TB62757FUG [MARKTECH]

Interface Circuit;
TB62757FUG
型号: TB62757FUG
厂家: MARKTECH CORPORATE    MARKTECH CORPORATE
描述:

Interface Circuit

信息通信管理 开关 光电二极管
文件: 总20页 (文件大小:559K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TB62757FUG  
TOSHIBA BiCD Digital Integrated Circuit Silicon Monolithic  
TB62757FUG  
Step Up Type DC/DC Converter for White LED  
The TB62757FUG is a high efficient Step-Up Type DC/DC  
Converter specially designed for constant current driving of  
White LED.  
This IC can drive 2 to 6 white LEDs connected series using a  
Li-ion battery.  
This IC contains N-ch MOS-FET Transistor for Coil-Switching,  
and LED Current (I ) is set with an external resistor.  
F
This IC is especially for driving back light white LEDs in LCD  
of PDA, Cellular Phone, or Handy Terminal Equipment.  
This device is Pb-free product.  
Weight: 0.016 g (typ.)  
Features  
Can drive 2 to 6 white LEDs connected series  
Variable LED current I is set with a external resistor: 20 mA (typ.) @R  
F
= 16 Ω  
SENS  
Output power: Available for 400 mW LED loading  
High efficiency: 87% @Maximum  
Output over voltage shutdown function:  
Switching operation is shut downed when OVD terminal voltage is over 22 V (typ.).  
IC package: SSOP6-P-0.95  
Switching frequency: 1.1 MHz (typ.)  
Company Headquarters  
3 Northway Lane North  
Latham, New York 12110  
Toll Free: 800.984.5337  
Fax: 518.785.4725  
California Sales Office:  
950 South Coast Drive, Suite 265  
Costa Mesa, California 92626  
Toll Free: 800.984.5337  
Web: www.marktechopto.com | Email: info@marktechopto.com  
Fax: 714.850.9314  
2006-02-206  
1
TB62757FUG  
Block Diagram  
SW  
4
OVD  
2
Over voltage  
detection  
V
IN  
3
Monostable  
multivibrator  
for  
Monostable  
multivibrator  
for  
reference  
off time control  
CTL  
AMP.  
Circuit  
on/off  
6 FB  
Error  
AMP.  
SHDN  
1
5
GND  
Pin Assignment (top view)  
1
2
3
6
5
4
SHDN  
OVD  
FB  
GND  
SW  
V
IN  
Note 1: This IC could be destroyed in some case if amounted in 180° inverse direction.  
Please be careful about IC direction in mounting.  
Pin Function  
Pin No.  
Symbol  
Function Description  
Voltage-input terminal for IC-enable.  
1
SHDN  
SHDN = H Operation Mode, SHDN = L Shutdown Mode (IC shutdown)  
Please do not open this terminal.  
Over voltage detection terminal.  
2
OVD  
IC switching operation is disabled with detection over voltage.  
If the voltage returns to detection level or less, operation is enabled again.  
3
4
5
6
V
Supply voltage input terminal. (2.8 V to 5.5 V)  
Switch terminal for DC/DC converter. Nch MOSFET built-in.  
Ground terminal.  
IN  
SW  
GND  
FB  
LED I setting resister connecting terminal.  
F
2006-02-206  
2
TB62757FUG  
I/O Equivalent Pin Circuits  
Terminal  
1.  
2. OVD Terminal  
SHDN  
V
IN  
OVD  
2
SHDN  
1
3. V Terminal to GND Terminal  
4. SW Terminal  
IN  
V
IN  
SW  
4
3
GND  
5
5. FB Terminal  
V
IN  
FB  
6
2006-02-206  
3
TB62757FUG  
Application Note  
V
IN  
4.7 to 10 µH  
SW  
4
Over voltage  
detection  
2
3
V
IN  
OVD  
Monostable  
multivibrator  
for  
Monostable  
multivibrator  
for  
reference  
off time control  
CTL  
AMP.  
Circuit  
on/off  
6
Error  
AMP.  
FB  
SHDN  
PWM  
1
5
GND  
Protection in LED Opened Condition (OVD Function)  
The operation with OVD terminal is available for the protection in case LED Circuit opened.  
If load of LED is detached, Nch MOS switching operation is disabled with detection of boost circuit voltage.  
(* When the voltage value recovers below the detection voltage value, operation is restarted.)  
2006-02-206  
4
TB62757FUG  
Setting of External Capacitor  
In case not using PWM signal to SHDN terminal for brightness control, recommended values are  
C = Over 2.2 (µF), C = Over 1.0 (µF)  
1
2
