MAX1126EGK+D [MAXIM]

ADC, Proprietary Method, 12-Bit, 1 Func, 4 Channel, Parallel, Word Access, Bipolar, 10 X 10 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, QFN-68;
MAX1126EGK+D
型号: MAX1126EGK+D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Proprietary Method, 12-Bit, 1 Func, 4 Channel, Parallel, Word Access, Bipolar, 10 X 10 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, QFN-68

转换器
文件: 总26页 (文件大小:1237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3143; Rev 2; 9/05  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
General Description  
Features  
The MAX1126 quad, 12-bit analog-to-digital converter  
(ADC) features fully differential inputs, a pipelined  
architecture, and digital error correction. This ADC is  
optimized for low-power, high-dynamic performance for  
medical imaging, communications, and instrumentation  
applications. The MAX1126 operates from a 1.7V to  
1.9V single supply and consumes only 563mW while  
delivering a 69.9dB signal-to-noise ratio (SNR) at a  
5.3MHz input frequency. In addition to low operating  
power, the MAX1126 features an 813µA power-down  
mode for idle periods.  
Four ADC Channels with Serial LVDS/SLVS  
Outputs  
Excellent Dynamic Performance  
69.9dB SNR at f = 5.3MHz  
IN  
93.7dBc SFDR at f = 5.3MHz  
IN  
-90dB Channel Isolation  
Ultra-Low Power  
135mW per Channel (Normal Operation)  
1.5mW Total (Shutdown Mode)  
Accepts 20% to 80% Clock Duty Cycle  
Self-Aligning Data-Clock to Data-Output Interface  
Fully Differential Analog Inputs  
An internal 1.24V precision bandgap reference sets the  
ADC’s full-scale range. A flexible reference structure  
allows the use of an external reference for applications  
requiring increased accuracy or a different input volt-  
age range.  
Wide 1.4V  
Differential Input Voltage Range  
P-P  
Internal/External Reference Option  
Test Mode for Digital Signal Integrity  
A single-ended clock controls the conversion process.  
An internal duty-cycle equalizer allows for wide varia-  
tions in input-clock duty cycle. An on-chip phase-  
locked loop (PLL) generates the high-speed serial  
low-voltage differential signaling (LVDS) clock.  
LVDS Outputs Support Up to 30in FR-4 Backplane  
Connections  
Small, 68-Pin QFN with Exposed Paddle  
Evaluation Kit Available (MAX1127EVKIT)  
The MAX1126 provides serial LVDS outputs for data,  
clock, and frame alignment signals. The output data is  
presented in two’s complement or binary format.  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
68 QFN 10mm x  
x 10mm x 0.9mm  
Refer to the MAX1127 data sheet for a pin-compatible  
65Msps version of the MAX1126.  
MAX1126EGK  
-40°C to +85°C  
The MAX1126 is available in a small, 10mm x 10mm x  
0.9mm, 68-pin QFN package with exposed paddle and  
is specified for the extended industrial (-40°C to +85°C)  
temperature range.  
Pin Configuration  
68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52  
GND  
IN0P  
IN0N  
GND  
IN1P  
IN1N  
GND  
1
2
51 OUT0P  
50 OUT0N  
Applications  
Ultrasound and Medical Imaging  
Positron Emission Tomography (PET) Imaging  
Multichannel Communication Systems  
Instrumentation  
EP  
3
49 OV  
DD  
4
48 OUT1P  
47 OUT1N  
5
6
46 OV  
DD  
7
45 CLKOUTP  
AV  
DD  
8
CLKOUTN  
44  
MAX1126  
AV  
DD  
9
OV  
43  
42  
DD  
AV  
DD  
10  
FRAMEP  
GND 11  
IN2P 12  
IN2N 13  
GND 14  
IN3P 15  
IN3N 16  
GND 17  
41 FRAMEN  
40 OV  
DD  
39 OUT2P  
38 OUT2N  
37 OV  
DD  
36 OUT3P  
35 OUT3N  
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  
QFN  
10mm x 10mm x 0.9mm  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
ABSOLUTE MAXIMUM RATINGS  
AV  
CV  
OV  
to GND.........................................................-0.3V to +2.0V  
to GND ........................................................-0.3V to +3.6V  
to GND ........................................................-0.3V to +2.0V  
T/B, LVDSTEST to GND ...........................-0.3V to (AV  
REFIO, REFADJ, CMOUT, to GND ..........-0.3V to (AV  
I.C. to GND...............................................-0.3V to (AV  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
DD  
DD  
DD  
DD  
DD  
DD  
IN_P, IN_N to GND...................................-0.3V to (AV  
CLK to GND.............................................-0.3V to (CV  
