MAX1003EVKIT-SO [MAXIM]

User-Selectable ADC Full-Scale Gain Ranges;
MAX1003EVKIT-SO
型号: MAX1003EVKIT-SO
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

User-Selectable ADC Full-Scale Gain Ranges

文件: 总8页 (文件大小:93K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1250; Rev 0; 6/97  
MAX1 0 0 2 /MAX1 0 0 3 Eva lu a t io n Kit s  
Evluate:2/MAX103  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX1002/MAX1003 evaluation kits (EV kits) simplify  
e va lua tion of the 60Ms p s MAX1002 a nd 90Ms p s  
MAX1003 dual, 6-bit analog-to-digital converters (ADCs).  
The kits include the basic components necessary to  
operate the on-chip oscillator as a voltage-controlled  
oscillator (VCO). Each board can also be easily modified  
to accommodate an external clocking source.  
5.85 Effective Number of Bits at 20MHz Analog  
Input Frequency  
Separate Analog and Digital Power and Ground  
Connections with Optimized PC Board Layout  
Matched Single-Ended or Differential Analog  
Inputs for Both I and Q Channels  
Connectors for power supplies, analog inputs, and digital  
outputs simplify connections to the device. The PC board  
features an optimized layout to ensure the best possible  
dynamic performance. The EV kits include a MAX1002 or  
MAX1003.  
Square-Pin Header for Easy Connection of Logic  
Analyzer to Digital Outputs  
User-Selectable ADC Full-Scale Gain Ranges  
Fully Assembled and Tested  
____________________Co m p o n e n t Lis t  
DESIGNATION QTY  
DESCRIPTION  
______________Ord e rin g In fo rm a t io n  
C1, C10,  
4
0.01µF, 25V min, 10% ceramic  
capacitors  
C11, C12  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
BOARD TYPE  
Surface Mount  
Surface Mount  
C2, C3,  
4
MAX1002EVKIT-SO  
MAX1003EVKIT-SO  
47pF, 25V min, 5% ceramic capacitors  
C6, C7  
0.22µF, 25V min, 10% ceramic  
capacitors  
C4, C15  
2
1
______________Co m p o n e n t S u p p lie rs  
5pF, 10V min, 10% ceramic capacitor  
(MAX1003)  
C5  
SUPPLIER*  
AVX  
PHONE  
FAX  
22pF, 10V min, 10% ceramic capacitor  
(MAX1002)  
(803) 946-0690  
(847) 639-6400  
(617) 564-3100  
(603) 224-1961  
(803) 626-3123  
(847) 639-1469  
(617) 564-3050  
(603) 224-1430  
Coilcraft  
M/A-COM  
Sprague  
C8, C9,  
C13, C14  
0.1µF, 10V min, 10% ceramic  
capacitors  
4
2
10µF, 10V min, 20% tantalum caps  
AVX TAJC106K016  
C16, C17  
* Please indicate that you are using the MAX1002/MAX1003  
when contacting these component suppliers.  
R1  
1
2
4
10k, 5% resistor  
47k, 5% resistors  
49.9, 1% resistors  
R2, R3  
R4–R7  
220nH inductor  
Coilcraft 1008CS-221TKBC  
_________________________Qu ic k S t a rt  
L1  
U1  
D1  
1
1
1
The MAX1002/MAX1003 EV kits are fully assembled  
and tested. Follow these steps to verify proper board  
operation. Do not turn on the power supplies until all  
connections to the EV kit are completed.  
MAX1003CAX, 90Msps  
MAX1002CAX, 60Msps  
Varactor diode  
M/A-COM MA4ST079CK-287, SOT23  
1) Connect a +5V power supply to the pad marked  
VCC. Conne c t this s up p ly’s g round to the p a d  
marked GND.  
IIN+, IIN-,  
QIN+, QIN-  
4
1
4
BNC connectors  
None  
MAX1002/MAX1003 circuit board  
0resistors  
2) Connect a +3.3V (MAX1003) or +5V (MAX1002)  
power supply to the pad labeled VCCO. Connect  
the supply ground to the pad marked OGND.  
JU1, JU2,  
JU6, JU7  
JU3, JU4,  
JU8, JU9  
3) Connect a +4V power supply to the pad marked  
VTUNE. Connect the supply ground to the GND  
pad.  
4
2-pin headers  
JU5  
JU11  
J1  
1
1
1
1
3-pin header  
2-pin header (MAX1002 only)  
26-pin connector  
Shunt for JU5  
4) Remove the shunt from jumper JU5. This sets a  
250mVp-p full-scale range.  
None  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
MAX1 0 0 2 /MAX1 0 0 3 Eva lu a t io n Kit s  
5) Using an RF power splitter-combiner, connect a  
