MAX1087ETA+ [MAXIM]

ADC, Successive Approximation, 10-Bit, 1 Func, 2 Channel, Serial Access, BICMOS, PDSO8, 3 X 3 MM, 0.8 MM HEIGHT, LEAD FREE, MO-229WEEC, TDFN-8;
MAX1087ETA+
型号: MAX1087ETA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Successive Approximation, 10-Bit, 1 Func, 2 Channel, Serial Access, BICMOS, PDSO8, 3 X 3 MM, 0.8 MM HEIGHT, LEAD FREE, MO-229WEEC, TDFN-8

文件: 总15页 (文件大小:334K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2036; Rev 0; 5/01  
150ksps, 10-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs in SOT23  
General Description  
Features  
The MAX1086–MAX1089 are low-cost, micropower, ser-  
ial output 10-bit analog-to-digital converters (ADCs)  
available in a tiny 8-pin SOT23. The MAX1086/MAX1088  
operate with a single +5V supply. The MAX1087/MAX1089  
operate with a single +3V supply. The devices feature a  
successive-approximation ADC, automatic shutdown,  
fast wake-up (1.4µs), and a high-speed 3-wire inter-  
o Single-Supply Operation  
+3V(MAX1087/MAX1089)  
+5V(MAX1086/MAX1088)  
o AutoShutdown Between Conversions  
o Low Power  
200µA at 150ksps  
130µA at 100ksps  
65µA at 50ksps  
13µA at 10ksps  
1.5µA at 1ksps  
0.2µA in Shutdown  
face. Power consumption is only 0.5mW (V  
= +2.7V)  
DD  
at the maximum sampling rate of 150ksps.  
Autoshutdown™ (0.1µA) between conversions results in  
reduced power consumption at slower throughput  
rates.  
The MAX1086/MAX1087 provide 2-channel, single-  
ended operation and accept input signals from 0 to  
o True-Differential Track/Hold, 150kHz Sampling Rate  
V
. The MAX1088/MAX1089 accept true-differential  
REF  
inputs ranging from 0 to V  
. Data is accessed using  
o Software-Configurable Unipolar/Bipolar  
Conversion (MAX1088/MAX1089 only)  
o SPI, QSPI, MICROWIRE–Compatible Interface for  
DSPs and Processors  
REF  
an external clock through the 3-wire SPI™, QSPI™, and  
MICROWIRE™–compatible serial interface. Excellent  
dynamic performance, low-power, ease of use, and  
small package size, make these converters ideal for  
portable battery-powered data acquisition applications,  
and for other applications that demand low power con-  
sumption and minimal space.  
o Internal Conversion Clock  
o 8-Pin SOT23 Package  
Ordering Information  
Applications  
Low Power Data Acquisition  
Portable Temperature Monitors  
Flowmeters  
TEMP.  
RANGE  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
MAX1086EKA-T  
MAX1087EKA-T  
MAX1088EKA-T  
MAX1089EKA-T  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
AAEZ  
AAEV  
AAFB  
AAEX  
Touch Screens  
Pin Configuration  
TOP VIEW  
V
1
2
3
4
8
7
6
5
SCLK  
DOUT  
CNVST  
REF  
DD  
AIN1 (AIN+)  
AIN2 (AIN-)  
GND  
MAX1086  
MAX1087  
MAX1088  
MAX1089  
SOT23-8  
( ) ARE FOR THE MAX1088/MAX1089  
AutoShutdown is a trademark of Maxim Integrated Products.  
SPI and QSPI are trademarks of Motorola Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
150ksps, 10-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs in SOT23  
ABSOLUTE MAXIMUM RATINGS  
DD  
CNVST, SCLK, DOUT to GND......................-0.3V to (V +0.3V)  
REF, AIN1(AIN+), AIN2(AIN-) to GND..........-0.3V to (V +0.3V)  
V
to GND.............................................................-0.3V to +6V  
Operating Temperature Ranges.........................-40°C to +85°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
DD  
Maximum Current Into Any Pin ...........................................50mA  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin SOT23(derate 9.70mW/°C above T = +70°C) ....777mW  
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +2.7V to +3.6V, V  
= +2.5V for MAX1087/MAX1089, or VDD = +4.75V to +5.25V, V  
= +4.096V for MAX1086/MAX1088,  
DD  
REF  
REF  
0.1µF capacitor at REF, f  
= 8MHz (50% duty cycle), AIN- = GND for MAX1088/MAX1089. T = T  
to T  
unless otherwise  
MAX,  
SCLK  
A
MIN  
noted. Typical values at T = +25°C.)  
A
PARAMETER  
DC ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
10  
Bits  
LSB  
Relative Accuracy (Note 2)  
Differential Nonlinearity  
Offset Error  
INL  
1.0  
1.0  
1.0  
2.0  
DNL  
No missing codes over temperature  
LSB  
0.5  
1.0  
0.8  
0.1  
0.1  
0.1  
LSB  
Gain Error (Note 3)  
LSB  
Gain Temperature Coefficient  
Channel-to-Channel Offset  
ppm/°C  
LSB  
Channel-to-Channel Gain Matching  
Input Common-Mode Rejection  
LSB  
CMR  
V
= 0V to V ; zero scale input  
mV  
CM  
DD  
DYNAMIC SPECIFICATIONS: (f (sine-wave) = 10kHz, V = 4.096Vp-p for MAX1086/MAX1088 or V = 2.5V  
IN  
IN  
IN  
PP  
for MAX1087/MAX1089, 150ksps, f  
= 8MHZ, AIN- = GND for MAX1088/MAX1089)  
SCLK  
Signal to Noise Plus Distortion  
SINAD  
61  
dB  
dB  
Total Harmonic Distortion  