In case with PWM signal to SHDN terminal for brightness control, recommended values are  
C = Over 4.7 (µF), C = Under 0.1 (µF).  
1
2
The recommended capacitor values depend on the Brightness Control Method.  
<Please refer the next page or later>  
The capacitor value must be considered for gain enough accuracy of brightness with reduction of noise from Input  
current changing.  
Setting of External Inductor Size  
Please select the inductor size with referring this table corresponding to each number of LEDs.  
LEDs  
Indictor Size  
Note  
2
3
4
5
6
4.7 µH  
LED current I = 20 mA  
6.8 µH  
8.1 µH  
10 µH  
F
LED Current I Setting  
F
The resistance between the FB pin and GND, R  
() is the resistance for the setting the output current.  
SENS  
Depending on the resistance value, it is possible to set the average output current Io (mA).  
The average output current Io (mA) can be approximated with the following equation:  
I
F
= (325 [mV]/R  
[])  
SENS  
The current value error is ±5%.  
2006-02-206  
5
TB62757FUG  
Brightness Control Method  
Recommended Brightness Control Circuits are 4 types.  
1) Input PWM signal to SHDN terminal  
I can be adjusted with PWM signal by inputting it to SHDN terminal.  
F
[Notice]  
<<Minimum ON-time of PWM signal input>>  
Set the minimum ON-time or OFF-time 33 µs or more in inputting the PWM signal.  
Set the Duty ratio satisfying the condition above.  
Ex) In case PWM Frequency is 1 kHz,  
1 kHz is 1 ms (PWM Width = 100%) and it takes 10 µs per 1%.  
To set the pulse width 33 µs or more, necessary ON-or-OFF-time is calculated below.  
33 µs ÷ 10 µs = 3.3% (Under the condition that 10 µs equals 1%.)  
Finally, the Duty Ratio can be set in range of 3.3% to 96.7%.  
Set On-time  
33 µs or more = 3.3%  
Available Duty Ratio  
(3.3% to 96.7%)  
1 ms (1 kHz) = 100%  
Set Off-time  
33 µs or more = 3.3%  
<<PWM signal frequency>>  
The recommended PWM signal frequency is from 100 Hz to 10 kHz. There is a possibility to arise  
the audible frequency in mounting to the board because it is within the auditory area.  
<<Constant number of external capacitor>>  
To reduce the fluctuation of input current and increase the accuracy of brightness, the values that  
C = 4.7 (µF) or more, C = 0.1 (µF) or less are recommended.  
1
2
When the PWM signal is off, the time to drain C of charge depends on the constant number. And  
2
so, the actual value is little different from the theoretical value.  
<<PWM input signal>>  
Set the amplitude of PWM signal within the range of SHDN terminal specification.  
<<Rush current in inputting>>  
In case dimming by inputting the PWM signal to the SHDN terminal, this IC turns on and off  
repeatedly.  
And the rush current, which provides the charge to C , arises in turning on. Take care in selecting  
2
the condenser.  
<<Current value in control with PWM: Ideal equation>>  
325 [mV]× ON Duty [%]  
(mA) =  
I
F
[]  
R
SENS  
2006-02-206  
6
TB62757FUG  
<Reference Data>  
Condition: V = 3.6 V, L = 6.8 µH, 4LEDs, R  
= 16 m@Io = 20 mA  
IN  
SENS  
(1) C = 4.7 µF, C = 0.1 µF  
1
2
Wave Form  
TB62757FUG  
ON Duty width[%] V.S. Error with Ideal Value  
SHDN  
VOUT  
25  
20  
15  
10  
5
500kHz  
1kHz  
2kHz  
4kHz  
8kHz  
I
IN  
12kHz  
0
0
0
0
20  
40  
60  
80  
100  
100  
100  
ON Duty width[%]  
(2) C = 4.7 µF, C = 0.47 µF  
1
2
Wave Form  
Wave Form  
Wave Form  
TB62757FUG  
ON Duty width[%] V.S. Error with Ideal Value  
SHDN  
VOUT  
25  
20  
15  
10  
5
500kHz  
1kHz  
2kHz  
4kHz  
8kHz  
I
IN  
12kHz  
0
20  
40  
60  
80  
ON Duty width[%]  
(3) C = 4.7 µF, C = 1.0 µF  
1
2
TB62757FUG  
ON Duty width[%] V.S. Error with Ideal Value  
SHDN  
VOUT  
25  
20  
15  
10  
5
500kHz  
1kHz  
2kHz  
4kHz  
8kHz  
I
IN  
12kHz  
0
20  
40  
60  
80  
