
quency(andR value)foroptimalefficiencyoverthegiven  
Ceramic capacitors are also piezoelectric. In Burst Mode  
operation, the LTM8029’s switching frequency depends  
on the load current, and can excite a ceramic capacitor  
at audio frequencies, generating audible noise. Since the  
LTM8029 operates at a lower current limit during Burst  
Mode operation, the noise is typically very quiet to a ca-  
sual ear. If this audible noise is unacceptable, use a high  
performance electrolytic capacitor at the output. It may  
also be a parallel combination of a ceramic capacitor and  
a low cost electrolytic capacitor.  
T
input condition is given in the f  
column.  
OPTIMAL  
TheLTM8029iscapableofoperatingatlowinputvoltages  
by skipping off-times to maintain regulation. This results  
in a lower operating frequency than that programmed by  
the RT pin, so it may be necessary to use larger input and  
output capacitors, depending upon the system require-  
ments. The recommended components and V range  
IN  
listed in Table 1 reflect an operation where off-times are  
not skipped.  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LTM8029. A  
ceramic input capacitor combined with trace or cable  
inductance forms a high Q (under damped) tank circuit.  
If the LTM8029 circuit is plugged into a live supply, the  
input voltage can ring to twice its nominal value, possi-  
bly exceeding the device’s rating. This situation is easily  
avoided; see the Hot-Plugging Safety section.  
8029fa  
10  
LTM8029  
applicaTions inForMaTion  
Table 1. Recommended Component Values and Configuration  
V
IN  
(V)*  
V
OUT  
(V)  
C
C
BIAS  
R
FB  
f
R
T(OPT)  
f
R
T(MIN)  
IN  
OUT  
OPT  
MAX  
4.5-36  
4.5-36  
4.5-36  
4.5-36  
4.5-36  
4.5-36  
4.8-36  
7.8-36  
12-36  
17-36  
24.5-36  
10-33  
5.5-33  
8-31  
1.2  
4.7µF 50V 1206 X5R  
4.7µF 50V 1206 X5R  
4.7µF 50V 1206 X5R  
4.7µF 50V 1206 X5R  
1µF 50V 1206 X5R  
1µF 50V 0805 X5R  
1µF 50V 0805 X5R  
1µF 50V 0805 X5R  
2.2µF 50V 1206 X5R  
2.2µF 50V 1206 X5R  
2.2µF 50V 1206 X5R  
1µF 50V 0805 X5R  
4.7µF 50V 1206 X5R  
2.2µF 50V 1206 X5R  
2.2µF 50V 1206 X5R  
2.2µF 50V 1206 X5R  
100µF 6.3V 1206 X5R 2.1V-20V Open  
100µF 6.3V 1206 X5R 2.1V-20V 4.02M  
270kHz  
310kHz  
350kHz  
380kHz  
450kHz  
490kHz  
615kHz  
800kHz  
830kHz  
880kHz  
880kHz  
615kHz  
615kHz  
800kHz  
830kHz  
880kHz  
536k  
475k  
402k  
374k  
309k  
280k  
215k  
158k  
150k  
137k  
137k  
215k  
215k  
158k  
150k  
137k  
510kHz  
600kHz  
750kHz  
780kHz  
840kHz  
950kHz  
1.2MHz  
1.6MHz  
2.2MHz  
2.2MHz  
2.2MHz  
1.2MHz  
1.2MHz  
1.6MHz  
2.2MHz  
2.2MHz  
267k  
220k  
169k  
162k  
147k  
127k  
93.1k  
61.9k  
41.2k  
41.2k  
41.2k  
93.1k  
93.1k  
61.9k  
41.2k  
41.2k  
1.5  
1.8  
2
100µF 6.3V 1206 X5R 2.1V-20V  
100µF 6.3V 1206 X5R 2.1V-20V  
2M  
1.5M  
2.2  
2.5  
3.3  
5
47µF 6.3V 1206 X5R  
47µF 6.3V 1206 X5R  
22µF 6.3V 1206 X5R  
22µF 6.3V 1206 X5R  
22µF 10V 1210 X5R  
10µF 50V 1210 X5R  
10µF 50V 1210 X5R  
22µF 6.3V 1206 X5R  
100µF 6.3V 1206 X5R  
47µF 6.3V 1206 X5R  
22µF 10V 1210 X5R  
22µF 16V 1210 X5R  
2.1V-20V 1.21M  
2.1V-20V  
931k  
576k  
309k  
174k  
110k  
V
V
OUT  
OUT  
8
2.1V-20V  
2.1V-20V  
12  
18  
2.1V-20V 71.5k  
–3.3  
–3.3  
–5  
GND  
GND  
GND  
GND  
GND  
576k  
576k  
309k  
174k  
110k  
7-28  
–8  
7-24  
–12  
4.5-24  
4.5-24  
4.5-24  
4.5-24  
4.5-24  
4.5-24  
1.8-24  
7.8-24  
12-24  
17-24  
1.2  
1.5  
1.8  
2
2.2µF 50V 0805 X7R  
2.2µF 50V 0805 X7R  
2.2µF 50V 0805 X7R  
2.2µF 50V 0805 X7R  
1µF 50V 0805 X5R  
1µF 50V 0805 X5R  
1µF 25V 0603 X5R  