250mVp-p, 20MHz sine-wave source to both analog  
inputs at BNC J3 and J6. The analog input imped-  
ance is 50for each channel.  
MAX1002 Digital Outputs Supply  
The MAX1002 uses +5V for its V supply. As with  
CCO  
the MAX1003, the current requirement is a function of  
the analog input frequency and capacitive loading on  
the outputs. With 15pF loads and a 20MHz analog input  
sampling at 60Msps, the current requirement is about  
13mA. You can also use a single power supply for both  
6) Connect a logic analyzer to connector J1 to monitor  
the digital outputs.  
7) Turn on all power supplies and signal sources.  
the V  
and V  
supplies by installing jumper JU11,  
CC  
CCO  
8) Observe the digitized analog input signals with the  
logic analyzer.  
loc a te d ne a r the EV kit p owe r-s up p ly c onne c tors .  
However, for best dynamic performance, use separate  
analog and digital power supplies.  
_______________De t a ile d De s c rip t io n  
An a lo g In p u t s  
The a na log inp uts to the d ua l ADCs a re p rovid e d  
through BNC connectors IIN+, IIN-, QIN+, and QIN-.  
The connectors are terminated with 49.9to ground  
and are AC coupled to the converters analog inputs,  
which are internally self-biased at 2.35V DC. A typical  
application circuit drives the IIN+ and QIN+ noninvert-  
ing analog inputs using AC-coupled in-phase and quad-  
rature signals. The nominal 20kinput resistance of the  
analog inputs, plus the 0.1µF AC-coupling capacitor  
value, sets the low-frequency corner at about 80Hz.  
EV Kit J u m p e rs  
The MAX1002/MAX1003 EV kits c onta in s e ve ra l  
jumpers that control board and part options. The follow-  
ing sections describe the different jumpers and their  
purposes. Table 1 lists the jumpers on the EV kits and  
their default positions.  
Table 1. EV Kit Jumpers and Default  
Positions  
DEFAULT  
POSITION  
JUMPER(S)  
FUNCTION  
You can drive the analog inputs either single-ended or  
differentially using AC- or DC-coupled inputs. Either the  
inverting or the noninverting input can be driven single-  
ended. If the inverting input is driven, then the digital  
output codes are inverted (complemented). Refer to the  
MAX1002 or MAX1003 data sheet for typical circuits.  
JU1, JU2,  
JU6, JU7  
Power-supply current-  
sense ports  
Shorted with 0Ω  
resistors  
JU3, JU4,  
JU8, JU9  
Offset-correction  
amplifier enabled  
Open  
Open  
Evluate:2/MAX103  
ADC full-scale range  
selection  
ADC Ga in S e le c t io n  
The s ing le GAIN-s e le c t p in on the MAX1002 or  
MAX1003 controls the full-scale input range for both the  
I and the Q channels. Jumper JU5 is used to manually  
select the desired gain range as shown in Table 2. The  
EV kits are shipped with the mid-gain range selected  
(jumper pins open).  
JU5  
VCCO tied to VCC for  
single-supply operation  
(MAX1002)  
JU11  
Open  
P o w e r Re q u ire m e n t s  
Both the MAX1002 and the MAX1003 require +5V at  
Table 2. Gain-Selection Jumper JU5  
Settings  
about 65mA for their analog V supply. Power-supply  
CC  
requirements for the digital outputs, however, are differ-  
ent for the two devices. 0resistors are installed at  
jump e r s ite s J U1, J U2, J U6, a nd J U7, a nd c a n b e  
removed to sense device power-supply currents with  
an ammeter.  
JU5 SETTING  
CONNECTION  
ADC GAIN RANGE  
JU5  
1
Pins 1 and 2 shorted Low-gain, 500mVp-p  
2
3
MAX1003 Digital Outputs Supply  
JU5  
1
The MAX1003 requires +3.3V for the V  
supply. The  
CCO  
current requirement from the power supply is a function  
of the sampling clock and analog input frequencies, as  
well as the capacitive loading on the digital outputs.  
With 15pF loads and a 20MHz analog input frequency  
sampled at 90Msps, the current draw is about 10mA.  
No pins shorted  
Mid-gain, 250mVp-p  
2
3