ON Duty width[%]  
(4) C = 2.2 µF, C = 1.0 µF  
1
2
TB62757FUG  
ON Duty width[%] V.S. Error with Ideal Value  
SHDN  
VOUT  
25  
20  
15  
10  
5
500kHz  
1kHz  
2kHz  
4kHz  
8kHz  
I
IN  
12kHz  
0
0
20  
40  
60  
80  
100  
ON Duty width[%]  
2006-02-206  
7
TB62757FUG  
<<Recommended circuit>>  
V
=
IN  
2.8 to 5.5 V  
6.8 µH  
S-Di  
V
CC  
SW  
SHDN  
OVD  
PWM signal  
FB  
GND  
2006-02-206  
8
TB62757FUG  
2) Input analog voltage to FB terminal  
I can be adjusted with analog voltage input to FB terminal.  
F
This method is without repeating IC ON/OFF, and no need to consider holding rash current.  
[Notice]  
LED current value goes over 100% of the current set with R , if the input analog voltage is  
SENS  
between 0 V to 325 mV (typ.).  
for ref.) Analog voltage = 0 to 2.2 V  
About external parts value, please see recommended circuit.  
Ratio with  
Setting Current  
Supply Voltage [V]  
TB62757FUG  
Analog Voltage Input to FB Terminal  
No connect (OFF)  
100%  
140.0%  
120.0%  
100.0%  
80.0%  
60.0%  
40.0%  
20.0%  
0.0%  
0
116.0%  
106.5%  
95.4%  
84.5%  
73.6%  
59.9%  
48.4%  
37.4%  
26.6%  
15.9%  
5.8%  
0.2  
0.4  
0.6  
0.8  
1
0
0.5  
1
1.5  
Input Voltage  
2
2.5  
1.2  
1.4  
1.6  
1.8  
2
2.2  
0.0%  
<<Recommended circuit>>  
V
=
IN  
2.8 to 5.5 V  
6.8 µH  
S-Di  
V
CC  
SW  
SHDN  
OVD  
16 kΩ  
FB  
GND  
Analog voltage  
2006-02-206  
9
TB62757FUG  
3) Input PWM signal with filtering to FB terminal  
I can be adjusted with filtering PWM signal using RC filter indicated in recommended circuit, because the  
F
PWM signal can be regard as analog voltage after filtering.  
This method is without repeating IC ON/OFF, and no need to consider holding rash current.  
[Notice]  
LED current value goes over 100% of the current set with R , if the input voltage after filtering is  
SENS  
between 0 V to 325 mV (typ.).  
for ref.) Voltage during PWM Signal-ON = 2 V  
About external parts value, please see recommended circuit.  
Ratio with  
Setting Current  
Supply Voltage [V]  
TB62757FUG  
Input PWM signal filtered with R,C to the FB terminal  
No connect (OFF)  
100%  
140.0%  
120.0%  
100.0%  
80.0%  
60.0%  
40.0%  
20.0%  
0.0%  
0
116.1%  
105.3%  
95.1%  
10%  
20%  
30%  
40%  
50%  
60%  
70%  
80%  
90%  
100%  
84.8%  
74.6%  
64.0%  
0%  
20%  
40%  
60%  
80%  
100%  
PWM Duty(%)  
53.8%  
43.7%  
34.0%  
24.2%  
13.3%  
<<Recommended circuit>>  
V
=
IN  
2.8 to 5.5 V  
6.8 µH  
S-Di  
V
CC  
SW  
SHDN  
OVD  
16 kΩ  
FB  
GND  
PWM signal  
2006-02-206  
10  
TB62757FUG  
4) Input logic signal  
I can be adjusted with Logic signal input as indicated in recommended circuit.  
F
The Resistor connected the ON-State Nch MOS Drain and R  
determines I .  
F
SENS  
Average of Setting Current Io (mA) is next, approximately.  
I
F
= (325 [mV]/Sum of Resistor Value [])  
<<Recommended circuit>>  
V
=
IN  
2.8 to 5.5 V  
6.8 µH  
S-Di  
V
SW  
CC  
SHDN  
OVD  
FB  
GND  
R1  
R2  
M2  
M1  
Logic signal  
M1  
M2  
LED Current  
325 [mV]  
OFF  
OFF  
[]  
R
SENS  
[]×R1[]  
[] + R1[]  
R
R
SENS  
325 [mV] ×  
325 [mV] ×  
ON  
OFF  
ON  
OFF  
ON  
SENS  
[]×R2[]  
[] + R2[]  
R
SENS  
R
SENS  
[]×R1[]×R2[]  
R
SENS  
[]×R1[] +  
325 [mV] ×  
ON  
[]×R2[] + R1[]×R2[]  
R
R
SENS  
SENS  
2006-02-206  
11  
TB62757FUG  
Absolute Maximum Ratings (Ta = 25°C if without notice)  
Characteristics  
Power supply voltage  
Symbol  
Rating  
Unit  
V
0.3 to +6.0  
V
V
V
IN  
Input voltage  
0.3 to + V + 0.3 (Note 1)  
V
SHDN  
IN  
Switching terminal voltage  
V (SW)  
o
0.3 to 24  
0.41 (Device)  
Power dissipation  
Thermal resistance  
P
W
D
0.47 (on PCB)  
300 (Device)  
260 (on PCB)  
40 to +85  
55 to +150  
150  
(Note 2)  
R
°C/W  
th (j-a)  
Operation temperature range  
Storage temperature range  