(up to the 5th harmonic)  
THD  
-70  
Spurious-Free Dynamic Range  
Full-Power Bandwidth  
Full-Linear Bandwidth  
CONVERSION RATE  
Conversion Time  
SFDR  
70  
1
dB  
MHz  
kHz  
-3dB point  
SINAD>56dB  
100  
t
3.7  
1.4  
µs  
µs  
CONV  
T/H Acquisition Time  
Aperture Delay  
t
ACQ  
30  
ns  
Aperture Jitter  
<50  
ps  
Maximum Serial Clock Frequency  
Duty Cycle  
f
8
MHz  
%
SCLK  
30  
70  
2
_______________________________________________________________________________________  
150ksps, 10-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs in SOT23  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +2.7V to +3.6V, V  
= +2.5V for MAX1087/MAX1089, or VDD = +4.75V to +5.25V, V  
= +4.096V for MAX1086/MAX1088,  
DD  
REF  
REF  
0.1µF capacitor at REF, f  
= 8MHz (50% duty cycle), AIN- = GND for MAX1088/MAX1089. T = T  
to T  
unless otherwise  
MAX,  
SCLK  
A
MIN  
noted. Typical values at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT  
Unipolar  
Bipolar  
0
V
REF  
Input Voltage Range (Note 4)  
V
-V  
/2  
V
/2  
REF  
REF  
Input Leakage Current  
Channel not selected or conversion stopped  
0.01  
34  
1
µA  
Input Capacitance  
pF  
EXTERNAL REFERENCE INPUT  
V
DD  
Input Voltage Range  
V
I
1.0  
V
REF  
+50mV  
V
V
= +2.5V at 150ksps  
16  
30  
45  
1
REF  
REF  
Input Current  
µA  
= +4.096V at 150ksps  
26  
REF  
Acquisition/Between conversions  
DIGITAL INPUTS/OUTPUT (SCLK, CNVST, DOUT)  
0.01  
Input Low Voltage  
Input High Voltage  
Input Leakage Current  
Input Capacitance  
V
0.8  
0.1  
V
V
IL  
V
V
-1  
DD  
IH  
I
L
µA  
pF  
V
C
15  
IN  
I
I
= 2mA  
= 4mA  
0.4  
0.8  
SINK  
SINK  
Output Low Voltage  
Output High Voltage  
V
OL  
V
V
DD  
-0.5  
V
I
= 1.5mA  
SOURCE  
V
OH  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREMENTS  
I
CNVST = GND  
CNVST = GND  
10  
µA  
L
C
15  
pF  
OUT  
MAX1086/MAX1088  
4.75  
2.7  
5.0  
3.0  
245  
150  
15  
5.25  
3.6  
Positive Supply Voltage  
Positive Supply Current  
Positive Supply Rejection  
V
V
DD  
MAX1087/MAX1089  
f
f
=150ksps  
=100ksps  
=10ksps  
=1ksps  
350  
SAMPLE  
SAMPLE  
SAMPLE  
SAMPLE  
SAMPLE  
SAMPLE  
SAMPLE  
SAMPLE  
V
V
= +3V  
= +5V  
DD  
DD  
f
f
f
f
f
f
2
I
=150ksps  
=100ksps  
=10ksps  
=1ksps  
320  
215  
22  
400  
µA  
mV  
DD  
2.5  
0.2  
0.1  
0.1  
Shutdown  
5
V
V
= 5V 5%; full-scale input  
1.0  
1.2  
DD  
DD  
PSR  
= +2.7V to +3.6V; full-scale input  
_______________________________________________________________________________________  
3
150ksps, 10-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs in SOT23  
TIMING CHARACTERISTICS (Figures 1 and 2)  
(V  
= +2.7V to +3.6V, V  
= +2.5V for MAX1087/MAX1089, or V  
= +4.75V to +5.25V, V  
= +4.096V for MAX1086/MAX1088,  
DD  
REF  
DD  
REF  
0.1µF capacitor at REF, f  
= 8MHz (50% duty cycle); AIN- = GND for MAX1088/MAX1089. T = T  
to T  
unless otherwise  
MAX,  
SCLK  
A
MIN  
noted. Typical values at T = +25°C.)  
A
PARAMETERS  
SCLK Pulse Width High  
SCLK Pulse Width Low  
SYMBOL  
CONDITIONS  
MIN  
38  
TYP  
MAX  
UNITS  
ns  
t
CH  
t
38  
ns  
CL  
SCLK Fall to DOUT Transition  
SCLK Rise to DOUT Disable  
CNVST Rise to DOUT Enable  
CNVST Fall to MSB Valid  
CNVST Pulse Width  
t
C
C
C
C
= 30pF  
= 30pF  
= 30pF  
= 30pF  
60  
500  
80  
ns  
DOT  
DOD  
LOAD  
LOAD  
LOAD  
LOAD  
t
100  
30  
ns  
t
t
ns  
DOE  
DOV  
CSW  
3.7  
µs  
t
ns  
Note 1: Unipolar input.  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after offset and gain errors have  
been removed.  
Note 3: Offset nulled.  
Note 4: The absolute input range for the analog inputs is from GND to V  
.
DD  
• • •  
CNVST  
SCLK  
t
CH  
t
CSW  
t
CL  
• • •  
• • •  
t
t
DOD  
DOE  
t
DOT  
HIGH-Z  
HIGH-Z  
DOUT  
Figure 1. Detailed Serial-Interface Timing Sequence  
V
DD  
6kΩ  
DOUT  
DOUT  
6kΩ  
C
C
L
L
GND  
GND  
a) HIGH -Z TO V , V TO V , AND V TO HIGH -Z  
a) HIGH -Z TO V , V TO V , AND V TO HIGH -Z  
OH OL  
OH  
OH  
OL OH  
OL  
OL  
Figure 2. Load Circuits for Enable/Disable Times  
_______________________________________________________________________________________  
4
150ksps, 10-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs in SOT23  
Typical Operating Characteristics  
(V  
= +3.0V, V  
= +2.5V for MAX1087/MAX1089 or V  
= +5.0V, V  
= +4.096V for MAX1086/MAX1088, 0.1µF capacitor at  
DD  
REF  
DD  
REF  
REF, f  
= 8MHz, (50% Duty Cycle), AIN- = GND for MAX1088/1089, T = +25°C, unless otherwise noted.)  
SCLK  
A
INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
1.0  
0.8  
0.6  
0.4  
0.2  
MAX1087/MAX1089  
MAX1086/MAX1088  
MAX1087/MAX1089  
0.8  
0.6  
0.4  
0.2  
0
0
0
-0.2  
-0.2  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.4  
-0.6  
