LTM8065 [Linear]

40VIN, 2A Silent Switcher μModule Regulator;
LTM8065
型号: LTM8065
厂家: Linear    Linear
描述:

40VIN, 2A Silent Switcher μModule Regulator

文件: 总24页 (文件大小:1064K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM8063  
40V , 2A Silent Switcher  
IN  
µModule Regulator  
FEATURES  
n
DESCRIPTION  
Low Noise Silent Switcher® Architecture  
The LTM®8063 is a 40V , 2A continuous, 2.5A peak, step-  
IN  
Wide Input Voltage Range: 3.2V to 40V  
down µModule® (power module) regulator. Included in  
the package are the switching controller, power switches,  
inductor, and all support components. Operating over an  
input voltage range of 3.2V to 40V, the LTM8063 supports  
an output voltage range of 0.8V to 15V and a switching  
frequency range of 200kHz to 2.2MHz, each set by a single  
resistor. Only the input and output filter capacitors are  
needed to finish the design.  
n
n
Wide Output Voltage Range: 0.8V to 15V  
n
2A Continuous Output Current at 12V , 5V  
,
IN  
OUT  
T = 85°C  
A
n
n
n
n
n
2.5A Peak Current  
Selectable Switching Frequency: 200kHz to 2.2MHz  
External Synchronization  
Configurable as an Inverter  
6.25mm × 4mm × 2.22mm BGA Package  
Thelowprofilepackageenablesutilizationofunusedspace  
on the bottom of PC boards for high density point of load  
regulation. The LTM8063 is packaged in a thermally en-  
hanced,compactover-moldedballgridarray(BGA)package  
suitableforautomatedassemblybystandardsurfacemount  
equipment. The LTM8063 is RoHS compliant.  
APPLICATIONS  
n
Automotive Battery Regulation  
n
Power for Portable Products  
n
Distributed Supply Regulation  
All registered trademarks and trademarks are the property of their respective owners.  
n
Industrial Supplies  
n
Wall Transformer Regulation  
TYPICAL APPLICATION  
Efficiency vs Load Current  
ꢀꢁ  
5VOUT from 6.5VIN to 40VIN Step-Down Converter  
ꢕꢖ  
ꢉ8063  
ꢕꢖ  
8ꢀ  
6ꢆꢅꢎ ꢍꢏ ꢄ0ꢎ  
ꢚꢐꢖ  
ꢏꢐꢍ  
ꢀꢁꢂ  
ꢏꢐꢍ  
ꢅꢎ  
ꢀꢁ  
6ꢀ  
ꢀꢀ  
ꢃꢑ  
ꢃꢆꢅꢑ ꢒꢓꢑꢔ  
ꢚꢍ  
ꢃꢃꢁꢂ  
ꢄꢅꢆ3ꢇ  
ꢃꢈꢆꢄꢇ  
ꢀꢆꢄꢉꢊꢋ  
ꢘꢖꢙ ꢛꢜꢖꢝ  
ꢂꢗ  
8063 ꢍꢑ0ꢀa  
ꢀꢁꢂ  
ꢀꢁꢂ  
36ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢒꢕꢖꢛ ꢖꢏꢍ ꢐꢛꢓꢙ ꢕꢖ ꢍꢊꢕꢛ ꢝꢕꢚꢝꢐꢕꢚꢟꢛꢛꢠ ꢒꢘ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8063 ꢀꢁ0ꢂꢃ  
8063fa  
1
For more information www.linear.com/LTM8063  
LTM8063  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Notes 1, 2)  
V , RUN, PG Voltage .............................................. 42V  
OUT  
ꢊꢈꢑ ꢇꢌꢎꢞ  
ꢀꢁꢂ  
IN  
V
Voltage ........................................................... 19V  
ꢍꢃ ꢊꢜꢝꢚꢚ ꢀꢁꢂ  
FB, TR/SS Voltage ..................................................... 4V  
SYNC Voltage ............................................................ 6V  
Maximum Internal Temperature .......................... 125°C  
Storage Temperature ............................ –55°C to 125°C  
Peak Reflow Solder Body Temperature ............... 260°C  
ꢑꢀ ꢚꢛꢁꢏ ꢜꢉꢁ  
ꢍꢃ  
ꢃꢄꢁꢅ ꢋ  
ꢜꢊ  
ꢌꢁ  
ꢃꢄꢁꢅ ꢆ  
ꢀꢁꢂ  
ꢃꢄꢁꢅ 3  
ꢈꢉꢊ  
3
ꢃꢀꢄ ꢑꢄꢏꢅꢄꢀꢎ  
ꢋ8ꢒꢓꢎꢄꢂ ꢔ6ꢕꢋꢖꢗꢗ ꢘ ꢐꢗꢗ ꢘ ꢋꢕꢋꢋꢗꢗꢙ ꢃꢀꢄ ꢑꢄꢏꢅꢄꢀꢎ  
= 125°C, θ = 36.5°C/W, θ = 10.4°C/W  
T
JMAX  
JA  
JCbottom  
θ
= 37.1°C/W, θ = 10.8°C/W, WEIGHT = 0.14g  
JCtop  
JB  
θ VALUES DETERMINED PER JEDEC51-9, 51-12  
ORDER INFORMATION http://www.linear.com/product/LTM8063#orderinfo  
PART MARKING*  
PACKAGE  
TYPE  
MSL  
RATING  
PART NUMBER  
LTM8063EY#PBF  
LTM8063IY#PBF  
TERMINAL FINISH  
DEVICE  
FINISH CODE  
TEMPERATURE RANGE  
SAC305 (RoHS)  
8063  
v
BGA  
3
–40°C to 125°C  
• Consult Marketing for parts specified with wider operating temperature  
ranges. *Device temperature grade is indicated by a label on the shipping  
container. Pad or ball finish code is per IPC/JEDEC J-STD-609.  
Recommended BGA PCB Assembly and Manufacturing Procedures:  
www.linear.com/umodule/pcbassembly  
• BGA Package and Tray Drawings: www.linear.com/packaging  
• Terminal Finish Part Marking: www.linear.com/leadfree  
8063fa  
2
For more information www.linear.com/LTM8063  
LTM8063  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
temperature range, otherwise specifications are at TJ = 25°C. VIN = 12V, RUN = 2V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
Minimum Input Voltage  
Output DC Voltage  
V
Rising  
Open  
3.2  
V
IN  
R
R
0.8  
15  
V
V
FB  
FB  
= 13.7kΩ, V = 40V  
IN  
Peak Output DC Current  
Quiescent Current into V  
V
= 3.3V, f = 1MHz  
2.5  
A
OUT  
SW  
RUN = 0V  
No Load, SYNC = 0V, Not Switching  
3
8
µA  
µA  
IN  
Line Regulation  
5.5V < V < 36V, I  
= 1A  
0.5  
0.5  
15  
%
%
IN  
OUT  
Load Regulation  
0.1A < I  
< 2A  
OUT  
Output Voltage Ripple  
Switching Frequency  
I
= 2A  
mV  
OUT  
R = 232kΩ, V = 8V  
200  
1
2.2  
kHz  
MHz  
MHz  
T
T
IN  
R = 41.2kΩ  
R = 15.8kΩ  
T
l
Voltage at FB  
760  
0.9  
774  
786  
1.2  
1
mV  
V
RUN Threshold Voltage  
RUN Current  
µA  
µA  
Ω
TR/SS Current  
TR/SS = 0V  
2
TR/SS Pull Down  
TR/SS = 0.1V  
300  
0.84  
0.7  
PG Threshold Voltage at FB (Upper)  
PG Threshold Voltage at FB (Lower)  
PG Leakage Current  
FB Falling (Note 5)  
FB Rising (Note 5)  
PG = 42V  
V
V
1
µA  
µA  
V
PG Sink Current  
PG = 0.1V  
150  
SYNC Threshold Voltage  
SYNC Voltage  
Synchronization  
0.4  
2.9  
1.5  
4.2  
5
To Enable Spread Spectrum  
SYNC = 2V  
V
SYNC Current  
µA  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: The LTM8063 contains overtemperature protection that is  
intended to protect the device during momentary overload conditions. The  
internal temperature exceeds the maximum operating junction temperature  
when the overtemperature protection is active. Continuous operation  
above the specified maximum operating junction temperature may impair  
device reliability.  
Note 2: Unless otherwise noted, the absolute minimum voltage is zero.  
Note 3: The LTM8063E is guaranteed to meet performance specifications  
from 0°C to 125°C internal. Specifications over the full –40°C to  
125°C internal operating temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LTM8063I is guaranteed to meet specifications over the full –40°C to  
125°C internal operating temperature range. Note that the maximum  
internal temperature is determined by specific operating conditions in  
conjunction with board layout, the rated package thermal resistance and  
other environmental factors.  
Note 5: PG transitions from low to high.  
8063fa  
3
For more information www.linear.com/LTM8063  
LTM8063  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency, VOUT = 1V  
Efficiency, VOUT = 1.2V  
Efficiency, VOUT = 1.5V  
8ꢀ  
80  
ꢀ0  
60  
ꢀ0  
ꢀ0  
80  
ꢀ0  
60  
ꢀ0  
ꢀ0  
ꢀꢁ  
6ꢀ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
36ꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