Maximum junction temperature  
T
opr  
°C  
°C  
°C  
T
stg  
T
j
Note 1: However, do not exceed 6 V.  
Note 2: Power dissipation must be calculated with subtraction of 3.8 mW/°C from Maximum Rating with every 1°C if  
is upper 25°C. (on PCB)  
T
opr  
Recommended Operating Condition (Ta = −40°C to 85°C if without notice)  
Characteristics  
Power supply voltage  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
V
2.8  
33  
5.5  
V
IN  
SHDN terminal input pulse width  
LED current (average value)  
tpw  
“H”, “L” duty width  
µs  
V
= 3.6 V, R  
= 16 Ω  
IN  
SENS  
I
20  
mA  
o1  
4 white LEDs, Ta = 25°C  
Electrical Characteristics (Ta = 25°C, V = 2.8 to 5.5 V, if without notice)  
IN  
Characteristics  
Input voltage range  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
V
2.8  
5.5  
1.5  
1.0  
V
IN  
Operating consumption current  
Quiescent consumption current  
I
I
(On)  
(Off)  
V
V
= 3.6 V, R  
= 16 Ω  
= 0 V  
0.9  
0.5  
mA  
µA  
IN  
IN  
IN  
SENS  
= 3.6 V,  
V
IN  
SHDN  
SHDN terminal “H” level input  
voltage  
1.3  
V
V
V
V
IN  
SHDNH  
SHDNL  
SHDN terminal “L” level input  
voltage  
0
0
0.4  
10  
V
SHDN terminal current  
I
V
V
= 3.6 V,  
= 3.6 V,  
= 3.6 V or 0 V  
= 3.6 V  
10  
0.77  
µA  
V
V
SHDN  
IN  
IN  
SHDN  
SHDN  
Integrated MOS-Tr switching  
frequency  
f
1.1  
1.43  
MHz  
OSC  
Sw terminal protection voltage  
Switching terminal current  
V
(SW)  
(SW)  
(SW)  
25  
400  
0.5  
V
o
oz  
oz  
I
I
mA  
µA  
mV  
Switching terminal leakage current  
FB terminal feedback voltage (VFB)  
1
V
V
= 3.6 V, R  
SENS  
= 16 , L = 6.8 µH  
308  
325  
342  
FB  
V  
IN  
V
V
= 3.6 V center  
= 3.0 to 5.0 V  
IN  
IN  
FB terminal line regulation  
5  
5
%
FB  
OVD terminal voltage  
V
19  
22  
23.5  
1
V
OVD  
OVD terminal leakage current  
I
V
= 16 V  
0.5  
µA  
OVDZ  
OVD  
2006-02-206  
12  
TB62757FUG  
1. Application Circuit Example and Measurement Data (reference data)  
V
=
IN  
L
1
S-Di  
2.8 to 5.5 V  
Evaluation conditions (Ta = 25°C)  
L
1
: CXLD120 series (NEO MAX CO.,Ltd.)  
(Size: 2.5 mm × 3.0 mm × 1.2 mm)  
: C2012JB1E225K (TDK Corp.)  
V
SW  
WLEDs  
2 to 6  
IN  
SHDN  
OVD  
C
C
1
: C2012JB1E105K (TDK Corp.)  
2
S-Di  
: CUS02 1 A/30 V (TOSHIBA Corp.)  
FB  
GND  
WLEDs: NSCW215T (NICHIA Corp.)  
Input Voltage  
-
Efficiency/Output Current  
Input Voltage  
- Efficiency/Output Current  
2LED Drive, L=4.7µH  
5LED Drive, L=10µH  
35  
100  
90  
80  
70  
60  
50  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
30  
25  
20  
15  
10  
Efficiency  
I
I
Efficiency  
F
F
2.8  
2.8  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VIN(V)  
VIN(V)  
Input Voltage  
-
Efficiency/Output Current  
Input Voltage  
- Efficiency/Output Current  
3LED Drive, L=6.8µH  
6LED Drive, L=10µH  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
I
I
I
Efficiency  
F
F
Efficiency  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VIN(V)  
VIN(V)  
<Measurement Data>  
Input Voltage  
- Efficiency/Output Current  
Efficiency in the range of V = 2.8 to 5.5 V  
IN  
4LED Drive, L=6.8µH  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
Efficiency (%)  
Average Efficiency (%)  
2 LEDs  
3 LEDs  
4 LEDs  
5 LEDs  
6 LEDs  
82.60 to 88.46  
82.69 to 87.78  
80.73 to 86.22  
80.73 to 87.28  
79.78 to 85.55  
86.29  
85.95  
83.05  
83.45  
81.15  
I
I
Efficiency  
F
Output current in the range of V = 3.0 to 5.0 V (V = 3.6 V typ.)  
IN  
IN  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
Tolerance (%)  
Output Current (mA)  
VIN(V)  
V
= 3.6 V  
IN  
Min  
Max  
1.77  
1.38  
1.11  
1.15  
1.28  
2 LEDs  
3 LEDs  
4 LEDs  
5 LEDs  
6 LEDs  
21.13  
20.60  
20.87  
20.06  
19.90  
3.50  
1.95  
1.75  
1.81  
1.95  
* V  
voltage in driving 5 or 6 LEDs must be lower  