-0.8  
-1.0  
-0.4  
-0.6  
-0.8  
-1.0  
0
200  
400  
600  
800 1000 1200  
0
200  
400  
600  
800 1000 1200  
0
200  
400  
600  
800 1000 1200  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
SUPPLY CURRENT  
vs. SAMPLING RATE  
SUPPLY CURRENT  
vs. SAMPLING RATE  
1000  
100  
10  
1000  
100  
10  
1.0  
0.8  
0.6  
0.4  
0.2  
MAX1086/MAX1088  
MAX1087/MAX1089  
MAX1086/MAX1088  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
1
1
0.1  
0.001  
0.1  
0.001  
1.0  
10  
1000  
0
200  
400  
600  
800 1000 1200  
1.0  
10  
1000  
OUTPUT CODE  
SAMPLING RATE (ksps)  
SAMPLING RATE (ksps)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
0.50  
0.45  
380  
330  
280  
230  
180  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
V
V
DD  
DD  
_______________________________________________________________________________________  
5
150ksps, 10-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs in SOT23  
Typical Operating Characteristics (continued)  
(V  
= 3.0V, V  
= 2.5V for MAX1087/MAX1089 or V  
= 5.0V, V  
= +4.096V for MAX1086MAX1088, 0.1µF capacitor at REF,  
REF  
DD  
REF  
DD  
f
= 8MHz, (50% Duty Cycle), AIN- = GND for MAX1088/89, T = +25°C, unless otherwise noted.)  
SCLK  
A
SHUTDOWN CURRENT  
SUPPLY CURRENT  
vs. TEMPERATURE  
vs. TEMPERATURE  
OFFSET ERROR  
vs. TEMPERATURE  
300  
250  
200  
150  
100  
50  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
-0.20  
-0.40  
0.60  
-0.80  
-1.00  
380  
330  
280  
230  
180  
0
-40  
-20  
0
20  
40  
60  
80  
-40 -20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
GAIN ERROR  
vs. TEMPERATURE  
OFFSET ERROR  
vs. SUPPLY VOLTAGE  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
-40 -20  
0
20  
40  
60  
80  
V
TEMPERATURE (°C)  
DD  
GAIN ERROR  
vs. SUPPLY VOLTAGE  
FFT PLOT (SINAD)  
1.0  
0.8  
20.00  
0.00  
0.6  
-20.00  
-40.00  
-60.00  
-80.00  
-100.00  
-120.00  
-140.00  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
0
15  
30  
45  
60  
V
DD  
FREQUENCY (kHz)  
6
_______________________________________________________________________________________  
150ksps, 10-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs in SOT23  
Pin Description  
NAME  
PIN  
FUNCTION  
MAX1086 MAX1088  
MAX1087 MAX1089  
Positive Supply Voltage. +2.7V to +3.6V (MAX1087/MAX1089); +4.75V to +5.25V  
(MAX1086/MAX1088). Bypass with a 0.1µF capacitor to GND.  
1
2
3
4
5
V
V
DD  
DD  
AIN1  
AIN2  
GND  
REF  
AIN+  
AIN-  
GND  
REF  
Analog Input Channel 1 (MAX1086/MAX1087) or Positive Analog Input (MAX1088/MAX1089)  
Analog Input Channel 2 (MAX1086/MAX1087) or Negative Analog Input (MAX1088/MAX1089)  
Ground  
External Reference Voltage Input. Sets the analog voltage range. Bypass with a 0.1µF  
capacitor to GND.  
Conversion Start. A rising edge powers-up the IC and places it in track mode. At the falling  
edge of CNVST, the device enters hold mode and begins conversion. CNVST also selects the  
input channel (MAX1086/MAX1087) or input polarity (MAX1088/MAX1089).  
6
CNVST  
CNVST  
Serial Data Output. DOUT transitions the falling edge of SCLK. DOUT goes low at the start of a  
conversion and presents the MSB at the completion of a conversion. DOUT goes high-  
impedance once data has been fully clocked out.  
7
8
DOUT  
SCLK  
DOUT  
SCLK  
Serial Clock Input. Clocks out data at DOUT MSB first.  
The serial interface provides easy interfacing to micro-  
Detailed Description  
processors (µPs). Figure 3 shows the simplified internal  
structure for the MAX1086/MAX1087 (2channels, sin-  
gle-ended) and the MAX1088/MAX1089 (1channel,  
true-differential).  
The MAX1086MAX1089 analog-to-digital converters  
(ADCs) use a successive-approximation conversion  
(SAR) technique and an on-chip track-and-hold (T/H)  
structure to convert an analog signal into a 10-bit digital  
result.  
True-Differential Analog Input Track/Hold  
The equivalent circuit of Figure 4 shows the  
MAX1086MAX1089s input architecture which is com-  
posed of a T/H, input multiplexer, comparator, and  
switched-capacitor DAC. The T/H enters its tracking  
mode on the rising edge of CNVST. The positive input  
capacitor is connected to AIN1 or AIN2 (MAX1086/  
MAX1087) or AIN+ (MAX1088/MAX1089). The negative  
input capacitor is connected to GND (MAX1086/  
MAX1087) or AIN- (MAX1088/MAX1089). The T/H  
enters its hold mode on the falling edge of CNVST and  
the difference between the sampled positive and nega-  
tive input voltages is converted. The time required for  
the T/H to acquire an input signal is determined by how  
quickly its input capacitance is charged. If the input  
signals source impedance is high, the acquisition time  
lengthens, and CNVST must be held high for a longer  