36ꢀ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
36ꢀ  
ꢀꢁ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8063 ꢀ03  
8063 ꢀ0ꢁ  
8063 ꢀ0ꢁ  
Efficiency, VOUT = 1.8V  
Efficiency, VOUT = 2V  
Efficiency, VOUT = 2.5V  
8ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢀ  
ꢀꢁ  
ꢀ0  
80  
ꢀ0  
60  
ꢀ0  
8ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
36ꢀ  
36ꢀ  
36ꢀ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8063 ꢀ0ꢁ  
8063 ꢀ06  
8063 ꢀ0ꢁ  
Efficiency, VOUT = 3.3V  
Efficiency, VOUT = 5V  
Efficiency, VOUT = 8V  
ꢀ0  
80  
ꢀ0  
60  
ꢀ0  
ꢀꢁ  
8ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢀ  
ꢀꢁ  
8ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
36ꢀ  
36ꢀ  
36ꢀ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8063 ꢀ0ꢁ  
8063 ꢀ08  
8063 ꢀ0ꢁ  
8063fa  
4
For more information www.linear.com/LTM8063  
LTM8063  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency, VOUT = 12V  
Efficiency, VOUT = 15V  
Efficiency, VOUT = –3.3V  
ꢀꢁ  
8ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢀ  
ꢀꢁ  
8ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢀ  
80  
ꢀ0  
60  
ꢀ0  
ꢀꢁꢂ  
ꢀꢁꢂ  
36ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
36ꢀ  
ꢀꢁ  
36ꢀ  
ꢀꢁ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8063 ꢀꢁ0  
8063 ꢀꢁꢁ  
8063 ꢀꢁꢂ  
Efficiency, VOUT = –5V  
Efficiency, VOUT = –8V  
Efficiency, VOUT = –12V  
80  
ꢀ0  
60  
ꢀ0  
80  
ꢀ0  
60  
ꢀ0  
80  
ꢀ0  
60  
ꢀ0  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
0
0ꢀꢁ  
ꢀꢁꢂ  
0
0ꢀꢁꢂ  
0ꢀꢁ0  
0ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8063 ꢀꢁ3  
8063 ꢀꢁꢂ  
8063 ꢀꢁꢂ  
Input vs Load Current,  
VOUT = 1.2V  
Efficiency, VOUT = –15V  
Input vs Load Current, VOUT = 1V  
80  
ꢀ0  
60  
ꢀ0  
0ꢀꢁ  
0ꢀ3  
0ꢀꢁ  
0ꢀꢁ  
0
0ꢀꢁ  
0ꢀ3  
0ꢀꢁ  
0ꢀꢁ  
0
ꢀꢁꢂ  
ꢀꢁꢂ  
36ꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
36ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
0
0ꢀꢁꢂ  
0ꢀꢁ0  
0ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8063 ꢀꢁ6  
8063 ꢀꢁꢂ  
8063 ꢀꢁ8  
8063fa  
5
For more information www.linear.com/LTM8063  
LTM8063  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input vs Load Current  
VOUT = 1.5V  
Input vs Load Current  
VOUT = 1.8V  
Input vs Load Current  
VOUT = 2V  
0ꢀ6  
0ꢀꢁ  
0ꢀꢁ  
0
0ꢀ6  
0ꢀꢁ  
0ꢀꢁ  
0
0ꢀ6  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
36ꢀ  
ꢀꢁ  
36ꢀ  
ꢀꢁ  
36ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
0ꢀꢁ  
0ꢀꢁ  
0
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8063 ꢀꢁꢂ  
8063 ꢀꢁ0  
8063 ꢀꢁꢂ  
Input vs Load Current  
Input vs Load Current  
VOUT = 5V  
Input vs Load Current  
VOUT = 8V  
V
OUT = 3.3V  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
0ꢀꢁ  
0
ꢀꢁ00  
0ꢀꢁꢂ  
0ꢀꢁ0  
0ꢀꢁꢂ  
0
ꢀꢁꢂ  
0ꢀ8  
0ꢀꢁ  
0
ꢀꢁꢂ  
ꢀꢁꢂ  
36ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
36ꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
36ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8063 ꢀꢁꢂ  
8063 ꢀꢁꢁ  
8063 ꢀꢁ3  
Input vs Load Current  
VOUT = 12V  
Input vs Load Current  
VOUT = 15V  
Input vs Load Current  
VOUT = –3.3V  
ꢀꢁꢂ  
ꢀꢁ0  
0ꢀꢁ  
0
ꢀꢁꢂ  
ꢀꢁ0  
0ꢀꢁ  
0
ꢀꢁ00  
0ꢀꢁꢂ  
0ꢀꢁ0  
0ꢀꢁꢂ  
0
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
36ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
36ꢀ  
36ꢀ  
ꢀꢁ  
ꢀꢁ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8063 ꢀꢁꢂ  
8063 ꢀꢁ6  
8063 ꢀꢁꢂ  
8063fa  
6
For more information www.linear.com/LTM8063  
LTM8063  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input vs Load Current  
OUT = –5V  
Input vs Load Current  
VOUT = –8V  
Input vs Load Current  
VOUT = –12V  
V
ꢀꢁꢂ0  
0ꢀ80  
0ꢀꢁ0  
0
ꢀꢁꢂ0  
ꢀꢁ00  
0ꢀꢁ0  
0
ꢀꢁꢂ  
ꢀꢁ0  
0ꢀꢁ  
0
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
0
0ꢀꢁ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
0
0ꢀꢁꢂ  
0ꢀꢁ0  
0ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8063 ꢀꢁ8  
8063 ꢀꢁꢂ  
8063 ꢀ30  
Input vs Load Current  
OUT = –15V  
V
Maximum Load Current vs VIN  
Maximum Load Current vs VIN  
ꢀꢁꢂ0  
0ꢀ80  
0ꢀꢁ0  
0
3
0
ꢀꢁ00  
0ꢀꢁꢂ  
0ꢀꢁ0  
0ꢀꢁꢂ  
0
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ3ꢁ3ꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ8ꢁ  
ꢀꢁꢂ  
0
0ꢀꢁꢂ  
0ꢀꢁ0  
0ꢀꢁꢂ  
0
ꢀ0  
ꢀ0  
30  
ꢀ0  
0
ꢀ0  
ꢀ0  
30  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
8063 ꢀ3ꢁ  
8063 ꢀ3ꢁ  
8063 ꢀ33  
Input Current vs VIN  
VOUT Short Circuited  
Derating, VOUT = 1V,  
DC2494A Demo Board  
Derating, VOUT = 1.2V,  
DC2494A Demo Board  
ꢀ00  
600  
300  
0
3
0
3
0
0ꢀꢁꢂ  
0ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
36ꢀ  
ꢀꢁ  
36ꢀ  
ꢀꢁ  
ꢀꢁ  
0
ꢀ0  
ꢀ0  
ꢀꢁꢂ  
30  
ꢀ0  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢀꢁ  
8063 ꢀ3ꢁ  
8063 ꢀ36  
8063 ꢀ3ꢁ  
8063fa  
7
For more information www.linear.com/LTM8063  
LTM8063  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Derating, VOUT = 1.8V,  
DC2494A Demo Board  
Derating, VOUT = 1.5V,  
DC2494A Demo Board  
Derating, VOUT = 2V,  
DC2494A Demo Board  
3
0
3
0
3
0ꢀꢁꢂ  
0ꢀꢁꢂ  
0ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
36ꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
36ꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
36ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
0
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
8063 ꢀ3ꢁ  
8063 ꢀ38  
8063 ꢀ3ꢁ  
Derating, VOUT = 3.3V,  
DC2494A Demo Board  
Derating, VOUT = 3.3V,  
DC2494A Demo Board  
Derating, VOUT = 2.5V,  
DC2494A Demo Board  
3
0
3
0
3
0 ꢀꢁꢂ  
ꢅ ꢆꢂꢇꢈ  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
f
ꢃꢄ  
0
36  
36  
36  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
8063 ꢀꢁꢂ  
8063 ꢀꢁ0  
8063 ꢀꢁꢂ  
Derating, VOUT = 5V,  
DC2494A Demo Board  
Derating, VOUT = 5V,  
Derating, VOUT = 8V,  
DC2494A Demo Board  
DC2494A Demo Board  
3
0
3
0
3
0
0 ꢀꢁꢂ  
ꢅ ꢆꢂꢇꢈ  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
f
ꢃꢄ  
36  
36  
36  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
8063 ꢀꢁ3  
8063 ꢀꢁꢁ  
8063 ꢀꢁꢂ  
8063fa  
8
For more information www.linear.com/LTM8063  
LTM8063  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Derating, VOUT = 12V,  
DC2494A Demo Board  
Derating, VOUT = 15V,  
DC2494A Demo Board  
Derating, VOUT = –3.3V,  
DC2494A Demo Board  
ꢀꢁꢂ  
ꢀꢁ0  
0ꢀꢁ  
0
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
0ꢀꢁ  
0
ꢀꢁꢂ  
ꢀꢁ0  
0ꢀꢁ  
0
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
36  
36  
36  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
8063 ꢀꢁꢂ  
8063 ꢀꢁ8  
8063 ꢀꢁ6  
Derating, VOUT = –5V,  
DC2494A Demo Board  
Derating, VOUT = –8V,  
DC2494A Demo Board  
Derating, VOUT = –12V,  
DC2494A Demo Board  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
0ꢀꢁ  
0
0ꢀꢁ  
0ꢀꢁ  
0ꢀ3  
0ꢀꢁ  
0ꢀꢁ  
0
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ0  
0ꢀꢁ  
0