OUT  
than OVD detection level. (V  
< 19 V)  
OUT  
Note: These application examples are provided for reference only. Thorough evaluation and testing should be  
implemented when designing your application’s mass production design.  
2006-02-206  
13  
TB62757FUG  
2. Application Circuit Example and Measurement Data (reference data)  
V
=
IN  
L
1
S-Di  
2.8 to 5.5 V  
Evaluation conditions (Ta = 25°C)  
: 1001AS series (TOKO, INC)  
L
1
V
SW  
WLEDs  
2 to 6  
IN  
(Size: 3.6 mm × 3.6 mm × 1.2 mm)  
: C2012JB1E225K (TDK Corp.)  
: C2012JB1E105K (TDK Corp.)  
: CUS02 1 A/30 V (TOSHIBA Corp.)  
SHDN  
OVD  
C
C
1
2
S-Di  
FB  
GND  
WLEDs: NSCW215T (NICHIA Corp.)  
Input Voltage  
-
Efficiency/Output Current  
Input Voltage  
- Efficiency/Output Current  
2LED Drive, L=4.7µH  
5LED Drive, L=10µH  
35  
100  
90  
80  
70  
60  
50  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
30  
25  
20  
15  
10  
I
Efficiency  
F
I
I
F
Efficiency  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VIN(V)  
VIN(V)  
Input Voltage  
-
Efficiency/Output Current  
Input Voltage  
- Efficiency/Output Current  
3LED Drive, L=6.8µH  
6LED Drive, L=10µH  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
I
I
F
Efficiency  
I
Efficiency  
I
F
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VIN(V)  
VIN(V)  
<Measurement Data>  
Input Voltage  
- Efficiency/Output Current  
Efficiency in the range of V = 2.8 to 5.5 V  
4LED Drive, L=6.8µH  
IN  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
Efficiency (%)  
Average Efficiency (%)  
2 LEDs  
3 LEDs  
4 LEDs  
5 LEDs  
6 LEDs  
83.10 to 88.60  
81.32 to 86.47  
79.15 to 84.63  
79.72 to 86.39  
78.91 to 85.10  
86.55  
84.54  
81.30  
82.87  
80.47  
I
I
F
Efficiency  
Output current in the range of V = 3.0 to 5.0 V (V = 3.6 V typ.)  
IN  
IN  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
Tolerance (%)  
Output Current (mA)  
VIN(V)  
V
= 3.6 V  
IN  
Min  
Max  
1.73  
1.38  
1.15  
1.22  
1.26  
2 LEDs  
3 LEDs  
4 LEDs  
5 LEDs  
6 LEDs  
21.17  
20.85  
20.56  
20.10  
19.95  
3.32  
1.95  
1.79  
1.82  
1.94  
* V  
voltage in driving 5 or 6 LEDs must be lower  
OUT  
than OVD detection level. (V  
< 19 V)  
OUT  
Note: These application examples are provided for reference only. Thorough evaluation and testing should be  
implemented when designing your application’s mass production design.  
2006-02-206  
14  
TB62757FUG  
3. Application Circuit Example and Measurement Data (reference data)  
V
=
IN  
L
1
S-Di  
2.8 to 5.5 V  
Evaluation conditions (Ta = 25°C)  
: LQH2M series  
L
1
V
SW  
WLEDs  
2 to 6  
IN  
(Murata Manufacturing Co.,Ltd.)  
(Size: 2.0 mm × 1.6 mm × 0.95 mm)  
: C2012JB1E105K (TDK Corp.)  
: C2012JB1E105K (TDK Corp.)  
: CUS02 1 A/30 V (TOSHIBA Corp.)  
SHDN  
OVD  
C
C
1
FB  
2
GND  
S-Di  
WLEDs: NSCW215T (NICHIA Corp.)  
Input Voltage  
-
Efficiency/Output Current  
Input Voltage  
- Efficiency/Output Current  
2LED Drive, L=4.7µH  
5LED Drive, L=10µH  
35  
100  
90  
80  
70  
60  
50  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
30  
25  
20  
15  
10  
I
I
F
E
Efficiency  
I
I
F
E
Efficiency  
2.8  
2.8  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VIN(V)  
VIN(V)  
Input Voltage  
-
Efficiency/Output Current  
Input Voltage  
- Efficiency/Output Current  
3LED Drive, L=6.8µH  
6LED Drive, L=10µH  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
I
I
F
E
Efficiency  
I
I
Efficiency  
F
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VIN(V)  
VIN(V)  
<Measurement Data>  
Input Voltage  
- Efficiency/Output Current  
Efficiency in the range of V = 2.8 to 5.5 V  
4LED Drive, L=6.8µH  
IN  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
Efficiency (%)  
Average Efficiency (%)  