MAX1086–MAX1089  
OSCILLATOR  
CNVST  
SCLK  
INPUT SHIFT  
REGISTER  
CONTROL  
AIN1  
(AIN+)  
10-BIT  
SAR  
ADC  
DOUT  
T/H  
AIN2  
(AIN-)  
REF  
period of time. The acquisition time, t , is the maxi-  
ACQ  
mum time needed for the signal to be acquired, plus  
the power-up time. It is calculated by the following  
equation:  
(
) ARE FOR MAX1088/MAX1089  
Figure 3. Simplified Functional Diagram  
t
= 7 x (R + R ) x 24pF + t  
S IN PWR  
ACQ  
_______________________________________________________________________________________  
7
150ksps, 10-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs in SOT23  
DOUT after 3.7µs. Data can then be clocked out using  
SCLK. If all 12 bits of data are not clocked out before  
CNVST is driven high, AIN2 will be selected for the next  
conversion.  
REF  
GND  
DAC  
AIN2  
AIN1(AIN+)  
CIN+  
COMPARATOR  
+
Selecting Unipolar or Bipolar Conversions  
(MAX1088/MAX1089)  
HOLD  
Initiate true-differential conversions with the  
MAX1088/MAX1089s unipolar and bipolar modes,  
using the CNVST pin. AIN+ and AIN- are sampled at  
the falling edge of CNVST. In unipolar mode, AIN+ can  
-
CIN-  
RIN-  
RIN+  
GND(AIN-)  
exceed AIN- by up to V  
. The output format is  
REF  
HOLD  
HOLD  
straight binary. In bipolar mode, either input can  
TRACK  
exceed the other by up to V  
/2. The output format is  
REF  
V
/2  
DD  
*( ) APPLIES TO MAX1088/1089  
twos complement.  
Note: In both modes, AIN+ and AIN- must not exceed  
DD  
than 50mV.  
Figure 4. Equivalent Input Circuit  
V
by more than 50mV or be lower than GND by more  
where R = 1.5k, R is the source impedance of the  
IN  
S
If unipolar mode is desired (Figure 5a), drive CNVST  
high to power-up the ADC and place the T/H in track  
mode with AIN+ and AIN- connected to the input  
input signal, and t  
= 1µs is the power-up time of the  
PWR  
device.  
Note: t  
is never less than 1.4µs and any source  
capacitors. Hold CNVST high for t  
to fully acquire  
ACQ  
ACQ  
impedance below 300does not significantly affect the  
the signal. Drive CNVST low to place the T/H in hold  
mode. The ADC will then perform a conversion and  
shutdown automatically. The MSB is available at DOUT  
after 3.7µs. Data can then be clocked out using SCLK.  
Be sure to clock out all 12 bits (the 10-bit result plus  
two sub-bits) of data before driving CNVST high for the  
next conversion. If all 12 bits of data are not clocked  
out before CNVST is driven high, bipolar mode will be  
selected for the next conversion.  
ADCs AC performance. A high impedance source can  
be accommodated either by lengthening t  
or by  
ACQ  
placing a 1µF capacitor between the positive and neg-  
ative analog inputs.  
Selecting AIN1 or AIN2  
(MAX1086/MAX1087)  
Select between the MAX1086/MAX1087s two positive  
input channels using the CNVST pin. If AIN1 is desired  
(Figure 5a), drive CNVST high to power-up the ADC  
and place the T/H in track mode with AIN1 connected  
to the positive input capacitor. Hold CNVST high for  
If bipolar mode is desired (Figure 5b), drive CNVST  
high for at least 30ns. Next, drive it low for at least 30ns  
and then high again. This will place the T/H in track  
mode with AIN+ and AIN- connected to the input  
t
to fully acquire the signal. Drive CNVST low to  
ACQ  
capacitors. Now hold CNVST high for t  
to fully  
ACQ  
place the T/H in hold mode. The ADC will then perform  
a conversion and shutdown automatically. The MSB is  
available at DOUT after 3.7µs. Data can then be  
clocked out using SCLK. Be sure to clock out all 12 bits  
of data (the 10-bit result plus two sub-bits) before dri-  
ving CNVST high for the next conversion. If all 12 bits of  
data are not clocked out before CNVST is driven high,  
AIN2 will be selected for the next conversion.  
acquire the signal. Drive CNVST low to place the T/H in  
hold mode. The ADC will then perform a conversion  
and shutdown automatically. The MSB is available at  
DOUT after 3.7µs. Data can then be clocked out using  
SCLK. If all 12 bits of data are not clocked out before  
CNVST is driven high, bipolar mode will be selected for  
the next conversion.  
Input Bandwidth  
The ADCs input tracking circuitry has a 1MHz small-  
signal bandwidth, so it is possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADCs sampling rate by  
using undersampling techniques. To avoid high fre-  
quency signals being aliased into the frequency band  
of interest, anti-alias filtering is recommended.  
If AIN2 is desired (Figure 5b), drive CNVST high for at  
least 30ns. Next, drive it low for at least 30ns, and then  
high again. This will power-up the ADC and place the  
T/H in track mode with AIN2 connected to the positive  