1µF 25V 0603 X5R  
2.2µF 50V 1206 X5R  
2.2µF 50V 1206 X5R  
47µF 6.3V 1206 X5R  
47µF 6.3V 1206 X5R  
47µF 6.3V 1206 X5R  
47µF 6.3V 1206 X5R  
47µF 6.3V 1206 X5R  
47µF 6.3V 1206 X5R  
22µF 6.3V 1206 X5R  
22µF 6.3V 1206 X5R  
22µF 10V 1210 X5R  
10µF 50V 1210 X5R  
2.1V-20V Open  
2.1V-20V 4.02M  
400kHz  
430kHz  
450kHz  
480kHz  
545kHz  
580kHz  
615kHz  
800kHz  
830kHz  
880kHz  
348k  
324k  
309k  
287k  
249k  
232k  
215k  
158k  
150k  
137k  
750kHz  
930kHz  
1MHz  
169k  
130k  
124k  
93.1k  
82.5k  
73.2k  
41.2k  
41.2k  
41.2k  
41.2k  
2.1V-20V  
2.1V-20V  
2M  
1.5M  
1.2MHz  
1.3MHz  
1.4MHz  
2.2MHz  
2.2MHz  
2.2MHz  
2.2MHz  
2.2  
2.5  
3.3  
5
2.1V-20V 1.21M  
2.1V-20V  
931k  
576k  
309k  
174k  
110k  
V
V
OUT  
OUT  
8
2.1V-20V  
2.1V-20V  
12  
9-15  
9-15  
9-15  
9-15  
9-15  
9-15  
9-15  
9-15  
12-15  
1.2  
1.5  
1.8  
2
2.2µF 50V 0805 X7R  
2.2µF 50V 0805 X7R  
2.2µF 50V 0805 X7R  
2.2µF 50V 0805 X7R  
1µF 50V 0805 X5R  
1µF 50V 0805 X5R  
1µF 25V 0603 X5R  
1µF 25V 0603 X5R  
2.2µF 50V 1206 X5R  
47µF 6.3V 1206 X5R  
47µF 6.3V 1206 X5R  
47µF 6.3V 1206 X5R  
47µF 6.3V 1206 X5R  
47µF 6.3V 1206 X5R  
47µF 6.3V 1206 X5R  
22µF 6.3V 1206 X5R  
22µF 6.3V 1206 X5R  
22µF 10V 1210 X5R  
2.1V-20V Open  
2.1V-20V 4.02M  
400kHz  
430kHz  
450kHz  
480kHz  
545kHz  
580kHz  
615kHz  
800kHz  
830kHz  
348k  
324k  
309k  
287k  
249k  
232k  
215k  
158k  
150k  
1.3MHz  
1.5MHz  
1.7MHz  
1.9MHz  
2MHz  
84.5k  
66.5k  
57.6k  
49.9k  
46.4k  
41.2k  
41.2k  
41.2k  
41.2k  
2.1V-20V  
2.1V-20V  
2M  
1.5M  
2.2  
2.5  
3.3  
5
2.1V-20V 1.21M  
2.1V-20V  
931k  
576k  
309k  
174k  
2.2MHz  
2.2MHz  
2.2MHz  
2.2MHz  
V
V
OUT  
OUT  
8
2.1V-20V  
Notes: An input bulk capacitor is required. Do not allow V + BIAS to exceed 55V. The minimum input operating voltage may be lower than given in the table.  
IN  
Refer to the Applications Information section for details.  
8029fa  
11  
LTM8029  
applicaTions inForMaTion  
Frequency Selection  
BIAS Pin Considerations  
The LTM8029 uses a constant frequency PWM architec-  
ture that can be programmed to switch from 200kHz to  
2.2MHz by using a resistor tied from the RT pin to ground.  
The BIAS pin is used to provide drive power for the in-  
ternal power switching stage and operate other internal  
circuitry. For proper operation, it must be powered by at  
least 2.25V. If the output voltage is programmed to 2.25V  
Table 2 provides a list of R resistor values and their  
T
resultant frequencies.  
or higher, BIAS may be simply tied to V . If V  
is less  
OUT  
OUT  
than 2.25V, BIAS can be tied to V or some other voltage  
IN  
Table 2. Frequency vs RT Value  
source. If the BIAS pin voltage is too high, the efficiency  
of the LTM8029 may suffer. The optimum BIAS voltage is  
dependent upon many factors, such as load current, input  
voltage, outputvoltageandswitchingfrequency, but4Vto  
5V works well in many applications. In all cases, ensure  
that the maximum voltage at the BIAS pin is less than 25V  
FREQUENCY (MHz)  
R (k)  
T
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
768  
348  
220  
158  
124  
93.1  
73.2  
61.9  
52.3  
46.4  
41.2  
and that the sum of V and BIAS is less than 55V. If BIAS  
IN  
power is applied from a remote or noisy voltage source, it  
may be necessary to apply a decoupling capacitor locally  
to the pin.  
Burst Mode Operation  
To enhance efficiency at light loads, the LTM8029 auto-  
matically switches to Burst Mode operation which keeps  
the output capacitor charged to the proper voltage while  