JU5  
1
Pins 2 and 3 shorted High-gain, 125mVp-p  
2
3
2
_______________________________________________________________________________________  
MAX1 0 0 2 /MAX1 0 0 3 Eva lu a t io n Kit s  
Evluate:2/MAX103  
Table 3 lists the possible input-drive combinations for  
70  
68  
66  
64  
62  
60  
58  
56  
54  
52  
50  
the mid-gain (250mVp-p) full-scale range selection.  
Drive levels are referenced to the open-circuit, com-  
mon-mod e volta g e of the a na log inp uts (typ ic a lly  
2.35V) if DC coupled, or to ground if AC coupling is  
used. If the low-gain (500mVp-p) range is selected, the  
input-drive requirements are twice those listed in Table  
3. If the high-gain (125mVp-p) range is selected, the  
input-drive requirements are half those listed in Table 3.  
Table 3. Typical Input-Drive Requirements  
for Mid-Gain  
OUTPUT  
CODE  
INPUT DRIVE QIN+ or IIN+  
QIN- or IIN-  
0
1
2
3
4
5
6
7
8
VTUNE CONTROL VOLTAGE (V)  
+125mV  
Open Circuit  
Open Circuit  
Open Circuit  
+125mV  
0
111111  
100000  
000000  
000000  
011111  
111111  
111111  
100000  
000000  
Single-Ended  
Noninverting  
0
Figure 1. MAX1002 Oscillator Frequency vs. VTUNE Control  
Voltage  
-125mV  
Open Circuit  
Single-Ended  
Open Circuit  
Inverting  
Open Circuit  
-125mV  
-62.5mV  
0
110  
105  
100  
95  
+62.5mV  
Differential  
0
-62.5mV  
+62.5mV  
90  
Offs e t -Co rre c t io n Am p lifie rs  
85  
The offs e t-c orre c tion a mp lifie rs inc lud e d on the  
MAX1002 and MAX1003 are usually enabled in a typi-  
cal AC-coupled application circuit. For DC-coupled  
a p p lic a tions , the a mp lifie rs mus t b e d is a b le d b y  
installing shorting blocks on jumpers JU3, JU4 (I chan-  
nel); and JU8, JU9 (Q channel). These jumpers short  
device pins IOCC+ (pin 2), IOCC- (pin 3), QOCC- (pin  
16), and QOCC+ (pin 17) to ground and disable the  
amplifiers. The MAX1002/MAX1003 EV kits are config-  
ure d with the offs e t-c orre c tion a mp lifie rs e na b le d  
(jumpers open) and AC-coupled analog inputs.  
80  
75  
70  
65  
60  
0
1
2
3
4
5
6
7
8
VTUNE CONTROL VOLTAGE (V)  
Figure 2. MAX1003 Oscillator Frequency vs. VTUNE Control  
Voltage  
Vo lt a g e -Co n t ro lle d -Os c illa t o r Op e ra t io n  
The EV kits inc lud e a volta g e -c ontrolle d -os c illa tor  
(VCO) c irc uit to s e t the a na log -to-d ig ita l c onve rte r  
(ADC) sampling rate using an external resonant tank  
and a varactor diode. A voltage applied to the VTUNE  
p a d c ha ng e s the va ra c tor d iod e s c a p a c ita nc e to  
adjust the tanks resonant frequency, which sets the  
oscillators sampling frequency. VTUNE voltage can be  
varied from 0V to a maximum of 8V.  
The EV kits are designed so that a nominal VTUNE con-  
trol voltage of about 4V sets the ADC sampling rate to  
e ithe r 60Ms p s for the MAX1002 or 90Ms p s for the  
MAX1003. The VTUNE control voltage should be well  
filtered, as any noise on the supply contributes to jitter  
in the internal oscillator and degrades the converters’  
d yna mic p e rforma nc e . Fig ure s 1 a nd 2 s how the  
VTUNE control-voltage typical frequency-adjustment  
ranges for the MAX1002 and MAX1003 EV kits, respec-  
tively.  
_______________________________________________________________________________________  
3
MAX1 0 0 2 /MAX1 0 0 3 Eva lu a t io n Kit s  
Dig it a l Ou t p u t s  
Table 4. External Clock Source EV Kit  
The TTL/CMOS-compatible digital outputs are present-  
ed in parallel from both I and Q channels at connector  
J1. The data format is offset binary with the MSB as D5  
and the LSB as D0. The row of pins closest to the  
board edge is digital output ground (OGND), while the  
data bits occupy the inside row. Located in the middle  
of the connector is the pin for the output clock labeled  