input capacitor. Now hold CNVST high for t  
to fully  
ACQ  
acquire the signal. Drive CNVST low to place the T/H in  
hold mode. The ADC will then perform a conversion  
and shutdown automatically. The MSB is available at  
8
_______________________________________________________________________________________  
150ksps, 10-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs in SOT23  
t
CONV  
t
ACQ  
CNVST  
1
4
8
12  
SCLK  
DOUT  
HIGH-Z  
B9  
MSB  
B0  
LSB  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
S1  
S0  
HIGH-Z  
SAMPLING INSTANT  
Figure 5a. Single Conversion AIN1 vs. GND (MAX1086/MAX1087), unipolar mode AIN+ vs. AIN- (MAX1088/MAX1089)  
t
CONV  
t
ACQ  
CNVST  
1
4
8
12  
SCLK  
DOUT  
HIGH-Z  
B9  
MSB  
B0  
LSB  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
S1  
S0  
HIGH-Z  
SAMPLING INSTANT  
Figure 5b. Single Conversion AIN2 vs. GND (MAX1086/MAX1087), bipolar mode AIN+ vs. AIN- (MAX1088/MAX1089)  
Analog Input Protection  
Internal Clock  
The MAX1086MAX1089 operate from an internal oscilla-  
tor, which is accurate within 10% of the 4MHz specified  
clock rate. This results in a worse case conversion time  
of 3.7µs. The internal clock releases the system micro-  
processor from running the SAR conversion clock and  
allows the conversion results to be read back at the  
processors convenience, at any clock rate from 0 to  
8MHz.  
Internal protection diodes which clamp the analog input  
to V  
and GND allow the analog input pins to swing  
DD  
from GND - 0.3V to V  
+ 0.3V without damage. Both  
DD  
DD  
inputs must not exceed V  
by more than 50mV or be  
lower than GND by more than 50mV for accurate conver-  
sions. If an off-channel analog input voltage exceeds  
the supplies, limit the input current to 2mA.  
_______________________________________________________________________________________  
9
150ksps, 10-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs in SOT23  
Output Data Format  
Transfer Function  
Figures 5a and 5b illustrate the conversion timing for  
Figure 6 shows the unipolar transfer function for the  
the MAX1086MAX1089. The 10-bit conversion result is  
MAX1086MAX1089. Figure 7 shows the bipolar transfer  
output in MSB first format, followed by two sub-bits (S1  
function for the MAX1088/MAX1089. Code transitions  
and S0). Data on DOUT transitions on the falling edge  
occur halfway between successive-integer LSB values.  
of SCLK. All 12-bits must be clocked out before CNVST  
transitions again. For the MAX1088/MAX1089, data is  
Connection to Standard Interfaces  
straight binary for unipolar mode and twos comple-  
ment for bipolar mode. For the MAX1086/MAX1087,  
data is always straight binary.  
The MAX1086MAX1089 feature a serial interface that is  
fully compatible with SPI, QSPI, and MICROWIRE. If a  
serial interface is available, establish the CPUs serial  
interface as a master, so that the CPU generates the seri-  
al clock for the ADCs. Select a clock frequency up to  
8MHz.  
Applications Information  
Automatic Shutdown Mode  
With CNVST low, the MAX1086MAX1089 defaults to an  
AutoShutdown state (<0.2µA) after power-up and  
between conversions. After detecting a rising edge on  
CNVST, the part powers up, sets DOUT low and enters  
track mode. After detecting a falling-edge on CNVST, the  
device enters hold mode and begins the conversion. A  
maximum of 3.7µs later, the device completes conver-  
sion, enters shutdown and MSB is available at DOUT.  
How to Perform a Conversion  
1) Use a general purpose I/O line on the CPU to hold  
CNVST low between conversions.  
2) Drive CNVST high to acquire AIN1(MAX1086/  
MAX1087) or unipolar mode (MAX1088/MAX1089).  
To acquire AIN2(MAX1086/MAX1087) or bipolar  
mode (MAX1088/MAX1089), drive CNVST low and  
high again.  
External Reference  
An external reference is required for the MAX1086–  
MAX1089. Use a 0.1µF bypass capacitor for best per-  
formance. The reference input structure allows a volt-  
3) Hold CNVST high for 1.4µs.  
4) Drive CNVST low and wait approximately 3.7µs for  
conversion to complete. After 3.7µs, the MSB is  
available at DOUT.  
age range of +1V to V  
+ 50mV.  
DD  
5) Activate SCLK for a minimum of 12 rising clock  
edges. DOUT transitions on SCLKs falling edge  
OUTPUT CODE  
MAX1088/MAX1089  
OUTPUT CODE  
MAX1086–  
MAX1089  
V
REF  
2
FS  
=
011 . . . 111  
011 . . . 110  
FULL-SCALE  
TRANSITION  
11 . . . 111  
11 . . . 110  
ZS = 0  
-FS =  
-V  
REF  
2
11 . . . 101  
000 . . . 010  
000 . . . 001  
000 . . . 000  
V
REF  
1LSB =  
1024  
FS = V  
REF  
111 . . . 111  
111 . . . 110  
111 . . . 101  
ZS = GND  
V
REF  
1LSB =  
1024  
00 . . . 011  
00 . . . 010  
100 . . . 001  