OUT_P, OUT_N, FRAME_,  
CLKOUT_ to GND................................-0.3V to (OV  
DT, SLVS/LVDS to GND...........................-0.3V to (AV  
PLL0, PLL1, PLL2, PLL3 to GND .............-0.3V to (AV  
PD0, PD1, PD2, PD3, PDALL to GND......-0.3V to (AV  
+ 0.3V)  
+ 0.3V)  
Continuous Power Dissipation (T = +70°C)  
DD  
DD  
A
68-Pin QFN 10mm x 10mm x 0.9mm  
(derated 41.7mW/°C above +70°C)........................3333.3mW  
Operating Temperature Range ...........................-40°C to +85°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature Range (soldering, 10s)......................+300°C  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
DD  
DD  
DD  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, REFADJ = AV , C  
to GND = 0.1µF,  
REFIO  
DD  
DD  
DD  
REFIO  
DD  
f
= 40MHz (50% duty cycle), DT = 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
CLK  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY  
Resolution  
N
12  
Bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
(Note 2)  
(Note 2)  
0.4  
0.25  
LSB  
% FS  
% FS  
Fixed external reference (Note 2)  
Fixed external reference (Note 2)  
1
Gain Error  
-1.5  
+0.9  
+2.5  
ANALOG INPUTS (IN_P, IN_N)  
Input Differential Range  
Common-Mode Voltage Range  
Differential Input Impedance  
Differential Input Capacitance  
CONVERSION RATE  
Maximum Conversion Rate  
Minimum Conversion Rate  
Data Latency  
V
Differential input  
(Note 3)  
1.4  
0.76  
2
V
ID  
P-P  
V
V
CMO  
R
Switched capacitor load  
kΩ  
IN  
IN  
C
12.5  
pF  
f
40  
MHz  
MHz  
SMAX  
f
4
SMIN  
6.5  
Cycles  
DYNAMIC CHARACTERISTICS (differential inputs, 4096-point FFT)  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
= 5.3MHz at -0.5dBFS  
69.9  
69.2  
69.8  
69.1  
11.4  
11.3  
Signal-to-Noise Ratio (Note 2)  
SNR  
dB  
dB  
= 19.3MHz at -0.5dBFS, T +25°C  
66.7  
66.7  
A
= 5.3MHz at -0.5dBFS  
Signal-to-Noise and Distortion  
(First Four Harmonics) (Note 2)  
SINAD  
ENOB  
= 19.3MHz at -0.5dBFS, T +25°C  
A
= 5.3MHz at -0.5dBFS  
= 19.3MHz at -0.5dBFS  
Effective Number of Bits (Note 2)  
Bits  
2
_______________________________________________________________________________________  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, REFADJ = AV , C  
to GND = 0.1µF,  
REFIO  
DD  
DD  
DD  
REFIO  
DD  
f
= 40MHz (50% duty cycle), DT = 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
CLK  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
= 5.3MHz at -0.5dBFS  
MIN  
TYP  
93.7  
89  
MAX  
UNITS  
f
f
f
f
IN  
IN  
IN  
IN  
Spurious-Free Dynamic Range  
(Note 2)  
SFDR  
dBc  
= 19.3MHz at -0.5dBFS, T +25°C  
77.3  
A
= 5.3MHz at -0.5dBFS  
-91.5  
-88.7  
Total Harmonic Distortion (Note 2)  
Intermodulation Distortion  
THD  
IMD  
IM3  
dBc  
dBc  
dBc  
= 19.3MHz at -0.5dBFS, T +25°C  
-76.3  
A
f = 12.40125MHz at -6.5dBFS,  
f = 13.60125MHz at -6.5dBFS (Note 2)  
1
87.0  
89.3  
2
f = 12.40125MHz at -6.5dBFS,  
f = 13.60125MHz at -6.5dBFS (Note 2)  
2
1
Third-Order Intermodulation  
Aperture Jitter  
t
(Note 2)  
< 0.4  
1
ps  
RMS  
AJ  
Aperture Delay  
t
(Note 2)  
ns  
AD  
Small-Signal Bandwidth  
Full-Power Bandwidth  
Output Noise  
SSBW  
LSBW  
Input at -20dBFS (Notes 2 and 4)  
Input at -0.5dBFS (Notes 2 and 4)  
IN_P = IN_N  
100  
100  
0.45  
MHz  
MHz  
LSB  
RMS  
Clock  
cycles  
Overdrive Recovery Time  
t
R = 25, C = 50pF  
1
OR  
S
S
COMMON-MODE OUTPUT (CMOUT)  
CMOUT Output Voltage  
V
0.76  
V
CMOUT  
INTERNAL REFERENCE (REFADJ = GND, bypass REFIO to GND with 0.1µF)  
REFADJ Internal Reference Mode  
(Note 5)  
0.1  
V
Enable Voltage  
REFADJ Low-Leakage Current  
1.6  
mA  
V
REFIO Output Voltage  
V
1.18  
1.24  
1.30  
REFIO  
Reference Temperature  
Coefficient  
TC  
100  
ppm/°C  
REFIO  
EXTERNAL REFERENCE (REFADJ = AV  
)
DD  
REFADJ External Reference  
Mode Enable Voltage  
AV  
0.1V  
-
DD  
(Note 5)  
V
REFADJ High-Leakage Current  
REFIO Input Voltage Range  
REFIO Input Voltage Tolerance  
125  
1.24  
5
µA  
V
%
REFIO Input Current  
I
< 1  
µA  
REFIO  
CLOCK INPUT (CLK)  
0.8 x  
Input High Voltage  
Input Low Voltage  
V
V
V
CLKH  
AV  
DD  
0.2 x  
V
CLKL  
AV  
DD  
Clock Duty Cycle  
50  
30  
%
%
Clock Duty-Cycle Tolerance  