minimizing the input quiescent current. During Burst  
Modeoperation, theLTM8029deliverssinglecyclebursts  
of current to the output capacitor followed by sleep pe-  
riods where the output power is delivered to the load by  
the output capacitor. Since the LTM8029 is mostly shut  
down between bursts, the effective switching frequency  
will be lower than that programmed at the RT pin. For the  
same reason, the output ripple will be different than when  
the part is running at the full programmed frequency.  
Operating Frequency Trade-offs  
It is recommended that the user apply the optimal R  
T
resistor value given in Table 1 for the input and output  
operatingcondition. Systemlevelorotherconsiderations,  
however, may necessitate another operating frequency.  
While the LTM8029 is flexible enough to accommodate  
a wide range of operating frequencies, a haphazardly  
chosen one may result in undesirable operation under  
certain operating or fault conditions. A frequency that is  
too high can reduce efficiency, generate excessive heat  
or even damage the LTM8029 if the output is overloaded  
or short-circuited. A frequency that is too low can result  
in a final design that has too much output ripple or too  
large of an output capacitor. In addition, as shown in the  
Typical Performance Characteristics section, the operat-  
ing frequency affects the amount of current that may be  
delivered during a short-circuit condition.  
In addition, V and BIAS quiescent currents are each  
IN  
greatly reduced during the sleep time. As the load current  
decreases towards a no load condition, the percentage of  
time that the LTM8029 operates in sleep mode increases  
and the average input current is greatly reduced, resulting  
in higher efficiency.  
8029fa  
12  
LTM8029  
applicaTions inForMaTion  
RUN  
Italsomeansthattheeffectivefrequencyduringthismode  
ofoperation willbelowerthan the one programmedby the  
resistor connected to the RT pin, so it may be necessary  
to use larger input and output capacitors, depending upon  
the system requirements.  
The LTM8029 is in shutdown when the RUN pin is low  
and active when the pin is high. The rising threshold of the  
RUNcomparatoristypically1.15V,witha30mVhysteresis.  
This threshold is accurate when V is above 4.5V. Adding  
IN  
a resistor divider from V to RUN programs the LTM8029  
IN  
Shorted Input Protection  
to operate only when V is above a desired voltage (see  
IN  
Care needs to be taken in systems where the output will be  
held high when the input to the LTM8029 is absent. This  
may occur in battery charging applications or in battery  
backup systems where a battery or some other supply is  
Figure 1). This rising threshold voltage, V  
, can be  
IN(RUN)  
adjusted by setting the values R3 and R4 such that they  
satisfy the following equation:  
R3+ R4  
diode ORed with the LTM8029’s output. If the V pin is  
VIN(RUN)  
=
1.15V  
IN  
R4  
allowed to float and the RUN pin is held high (either by a  
logicsignalorbecauseitistiedtoV ),thentheLTM8029’s  
IN  
where the LTM8029 should not start until V is above  
IN  
internal circuitry will pull its quiescent current through  
its internal power switch. This is fine if your system can  
tolerate a few milliamps in this state. If you ground the  
RUN pin, the input current will drop to essentially zero.  
V
. NotethatduetotheRUNpin’shysteresis, opera-  
tionwillnotstopuntiltheinputfallsslightlybelowV  
IN(RUN)  
.
IN(RUN)  
LTM8029  
However, if the V pin is grounded while the output is  
IN  
V
V
IN  
IN  
held high, then parasitic diodes inside the LTM8029 can  