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
8063 ꢀꢁꢂ  
8063 ꢀꢁ0  
8063 ꢀꢁꢂ  
CISPR22 Class B Emissions  
Dropout Voltage vs Load Current  
VOUT = 5V  
Derating, VOUT = –15V,  
DC2494A Demo Board  
DC2494A Demo Board, VOUT = 5V,  
C9 = 0.1µF, No EMI Filter, 1A Load  
0ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
3ꢀ  
ꢀꢁ  
ꢀꢁ  
800  
600  
ꢀ00  
ꢀ00  
0
0 ꢀꢁꢂ  
0ꢀꢁ  
0ꢀ3  
0ꢀꢁ  
0ꢀꢁ  
0
ꢀꢁꢂꢃꢄꢁꢅꢆꢇꢈ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀ00  
ꢀ00  
600  
800  
ꢀ000  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8063 ꢀꢁꢂ  
8063 ꢀꢁ3  
8063 ꢀꢁꢂ  
8063fa  
9
For more information www.linear.com/LTM8063  
LTM8063  
PIN FUNCTIONS  
GND(Bank1,A1,A4):TietheseGNDpinstoalocalground  
plane below the LTM8063 and the circuit components.  
In most applications, the bulk of the heat flow out of the  
LTM8063 is through these pads, so the printed circuit  
design has a large impact on the thermal performance of  
the part. See the PCB Layout and Thermal Considerations  
sections for more details.  
2. Pulse-skipping mode. Float this pin for pulse-skipping  
mode. This mode offers full frequency operation down  
to low output loads before pulse skipping occurs.  
3. Spread spectrum mode. Tie this pin high (between  
2.9V and 4.2V) for pulse-skipping mode with spread  
spectrum modulation.  
4. Synchronizationmode.Drivethispinwithaclocksource  
tosynchronizetoanexternalfrequency.Duringsynchro-  
nization the part will operate in pulse-skipping mode.  
V (Bank 2): V supplies current to the LTM8063’s in-  
IN  
IN  
ternal regulator and to the internal power switches. These  
pins must be locally bypassed with an external, low ESR  
capacitor; see Table 1 for recommended values.  
PG (Pin B1): The PG pin is the open-collector output of  
an internal comparator. PG remains low until the FB pin  
voltage is within about 10% of the final regulation volt-  
V
(Bank 3): Power Output Pins. Apply the output filter  
OUT  
capacitor and the output load between these pins and  
age. The PG signal is valid when V is above 3.2V. If V  
IN  
IN  
GND pins.  
is above 3.2V and RUN is low, PG will drive low. If this  
RUN (Pin B3): Pull the RUN pin below 0.9V to shut down  
function is not used, leave this pin floating.  
the LTM8063. Tie to 1.2V or more for normal operation. If  
FB (Pin A2): The LTM8063 regulates its FB pin to 0.77V.  
the shutdown feature is not used, tie this pin to the V pin.  
IN  
Connect the adjust resistor from this pin to ground.  
RT (Pin C1): The RT pin is used to program the switching  
frequency of the LTM8063 by connecting a resistor from  
thispintoground.TheApplicationsInformationsectionof  
the data sheet includes a table to determine the resistance  
value based on the desired switching frequency. Minimize  
capacitance at this pin. Do not drive this pin.  
The value of R is given by the equation R = 192.73/  
FB FB  
– 0.774), where R is in kΩ.  
FB  
(V  
OUT  
TR/SS (Pin A3): The TR/SS pin is used to provide a soft-  
start or tracking function. The internal 2μA pull-up current  
in combination with an external capacitor tied to this pin  
creates a voltage ramp. If TR/SS is less than about 0.77V,  
theFBvoltagetrackstothisvalue.Thesoft-startramptime  
is approximated by the equation t = 0.39 • C where C is  
in μF. For tracking, tie a resistor divider to this pin from the  
trackedoutput.Thispinispulledtogroundwithaninternal  
MOSFETduringshutdownandfaultconditions;useaseries  
resistor if driving from a low impedance output. This pin  
may be left floating if the tracking function is not needed.  
SYNC (Pin B2): External clock synchronization input  
and operational mode. This pin programs four different  
operating modes:  
1. Burst Mode® Operation. Tie this pin to ground for Burst  
Mode operation at low output loads—this will result in  
ultralow quiescent current.  
8063fa  
10  
For more information www.linear.com/LTM8063  
LTM8063  
BLOCK DIAGRAM  
LTM8063 Block Diagram  
ꢄꢅ  
ꢖꢓꢙꢕꢚ  
ꢏꢂꢋꢋꢐꢅꢃ  
ꢑꢁꢊꢐ  
ꢏꢁꢅꢃꢋꢁꢒꢒꢐꢋ  
ꢁꢂꢃ  
0ꢓꢔꢕꢆ  
ꢔꢛꢜꢝ  
ꢖ0ꢗꢆ  
3ꢓ3ꢘꢆ  
ꢉꢅꢊ  
ꢆꢇ  
ꢋꢂꢅ  
ꢃꢋꢌꢍꢍ  
ꢍꢎꢅꢏ  
ꢋꢃ  
ꢈꢉ  
8063 ꢇꢊ  
8063fa  
11  
For more information www.linear.com/LTM8063  
LTM8063  
OPERATION  
The LTM8063 is a stand-alone non-isolated step-down  
switching DC/DC power supply that can deliver up to  
2.5A. Thecontinuouscurrentisdeterminedbytheinternal  
operating temperature. It provides a precisely regulated  
output voltage programmable via one external resistor  
from 0.8V to 15V. The input voltage range is 3.2V to 40V.  
Given that the LTM8063 is a step-down converter, make  
sure that the input voltage is high enough to support the  
desiredoutputvoltageandloadcurrent.AsimplifiedBlock  
Diagram is given above.  
TheoscillatorreducestheLTM8063’soperatingfrequency  
when the voltage at the FB pin is low. This frequency fold-  
back helps to control the output current during start-up  
and overload.  
The TR/SS node acts as an auxiliary input to the error  
amplifier. The voltage at FB servos to the TR/SS voltage  
until TR/SS goes above 0.77V. Soft-start is implemented  
by generating a voltage ramp at the TR/SS pin using an  
externalcapacitorwhichischargedbyaninternalconstant  
current. Alternatively, driving the TR/SS pin with a signal  
source or resistive network provides a tracking function.  
Do not drive the TR/SS pin with a low impedance volt-  
age source. See the Applications Information section for  
more details.  
The LTM8063 contains a current mode controller, power  
switchingelements, powerinductorandamodestamount  
of input and output capacitance. The LTM8063 is a fixed  
frequency PWM regulator. The switching frequency is set  
by simply connecting the appropriate resistor value from  
the RT pin to GND.  
The LTM8063 contains a power good comparator which  
trips when the FB pin is at about 90% to 110% of its  
regulated value. The PG output is an open-drain transistor  
that is off when the output is in regulation, allowing an  
external resistor to pull the PG pin high. The PG signal  
The RUN pin is used to place the LTM8063 in shutdown,  
disconnecting the output and reducing the input current  
to a few µA.  
is valid when V is above 3.2V. If V is above 3.2V and  
IN  
IN  
Toenhanceefficiency,theLTM8063automaticallyswitches  
to Burst Mode operation in light or no load situations.  
Between bursts, all circuitry associated with controlling  
the output switch is shut down reducing the input supply  
current to just a few µA.  
RUN is low, PG will drive low.  
The LTM8063 is equipped with a thermal shutdown that  
inhibits power switching at high junction temperatures.  
Theactivationthresholdofthisfunctionisabovethemaxi-  