DCLK. This signal can be used to latch the parallel out-  
put data for capture into a logic analyzer or external  
DSP c irc uitry. Both d ig ita l outp uts a re up d a te d on  
DCLKs rising edge (see the timing diagram in the  
MAX1002 or MAX1003 data sheet).  
Modifications  
COMPONENT  
DESCRIPTION  
MODIFICATION  
Add  
Clock input BNC  
connector  
Clock Overdrive  
C5  
5pF capacitor (MAX1003),  
22pF capacitor (MAX1002)  
Remove  
Replace with  
0.01µF capaci-  
tors  
C6, C7  
47pF capacitors  
_____________La yo u t Co n s id e ra t io n s  
L1  
220nH inductor  
Remove  
Remove  
R1  
10kresistor  
The MAX1002/MAX1003 EV kit layouts have been opti-  
mized for high-speed signals. Careful attention has  
been given to grounding, power-supply bypassing, and  
signal-path layout to minimize coupling between the  
analog and digital sections of the circuit. For example,  
the ground plane has been removed under the tank cir-  
cuitry to reduce stray capacitive loading on the relative-  
ly small capacitors required in the external resonant  
tank formed by C5, L1, and D1. Other layout considera-  
tions are detailed in the following sections.  
Replace with  
49.9resistors  
R2, R3  
D1  
47kresistors  
Varactor diode  
Remove  
Ex t e rn a l Clo c k Op e ra t io n  
The MAX1002/MAX1003 EV kits can be converted to  
drive the ADCs from an external clock source. This  
involves removing the external resonator components  
from the VCO circuit and adding a few new compo-  
nents. Table 4 lists the EV kit changes required to con-  
vert the board to accept an external clock source. The  
resulting schematic is shown in Figure 4.  
P o w e r S u p p lie s a n d Gro u n d in g  
The EV kits feature separate analog and digital power  
supplies and grounds for best dynamic performance. A  
thin trace located on the backside of the circuit board  
near the VCC power-supply connector ties the analog  
and output ground planes together. This trace can be  
cut if the power-supply grounds are referenced else-  
where.  
Evluate:2/MAX103  
The new 49.9value of R3 shown in Figure 4 provides  
proper termination for a 50external signal generator.  
AC-coupling capacitor C6 couples the external clock  
signal to the MAX1002/MAX1003 oscillator circuitry at  
TNK+ (pin 9). R2 and C7 ensure that the impedance at  
both ports of the oscillator is balanced. After all modifi-  
cations are complete, connect an external clock source  
to the BNC connector on the EV kit marked CLOCK  
OVERDRIVE. The recommended clock amplitude is  
1Vp-p; however, the ADC operates correctly with as lit-  
tle as 100mVp-p or up to 2.5Vp-p on CLOCK OVER-  
DRIVE.  
Referencing analog and digital grounds together at a  
single point usually avoids ground loops and corruption  
of sensitive analog circuitry by noise from the digital  
outputs. If the ground trace on the backside of the  
board is cut, observe the absolute maximum ratings  
between the two grounds.  
The external clock source should have low phase noise  
for b e s t d yna mic p e rforma nc e . A low-p ha s e -nois e  
sine-wave oscillator serves this purpose well. A square-  
wa ve c loc k s ourc e is not ne c e s s a ry to d rive the  
MAX1002/MAX1003. The devices contain sufficient  
gain to amplify even a low-level-input sine wave to drive  
the ADC comparators, while ensuring excellent dynam-  
ic performance.  
4
_______________________________________________________________________________________  
MAX1 0 0 2 /MAX1 0 0 3 Eva lu a t io n Kit s  
Evluate:2/MAX103  
Byp a s s in g  
__________Ap p lic a t io n s In fo rm a t io n  
To achieve the full dynamic potential from the convert-  
ers, minimize the capacitive loading on the digital out-  
Prop e r b yp a s s ing is e s s e ntia l to a c hie ve the b e s t  
d yna mic p e rforma nc e from the c onve rte rs . The  