R3  
R4  
pull large currents from the output through the V pin.  
IN  
RUN  
Figure 2 shows a circuit that will run only when the input  
voltage is present and that protects against a shorted or  
reversed input.  
8029 F01  
Figure 1. R3 and R4 Set the Minimum  
Operating Threshold Voltage  
LTM8029  
V
V
OUT  
V
IN  
V
OUT  
IN  
Minimum Input Voltage  
RUN  
BIAS  
The LTM8029 is a step-down converter, so a minimum  
amount of headroom is required to keep the output in  
regulation. Curves detailing the minimum input voltage  
of the LTM8029 for various load conditions are included  
in the Typical Performance Characteristics section.  
RT  
FB  
GND  
8029 F02  
The LTM8029 features the ability to skip the off-time in  
switching cycle when the input voltage approaches the  
targetoutput.ThisallowstheLTM8029tooperateaninput  
voltageslowerthanotherstep-downregulators.Graphsof  
minimuminputvoltageversusoutputvoltageandloadare  
given in the Typical Performance Characteristics section.  
Figure 2. The Input Diode Prevents Shorted Input from  
Discharging a Backup Battery Tied to the Output. It  
Also Protects the Circuit from a Reversed Input. The  
LTM8029 Runs Only When the Input is Present  
8029fa  
13  
LTM8029  
applicaTions inForMaTion  
Power Good  
1. Place the R and R resistors as close as possible to  
FB T  
their respective pins.  
The PGOOD pin is the open-collector output of an internal  
comparator that monitors the voltage at the FB pin. It  
is used to indicate whether the output is near or within  
regulation. Specifically, PGOOD islowunlessthe FBpin is  
within 10% of the final regulation voltage. PGOOD output  
2. Place the C capacitor as close as possible to the V  
IN  
IN  
and GND connection of the LTM8029.  
3. Place the C  
capacitor as close as possible to the  
OUT  
V
and GND connection of the LTM8029.  
OUT  
is valid when V is above 4.5V and RUN is high. If this  
IN  
4. Place the C and C  
capacitors such that their  
OUT  
function is not used, leave this pin floating.  
IN  
ground currents flow directly adjacent or underneath  
Hot-Plugging Safely  
the LTM8029.  
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
bypass capacitor of LTM8029. However, these capacitors  
can cause problems if the LTM8029 is hot-plugged into  
a live supply (see Application Note 88 for a complete dis-  
cussion). The low loss ceramic capacitor combined with  
stray inductance in series with the power source forms an  
5. Connect all of the GND connections to as large a copper  
pour or plane area as possible on the top layer. Avoid  
breaking the ground connection between the external  
components and the LTM8029.  
6. For good heat sinking, use vias to connect the GND cop-  
per area to the board’s internal ground planes. Liberally  
distributetheseGNDviastoprovidebothagoodground  
connectionandthermalpathtotheinternalplanesofthe  
printed circuit board. Pay attention to the location and  
density of the thermal vias in Figure 3. The LTM8029  
can benefit from the heat sinking afforded by vias that  
connect to internal GND planes at these locations, due  
to their proximity to internal power handling compo-  
nents. The optimum number of thermal vias depends  
upon the printed circuit board design. For example, a  
board might use very small via holes. It should employ  
more thermal vias than a board that uses larger holes.  
underdamped tank circuit, and the voltage at the V pin  
IN  
of the LTM8029 can ring to more than twice the nominal  
input voltage, possibly exceeding the LTM8029’s rating  