_______________________________________________________________________________________  
3
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, REFADJ = AV , C  
to GND = 0.1µF,  
REFIO  
DD  
DD  
DD  
REFIO  
DD  
f
= 40MHz (50% duty cycle), DT = 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
CLK  
A
MIN  
PARAMETER  
SYMBOL  
DI  
CONDITIONS  
MIN  
TYP  
MAX  
5
UNITS  
µA  
Input at GND  
Input at AV  
Input Leakage  
IN  
80  
DD  
Input Capacitance  
DC  
5
pF  
IN  
DIGITAL INPUTS (PLL_, LVDSTEST, DT, SLVS/LVDS, PD_, PDALL, T/B)  
0.8 x  
Input High Threshold  
Input Low Threshold  
V
V
V
IH  
AV  
DD  
0.2 x  
V
IL  
AV  
DD  
Input at GND  
5
Input Leakage  
DI  
µA  
pF  
IN  
Input at AV  
80  
DD  
Input Capacitance  
DC  
5
IN  
LVDS OUTPUTS (OUT_P, OUT_N, SLVS/LVDS = 0  
Differential Output Voltage  
Output Common-Mode Voltage  
Rise Time (20% to 80%)  
Fall Time (80% to 20%)  
V
R
R
R
R
= 100Ω  
250  
1.125  
450  
mV  
V
OHDIFF  
TERM  
TERM  
TERM  
TERM  
V
= 100Ω  
1.375  
OCM  
t
R
= 100, C  
= 100, C  
= 5pF  
= 5pF  
150  
150  
ps  
ps  
LOAD  
t
F
LOAD  
SLVS OUTPUTS (OUT_P, OUT_N, CLKOUTP, CLKOUTN, FRAMEP, FRAMEN), SLVS/LVDS = 1, DT = 1  
Differential Output Voltage  
Output Common-Mode Voltage  
Rise Time (20% to 80%)  
Fall Time (80% to 20%)  
POWER-DOWN  
V
R
R
R
R
= 100Ω  
205  
220  
120  
120  
mV  
mV  
ps  
OHDIFF  
TERM  
TERM  
TERM  
TERM  
V
= 100Ω  
OCM  
t
R
= 100, C  
= 100, C  
= 5pF  
= 5pF  
LOAD  
t
ps  
F
LOAD  
PD Fall to Output Enable  
PD Rise to Output Disable  
POWER REQUIREMENTS  
t
132  
10  
µs  
ns  
ENABLE  
t
DISABLE  
AV  
Supply Voltage  
Supply Voltage  
Supply Voltage  
AV  
1.7  
1.7  
1.7  
1.8  
1.8  
1.8  
1.9  
1.9  
3.6  
V
V
V
DD  
DD  
OV  
OV  
DD  
DD  
DD  
DD  
CV  
CV  
4
_______________________________________________________________________________________  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, REFADJ = AV , C  
to GND = 0.1µF,  
REFIO  
DD  
DD  
DD  
REFIO  
DD  
f
= 40MHz (50% duty cycle), DT = 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
CLK  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PDALL = 0, all channels  
active  
246  
285  
PDALL = 0, all channels  
active, DT = 1  
246  
mA  
f
=
IN  
AV  
Supply Current  
I
19.3MHz at  
-0.5dBFS  
PDALL = 0, 1 channel active  
PDALL = 0, PD[3:0] = 1111  
76  
20  
DD  
AVDD  
PDALL = 1, global power  
down, PD[3:0] =1111, no  
clock input  
438  
µA  
mA  
µA  
PDALL = 0, all channels  
active  
51  
63  
57  
PDALL = 0, all channels  
active, DT = 1  
f
=
IN  
OV  
CV  
Supply Current  
Supply Current  
I
19.3MHz at  
-0.5dBFS  
PDALL = 0, 1 channel active  
PDALL = 0, PD[3:0] = 1111  
35  
30  
DD  
OVDD  
PDALL = 1, global power-  
down, PD[3:0] =1111, no  
clock input  
375  
CV  
is used only to bias ESD-protection  
DD  
I
0
mA  
DD  
CVDD  
diodes on CLK input, Figure 2  
Power Dissipation  
P
f
= 19.3MHz at -0.5dBFS  
535  
616  
mW  
DISS  
IN  
TIMING CHARACTERISTICS (Note 6)  
(t  
/
(t  
/
SAMPLE  
24)  
- 0.15  
SAMPLE  
24)  
+ 0.15  
t
/
SAMPLE  
24  
Data Valid to CLKOUT Rise/Fall  
t
f
= 40MHz, Figure 5 (Notes 6 and 7)  
ns  
OD  
CLK  
t
/
SAMPLE  
12  
CLKOUT Output Width High  
CLKOUT Output Width Low  
t
Figure 5  
Figure 5  
ns  
ns  
CH  
t
/
SAMPLE  
12  
t
CL  
CF  
(t  
/
(t  
/
/
SAMPLE  
24)  
- 0.15  
SAMPLE  
24)  
+ 0.15  
t
/
SAMPLE  
24  
FRAME Rise to CLKOUT Rise  
Sample CLK Rise to Frame Rise  
t
Figure 4 (Note 7)  
ns  
ns  
(t  
/ (t  
/ (t  
SAMPLE SAMPLE SAMPLE  
2)  
2)  
2)  
t
Figure 4 (Notes 7 and 8)  
SF  
+0.9  
+1.3  
+1.7  
_______________________________________________________________________________________  
5
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, REFADJ = AV , C  
to GND = 0.1µF,  
REFIO  
DD  
DD  
DD  
REFIO  
DD  
f
= 40MHz (50% duty cycle), DT = 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
CLK  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CHANNEL-TO-CHANNEL MATCHING  
Crosstalk  
(Note 2)  
-90  
0.1  
1
dB  
dB  
Gain Matching  
f
f
= 19.3MHz (Note 2)  
IN  
IN  
Phase Matching  
= 19.3.MHz (Note 2)  
Degrees  
Note 1: Specifications at T +25°C are guaranteed by production testing. Specifications at T < +25°C are guaranteed by design  
A
A
and characterization and not subject to production testing.  