mum temperature rating to avoid interfering with normal  
operation, so prolonged or repetitive operation under a  
condition in which the thermal shutdown activates may  
damage or impair the reliability of the device.  
8063fa  
12  
For more information www.linear.com/LTM8063  
LTM8063  
APPLICATIONS INFORMATION  
For most applications, the design process is straight-  
forward, summarized as follows:  
ture, therelationshipbetweentheinputandoutputvoltage  
magnitude and polarity and other factors. Please refer to  
the graphs in the Typical Performance Characteristics  
section for guidance.  
1. Look at Table 1 and find the row that has the desired  
input range and output voltage.  
The maximum frequency (and attendant R value) at  
T
2. Applytherecommended,C , C , R andR values.  
IN OUT FB  
T
which the LTM8063 should be allowed to switch is given  
3. Apply the C (from V  
to F ) as required.  
in Table 1 in the Maximum f column, while the recom-  
FF  
OUT  
B
SW  
mended frequency (and R value) for optimal efficiency  
T
While these component combinations have been tested  
for proper operation, it is incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental conditions. Bear in mind that the  
maximum output current is limited by junction tempera-  
over the given input condition is given in the f column.  
SW  
There are additional conditions that must be satisfied if  
the synchronization function is used. Please refer to the  
Synchronization section for details.  
Table 1. Recommended Component Values and Configuration (TA = 25°C)  
R
R
MIN R  
(kΩ)  
FB  
T
T
2
V
V
(kΩ)  
Open  
845  
453  
267  
187  
154  
113  
75  
C
C
C
f
(kΩ)  
73.2  
60.4  
52.3  
52.3  
47.5  
41.2  
33.2  
33.2  
27.4  
20.5  
20.5  
18.2  
33.2  
27.4  
20.5  
20.5  
18.2  
MAX f  
SW  
IN  
OUT  
IN  
OUT  
FF  
SW  
3.2 to 40  
3.2 to 40  
3.2 to 40  
3.2 to 40  
3.2 to 40  
3.3 to 40V  
3.8 to 40V  
0.77V  
1.0V  
1.2V  
1.5V  
1.8V  
2.0V  
2.5V  
3.3V  
5V  
1µF 50V 0805 X5R  
1µF 50V 0805 X5R  
1µF 50V 0805 X5R  
1µF 50V 0805 X5R  
1µF 50V 0805 X5R  
1µF 50V 0805 X5R  
1µF 50V 0805 X5R  
1µF 50V 0805 X5R  
1µF 50V 0805 X5R  
1µF 50V 0805 X5R  
1µF 50V 0805 X5R  
1µF 50V 0805 X5R  
1µF 50V 0805 X5R  
1µF 50V 0805 X5R  
1µF 50V 0805 X5R  
1µF 50V 0805 X5R  
1µF 50V 0805 X5R  
100µF 4V 0805 X5R  
100µF 4V 0805 X5R  
100µF 4V 0805 X5R  
100µF 4V 0805 X5R  
100µF 4V 0805 X5R  
100µF 4V 0805 X5R  
47µF 4V 0805 X5R  
47µF 4V 0805 X5R  
22µF 6.3V 0805 X5R  
10µF 10V 0805 X5R  
10µF 16V 0805 X7S  
10µF 25V 1206 X7R  
47µF 4V 0805 X5R  
22µF 6.3V 0805 X5R  
10µF 10V 0805 X5R  
10µF 16V 0805 X7S  
10µF 25V 1206 X7R  
27pF  
10pF  
600kHz  
700kHz  
800kHz  
800kHz  
900kHz  
1MHz  
600kHz  
725kHz  
850kHz  
1MHz  
73.2  
59  
48.7  
41.2  
33.2  
29.4  
23.7  
18.2  
15.8  
15.8  
15.8  
15.8  
18.2  
15.8  
15.8  
15.8  
15.8  
1.2MHz  
1.3MHz  
1.6MHz  
2MHz  
1
1
1.2MHz  
1.2MHz  
1.4MHz  
1.8MHz  
1.8MHz  
2MHz  
1
5 to 40V  
1
6.5 to 40V  
45.3  
26.7  
17.4  
13.7  
75  
2.2MHz  
2.2MHz  
2.2MHz  
2.2MHz  
2MHz  
1
1
10.5 to 40V  
18.5 to 40V  
8V  
12V  
1
22 to 40V  
15V  
1
3.2 to 36V  
–3.3V  
–5V  
1.2MHz  
1.4MHz  
1.8MHz  
1.8MHz  
2MHz  
1
3.2 to 35V  
45.3  
26.7  
17.4  
13.7  
2.2MHz  
2.2MHz  
2.2MHz  
2.2MHz  
1
3.2 to 32V  
–8V  
1
3.2 to 28V  
–12V  
–15V  
1
3.2 to 25V  
1. The LTM8063 may be capable of lower input voltages but may skip switching cycles.  
2. An input bulk capacitor is required  
8063fa  
13  
For more information www.linear.com/LTM8063  
LTM8063  
APPLICATIONS INFORMATION  
Capacitor Selection Considerations  
Frequency Selection  
The C and C  
capacitor values in Table 1 are the The LTM8063 uses a constant frequency PWM archi-  
IN  
OUT  
minimum recommended values for the associated oper- tecture that can be programmed to switch from 200kHz  
ating conditions. Applying capacitor values below those to 2.2MHz by using a resistor tied from the RT pin to  
indicated in Table 1 is not recommended and may result ground. Table 2 provides a list of R resistor values and  
T
in undesirable operation. Using larger values is generally their resultant frequencies.  
acceptable, and can yield improved dynamic response, if  
Table 2. SW Frequency vs RT Value  
it is necessary. Again, it is incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental conditions.  
f
(MHz)  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
R (kΩ)  
SW  
T
232  
150  
Ceramic capacitors are small, robust and have very low  
ESR. However, not all ceramic capacitors are suitable.  
X5R and X7R types are stable over temperature and ap-  
plied voltage and give dependable service. Other types,  
including Y5V and Z5U have very large temperature and  
voltage coefficients of capacitance. In an application cir-  
cuit they may have only a small fraction of their nominal  
capacitanceresultinginmuchhigheroutputvoltageripple  
than expected.  
110  
88.7  
73.2  
60.4  
52.3  
41.2  
33.2  
27.4  
23.7  
20.5  
18.2  
15.8  
Ceramic capacitors are also piezoelectric. In Burst Mode  
operation, the LTM8063’s switching frequency depends  
on the load current, and can excite a ceramic capacitor  
at audio frequencies, generating audible noise. Since the  
LTM8063 operates at a lower current limit during Burst  
Mode operation, the noise is typically very quiet to a  
casual ear.  
Operating Frequency Trade-Offs  
It is recommended that the user apply the optimal R  
T
value given in Table 1 for the input and output operating  
condition. System level or other considerations, however,  
may necessitate another operating frequency. While the  
LTM8063isflexibleenoughtoaccommodateawiderange  
of operating frequencies, a haphazardly chosen one may  
result in undesirable operation under certain operating or  
fault conditions. A frequency that is too high can reduce  
efficiency, generate excessive heat or even damage the  
LTM8063 if the output is overloaded or short-circuited.  
A frequency that is too low can result in a final design  
that has too much output ripple or too large of an output  
capacitor.  
If this audible noise is unacceptable, use a high perfor-  
mance electrolytic capacitor at the output. It may also be  
a parallel combination of a ceramic capacitor and a low  
cost electrolytic capacitor.  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LTM8063. A  
ceramic input capacitor combined with trace or cable  
inductance forms a high-Q (underdamped) tank circuit.  
If the LTM8063 circuit is plugged into a live supply, the  
input voltage can ring to twice its nominal value, possi-  
bly exceeding the device’s rating. This situation is easily  