2 LEDs  
3 LEDs  
4 LEDs  
5 LEDs  
6 LEDs  
82.37 to 88.70  
80.19 to 86.55  
78.11 to 84.54  
74.79 to 84.94  
74.14 to 83.47  
86.38  
84.12  
80.16  
79.94  
77.17  
I
Efficiency  
I
F
Output current in the range of V = 3.0 to 5.0 V (V = 3.6 V typ.)  
IN  
IN  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
Tolerance (%)  
Output Current (mA)  
VIN(V)  
V
= 3.6 V  
IN  
Min  
Max  
1.69  
2.17  
1.01  
1.25  
1.07  
2 LEDs  
3 LEDs  
4 LEDs  
5 LEDs  
6 LEDs  
21.19  
20.90  
20.63  
20.09  
19.93  
3.26  
1.87  
1.78  
1.88  
1.99  
* V  
voltage in driving 5 or 6 LEDs must be lower  
OUT  
than OVD detection level. (V  
< 19 V)  
OUT  
Note: These application examples are provided for reference only. Thorough evaluation and testing should be  
implemented when designing your application’s mass production design.  
2006-02-206  
15  
TB62757FUG  
4. Application Circuit Example and Measurement Data (reference data)  
V
=
IN  
L
1
S-Di  
2.8 to 5.5 V  
Evaluation conditions (Ta = 25°C)  
: VLF3010A series (TDK Corp.)  
L
1
V
SW  
WLEDs  
2 to 6  
IN  
(Size: 3.0 mm × 3.0 mm × 1.0 mm)  
: C2012JB1E225K (TDK Corp.)  
: C2012JB1E105K (TDK Corp.)  
: CUS02 1 A/30 V (TOSHIBA Corp.)  
SHDN  
OVD  
C
C
1
2
S-Di  
FB  
GND  
WLEDs: NSCW215T (NICHIA Corp.)  
Input Voltage - Efficiency/Output Current  
2LED Drive, L=4.7µH  
Input Voltage  
- Efficiency/Output Current  
5LED Drive, L=10µH  
35  
100  
90  
80  
70  
60  
50  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
30  
25  
20  
15  
10  
I
I
F
Efficiency  
I
F
Efficiency  
2.8  
2.8  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VIN(V)  
VIN(V)  
Input Voltage  
-
Efficiency/Output Current  
Input Voltage  
- Efficiency/Output Current  
3LED Drive, L=6.8µH  
6LED Drive, L=10µH  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
II
F
Efficiency  
I
F
Efficiency  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VIN(V)  
VIN(V)  
<Measurement Data>  
Input Voltage  
- Efficiency/Output Current  
Efficiency in the range of V = 2.8 to 5.5 V  
4LED Drive, L=6.8µH  
IN  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
Efficiency (%)  
Average Efficiency (%)  
2 LEDs  
3 LEDs  
4 LEDs  
5 LEDs  
6 LEDs  
79.85 to 86.97  
80.19 to 85.32  
78.77 to 83.60  
79.72 to 86.39  
78.91 to 85.10  
84.02  
83.39  
80.69  
82.87  
80.49  
I
Efficiency  
I
F
Output current in the range of V = 3.0 to 5.0 V (V = 3.6 V typ.)  
IN  
IN  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
Tolerance (%)  
Output Current (mA)  
VIN(V)  
V
= 3.6 V  
IN  
Min  
Max  
1.67  
1.33  
1.11  
1.22  
1.26  
2 LEDs  
3 LEDs  
4 LEDs  
5 LEDs  
6 LEDs  
21.19  
20.89  
20.64  
20.10  
19.95  
3.08  
1.86  
1.68  
1.82  
1.94  
* V  
voltage in driving 5 or 6 LEDs must be lower  
OUT  
than OVD detection level. (V  
< 19 V)  
OUT  
Note: These application examples are provided for reference only. Thorough evaluation and testing should be  
implemented when designing your application’s mass production design.  
2006-02-206  
16  
TB62757FUG  
5. Application Circuit Example and Measurement Data (reference data)  
V
=
IN  
L
1
S-Di  
2.8 to 5.5 V  
Evaluation conditions (Ta = 25°C)  
: 32R51 (KOA Corp.)  
L
1
V
SW  
WLEDs  
2 to 4  
IN  
(Size: 3.2 mm × 2.5 mm × 0.6 mm)  
: C2012JB1E225K (TDK Corp.)  
: C2012JB1E105K (TDK Corp.)  
: CUS02 1 A/30 V (TOSHIBA Corp.)  
SHDN  
OVD  
C
C
1
2
S-Di  
FB  
GND  
WLEDs: NSCW215T (NICHIA Corp.)  
Input Voltage - Efficiency/Output Current  
2LED Drive, L=5.1μH  
Input Voltage - Efficiency/Output Current  
3LED Drive, L=5.1μH  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
I
F
I
I
F
Efficiency  
Efficiency  
E
2.8  
3.1  
3.4  
3.7  
4
4.3  
VIN(V)  
4.6  
4.9  
5.2  
5.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
VIN(V)  