Note 2: See definition in the Parameter Definitions section.  
Note 3: The MAX1126 internally sets the common-mode voltage to 0.76V (typ) (see Figure 1). The common-mode voltage can be  
overdriven to between 0.55V and 0.85V.  
Note 4: Limited by MAX1127EVKIT input circuitry.  
Note 5: Connect REFADJ to GND directly to enable internal reference mode. Connect REFADJ to AV  
directly to disable the inter-  
DD  
nal bandgap reference and enable external reference mode.  
Note 6: Data valid to CLKOUT rise/fall timing is measured from 50% of data output level to 50% of clock output level.  
Note 7: Guaranteed by design and characterization. Not subject to production testing.  
Note 8: Sample CLK Rise to FRAME RISE timing is measured from 50% of sample clock input level to 50% of FRAME output level.  
6
_______________________________________________________________________________________  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
Typical Operating Characteristics  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, REFADJ = AV , differential input at -0.5dBFS,  
REFIO DD  
DD  
DD  
DD  
f
= 40MHz (50% duty cycle), DT = low, C = 10pF, T = +25°C, unless otherwise noted.)  
LOAD A  
CLK  
FFT PLOT  
(32,768-POINT DATA RECORD)  
FFT PLOT  
(32,768-POINT DATA RECORD)  
0
0
f
f
A
= 40.96MHz  
= 5.30125MHz  
= -0.5dBFS  
CLK  
IN  
IN  
f
f
= 40.96MHz  
= 19.00125MHz  
CLK  
IN  
-10  
-20  
-10  
-20  
A
= -0.5dBFS  
IN  
SNR = 69.88dB  
-30  
SNR = 69.20dB  
-30  
SINAD = 69.85dB  
THD = -91.46dBc  
SFDR = 93.65dBc  
SINAD = 69.16dB  
THD = -88.74dBc  
SFDR = 89.04dBc  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
HD3  
HD3  
-80  
-80  
HD2  
HD2  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
CROSSTALK  
(4096-POINT DATA RECORD)  
CROSSTALK  
(4096-POINT DATA RECORD)  
CROSSTALK  
(4096-POINT DATA RECORD)  
0
0
0
MEASURED ON CHANNEL 2,  
WITH INTERFERING SIGNAL  
ON CHANNEL 0  
MEASURED ON CHANNEL 2,  
WITH INTERFERING SIGNAL  
ON CHANNEL 1  
MEASURED ON CHANNEL 2,  
WITH INTERFERING SIGNAL  
ON CHANNEL 3  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
f
f
f
= 39.9997651MHz  
f
f
f
= 39.9997651MHz  
f
f
f
= 39.9997651MHz  
CLK  
CLK  
CLK  
= 5.2831721MHz  
= 19.3260584MHz  
= 5.2831721MHz  
= 19.3260584MHz  
= 5.2831721MHz  
= 19.3260584MHz  
IN(IN2)  
IN(IN0)  
IN(IN2)  
IN(IN1)  
IN(IN2)  
IN(IN3)  
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TWO-TONE INTERMODULATION DISTORTION  
(32,768-POINT DATA RECORD)  
GAIN BANDWIDTH PLOT  
0
1
f
f
A
A
= 12.40125MHz  
= 13.60125MHz  
= -6.5dBFS  
IN(IN1)  
IN(IN2)  
IN1  
IN2  
SMALL-SIGNAL  
BANDWIDTH  
-20dBFS  
-10  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-20  
= -6.5dBFS  
-30  
FULL-POWER  
BANDWIDTH  
-0.5dBFS  
IMD = 87.0dBc  
IM3 = 89.3dBc  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
4
8
12  
16  
20  
1
10  
100  
1000  
FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
_______________________________________________________________________________________  
7
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
Typical Operating Characteristics (continued)  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, REFADJ = AV , differential input at -0.5dBFS,  
REFIO DD  
DD  
DD  
DD  
f
= 40MHz (50% duty cycle), DT = low, C = 10pF, T = +25°C, unless otherwise noted.)  
LOAD A  
CLK  
SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT FREQUENCY  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. ANALOG INPUT FREQUENCY  
72  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
0
25  
50  
75 100 125 150 175  
(MHz)  
0
25  
50  
75 100 125 150 175  
(MHz)  
f
IN  
f
IN  
SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT FREQUENCY  
TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT FREQUENCY  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
0
25  
50  
75 100 125 150 175  
(MHz)  
0
25  
50  
75 100 125 150 175  
(MHz)  
f
IN  
f
IN  
8
_______________________________________________________________________________________  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
Typical Operating Characteristics (continued)  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, REFADJ = AV , differential input at -0.5dBFS,  
REFIO DD  
DD  
DD  
DD  
f
= 40MHz (50% duty cycle), DT = low, C = 10pF, T = +25°C, unless otherwise noted.)  