avoided; see the Hot-Plugging Safely section.  
Maximum Load  
The maximum practical continuous load that the LTM8063  
can drive, while rated at 2A, actually depends upon both  
the internal current limit and the internal temperature.  
8063fa  
14  
For more information www.linear.com/LTM8063  
LTM8063  
APPLICATIONS INFORMATION  
The internal current limit is designed to prevent damage  
to the LTM8063 in the case of overload or short-circuit.  
The internal temperature of the LTM8063 depends upon  
operating conditions such as the ambient temperature,  
the power delivered, and the heat sinking capability of  
the system. For example, if the LTM8063 is configured  
to regulate at 1.2V, it may continuously deliver 2.5A from  
Output Voltage Tracking and Soft-Start  
The LTM8063 allows the user to adjust its output voltage  
rampratebymeansoftheTR/SSpin. Aninternal2μApulls  
uptheTR/SSpintoabout2.4V. Puttinganexternalcapaci-  
tor on TR/SS enables soft starting the output to reduce  
current surges on the input supply. During the soft-start  
ramp the output voltage will proportionally track the TR/  
SS pin voltage. For output tracking applications, TR/SS  
can be externally driven by another voltage source. From  
0V to 0.77V, the TR/SS voltage will override the internal  
0.77V reference input to the error amplifier, thus regulat-  
ing the FB pin voltage to that of the TR/SS pin. When TR/  
SS is above 0.77V, tracking is disabled and the feedback  
voltage will regulate to the internal reference voltage. The  
TR/SSpinmaybeleftfloatingifthefunctionisnotneeded.  
12V if the ambient temperature is controlled to less than  
IN  
55°C. This is higher than the 2A continuous rating. Please  
see the “Derating, V  
= 1.2V” curve in the Typical Per-  
OUT  
formance Characteristics section. Similarly, if the output  
voltage is 15V and the ambient temperature is 100°C, the  
LTM8063 will deliver less than 100mA from 36V , which  
IN  
is less than the 2A continuous rating.  
Load Sharing  
An active pull-down circuit is connected to the TR/SS pin  
which will discharge the external soft-start capacitor in  
the case of fault conditions and restart the ramp when the  
faults are cleared. Fault conditions that clear the soft-start  
capacitor are the RUN pin transitioning low, V voltage  
falling too low, or thermal shutdown.  
The LTM8063 is not designed to load share.  
Burst Mode Operation  
To enhance efficiency at light loads, the LTM8063 auto-  
matically switches to Burst Mode operation which keeps  
the output capacitor charged to the proper voltage while  
minimizing the input quiescent current. During Burst  
Modeoperation,theLTM8063deliverssinglecyclebursts  
ofcurrenttotheoutputcapacitorfollowedbysleepperiods  
where most of the internal circuitry is powered off and  
energy is delivered to the load by the output capacitor.  
IN  
Pre-Biased Output  
As discussed in the Output Voltage Tracking and Soft-  
Start section, the LTM8063 regulates the output to the  
FB voltage determined by the TR/SS pin whenever TR/  
SS is less than 0.77V. If the LTM8063 output is higher  
than the target output voltage, the LTM8063 will attempt  
to regulate the output to the target voltage by returning a  
small amount of energy back to the input supply. If there  
is nothing loading the input supply, its voltage may rise.  
Take care that it does not rise so high that the input voltage  
exceeds the absolute maximum rating of the LTM8063.  
During the sleep time, V quiescent current is greatly  
IN  
reduced, so, as the load current decreases towards a no  
load condition, the percentage of time that the LTM8063  
operates in sleep mode increases and the average input  
current is greatly reduced, resulting in higher light load  
efficiency.  
Burst Mode operation is enabled by tying SYNC to GND.  
Frequency Foldback  
Minimum Input Voltage  
The LTM8063 is equipped with frequency foldback which  
actstoreducethethermalandenergystressontheinternal  
power elements during a short circuit or output overload  
condition. If the LTM8063 detects that the output has  
fallenoutofregulation,theswitchingfrequencyisreduced  
as a function of how far the output is below the target  
voltage. This in turn limits the amount of energy that can  
The LTM8063 is a step-down converter, so a minimum  
amount of headroom is required to keep the output in  
regulation. Keep the input above 3.2V to ensure proper  
operation. Voltage transients or ripple valleys that cause  
the input to fall below 3.2V may turn off the LTM8063.  
8063fa  
15  
For more information www.linear.com/LTM8063  
LTM8063  
APPLICATIONS INFORMATION  
be delivered to the load under fault. During the start-up  
time, frequency foldback is also active to limit the energy  
delivered to the potentially large output capacitance of  
the load. When a clock is applied to the SYNC pin, the  
SYNC pin is floated or held high, the frequency foldback  
is disabled, and the switching frequency will slow down  
only during overcurrent conditions.  
the LTM8063 is programmed to 2MHz, the frequency will  
vary from 2MHz to 2.4MHz at a 3kHz rate. When spread  
spectrum operation is selected, Burst Mode operation is  
disabled, and the part will run in pulse-skipping mode.  
TheLTM8063doesnotoperateinforcedcontinuousmode  
regardless of SYNC signal.  
Negative Output  
Synchronization  
The LTM8063 is capable of generating a negative output  
To select low ripple Burst Mode operation, tie the SYNC  
pin below about 0.4V (this can be ground or a logic low  
output). To synchronize the LTM8063 oscillator to an  
external frequency, connect a square wave (with about  
20% to 80% duty cycle) to the SYNC pin. The square  
wave amplitude should have valleys that are below 0.4V  
and peaks above 1.5V.  
voltage by connecting its V  
to system GND and the  
OUT  
LTM8063 GND to the negative voltage rail. An example  
of this is shown in the Typical Applications section. The  
most versatile way to generate a negative output is to  
use a dedicated regulator that was designed to generate  
a negative voltage, but using a buck regulator like the  
LTM8063 to generate a negative voltage is a simple and  
cost effective solution, as long as certain restrictions are  
kept in mind.  
The LTM8063 will not enter Burst Mode operation at low  
output loads while synchronized to an external clock, but  
insteadwillpulseskiptomaintainregulation.TheLTM8063  
may be synchronized over a 200kHz to 2.2MHz range.  
Figure1showsatypicalnegativeoutputvoltageapplication.  
Note that LTM8063 V  
is tied to system GND and input  
OUT  
The R resistor should be chosen to set the switching  