MAX1002/MAX1003 EV kits use 10µF bypass capaci-  
tors located close to the power-supply connectors on  
the board to filter low-frequency supply ripple. High-fre-  
quency bypassing is accomplished with ceramic chip  
capacitors located very close to the devices supply  
pins.  
p uts to re d uc e the tra ns ie nt c urre nts a t V  
a nd  
CCO  
OGND. The ma ximum c a p a c ita nc e p e r outp ut b it  
should be less than 15pF. For example, the capaci-  
tance of the digital output traces and the J1 connector  
on the EV kits is about 3pF per trace. In an applications  
circuit, this could be further reduced by locating the  
d ig ita l re c e iving c hip ve ry c los e to the MAX1002/  
MAX1003 and removing the ground plane from under  
the output bit traces.  
As the digital outputs toggle, transient currents in the  
V
supply can couple into sensitive analog circuitry  
and severely degrade the converters’ effective number  
of bits performance. Of particular concern is effectively  
CCO  
A logic analyzer can be connected to the J1 connector  
on the EV kits for evaluation purposes. The analyzer  
should be directly connected to the EV kit without any  
additional ribbon cables. Even a short length of ribbon  
cable can exceed the maximum recommended capaci-  
tive loading of the digital outputs. A typical high-speed  
logic analyzer probe adds about another 8pF loading  
per digital bit, which is acceptable for good dynamic  
performance.  
bypassing V  
to OGND. For best results, locate the  
CCO  
bypass capacitors on the same side of the board and  
place them close to the device. This avoids the use of  
through-holes and results in lower series inductance.  
The capacitor size chosen for the EV kits (size 0603)  
keeps the layout compact. Finally, the modest value  
(47pF) and small size result in a high self-resonant fre-  
quency for effective high-frequency bypassing.  
_______________________________________________________________________________________  
5
MAX1 0 0 2 /MAX1 0 0 3 Eva lu a t io n Kit s  
U1  
MAX103  
(MAX102)  
Evluate:2/MAX103  
Figure 3. MAX1002/MAX1003 EV Kit Schematic (Voltage-Controlled-Oscillator Mode)  
_______________________________________________________________________________________  
6
MAX1 0 0 2 /MAX1 0 0 3 Eva lu a t io n Kit s  
Evluate:2/MAX103  
U1  
MAX103  
(MAX102)  
Figure 4. MAX1002/MAX1003 EV Kit Schematic (External Clock Operation)  
_______________________________________________________________________________________  
7
MAX1 0 0 2 /MAX1 0 0 3 Eva lu a t io n Kit s  
1.0"  
1.0"  
Figure 5. MAX1002/MAX1003 EV Kit Component Placement  
GuideComponent Side  
Figure 6. MAX1002/MAX1003 EV Kit Component Placement  
GuideSolder Side  
Evluate:2/MAX103  
1.0"  
1.0"  
Figure 7. MAX1002/MAX1003 EV Kit PC Board Layout—  
Component Side  
Figure 8. MAX1002/MAX1003 EV Kit PC Board Layout—  
Solder Side  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8
___________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1997 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1005

IF Undersampler
MAXIM

MAX1005CEE

IF Undersampler
MAXIM

MAX1005CEE+

Analog Circuit, 1 Func, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1005EEE

IF Undersampler
MAXIM

MAX1005EEE+

Analog Circuit, 1 Func, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1005EEE+T

Analog Circuit, 1 Func, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1005EEE-T

Analog Circuit, 1 Func, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1007

Mobile-Radio Analog Controller
MAXIM

MAX1007CAG

Mobile-Radio Analog Controller
MAXIM

MAX1007CAG+T

Analog Circuit, 1 Func, PDSO24, 5.30 X 0.65 MM, SSOP-24
MAXIM

MAX1007CAG-T

Analog Circuit, 1 Func, PDSO24, 5.30 X 0.65 MM, SSOP-24
MAXIM

MAX1007EAG

Mobile-Radio Analog Controller
MAXIM