LOAD A  
CLK  
SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT POWER  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. ANALOG INPUT POWER  
72  
72  
67  
62  
57  
52  
47  
42  
37  
32  
f
= 5.301935MHz  
IN  
f
IN  
= 5.301935MHz  
67  
62  
57  
52  
47  
42  
37  
32  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
ANALOG INPUT POWER (dBFS)  
ANALOG INPUT POWER (dBFS)  
TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT POWER  
SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT POWER  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
f
= 5.301935MHz  
f = 5.301935MHz  
IN  
IN  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
ANALOG INPUT POWER (dBFS)  
ANALOG INPUT POWER (dBFS)  
_______________________________________________________________________________________  
9
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
Typical Operating Characteristics (continued)  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, REFADJ = AV , differential input at -0.5dBFS,  
REFIO DD  
DD  
DD  
DD  
f
= 40MHz (50% duty cycle), DT = low, C = 10pF, T = +25°C, unless otherwise noted.)  
LOAD A  
CLK  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. SAMPLING RATE  
SIGNAL-TO-NOISE RATIO  
vs. SAMPLING RATE  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
72  
f
IN  
= 5.301935MHz  
f
= 5.301935MHz  
IN  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
0
5
10 15 20 25 30 35 40  
(MHz)  
0
5
10 15 20 25 30 35 40  
(MHz)  
f
CLK  
f
CLK  
TOTAL HARMONIC DISTORTION  
vs. SAMPLING RATE  
SPURIOUS-FREE DYNAMIC RANGE  
vs. SAMPLING RATE  
-75  
-80  
105  
100  
95  
f
IN  
= 5.301935MHz  
f = 5.301935MHz  
IN  
-85  
-90  
90  
-95  
85  
-100  
-105  
80  
75  
0
5
10 15 20 25 30 35 40  
(MHz)  
0
5
10 15 20 25 30 35 40  
(MHz)  
f
f
CLK  
CLK  
10 ______________________________________________________________________________________  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
Typical Operating Characteristics (continued)  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, REFADJ = AV , differential input at -0.5dBFS,  
REFIO DD  
DD  
DD  
DD  
f
= 40MHz (50% duty cycle), DT = low, C = 10pF, T = +25°C, unless otherwise noted.)  
LOAD A  
CLK  
SIGNAL-TO-NOISE RATIO  
vs. CLOCK DUTY CYCLE  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. CLOCK DUTY CYCLE  
72  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
f
= 5.301935MHz  
f
= 5.301935MHz  
IN  
IN  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
30  
40  
50  
60  
70  
30  
40  
50  
60  
70  
CLOCK DUTY CYCLE (%)  
CLOCK DUTY CYCLE (%)  
TOTAL HARMONIC DISTORTION  
vs. CLOCK DUTY CYCLE  
SPURIOUS-FREE DYNAMIC RANGE  
vs. CLOCK DUTY CYCLE  
-75  
-80  
100  
95  
90  
85  
80  
75  
70  
f
= 5.301935MHz  
f
IN  
= 5.301935MHz  
IN  
-85  
-90  
-95  
-100  
-105  
30  
40  
50  
60  
70  
30  
40  
50  
60  
70  
CLOCK DUTY CYCLE (%)  
CLOCK DUTY CYCLE (%)  
______________________________________________________________________________________ 11  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
Typical Operating Characteristics (continued)  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, REFADJ = AV , differential input at -0.5dBFS,  
REFIO DD  
DD  
DD  
DD  
f
= 40MHz (50% duty cycle), DT = low, C = 10pF, T = +25°C, unless otherwise noted.)  
LOAD A  
CLK  
SIGNAL-TO-NOISE RATIO  
vs. TEMPERATURE  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. TEMPERATURE  
72  
72  
70  
68  
66  
64  
62  
f
f
= 40.404040404MHz  
= 19.29204151MHz  
f
= 40.404040404MHz  
CLK  
= 19.29204151MHz  
CLK  
IN  
f
IN  
4096-POINT DATA RECORD  
4096-POINT DATA RECORD  
70  
68  
66  
64  
62  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TOTAL HARMONIC DISTORTION  
vs. TEMPERATURE  
SPURIOUS-FREE DYNAMIC RANGE  
vs. TEMPERATURE  
-75  
-80  
100  
95  
90  
85  
80  
75  
70  
f
f
= 40.404040404MHz  
= 19.29204151MHz  
f
= 40.404040404MHz  
CLK  
= 19.29204151MHz  
CLK  
IN  
f
IN  
4096-POINT DATA RECORD  
4096-POINT DATA RECORD  
-85  
-90  
-95  
-100  
-105  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DIGITAL SUPPLY CURRENT  
vs. SAMPLING RATE  
ANALOG SUPPLY CURRENT  
vs. SAMPLING RATE  
70  
60  
50  
40  
30  
20  
10  
0
270  
260  
250  
240  
230  
220  
20  
25  
30  
35  
40  
20  
25  
30  
35  
40  
f
(MHz)  
f
(MHz)  
CLK  
CLK  
12 ______________________________________________________________________________________  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
Typical Operating Characteristics (continued)  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, REFADJ = AV , differential input at -0.5dBFS,  
REFIO DD  
DD  
DD  
DD  
f
= 40MHz (50% duty cycle), DT = low, C = 10pF, T = +25°C, unless otherwise noted.)  