4.6  
4.9  
5.2  
5.5  
<Measurement Data>  
Input Voltage - Efficiency/Output Current  
4LED Drive, L=5.1μH  
Efficiency in the range of V = 2.8 to 5.5 V  
IN  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
Efficiency (%)  
Average Efficiency (%)  
2 LEDs  
3 LEDs  
4 LEDs  
83.08 to 89.23  
79.02 to 86.30  
75.75 to 83.83  
86.73  
83.52  
80.78  
Output current in the range of V = 3.0 to 5.0 V (V = 3.6 V typ.)  
I
IN  
IN  
F
Efficiency  
Tolerance (%)  
Output Current (mA)  
V
= 3.6 V  
IN  
Min  
Max  
4.02  
2.94  
2.65  
2.8  
3.1  
3.4  
3.7  
4
4.3  
VIN(V)  
4.6  
4.9  
5.2  
5.5  
2 LEDs  
3 LEDs  
4 LEDs  
21.06  
20.57  
20.22  
2.46  
2.39  
2.28  
Note: These application examples are provided for reference only. Thorough evaluation and testing should be  
implemented when designing your application’s mass production design.  
2006-02-206  
17  
TB62757FUG  
Package Dimensions  
Weight: 0.016 g (typ.)  
2006-02-206  
18  
TB62757FUG  
Notes on Contents  
Block Diagrams  
Some functional blocks, circuits, or constants may be omitted or simplified in the block diagram for  
explanatory purposes.  
Equivalent Circuitry  
Some parts of the equivalent circuitry may have been omitted or simplified for explanatory purposes.  
Maximum Ratings  
The absolute maximum ratings of a semiconductor device are a set of specified parameter values that must  
not be exceeded during operation, even for an instant.  
If any of these ratings are exceeded during operation, the electrical characteristics of the device may be  
irreparably altered and the reliability and lifetime of the device can no longer be guaranteed.  
Moreover, any exceeding of the ratings during operation may cause breakdown, damage and/or degradation in  
other equipment. Applications using the device should be designed so that no maximum rating will ever be  
exceeded under any operating conditions.  
Before using, creating and/or producing designs, refer to and comply with the precautions and conditions set  
forth in this document.  
Application Examples  
The application examples provided in this data sheet are provided for reference only. Thorough evaluation  
and testing should be implemented when designing your application’s mass production design.  
In providing these application examples, Toshiba does not grant the use of any industrial property rights.  
Handling of the IC  
Ensure that the product is installed correctly to prevent breakdown, damage and/or degradation in the  
product or equipment.  
Short circuiting between output and line to ground faults may result in damage to the IC. Please exercise  
precaution in designing the output line, power line and GND line so as to prevent such damage.  
Be careful to insert the IC correctly. Inserting the IC the wrong way (e.g., wrong direction) may result in  
damage to the IC.  
Please exercise precaution in handling external components as shorting and opening such components may  
cause an overcurrent, which in turn may result in power overcurrent and/or in damage to the IC.  
Overcurrent and Thermal Protection  
Toshiba does not guarantee that these protection functions will prevent damage to the product. These  
functions are only intended as a temporary means of preventing output short circuiting and other abnormal  
conditions.  
If the guaranteed operating ranges of this product are exceeded, these protection functions may not function  
as intended and this product might be damaged due to output short circuiting.  
The overcurrent protection function is intended to protect this product from temporary short circuiting only.  
Short circuiting that last for a long time may cause excessive stress and damage to this product.  
2006-02-206  
19  
TB62757FUG  
2006-02-206  
20  