T
power is applied from V to LTM8063 V . As a result,  
IN  
OUT  
frequency equal to or below the lowest synchronization  
input. For example, if the synchronization signal will be  
the LTM8063 is not behaving as a true buck regulator,  
and the maximum output current depends upon the input  
voltage. In the example shown in the Typical Applications  
section, there is an attending graph that shows how much  
current the LTM8063 can deliver for given input voltages.  
500kHz and higher, the R should be selected for 500kHz.  
T
For some applications it is desirable for the LTM8063 to  
operate in pulse-skipping mode, offering two major dif-  
ferences from Burst Mode operation. The first is that the  
clock stays awake at all times and all switching cycles  
are aligned to the clock. The second is that full switching  
frequency is reached at lower output load than in Burst  
Modeoperation.Thesetwodifferencescomeattheexpense  
of increased quiescent current. To enable pulse-skipping  
mode, the SYNC pin is floated.  
ꢅꢀ  
ꢅꢀ  
ꢇꢈꢄ  
ꢋ8063  
ꢂꢀꢎ  
ꢀꢁꢂꢃꢄꢅꢆꢁ  
ꢇꢈꢄꢉꢈꢄ ꢆꢇꢂꢁ  
8063 ꢌ0ꢍ  
The LTM8063 features spread spectrum operation to  
further reduce EMI/EMC emissions. To enable spread  
spectrum operation, apply between 2.9V and 4.2V to the  
SYNC pin. In this mode, triangular frequency modulation  
is used to vary the switching frequency between the value  
Figure 1. The LTM8063 Can Be Used to Generate a Negative Voltage  
Note that this configuration requires that any load current  
transient will directly impress the transient voltage onto  
the LTM8063 GND, as shown in Figure 2, so fast load  
transients can disrupt the LTM8063’s operation or even  
cause damage.  
programmed by R to about 20% higher than that value.  
T
Themodulationfrequencyisabout3kHz.Forexample,when  
8063fa  
16  
For more information www.linear.com/LTM8063  
LTM8063  
APPLICATIONS INFORMATION  
circuitry pulls its quiescent current through its internal  
power switch. This is fine if your system can tolerate a  
few milliamps in this state. If you ground the RUN pin, the  
internal current drops to essentially zero. However, if the  
ꢉꢈ  
ꢉꢈ  
ꢅꢋꢃ  
ꢍ8063  
ꢐꢈꢆ  
V pin is grounded while the output is held high, parasitic  
IN  
ꢀꢁꢂꢃ ꢄꢅꢁꢆ  
ꢃꢇꢁꢈꢂꢉꢊꢈꢃ  
diodes inside the LTM8063 can pull large currents from  
8063 ꢀ0ꢏ  
ꢅꢋꢃꢌꢋꢃ ꢃꢇꢁꢈꢂꢉꢊꢈꢃ  
ꢇꢊꢂꢌꢅꢈꢂꢊ  
the output through the V pin. Figure 4 shows a circuit  
IN  
that runs only when the input voltage is present and that  
Figure 2. Any Output Voltage Transient Appears on LTM8063 GND  
protects against a shorted or reversed input.  
The C and C  
capacitors in Figure 3 form an AC divider  
IN  
OUT  
ꢄꢅ  
ꢄꢅ  
at the negative output voltage node. If V is hot-plugged  
IN  
or rises quickly, the resultant V  
will be a positive tran-  
OUT  
ꢂ8063  
sient, which may be unhealthy for the application load.  
An anti-parallel Schottky diode may be able to prevent  
this positive transient from damaging the load. The loca-  
tion of this Schottky diode is important. For example, in  
a system where the LTM8063 is far away from the load,  
placing the Schottky diode closest to the most sensitive  
load component may be the best design choice. Carefully  
evaluate whether the negative buck configuration is suit-  
able for the application.  
ꢈꢉꢅ  
8063 ꢆ0ꢇ  
Figure 4. The Input Diode Prevents a Shorted Input from  
Discharging a Backup Battery Tied to the Output. It Also  
Protects the Circuit from a Reversed Input. The LTM8063  
Runs Only When the Input Is Present  
PCB Layout  
Most of the headaches associated with PCB layout have  
been alleviated or even eliminated by the high level of  
integration of the LTM8063. The LTM8063 is neverthe-  
less a switching power supply, and care must be taken to  
minimize EMI and ensure proper operation. Even with the  
high level of integration, you may fail to achieve specified  
operation with a haphazard or poor layout. See Figure 5  
for a suggested layout. Ensure that the grounding and  
heat sinking are acceptable.  
ꢀꢁꢂꢃ ꢄ  
ꢅꢆ  
ꢃꢇꢁꢆꢂꢅꢈꢆꢃ  
ꢉꢊꢃꢋꢊꢃ ꢈꢌꢋꢈꢇꢅꢈꢆꢍꢈꢂ  
ꢁ ꢋꢉꢂꢅꢃꢅꢄꢈ ꢃꢇꢁꢆꢂꢅꢈꢆꢃ  
ꢅꢆ  
ꢅꢆ  
ꢉꢊꢃ  
ꢏ8063  
ꢐꢆꢑ  
ꢅꢆ  
ꢉꢊꢃ  
ꢁꢍ ꢑꢅꢄꢅꢑꢈꢇ  
ꢉꢋꢃꢅꢉꢆꢁꢎ  
ꢂꢍꢒꢉꢃꢃꢓꢔ  
ꢑꢅꢉꢑꢈ  
A few rules to keep in mind are:  
8063 ꢀ03  
Figure 3. A Schottky Diode Can Limit the Transient Caused by  
a Fast Rising VIN to Safe Levels  
1. Place C , R and R as close as possible to their  
FF  
FB  
T
respective pins.  
2. Place the C capacitor as close as possible to the V  
Shorted Input Protection  
IN  
IN  
and GND connection of the LTM8063.  
Care needs to be taken in systems where the output is held  
high when the input to the LTM8063 is absent. This may  
occurinbatterychargingapplicationsorinbatterybackup  
systems where a battery or some other supply is diode  
3. Place the C  
capacitor as close as possible to the  
OUT  
V
and GND connection of the LTM8063.  
OUT  
4. PlacetheC andC capacitorssuchthattheirground  
IN  
OUT  
ORed with the LTM8063’s output. If the V pin is allowed  
IN  
currents flow directly adjacent to or underneath the  
LTM8063.  
tofloatandtheRUNpinisheldhigh(eitherbyalogicsignal  
or because it is tied to V ), then the LTM8063’s internal  
IN  
8063fa  
17  
For more information www.linear.com/LTM8063  
LTM8063  
APPLICATIONS INFORMATION  
5. Connect all of the GND connections to as large a copper  
pour or plane area as possible on the top layer. Avoid  
breaking the ground connection between the external  
components and the LTM8063.  
complete discussion). The low loss ceramic capacitor  
combined with stray inductance in series with the power  
source forms an underdamped tank circuit, and the volt-  
age at the V pin of the LTM8063 can ring to more than  
IN  
twice the nominal input voltage, possibly exceeding the  
LTM8063’sratinganddamagingthepart.Iftheinputsupply  
ispoorlycontrolledortheLTM8063ishot-pluggedintoan  
energized supply, the input network should be designed  
to prevent this overshoot. This can be accomplished by  
6. Use vias to connect the GND copper area to the board’s  
internalgroundplanes. LiberallydistributetheseGNDvias  
to provide both a good ground connection and thermal  
path to the internal planes of the printed circuit board. Pay  
attention to the location and density of the thermal vias in  
Figure 5. The LTM8063 can benefit from the heat-sinking  
afforded by vias that connect to internal GND planes at  
these locations, due to their proximity to internal power  
handling components. The optimum number of thermal  
vias depends upon the printed circuit board design.  
For example, a board might use very small via holes. It  