LOAD A  
CLK  
OFFSET ERROR  
vs. TEMPERATURE  
0.020  
GAIN ERROR  
vs. TEMPERATURE  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.015  
0.010  
0.005  
0
-0.005  
-0.010  
-0.015  
-0.020  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
0.6  
0.4  
0.2  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.2  
-0.4  
-0.6  
0
512 1024 1536 2048 2560 3072 3584 4096  
DIGITAL OUTPUT CODE  
0
512 1024 1536 2048 2560 3072 3584 4096  
DIGITAL OUTPUT CODE  
INTERNAL REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
INTERNAL REFERENCE VOLTAGE  
vs. REFERENCE LOAD CURRENT  
1.239  
1.26  
1.25  
1.24  
1.23  
1.22  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
NEGATIVE CURRENT  
FLOWS INTO REFIO  
1.238  
1.237  
1.236  
1.235  
AV = OV  
AV = OV  
DD DD  
DD  
DD  
1.7  
1.8  
1.9  
2.0  
2.1  
-40  
-15  
10  
35  
60  
85  
-400 -300 -200 -100  
I
0
100 200 300 400  
(µA)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
REFIO  
______________________________________________________________________________________ 13  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
Typical Operating Characteristics (continued)  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, REFADJ = AV , differential input at -0.5dBFS,  
REFIO DD  
DD  
DD  
DD  
f
= 40MHz (50% duty cycle), DT = low, C = 10pF, T = +25°C, unless otherwise noted.)  
LOAD A  
CLK  
CMOUT VOLTAGE  
vs. SUPPLY VOLTAGE  
CMOUT VOLTAGE  
vs. TEMPERATURE  
CMOUT VOLTAGE  
vs. LOAD CURRENT  
0.765  
0.765  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
NEGATIVE CURRENT  
FLOWS INTO CMOUT  
AV = OV  
DD  
DD  
AV = OV  
DD  
DD  
0.763  
0.763  
0.761  
0.759  
0.757  
0.755  
0.761  
0.759  
0.757  
0.755  
1.7  
1.8  
1.9  
2.0  
2.1  
-40  
-15  
10  
35  
60  
85  
0
500 1000 1500 2000 2500 3000  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
I
(µA)  
CMOUT  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 4, 7, 11,  
14, 17, 22,  
24, 65, 68  
GND  
Ground. Connect all GND pins to the same potential.  
2
3
5
6
IN0P  
IN0N  
IN1P  
IN1N  
Channel 0 Positive Analog Input  
Channel 0 Negative Analog Input  
Channel 1 Positive Analog Input  
Channel 1 Negative Analog Input  
Analog Power Input. Connect AV  
a 0.1µF capacitor as close to the device as possible. Bypass the AV  
ground plane with a bulk 2.2µF capacitor as close to the device as possible. Connect all AV  
pins to the same potential.  
to a 1.7V to 1.9V power supply. Bypass each AV  
to GND with  
DD  
DD  
8, 9, 10, 18,  
20, 25, 26,  
27, 58–62  
power plane to the GND  
DD  
AV  
DD  
DD  
12  
13  
15  
16  
19  
IN2P  
IN2N  
Channel 2 Positive Analog Input  
Channel 2 Negative Analog Input  
IN3P  
Channel 3 Positive Analog Input  
IN3N  
Channel 3 Negative Analog Input  
CMOUT  
Common-Mode Reference Voltage Output. Bypass CMOUT to GND with a 0.1µF capacitor.  
Clock Power Input. Connect CV  
to a 1.7V to 3.6V supply. Bypass CV  
to GND with a 0.1µF  
DD  
DD  
21  
CV  
capacitor in parallel with a 2.2µF capacitor. Install the bypass capacitors as close to the device as  
DD  
possible.  
23  
28  
CLK  
DT  
Single-Ended CMOS Clock Input  
Double Termination Select Input. Drive DT high to select the internal 100termination between the  
differential output pairs. Drive DT low to select no internal output termination.  
14 ______________________________________________________________________________________  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Differential Output Signal Format Select Input. Drive SLVS/LVDS high to select SLVS outputs. Drive  
SLVS/LVDS low to select LVDS outputs.  
29  
SLVS/LVDS  
30  
31  
32  
33  
PLL0  
PLL1  
PLL2  
PLL3  
PLL Control Input 0. PLL0 is reserved for factory testing only and must always be connected to GND.  
PLL Control Input 1. See Table 1 for details.  
PLL Control Input 2. See Table 1 for details.  
PLL Control Input 3. See Table 1 for details.  
Output-Driver Power Input. Connect OV  
GND with a 0.1µF capacitor as close to the device as possible. Bypass the OV  
GND ground plane with a bulk 2.2µF capacitor as close to the device as possible. Connect all OV  
pins to the same potential.  
to a 1.7V to 1.9V power supply. Bypass each OV to  
DD  
DD  
34, 37, 40,  
43, 46, 49,  
52  
power plane to the  
DD  
OV  
DD  
DD  
35  
36  
38  
39  
OUT3N  
OUT3P  
OUT2N  
OUT2P  
Channel 3 Negative LVDS/SLVS Output  
Channel 3 Positive LVDS/SLVS Output  
Channel 2 Negative LVDS/SLVS Output  
Channel 2 Positive LVDS/SLVS Output  
Negative Frame Alignment LVDS/SLVS Output. A rising edge on the differential FRAME output aligns  
to a valid D0 in the output data stream.  
41  
42  
FRAMEN  
FRAMEP  
Positive Frame Alignment LVDS/SLVS Output. A rising edge on the differential FRAME output aligns to  
a valid D0 in the output data stream.  