and damaging the part. If the input supply is poorly con-  
trolled or the user will be hot-plugging the LTM8029 into  
anenergizedsupply,theinputnetworkshouldbedesigned  
to prevent this overshoot. This can be accomplished by  
installing a small resistor in series to V , but the most  
IN  
popular method of controlling input voltage overshoot is  
to add an electrolytic bulk capacitor to the V net. This  
IN  
capacitor’s relatively high equivalent series resistance  
usually damps the circuit and eliminates the voltage  
overshoot. The extra capacitor improves low frequency  
ripple filtering and can slightly improve the efficiency of  
the circuit, though it is likely to be the largest component  
in the circuit.  
V
IN  
V
OUT  
C
IN  
GND  
BIAS  
C
PCB Layout  
OUT  
PGOOD  
RUN  
Most of the headaches associated with PCB layout have  
been alleviated or even eliminated by the high level of  
integration of the LTM8029. The LTM8029 is neverthe-  
less a switching power supply, and care must be taken to  
minimize EMI and ensure proper operation. Even with the  
high level of integration, you may fail to achieve specified  
operation with a haphazard or poor layout. See Figure 3  
for a suggested layout. Ensure that the grounding and  
heat sinking are acceptable.  
GND  
R
R
T
FB  
THERMAL VIAS  
8029 F03  
Figure 3. Layout Showing Suggested External  
Components, GND Plane and Thermal Vias  
8029fa  
14  
LTM8029  
applicaTions inForMaTion  
Thermal Considerations  
While the meaning of each of these coefficients may seem  
to be intuitive, JEDEC has defined each to avoid confusion  
and inconsistency. These definitions are given in JESD  
51-12, and are quoted or paraphrased below:  
The LTM8029 output current may need to be derated if  
it is required to operate in a high ambient temperature or  
deliver a large amount of continuous power. The amount  
of current derating is dependent upon the input voltage,  
output power and ambient temperature. The temperature  
rise curves given in the Typical Performance Character-  
istics section can be used as a guide. These curves were  
•ꢀ θ is the natural convection junction-to-ambient air  
JA  
thermal resistance measured in a one cubic foot sealed  
enclosure.Thisenvironmentissometimesreferredtoas  
“still air” although natural convection causes the air to  
move.Thisvalueisdeterminedwiththepartmountedto  
a JESD 51-9 defined test board, which does not reflect  
an actual application or viable operating condition.  
2
generated by a LTM8029 mounted to a 40cm 4-layer FR4  
printedcircuitboard. Boardsofothersizesandlayercount  
can exhibit different thermal behavior, so it is incumbent  
upon the user to verify proper operation over the intended  
system’sline,loadandenvironmentaloperatingconditions.  
•ꢀ θ  
isthethermalresistancebetweenthejunction  
JCbottom  
and bottom of the package with all of the component  
power dissipation flowing through the bottom of the  
package. In the typical µModule converter, the bulk of  
the heat flows out the bottom of the package, but there  
is always heat flow out into the ambient environment.  
As a result, this thermal resistance value may be useful  
for comparing packages but the test conditions don’t  
generally match the user’s application.  
The thermal resistance numbers listed in the Pin Con-  
figuration are based on modeling the µModule package  
mounted on a test board specified per JESD 51-9 (“Test  
Boards for Area Array Surface Mount Package Thermal  
Measurements”).Thethermalcoefficientsprovidedinthis  