相关型号:

TB62771FTG

IC LED DISPLAY DRIVER, QCC48, QFN-48, Display Driver
TOSHIBA

TB62777FG

8-Channel Constant-Current LED Driver
TOSHIBA

TB62777FG

8-Channel Constant-Current LED Driver
MARKTECH

TB62777FG_15

8-Channel Constant-Current LED Driver
MARKTECH

TB62777FNG

8-Channel Constant-Current LED Driver of the 3.3-V and 5-V Power Supply Voltage Operation
MARKTECH

TB62777FNG

8-Channel Constant-Current LED Driver
TOSHIBA

TB62777FNGEL

8-BIT SHIFT REGISTER, LATCHES & CONSTANT-CURRENT DRIVERS
TOSHIBA

TB62777FNG_10

8-Channel Constant-Current LED Driver
TOSHIBA

TB62777FNG_15

8-Channel Constant-Current LED Driver
MARKTECH

TB62778FNG

8-Channel Constant-Current LED Driver of the 3.3-V and 5-V Power Supply Voltage Operation
MARKTECH

TB62778FNGEL

8-BIT SHIFT REGISTER, LATCHES & CONSTANT-CURRENT DRIVERS
TOSHIBA

TB62781FNG_15

9-Channel Constant-Current LED Driver
COMCHIP