44  
45  
47  
48  
50  
51  
CLKOUTN Negative LVDS/SLVS Serial Clock Output  
CLKOUTP Positive LVDS/SLVS Serial Clock Output  
OUT1N  
OUT1P  
OUT0N  
OUT0P  
Channel 1 Negative LVDS/SLVS Output  
Channel 1 Positive LVDS/SLVS Output  
Channel 0 Negative LVDS/SLVS Output  
Channel 0 Positive LVDS/SLVS Output  
Channel 0 Power-Down Input. Drive PD0 high to power-down channel 0. Drive PD0 low for normal  
operation.  
53  
54  
55  
56  
57  
63  
PD0  
PD1  
Channel 1 Power-Down Input. Drive PD1 high to power-down channel 1. Drive PD1 low for normal  
operation.  
Channel 2 Power-Down Input. Drive PD2 high to power-down channel 2. Drive PD2 low for normal  
operation.  
PD2  
Channel 3 Power-Down Input. Drive PD3 high to power-down channel 3. Drive PD3 low for normal  
operation.  
PD3  
Global Power-Down Input. Drive PDALL high to power-down all channels and reference. Drive PDALL  
low for normal operation.  
PDALL  
T/B  
Output Format Select Input. Drive T/B high to select binary output format. Drive T/B low to select two’s  
complement output format.  
______________________________________________________________________________________ 15  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
LVDS Test Pattern Enable Input. Drive LVDSTEST high to enable the output test pattern  
(000010111101 MSBLSB). As with the analog conversion results, the test pattern data is output LSB  
first. Drive LVDSTEST low for normal operation.  
64  
LVDSTEST  
Reference Input/Output. For internal reference operation (REFADJ = GND), the reference output  
66  
REFIO  
voltage is 1.24V. For external reference operation (REFADJ = AV ), apply a stable reference voltage  
DD  
at REFIO. Bypass to GND with a 0.1µF capacitor.  
Internal/External Reference Mode Select Input. For internal reference mode, connect REFADJ directly  
to GND. For external reference mode, connect REFADJ directly to AV . For reference-adjust mode,  
DD  
see the Full-Scale Range Adjustments Using the Internal Reference section.  
67  
REFADJ  
EP  
Exposed Paddle. EP is internally connected to GND. Externally connect EP to GND to achieve  
specified performance.  
Functional Diagram  
AV  
DD  
OV  
DD  
REFIO  
REFADJ  
PDALL PD0 PD1 PD2 PD3  
DT  
SLVS/LVDS  
LVDSTEST  
T/B  
REFERENCE  
SYSTEM  
OUTPUT  
CONTROL  
POWER CONTROL  
MAX1126  
ICMV*  
CMOUT  
12-BIT  
PIPELINE  
ADC  
IN0P  
OUT0P  
OUT0N  
12:1  
SERIALIZER  
T/H  
T/H  
T/H  
T/H  
IN0N  
OUT1P  
OUT1N  
12-BIT  
PIPELINE  
ADC  
IN1P  
IN1N  
12:1  
SERIALIZER  
OUT2P  
OUT2N  
LVDS/SLVS  
OUTPUT  
DRIVERS  
12-BIT  
PIPELINE  
ADC  
IN2P  
IN2N  
12:1  
SERIALIZER  
OUT3P  
OUT3N  
FRAMEP  
FRAMEN  
12-BIT  
PIPELINE  
ADC  
IN3P  
IN3N  
12:1  
SERIALIZER  
CLKOUTP  
CLKOUTN  
CLOCK  
CIRCUITRY  
PLL  
6x  
CLK  
CV  
DD  
PLL0 PLL1 PLL2 PLL3  
GND  
*ICMV = INPUT COMMON-MODE VOLTAGE (INTERNALLY GENERATED)  
16 ______________________________________________________________________________________  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
ductance amplifier (OTA), and open simultaneously with  
Detailed Description  
S1, sampling the input waveform. Switches S4a, S4b,  
The MAX1126 ADC features fully differential inputs, a  
S5a, and S5b are then opened before switches S3a and  
S3b connect capacitors C1a and C1b to the output of  
the amplifier and switch S4c is closed. The resulting dif-  
ferential voltages are held on capacitors C2a and C2b.  
The amplifiers charge capacitors C1a and C1b to the  
same values originally held on C2a and C2b. These  
values are then presented to the first-stage quantizers  
and isolate the pipelines from the fast-changing inputs.  
Analog inputs IN_P to IN_N are driven differentially. For  
differential inputs, balance the input impedance of IN_P  
and IN_N for optimum performance.  
pipelined architecture, and digital error correction for  
high-speed signal conversion. The ADC pipeline archi-  
tecture moves the samples taken at the inputs through  
the pipeline stages every half clock cycle. The convert-  
ed digital results are serialized and sent through the  
LVDS/SLVS output drivers. The total latency from input  
to output is 6.5 input clock cycles.  
The MAX1126 offers four separate fully differential  
channels with synchronized inputs and outputs.  
Configure the outputs for binary or two’s complement  
with the T/B digital input. Power-down each channel  
individually or globally to minimize power consumption.  
The MAX1126 analog inputs are self-biased at a com-  
mon-mode voltage of 0.76V (typ) and allow a differen-  
tial input voltage swing of 1.4V . The common-mode  
P-P  
voltage can be overdriven to between 0.55V and 0.85V.  
Drive the analog inputs of the MAX1126 in AC-coupled  
configuration to achieve best dynamic performance.  