page are based on JESD 51-12 (“Guidelines for Reporting  
and Using Electronic Package Thermal Information”).  
Forincreasedaccuracyandfidelitytotheactualapplication,  
many designers use FEA to predict thermal performance.  
To that end, the Pin Configuration section typically gives  
four thermal coefficients:  
•ꢀ θ  
is determined with nearly all of the component  
JCtop  
power dissipation flowing through the top of the pack-  
age.AstheelectricalconnectionsofthetypicalµModule  
converter are on the bottom of the package, it is rare  
for an application to operate such that most of the heat  
flows from the junction to the top of the part. As in the  
•ꢀ θ – Thermal resistance from junction to ambient  
JA  
•ꢀ θ  
– Thermal resistance from junction to the  
caseofθ  
,thisvaluemaybeusefulforcomparing  
JCbottom  
JCbottom  
bottom of the product case  
packages but the test conditions don’t generally match  
the user’s application.  
•ꢀ θ – Thermal resistance from junction to top of the  
JCtop  
product case  
•ꢀ θ is the junction-to-board thermal resistance where  
JB  
almost all of the heat flows through the bottom of the  
•ꢀ θ – Thermal resistance from junction to the printed  
JB  
µModule converter and into the board, and is really  
circuit board  
the sum of the θ  
and the thermal resistance  
JCbottom  
of the bottom of the part through the solder joints and  
throughaportionoftheboard.Theboardtemperatureis  
measured a specified distance from the package, using  
a two sided, two layer board. This board is described  
in JESD 51-9.  
8029fa  
15  
LTM8029  
applicaTions inForMaTion  
Giventhesedefinitions,itshouldnowbeapparentthatnone  
of these thermal coefficients reflects an actual physical  
operating condition of a µModule converter. Thus, none  
of them can be individually used to accurately predict the  
thermal performance of the product. Likewise, it would  
be inappropriate to attempt to use any one coefficient to  
correlate to the junction temperature vs load graphs given  
in the product’s data sheet. The only appropriate way to  
use the coefficients is when running a detailed thermal  
analysis, such as FEA, which considers all of the thermal  
resistances simultaneously.  
The blue resistances are contained within the µModule  
converter, and the green are outside.  
The die temperature of the LTM8029 must be lower than  
the maximum rating of 125°C, so care should be taken in  
the layout of the circuit to ensure good heat sinking of the  
LTM8029. The bulk of the heat flow out of the LTM8029  
is through the bottom of the μModule converter and the  
BGA pads into the printed circuit board. Consequently a  
poor printed circuit board design can cause excessive  
heating, resulting in impaired performance or reliability.  
Please refer to the PCB Layout section for printed circuit  
board design suggestions.  
A graphical representation of these thermal resistances  
is given in Figure 4.  
JUNCTION-TO-AMBIENT RESISTANCE (JESD 51-9 DEFINED BOARD)  
JUNCTION-TO-CASE (TOP)  
RESISTANCE  
CASE (TOP)-TO-AMBIENT  
RESISTANCE  
JUNCTION-TO-BOARD RESISTANCE  
JUNCTION  
AMBIENT  
JUNCTION-TO-CASE  
(BOTTOM) RESISTANCE  
CASE (BOTTOM)-TO-BOARD  
RESISTANCE  
BOARD-TO-AMBIENT  
RESISTANCE  
8029 F04  
µMODULE DEVICE  
Figure 4. Graphical Representation of JESD 51-12 Thermal Coefficients  
8029fa  
16  
LTM8029  
applicaTions inForMaTion  
1.2V Step-Down Converter  
2.5V Step-Down Converter  
LTM8029  
LTM8029  
V
V
V
IN  
V
IN  
OUT  
OUT  
V
V
OUT  
V
V
OUT  
IN  
IN  
4.5V TO 12V  
4.5V TO 36V  
2.5V  
1.2V  
600mA  
600mA  
RUN  
BIAS  