should employ more thermal vias than a board that uses  
larger holes.  
installing a small resistor in series to V , but the most  
IN  
popular method of controlling input voltage overshoot is  
add an electrolytic bulk cap to the V net. This capacitor’s  
IN  
relativelyhighequivalentseriesresistancedampsthecircuit  
and eliminates the voltage overshoot. The extra capacitor  
improves low frequency ripple filtering and can slightly  
improve the efficiency of the circuit, though it is likely to  
be the largest component in the circuit.  
Thermal Considerations  
The LTM8063 output current may need to be derated if it  
is required to operate in a high ambient temperature. The  
amount of current derating is dependent upon the input  
voltage, output power and ambient temperature. The  
derating curves given in the Typical Performance Char-  
acteristics section can be used as a guide. These curves  
ꢌꢉ  
ꢊꢉꢋ  
ꢄꢌꢉ  
ꢃꢍꢎꢇꢇ ꢍꢂꢉ  
ꢅꢆ ꢇꢈꢉꢀ  
2
were generated by the LTM8063 mounted to a 58cm  
ꢊꢉꢋ  
ꢁꢂꢃ  
4-layer FR4 printed circuit board. Boards of other sizes  
and layer count can exhibit different thermal behavior, so  
it is incumbent upon the user to verify proper operation  
over the intended system’s line, load and environmental  
operating conditions.  
ꢔꢊ ꢍꢃ  
ꢊꢉꢋ  
ꢁꢂꢃ  
For increased accuracy and fidelity to the actual applica-  
tion, many designers use FEA (Finite Element Analysis)  
to predict thermal performance. To that end, Page 2 of  
the data sheet typically gives four thermal coefficients:  
ꢊꢉꢋꢎꢃꢏꢐꢍꢑꢒꢓ ꢄꢌꢒꢇ  
8063 ꢅ0ꢕ  
Figure 5. Layout Showing Suggested External  
Components, GND Plane and Thermal Vias  
θ
JA  
– Thermal resistance from junction to ambient  
θ
– Thermal resistance from junction to the  
JCbottom  
Hot-Plugging Safely  
bottom of the product case  
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
bypass capacitor of LTM8063. However, these capacitors  
can cause problems if the LTM8063 is plugged into a live  
supply (see Linear Technology Application Note 88 for a  
θ
– Thermal resistance from junction to top of the  
JCtop  
product case  
θ
JB  
– Thermal resistance from junction to the printed  
circuit board.  
8063fa  
18  
For more information www.linear.com/LTM8063  
LTM8063  
APPLICATIONS INFORMATION  
While the meaning of each of these coefficients may  
seem to be intuitive, JEDEC has defined each to avoid  
confusion and inconsistency. These definitions are given  
in JESD 51-12, and are quoted or paraphrased below:  
µModule regulator and into the board, and is really the  
sum of the θ  
and the thermal resistance of the  
JCbottom  
bottom of the part through the solder joints and through a  
portion of the board. The board temperature is measured  
a specified distance from the package, using a two sided,  
two layer board. This board is described in JESD 51-9.  
θ
is the natural convection junction-to-ambient air  
JA  
thermal resistance measured in a one cubic foot sealed  
enclosure. This environment is sometimes referred to as  
“still air” although natural convection causes the air to  
move. This value is determined with the part mounted to  
a JESD 51-9 defined test board, which does not reflect an  
actual application or viable operating condition.  
Giventhesedefinitions,itshouldnowbeapparentthatnone  
of these thermal coefficients reflects an actual physical  
operating condition of a µModule regulator. Thus, none  
of them can be individually used to accurately predict the  
thermal performance of the product. Likewise, it would  
be inappropriate to attempt to use any one coefficient to  
correlate to the junction temperature vs load graphs given  
in the product’s data sheet. The only appropriate way to  
use the coefficients is when running a detailed thermal  
analysis, such as FEA, which considers all of the thermal  
resistances simultaneously.  
θ
is the junction-to-board thermal resistance with  
JCbottom  
allofthecomponentpowerdissipationflowingthroughthe  
bottom of the package. In the typical µModule regulator,  
the bulk of the heat flows out the bottom of the package,  
but there is always heat flow out into the ambient envi-  
ronment. As a result, this thermal resistance value may  
be useful for comparing packages but the test conditions  
don’t generally match the user’s application.  
A simplified graphical representation of these thermal  
resistances is given in Figure 6. The blue resistances are  
contained within the µModule regulator, and the green  
are outside.  
θ
JCtop  
isdeterminedwithnearlyallofthecomponentpower  
dissipation flowing through the top of the package. As the  
electrical connections of the typical µModule regulator are  
on the bottom of the package, it is rare for an application  
to operate such that most of the heat flows from the junc-  
The die temperature of the LTM8063 must be lower than  
the maximum rating, so care should be taken in the layout  
of the circuit to ensure good heat sinking of the LTM8063.  
The bulk of the heat flow out of the LTM8063 is through  
the bottom of the package and the pads into the printed  
circuit board. Consequently a poor printed circuit board  
design can cause excessive heating, resulting in impaired  
performance or reliability. Please refer to the PCB Layout  
section for printed circuit board design suggestions.  
tion to the top of the part. As in the case of θ  
, this  
JCbottom  
value may be useful for comparing packages but the test  
conditions don’t generally match the user’s application.  
θ
is the junction-to-board thermal resistance where  
JB  
almost all of the heat flows through the bottom of the  
ꢋꢅꢌꢊꢍꢉꢃꢌꢎꢍꢃꢎꢏꢂꢕꢉꢇꢌꢍ ꢔꢇꢐꢉꢐꢍꢏꢌꢊꢇ ꢑꢋꢇꢐꢄ ꢖꢗꢎꢘ ꢄꢇꢀꢉꢌꢇꢄ ꢕꢃꢏꢔꢄꢓ  
ꢋꢅꢌꢊꢍꢉꢃꢌꢎꢍꢃꢎꢊꢏꢐꢇ ꢑꢍꢃꢒꢓ  
ꢔꢇꢐꢉꢐꢍꢏꢌꢊꢇ  
ꢊꢏꢐꢇ ꢑꢍꢃꢒꢓꢎꢍꢃꢎꢏꢂꢕꢉꢇꢌꢍ  
ꢔꢇꢐꢉꢐꢍꢏꢌꢊꢇ  
ꢋꢅꢌꢊꢍꢉꢃꢌꢎꢍꢃꢎꢕꢃꢏꢔꢄ ꢔꢇꢐꢉꢐꢍꢏꢌꢊꢇ  
ꢋꢅꢌꢊꢍꢉꢃꢌ  
ꢏꢂꢕꢉꢇꢌꢍ  
ꢋꢅꢌꢊꢍꢉꢃꢌꢎꢍꢃꢎꢊꢏꢐꢇ  
ꢑꢕꢃꢍꢍꢃꢂꢓ ꢔꢇꢐꢉꢐꢍꢏꢌꢊꢇ  
ꢊꢏꢐꢇ ꢑꢕꢃꢍꢍꢃꢂꢓꢎꢍꢃꢎꢕꢃꢏꢔꢄ  
ꢔꢇꢐꢉꢐꢍꢏꢌꢊꢇ  
ꢕꢃꢏꢔꢄꢎꢍꢃꢎꢏꢂꢕꢉꢇꢌꢍ  
ꢔꢇꢐꢉꢐꢍꢏꢌꢊꢇ  
8063 ꢀ06  
ꢁꢂꢃꢄꢅꢆꢇ ꢄꢇꢈꢉꢊꢇ  
Figure 6. Simplified Graphical Representation of the Thermal Resistance Between the Device Junction and Ambient  
8063fa  
19  
For more information www.linear.com/LTM8063  
LTM8063  
TYPICAL APPLICATIONS  
1.2VOUT from 3.2VIN to 40VIN Step-Down Converter  
ꢖꢗ  
ꢖꢗ  
ꢎ8063  
3ꢉꢈꢏ ꢍꢐ ꢆ0ꢏ  
ꢅꢑꢗ  
ꢅꢍ  
ꢀꢁꢂ  
ꢃꢄꢅ  
080ꢄ  
ꢐꢑꢍ  
ꢐꢑꢍ  
ꢀꢉꢈꢏ  
ꢈꢉ3ꢒ  
ꢈꢉꢄꢒ ꢓꢔꢒꢕ  
ꢀ00ꢁꢂ  
ꢃꢄꢅ  
080ꢄ  
ꢆꢄ3ꢇ  
ꢄꢈꢉ3ꢇ  
800ꢇꢊꢋ  
ꢙꢗꢚ ꢛꢜꢗꢝ  
ꢂꢘ  
8063 ꢍꢒ0ꢈ  
ꢓꢖꢗꢛ ꢗꢐꢍ ꢑꢛꢔꢚ ꢖꢗ ꢍꢊꢖꢛ ꢝꢖꢅꢝꢑꢖꢅꢟꢛꢛꢠ ꢓꢙ  
3.3VOUT from 5VIN to 40VIN Step-Down Converter  
ꢗꢘ  
ꢗꢘ  
ꢋ8063  
ꢄꢐ ꢏꢑ ꢆ0ꢐ  
ꢅꢒꢘ  
ꢅꢏ  
ꢀꢁꢂ  
ꢃꢄꢅ  
080ꢄ  
ꢑꢒꢏ  
ꢑꢒꢏ  
3ꢉ3ꢐ  
ꢊꢉꢀꢓ  
ꢊꢉꢄꢓ ꢔꢕꢓꢖ  
ꢆꢇꢁꢂ  
ꢃꢄꢅ  
080ꢄ  
ꢇꢄꢈ  
33ꢉꢊꢈ  
ꢀꢉꢊꢋꢌꢍ  
ꢛꢘꢜ ꢝꢞꢘꢟ  
ꢂꢚ  
8063 ꢏꢓ03  
ꢔꢗꢘꢝ ꢘꢑꢏ ꢒꢝꢕꢜ ꢗꢘ ꢏꢌꢗꢝ ꢟꢗꢅꢟꢒꢗꢅꢡꢝꢝꢢ ꢔꢛ  