100 . . . 000  
00 . . . 001  
00 . . . 000  
0
- FS  
+FS - 1LSB  
0
1
2
3
FS  
INPUT VOLTAGE (LSB)  
FS - 3/2LSB  
INPUT VOLTAGE (LSB)  
*V  
V
/ 2 *V = (AIN+) - (AIN-)  
COM  
REF IN  
Figure 7. Bipolar Transfer Function  
10 ______________________________________________________________________________________  
Figure 6. Unipolar Transfer Function  
150ksps, 10-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs in SOT23  
and is available in MSB-first format. Observe the  
SCLK to DOUT valid timing characteristic. Clock  
data into the µP on SCLKs rising-edge.  
SCLKs rising edge. The first 10 bits are the data and  
the next two bits are sub-bits (S1, S0). DOUT then  
goes high impedance (Figure 9b).  
PIC16 and SSP Module and  
PIC17 Interface  
SPI and MICROWIRE Interface  
When using SPI interface (Figure 8a) or MICROWIRE  
(Figure 8a and 8b), set CPOL = CPHA = 0. Two 8-bit  
readings are necessary to obtain the entire 10-bit result  
from the ADC. DOUT data transitions on the serial  
clocks falling edge and is clocked into the µP on  
SCLKs rising edge. The first 8-bit data stream contains  
the first 8-bits of DOUT starting with the MSB. The sec-  
ond 8-bit data stream contains the remaining two result  
bits (B1, B0) and two trailing sub-bits (S1, S0). DOUT  
then goes high impedance.  
The MAX1086MAX1089 are compatible with a  
PIC16/PIC17 microcontroller (µC), using the synchro-  
nous serial port (SSP) module  
To establish SPI communication, connect the controller  
as shown in Figure 10a and configure the PIC16/PIC17  
as system master. This is done by initializing its syn-  
chronous serial port control register (SSPCON) and  
synchronous serial port status register (SSPSTAT) to  
the bit patterns shown in Tables 1 and 2.  
In SPI mode, the PIC16/PIC17 µCs allow eight bits of  
data to be synchronously transmitted and received  
simultaneously. Two consecutive 8-bit readings (Figure  
10b) are necessary to obtain the entire 10-bit result  
from the ADC. DOUT data transitions on the serial  
clocks falling edge and is clocked into the µC on  
SCLKs rising edge. The first 8-bit data stream contains  
QSPI Interface  
Using the high-speed QSPI interface (Figure 9a) with  
CPOL = 0 and CPHA = 0, the MAX1086MAX1089  
support a maximum f  
of 8MHz. One 8- to16-bit  
SCLK  
reading is necessary to obtain the entire 10-bit result  
from the ADC. DOUT data transitions on the serial  
clocks falling edge and is clocked into the µP on  
I/O  
SCK  
CNVST  
SCLK  
I/O  
SK  
SI  
CNVST  
SCLK  
MISO  
DOUT  
DOUT  
V
DD  
MICROWIRE  
SPI  
MAX1086–  
MAX1089  
MAX1086–  
MAX1089  
SS  
Figure 8a. SPI Connections  
Figure 8b. MICROWIRE Connections  
Table 1. Detailed SSPCON Register Content  
MAX1086MAX1089  
CONTROL BIT  
SYNCHRONOUS SERIAL PORT CONTROL REGISTER (SSPCON)  
SETTINGS  
WCOL  
SSPOV  
Bit 7  
Bit 6  
X
X
Write Collision Detection Bit  
Receive Overflow Detect Bit  
Synchronous Serial Port Enable Bit.  
SSPEN  
Bit 5  
1
0: Disables serial port and configures these pins as I/O port pins.  
1: Enables serial port and configures SCK, SDO and SCI pins as serial port pins.  
CKP  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
1
Clock Polarity Select Bit. CKP = 0 for SPI master mode selection.  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
Synchronous Serial Port Mode Select Bit. Sets SPI master mode and selects  
f
= f  
CLK OSC  
/ 16.  
X = Dont care  
______________________________________________________________________________________ 11  
150ksps, 10-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs in SOT23  
CNVST  
1ST BYTE READ  
4
2ND BYTE READ  
12  
1
8
16  
SCLK  
DOUT  
HIGH-Z  
B9  
MSB  
B0  
LSB  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
S1  
S0  
SAMPLING INSTANT  
Figure 8c. SPI/MICROWIRE Interface Timing Sequence (CPOL = CPHA = 0)  
the first eight data bits starting with the MSB. The sec-  
ond 8-bit data stream contains the remaining bits, D1  
through D0, and the two sub-bits S1 and S0.  
and digital traces. Do not run analog and digital lines  
parallel to each other, and do not lay out digital signal  
paths underneath the ADC package. Use separate  
analog and digital PC board ground sections with only  
one starpoint (Figure 11), connecting the two ground  
systems (analog and digital). For lowest-noise opera-  
tion, ensure the ground return to the star grounds  
power supply is low impedance and as short as possi-  
ble. Route digital signals far away from sensitive analog  
and reference inputs.  
Layout, Grounding, and Bypassing  
For best performance, use printed circuit (PC) boards.  
Wire-wrap configurations are not recommended since  
the layout should ensure proper separation of analog  