RUN  
BIAS  
2.2µF  
47µF  
1µF  
47µF  
PGOOD  
PGOOD  
RT  
GND FB  
RT  
GND FB  
8029 TA02  
8029 TA03  
309k  
280k  
931k  
5V Step-Down Converter  
LTM8029  
V
V
IN  
OUT  
V
V
OUT  
IN  
7.8V TO 36V  
5V  
600mA  
RUN  
BIAS  
1µF  
22µF  
PGOOD  
RT  
GND FB  
8029 TA04  
158k  
309k  
–5V Inverting Output Converter  
Minimum VIN vs Output Current  
12  
10  
8
LTM8029  
V
IN  
V
V
OUT  
IN  
4.5V TO 31V  
RUN  
BIAS  
2.2µF  
PGOOD  
47µF  
6
TO START  
RUNNING  
RT  
GND FB  
4
158k  
309k  
V
OUT  
2
–5V  
0
0
100  
200  
300  
400  
500  
600  
OUTPUT CURRENT (mA)  
8029 TA06  
8029fa  
17  
LTM8029  
package DescripTion  
Table 3. Pin Assignment Table (Arranged by Pin Number)  
PIN  
A1  
A2  
A3  
A4  
A5  
FUNCTION  
PIN  
B1  
B2  
B3  
B4  
B5  
FUNCTION  
PIN  
C1  
C2  
C3  
C4  
C5  
FUNCTION  
PIN  
D1  
D2  
D3  
D4  
D5  
FUNCTION  
GND  
RUN  
FB  
RT  
PGOOD  
GND  
GND  
GND  
GND  
V
V
V
IN  
V
IN  
GND  
IN  
IN  
GND  
PIN  
E1  
E2  
E3  
E4  
E5  
FUNCTION  
GND  
PIN  
F1  
F2  
F3  
F4  
F5  
FUNCTION  
GND  
PIN  
G1  
G2  
G3  
G4  
G5  
FUNCTION  
GND  
PIN  
H1  
H2  
H3  
H4  
H5  
FUNCTION  
GND  
GND  
GND  
GND  
GND  
GND  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
BIAS  
GND  
V
V
OUT  
OUT  
GND  
8029fa  
18  
LTM8029  
package DescripTion  
BGA Package  
35-Lead (11.25mm × 6.25mm × 3.42mm)  
(Reference LTC DWG # 05-08-1878 Rev Ø)  
/ / b b b  
Z
2 . 5 4 0  
1 . 2 7 0  
0 . 3 1 7 5  
0 . 3 1 7 5  
0 . 0 0 0  
1 . 2 7 0  
2 . 5 4 0  
8029fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTM8029  
Typical applicaTion  
–12V Inverting Output Converter  
Minimum VIN vs Output Current,  
–12VOUT, BIAS = GND  
25  
20  
15  
10  
5
LTM8029  
V
IN  
V
V
OUT  
IN  
4.5V TO 31V  
RUN  
BIAS  
2.2µF  
PGOOD  
22µF  
RT  
GND FB  
137k  
110k  
V
OUT  
TO START  
RUNNING  
–12V  
8029 TA07a  
0
0
100  
200  
300  
400  
500  
OUTPUT CURRENT (mA)  
8029 TA07b  
package phoTo  
relaTeD parTs  
3.42mm  
mm  
PART NUMBER  
LTM8020  
DESCRIPTION  
COMMENTS  
4V ≤ V ≤ 36V, 1.25V ≤ V  
36V, 200mA µModule Regulator  
36V, 500mA µModule Regulator  
36V, 1A µModule Regulator  
36V, 2A µModule Regulator  
Isolated µModule Regulator  
≤ 5V  
OUT  
IN  
LTM8021  
3V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 5V  
IN  
OUT  
LTM8022  
3.6V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 10V  
≤ 10V  
IN  
OUT  
LTM8023  
3.6V ≤ V ≤ 36V, 0.8V ≤ V  
IN  
OUT  
LTM8048  
725V Isolation, 3.1V ≤ V ≤ 32V, 300mA  
DC IN  
8029fa  
LT 0812 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
LINEAR TECHNOLOGY CORPORATION 2012  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM8031

Ultralow EMI 28VIN, 6A DC/DC μModule Regulator
Linear

LTM8031EVPBF

Ultralow Noise EMC 36V, 1A DC/DC μModule Regulator
Linear

LTM8031IVPBF

Ultralow Noise EMC 36V, 1A DC/DC μModule Regulator
Linear

LTM8031MPV#PBF

LTM8031 - Ultralow Noise EMC 36V, 1A DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 71; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM8031_12

LTM8031_12
Linear

LTM8032

Ultralow Noise EMC Compliant 36V, 2A DC/DC μModule
Linear

LTM8032EV#PBF

暂无描述
Linear

LTM8032EVPBF

Ultralow Noise EMC Compliant 36V, 2A DC/DC μModule
Linear

LTM8032IVPBF

Ultralow Noise EMC Compliant 36V, 2A DC/DC μModule
Linear

LTM8032MPVPBF

Ultralow Noise EMC Compliant 36V, 2A DC/DC μModule
Linear

LTM8033

Ultralow EMI 28VIN, 6A DC/DC μModule Regulator
Linear

LTM8033EV#PBF

LTM8033 - Ultralow Noise EMC 36VIN, 3A DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 76; Temperature Range: -40&deg;C to 85&deg;C
Linear