ꢙꢐ ꢋꢓꢞ ꢚꢕ ꢓꢝ ꢎꢑꢣ ꢓꢝ 3ꢉ6ꢐ ꢣꢗꢏꢌ ꢑꢂꢂꢤꢟꢞꢟꢎꢕ ꢝꢖꢗꢔꢔꢗꢘꢛ  
ꢗꢘ  
–5VOUT from 3.2VIN to 35VIN Positive to Negative Converter  
Maximum Load Current vs VIN  
ꢑꢒ  
ꢋ8063  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
0ꢀꢁ  
ꢑꢒ  
3ꢈꢆꢚ  
ꢇꢈꢊꢁꢂ  
ꢎꢏꢐꢑꢎꢒꢓꢔ  
ꢕꢖꢔꢗ ꢘꢓꢏ  
ꢅꢖꢒ  
ꢐꢎ 3ꢄꢚ  
ꢀꢁꢂ  
ꢃꢄꢅ  
080ꢄ  
ꢎꢖꢐ  
ꢆꢆꢁꢂ  
ꢃꢄꢅ  
ꢅꢐ  
ꢂꢕ  
ꢆꢊꢈꢇꢉ  
ꢀꢈꢇꢋꢌꢍ  
080ꢄ  
ꢜꢒꢝ ꢞꢟꢒꢘ  
ꢇꢄꢈ3ꢉ  
ꢎꢖꢐ  
ꢛꢄꢚ  
8063 ꢐꢓ0ꢇa  
ꢏꢑꢒꢞ ꢒꢎꢐ ꢖꢞꢠꢝ ꢑꢒ ꢐꢌꢑꢞ ꢘꢑꢅꢘꢖꢑꢅꢢꢞꢞꢣ ꢏꢜ  
0
ꢀ0  
ꢀ0  
30  
ꢀ0  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
8063 ꢀꢁ0ꢂꢃ  
8063fa  
20  
For more information www.linear.com/LTM8063  
LTM8063  
PACKAGE PHOTO  
PACKAGE DESCRIPTION  
Table 3. LTM8063 Pinout (Sorted by Pin Number)  
PIN  
A1  
A2  
A3  
A4  
PIN NAME  
GND  
PIN  
B1  
B2  
B3  
B4  
PIN NAME  
PG  
PIN  
C1  
C2  
C3  
C4  
PIN NAME  
RT  
PIN  
D1  
D2  
D3  
D4  
PIN NAME  
GND  
PIN  
E1  
E2  
E3  
E4  
PIN NAME  
GND  
PIN  
F1  
F2  
F3  
F4  
PIN NAME  
PIN  
G1  
G2  
G3  
G4  
PIN NAME  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
FB  
SYNC  
RUN  
GND  
GND  
GND  
TR/SS  
GND  
GND  
GND  
GND  
V
IN  
V
IN  
GND  
GND  
8063fa  
21  
For more information www.linear.com/LTM8063  
LTM8063  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTM8063#packaging for the most recent package drawings.  
BGA Package  
28-Lead (6.25mm × 4mm × 2.22mm)  
ꢧꢎꢪfꢪꢬꢪꢭꢮꢪ ꢍꢂꢏ ꢈꢝꢋ ꢚ 0ꢓꢔ08ꢔꢆꢓꢆꢯ ꢎꢪꢰ ꢌꢨ  
ꢌꢆ  
ꢮꢮꢮ  
ꢈꢃꢂꢌꢉꢍ ꢌ  
ꢄꢃꢃ ꢀꢁꢂꢃꢄ  
6
ꢌꢖ  
3
×  
aaa ꢟ  
ꢐꢉꢀ ꢆ  
ꢦꢆ  
ꢐꢉꢀ ꢢꢌꢆꢣ  
ꢏꢁꢎꢀꢃꢎ  
ꢊꢁꢍꢈ  
ꢏꢌꢐ  
ꢄꢜꢗꢄꢂꢎꢌꢂꢃ  
ꢞꢆ  
ꢞꢖ  
ꢈꢃꢂꢌꢉꢍ ꢗ  
ꢥꢦ ꢧꢖ8 ꢐꢍꢌꢏꢃꢄꢨ  
ꢩꢩꢩ ꢊ  
ꢪꢪꢪ  
ꢤ ꢑ  
ꢄꢃꢃ ꢀꢁꢂꢃꢄ  
3
ꢈꢃꢂꢌꢉꢍ ꢗ  
ꢐꢌꢏꢠꢌꢋꢃ ꢄꢉꢈꢃ ꢡꢉꢃꢝ  
ꢐꢌꢏꢠꢌꢋꢃ ꢂꢁꢐ ꢡꢉꢃꢝ  
ꢐꢌꢏꢠꢌꢋꢃ ꢗꢁꢂꢂꢁꢊ ꢡꢉꢃꢝ  
ꢀꢁꢂꢃꢄꢅ  
ꢆꢇ ꢈꢉꢊꢃꢀꢄꢉꢁꢀꢉꢀꢋ ꢌꢀꢈ ꢂꢁꢍꢃꢎꢌꢀꢏꢉꢀꢋ ꢐꢃꢎ ꢌꢄꢊꢃ ꢑꢆꢒꢇꢓꢊꢔꢆꢕꢕꢒ  
ꢈꢃꢂꢌꢉꢍ ꢌ  
ꢖꢇ ꢌꢍꢍ ꢈꢉꢊꢃꢀꢄꢉꢁꢀꢄ ꢌꢎꢃ ꢉꢀ ꢊꢉꢍꢍꢉꢊꢃꢂꢃꢎꢄ  
3
ꢗꢌꢍꢍ ꢈꢃꢄꢉꢋꢀꢌꢂꢉꢁꢀ ꢐꢃꢎ ꢘꢃꢐꢕꢓ  
DIMENSIONS  
ꢈꢃꢂꢌꢉꢍꢄ ꢁꢙ ꢐꢉꢀ ꢚꢆ ꢉꢈꢃꢀꢂꢉꢙꢉꢃꢎ ꢌꢎꢃ ꢁꢐꢂꢉꢁꢀꢌꢍꢛ  
ꢗꢜꢂ ꢊꢜꢄꢂ ꢗꢃ ꢍꢁꢏꢌꢂꢃꢈ ꢝꢉꢂꢞꢉꢀ ꢂꢞꢃ ꢟꢁꢀꢃ ꢉꢀꢈꢉꢏꢌꢂꢃꢈꢇ  
ꢂꢞꢃ ꢐꢉꢀ ꢚꢆ ꢉꢈꢃꢀꢂꢉꢙꢉꢃꢎ ꢊꢌꢑ ꢗꢃ ꢃꢉꢂꢞꢃꢎ ꢌ ꢊꢁꢍꢈ ꢁꢎ  
ꢊꢌꢎꢠꢃꢈ ꢙꢃꢌꢂꢜꢎꢃ  
SYMBOL  
MIN  
ꢖꢇ0ꢖ  
0ꢇ30  
ꢆꢇꢯꢖ  
0ꢇꢒꢓ  
0ꢇ3ꢯ  
NOM  
ꢖꢇꢖꢖ  
0ꢇꢒ0  
ꢆꢇ8ꢖ  
0ꢇꢓ0  
0ꢇꢒ0  
6ꢇꢖꢓ  
ꢒꢇ00  
0ꢇ80  
ꢒꢇ80  
ꢖꢇꢒ0  
0ꢇ3ꢖ  
ꢆꢇꢓ0  
MAX  
NOTES  
ꢌꢆ  
ꢌꢖ  
ꢦꢆ  
ꢞꢆ  
ꢞꢖ  
aaa  
ꢦꢦꢦ  
ꢮꢮꢮ  
ꢩꢩꢩ  
ꢪꢪꢪ  
ꢖꢇꢒꢖ  
0ꢇꢓ0  
ꢆꢇꢕꢖ  
0ꢇꢓꢓ  
0ꢇꢒ3  
ꢗꢌꢍꢍ ꢞꢂ  
ꢓꢇ ꢐꢎꢉꢊꢌꢎꢑ ꢈꢌꢂꢜꢊ ꢔꢟꢔ ꢉꢄ ꢄꢃꢌꢂꢉꢀꢋ ꢐꢍꢌꢀꢃ  
ꢐꢌꢏꢠꢌꢋꢃ ꢎꢁꢝ ꢌꢀꢈ ꢏꢁꢍꢜꢊꢀ ꢍꢌꢗꢃꢍꢉꢀꢋ ꢊꢌꢑ ꢡꢌꢎꢑ  
ꢗꢌꢍꢍ ꢈꢉꢊꢃꢀꢄꢉꢁꢀ  
ꢐꢌꢈ ꢈꢉꢊꢃꢀꢄꢉꢁꢀ  
ꢖꢇꢒ  
0ꢇꢒ0 0ꢇ0ꢖꢓ ꢥ ꢖ8ꢫ  
6
!
ꢌꢊꢁꢀꢋ ꢱꢊꢲꢩꢳꢴꢪ ꢐꢎꢁꢈꢜꢏꢂꢄꢇ ꢎꢃꢡꢉꢃꢝ ꢃꢌꢏꢞ ꢐꢌꢏꢠꢌꢋꢃ  
ꢍꢌꢑꢁꢜꢂ ꢏꢌꢎꢃꢙꢜꢍꢑ  
ꢆꢇ6  
0ꢇ8  
0ꢇ000  
0ꢇ8  
0ꢇꢖꢯ  
ꢆꢇꢒꢓ  
0ꢇ3ꢯ  
ꢆꢇꢓꢓ  
0ꢇꢆꢓ  
0ꢇꢆ0  
0ꢇꢖ0  
0ꢇꢆꢓ  
0ꢇ08  
ꢄꢜꢗꢄꢂꢎꢌꢂꢃ ꢂꢞꢠ  
ꢊꢁꢍꢈ ꢏꢌꢐ ꢞꢂ  
ꢆꢇ6  
ꢖꢇꢒ  
ꢊꢤꢤꢤꢤꢤꢤ  
ꢱꢊꢲꢩꢳꢴꢪ  
ꢏꢁꢊꢐꢁꢀꢃꢀꢂ  
ꢐꢉꢀ ꢢꢌꢆꢣ  
ꢄꢜꢋꢋꢃꢄꢂꢃꢈ ꢐꢏꢗ ꢍꢌꢑꢁꢜꢂ  
ꢂꢁꢐ ꢡꢉꢃꢝ  
ꢂꢎꢌꢑ ꢐꢉꢀ ꢆ  
ꢗꢃꢡꢃꢍ  
ꢂꢁꢂꢌꢍ ꢀꢜꢊꢗꢃꢎ ꢁꢙ ꢗꢌꢍꢍꢄꢅ ꢖ8  
ꢐꢌꢏꢠꢌꢋꢃ ꢉꢀ ꢂꢎꢌꢑ ꢍꢁꢌꢈꢉꢀꢋ ꢁꢎꢉꢃꢀꢂꢌꢂꢉꢁꢀ  
ꢗꢋꢌ ꢖ8 0ꢓꢆꢯ ꢎꢃꢡ ꢌ  
8063fa  
22  
For more information www.linear.com/LTM8063  
LTM8063  
REVISION HISTORY  
REV  
DATE  
02/18 Initial cap sentence (e.g.: Update to curve G04 in the Typical Performance Characteristics section).  
02/18 Changed I from 2.5A to 2A for Output Voltage Ripple test  
DESCRIPTION  
PAGE NUMBER  
A
4, 5  
B
3
3
OUT  
Added V = 8V to Switching Frequency consideration  
IN  
Changed 2.5A to 2A in first paragraph  
15  
18  
Corrected pin name of pin B2 from FB to PG  
8063fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTM8063  
TYPICAL APPLICATION  
12VOUT from 18.5VIN to 40VIN Step Down Converter  
ꢘꢙ  
ꢘꢙ  
ꢌ8063  
ꢀ8ꢈꢄꢑ ꢐꢒ ꢉ0ꢑ  
ꢅꢓꢙ  
ꢅꢐ  
ꢀꢁꢂ  
ꢃꢄꢅ  
080ꢄ  
ꢒꢓꢐ  
ꢒꢓꢐ  
ꢀꢋꢑ  
0ꢈꢄꢔ  
ꢋꢈꢋꢔ ꢕꢖꢔꢗ  
ꢀ0ꢁꢂ  
ꢃꢆꢇ  
080ꢄ  
ꢀꢆꢈꢉꢊ  
ꢋ0ꢈꢄꢊ  
ꢀꢈ8ꢌꢍꢎ  
ꢜꢙꢝ ꢇꢞꢙꢟ  
ꢂꢛ  
8063 ꢐꢔ0ꢄ  
ꢕꢘꢙꢇ ꢙꢒꢐ ꢓꢇꢖꢝ ꢘꢙ ꢐꢍꢘꢇ ꢟꢘꢅꢟꢓꢘꢅꢡꢇꢇꢢ ꢕꢜ  
ꢚꢑ ꢌꢔꢞ ꢛꢖ ꢔꢇ ꢏꢒꢣ ꢔꢇ ꢀꢋꢈ6ꢑ ꢣꢘꢐꢍ ꢒꢂꢂꢤꢟꢞꢟꢏꢖ ꢇꢗꢘꢕꢕꢘꢙꢜ  
ꢘꢙ  
DESIGN RESOURCES  
SUBJECT  
DESCRIPTION  
µModule Design and Manufacturing Resources  
Design:  
Manufacturing:  
• Selector Guides  
• Quick Start Guide  
• Demo Boards and Gerber Files  
• Free Simulation Tools  
• PCB Design, Assembly and Manufacturing Guidelines  
• Package and Board Level Reliability  
µModule Regulator Products Search  
1. Sort table of products by parameters and download the result as a spread sheet.  
2. Search using the Quick Power Search parametric table.  
TechClip Videos  
Quick videos detailing how to bench test electrical and thermal performance of µModule products.  
Digital Power System Management  
Linear Technology’s family of digital power supply management ICs are highly integrated solutions that  
offer essential functions, including power supply monitoring, supervision, margining and sequencing,  
and feature EEPROM for storing user configurations and fault logging.  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTM8053  
LTM8032  
LTM8033  
LTM8026  
LTM4613  
LTM8027  
LTM8050  
LTM8003  
40V, 3.5A Step-Down µModule Regulator  
3.4V ≤ V ≤ 40V. 0.97V ≤ V  
≤ 15V. 6.25mm x 9mm x 3.32mm BGA Package.  
IN  
IN  
OUT  
36V, 2A Low EMI Step-Down µModule Regulator 3.6V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 10V. EN55022B Compliant.  
≤ 24V. EN55022B Compliant.  
OUT  
OUT  
36V, 3A Low EMI Step-Down µModule Regulator 3.6V ≤ V ≤ 36V. 0.8V ≤ V  
IN  
36V, 5A CVCC Step-Down µModule Regulator  
6V ≤ V ≤ 36V. 1.2V ≤ V  
≤ 24V. Constant Voltage Constant Current Operation.  
≤ 15V. EN55022B Compliant.  
IN  
IN  
OUT  
OUT  
36V, 8A Low EMI Step-Down µModule Regulator 5V ≤ V ≤ 36V. 3.3V ≤ V  
60V, 4A Step-Down µModule Regulator  
58V, 2A Step-Down µModule Regulator  
4.5V ≤ V ≤ 60V, 2.5V ≤ V  
≤ 24V.  
≤ 24V.  
IN  
OUT  
OUT  
3.6V ≤ V ≤ 58V, 0.8V ≤ V  
IN  
3.5A Version of LTM8002, 40V, 3.5A, I = 25µA  
3.4V ≤ V ≤ 40V, 0.97V ≤ V  
≤ 18V, 6.25mm × 9mm × 3.32 BGA Package.  
Q
IN  
OUT  
FMEA Compliant  
LTM8065  
40V, 2.5A Silent Switcher Step-Down µModule  
Regulator  
3.4V ≤ V ≤ 40V, 0.97V ≤ V  
≤ 18V, 6.25mm × 6.25mm × 2.32mm BGA Package.  
IN  
OUT  
8063fa  
LT 0218 • PRINTED IN USA  
www.linear.com/LTM8063  
24  
LINEAR TECHNOLOGY CORPORATION 2017  

相关型号:

LTM8067

Dual SEPIC or Inverting Module DC DC Converter
Linear System

LTM8067

Dual SEPIC or Inverting μModule DC/DC Converter
Linear

LTM8068

Dual SEPIC or Inverting Module DC DC Converter
Linear System

LTM8068

Dual SEPIC or Inverting μModule DC/DC Converter
Linear

LTM8071

Quad 40VIN Silent Switcher μModule Regulator with Configurable 1.2A Output Array
ADI

LTM8073

60VIN, 3A Silent Switcher μModule Regulator
Linear

LTM8074

Quad 40VIN Silent Switcher μModule Regulator with Configurable 1.2A Output Array
ADI

LTM8078

Quad 40VIN, Silent Switcher μModule Regulator with Configurable 3A Output Array
ADI

LTM8083

36V, 1.5A Buck-Boost μModule Regulator
ADI

LTM8083EY

36V, 1.5A Buck-Boost μModule Regulator
ADI

LTM8083IY

36V, 1.5A Buck-Boost μModule Regulator
ADI

LTM8328GKR04

Optoelectronic
ETC