High-frequency noise in the power supply (V ) may  
DD  
CS  
SCK  
CNVST  
SCLK  
degrade the performance of the ADCs fast comparator.  
Bypass V  
to the star ground with a 0.1µF capacitor,  
DD  
MISO  
DOUT  
located as close as possible to the MAX1086MAX1089s  
power supply pin. Minimize capacitor lead length for best  
supply-noise rejection. Add an attenuation resistor (5) if  
the power supply is extremely noisy.  
V
DD  
QSPI  
MAX1086–  
MAX1089  
SS  
Figure 9a. QSPI Connections  
Table 2. Detailed SSPSTAT Register Content  
MAX1086MAX1089  
CONTROL BIT  
SYNCHRONOUS SERIAL STATUS REGISTER (SSPSTAT)  
SETTINGS  
SPI Data Input Sample Phase. Input data is sampled at the middle of the data output  
time.  
SMP  
Bit 7  
0
CKE  
D/A  
P
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
X
X
X
X
X
X
SPI Clock Edge Select Bit. Data will be transmitted on the rising edge of the serial clock.  
Data Address Bit  
Stop Bit  
S
Start Bit  
R/W  
UA  
BF  
Read/Write Bit Information  
Update Address  
Buffer Full Status Bit  
X = Dont care  
12 ______________________________________________________________________________________  
150ksps, 10-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs in SOT23  
CNVST  
1
4
8
12  
16  
SCLK  
DOUT  
HIGH-Z  
B9  
MSB  
B0  
LSB  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
S1  
S0  
SAMPLING INSTANT  
Figure 9b. QSPI Interface Timing Sequence (CPOL = CPHA = 0)  
Definitions  
Integral Nonlinearity  
V
V
DD  
DD  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the endpoints of the transfer function,  
once offset and gain errors have been nullified. The sta-  
tic linearity parameters for the MAX1086MAX1089 are  
measured using the endpoint method.  
SCLK  
DOUT  
SCK  
SDI  
I/O  
CNVST  
PIC16/PIC17  
MAX1086–  
MAX1089  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step-width and the ideal value of 1LSB. A  
DNL error specification of less than 1LSB guarantees  
no missing codes and a monotonic transfer function.  
GND  
GND  
Figure 10a. SPI Interface Connection for a PIC16/PIC17 Controller  
CNVST  
1ST BYTE READ  
2ND BYTE READ  
1
4
8
12  
16  
SCLK  
DOUT  
HIGH-Z  
B9  
MSB  
B0  
LSB  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
S1  
S0  
SAMPLING INSTANT  
Figure 10b. SPI Interface Timing with PIC16/PIC17 in Master Mode (CKE = 1, CKP = 0, SMP = 0, SSPM3 - SSPM0 = 0001)  
______________________________________________________________________________________ 13  
150ksps, 10-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs in SOT23  
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequencys RMS amplitude to RMS  
equivalent of all other ADC output signals.  
SUPPLIES  
SINAD (dB) = 20 log (Signal  
/ Noise  
)
RMS  
RMS  
Effective Number of Bits  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADCs error consists of quanti-  
zation noise only. With an input range equal to the full-  
scale range of the ADC, calculate the effective number  
of bits as follows:  
+3V OR +5V  
V
= +5V/+3V  
GND  
LOGIC  
R* = 5Ω  
0.1µF  
ENOB = (SINAD - 1.76) / 6.02  
GND  
V
+5V/+3V DGND  
DD  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
DIGITAL  
CIRCUITRY  
MAX1086–  
MAX1089  
*OPTIONAL  
2
2
2
2
THD = 20 × log  
V
+ V + V + V  
/ V  
1
2
3
4
5
Figure 11. Power-Supply and Grounding Connections  
where V is the fundamental amplitude, and V through  
5
monics.  
1
2
Aperture Definitions  
V are the amplitudes of the 2nd- through 5th-order har-  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the time between the samples. Aperture delay (t ) is  
AD  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next largest distortion  
component.  
the time between the rising edge of the sampling clock  
and the instant when an actual sample is taken.  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital sam-  
ples, signal-to-noise ratio (SNR) is the ratio of full-scale  
analog input (RMS value) to the RMS quantization error  
(residual error). The ideal, theoretical minimum analog-to-  
digital noise is caused by quantization error only and  
results directly from the ADCs resolution (N-bits):  
Chip Information  
TRANSISTOR COUNT: 6922  
PROCESS: BiCMOS  
SNR = (6.02 N + 1.76)dB  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise, which includes all spectral  
components minus the fundamental, the first five har-  
monics, and the DC offset.  
14 ______________________________________________________________________________________  
150ksps, 10-Bit, 2-Channel Single-Ended, and  
1-Channel True-Differential ADCs in SOT23  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 15  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1087ETA+T

150ksps, 10-Bit, 2-Channel Single-Ended, and 1-Channel True-Differential ADCs in SOT23
MAXIM

MAX1088

150ksps.10-Bit.2-Channel Single-Ended.and 1-Channel True-Differential ADCs in SOT23
MAXIM

MAX1088EKA+T

A/D Converter, 10-Bit, 1 Func, 2 Channel, Serial Access, BICMOS, PDSO8, LEAD FREE, SOT-23, 8 PIN
MAXIM

MAX1088EKA-T

150ksps, 10-Bit, 2-Channel Single-Ended, and 1-Channel True-Differential ADCs in SOT23
MAXIM

MAX1088EVKIT

Evaluation Kit and Evaluation System for the MAX1286/MAX1288/MAX1086/MAX1088
MAXIM

MAX1089

150ksps.10-Bit.2-Channel Single-Ended.and 1-Channel True-Differential ADCs in SOT23
MAXIM

MAX1089EKA

ADC, Successive Approximation, 10-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO8, MO-178BA, SOT-23, 8 PIN
MAXIM

MAX1089EKA-T

150ksps, 10-Bit, 2-Channel Single-Ended, and 1-Channel True-Differential ADCs in SOT23
MAXIM

MAX108CHC

【5V, 1.5Gsps, 8-Bit ADC with On-Chip 2.2GHz Track/Hold Amplifier
MAXIM

MAX108CHC-D

ADC, Flash Method, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, Bipolar, PBGA192, 25 X 25 MM, ESBGA-192
MAXIM

MAX108EVKIT

Evaluation Kits for the MAX104/MAX106/MAX108
MAXIM

MAX108K00B

MAX108K00B 5 PPM
VISHAY