See the Using Transformer Coupling section for a  
detailed discussion of this configuration.  
Input Circuit  
Figure 1 displays a simplified functional diagram of the  
input T/H circuits. In track mode, switches S1, S2a, S2b,  
S4a, S4b, S5a, and S5b are closed. The fully differential  
circuits sample the input signals onto the two capacitors  
(C2a and C2b) through switches S4a and S4b. S2a and  
S2b set the common mode for the operational transcon-  
SWITCHES SHOWN IN TRACK MODE  
INTERNALLY  
GENERATED  
COMMON-MODE  
LEVEL*  
INTERNAL  
COMMON-MODE  
BIAS*  
INTERNAL  
BIAS*  
S5a  
S2a  
AV  
DD  
MAX1126  
C1a  
S3a  
S4a  
S4b  
C2a  
C2b  
IN_P  
IN_N  
GND  
OUT  
OUT  
OTA  
C1b  
S4c  
S1  
S3b  
S2b  
S5b  
INTERNAL  
COMMON-MODE  
BIAS*  
INTERNALLY  
GENERATED  
COMMON-MODE  
LEVEL*  
INTERNAL  
BIAS*  
*NOT EXTERNALLY ACCESSIBLE  
Figure 1. Internal Input Circuitry  
______________________________________________________________________________________ 17  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
External Reference Mode  
Reference Configurations  
The external reference mode allows for more control  
over the MAX1126 reference voltage and allows multi-  
ple converters to use a common reference. Connect  
(REFIO and REFADJ)  
The MAX1126 provides an internal 1.24V bandgap ref-  
erence or can be driven with an external reference volt-  
age. The MAX1126 full-scale analog differential input  
range is FSR. Full-scale range (FSR) is given by the  
following equation:  
REFADJ to AV  
to disable the internal reference and  
DD  
enter external reference mode. Apply a stable 1.18V to  
1.30V source at REFIO. Bypass REFIO to GND with a  
0.1µF capacitor. The REFIO input impedance is > 1M.  
V
REFIO  
FSR = 700mVx  
Clock Input (CLK)  
The MAX1126 accepts a CMOS-compatible clock sig-  
nal with a wide 20% to 80% input-clock duty cycle.  
Drive CLK with an external single-ended clock signal.  
Figure 2 shows the simplified clock input diagram.  
1.24V  
where V  
is the voltage at REFIO, generated inter-  
REFIO  
nally or externally. For a V  
= 1.24V, the full-scale  
REFIO  
input range is 700mV (1.4V ).  
P-P  
Low clock jitter is required for the specified SNR perfor-  
mance of the MAX1126. Analog input sampling occurs  
on the rising edge of CLK, requiring this edge to pro-  
vide the lowest possible jitter. Jitter limits the maximum  
SNR performance of any ADC according to the follow-  
ing relationship:  
Internal Reference Mode  
Connect REFADJ to GND to use the internal bandgap  
reference directly. The internal bandgap reference gen-  
erates REFIO to be 1.24V with a 100ppm/°C tempera-  
ture coefficient in internal reference mode. Connect an  
external 0.1µF bypass capacitor from REFIO to GND  
for stability. REFIO sources up to 200µA and sinks up  
to 200µA for external circuits, and REFIO has a load  
regulation of 83mV/mA. The global power-down input  
(PDALL) enables and disables the reference circuit.  
REFIO has > 1Mresistance to GND when the  
MAX1126 is in power-down mode. The internal refer-  
ence circuit requires 132µs to power-up and settle  
when power is applied to the MAX1126 or when PDALL  
transitions from high to low.  
1
SNR= 20×log  
2× π × f × t  
IN  
J
where f represents the analog input frequency and t  
IN  
J
is the total system clock jitter. Clock jitter is especially  
critical for undersampling applications. For example,  
assuming that clock jitter is the only noise source, to  
obtain the specified 69.2dB of SNR with an input fre-  
quency of 19.3MHz, the system must have less than  
2.8ps  
of clock jitter. In actuality, there are other  
RMS  
noise sources, such as thermal noise and quantization  
noise, that contribute to the system noise requiring the  
To compensate for gain errors or to decrease or  
increase the ADC’s full-scale range (FSR), add an  
external resistor between REFADJ and GND or REFADJ  
and REFIO. This adjusts the internal reference value of  
the MAX1126 by up to 5% of its nominal value. See  
the Full-Scale Range Adjustments Using the Internal  
Reference section.  
clock jitter to be less than 1.1ps  
fied 69.2dB of SNR at 19.3MHz.  
to obtain the speci-  
RMS  
Table 1. PLL1, PLL2, and PLL3 Configuration  
CLOCK INPUT RANGE (MHz)  
PLL1  
PLL2  
PLL3  
MIN  
MAX  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
NOT USED  
AV  
CV  
DD  
32.5  
22.5  
16.3  
11.3  
8.1  
40.0  
32.5  
22.5  
16.3  
11.3  
8.1  
MAX1126  
DD  
DUTY-CYCLE  
EQUALIZER  
CLK  
GND  
5.6  
4.0  
5.6  
*PLL0 is reserved for factory testing and must always be con-  
nected to GND.  
Figure 2. Clock Input Circuitry  
18 ______________________________________________________________________________________  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
N + 2  
N + 6  
N + 3  
N
N + 9  
N + 8  
(V  
-
N + 5  
IN_P  
V
)
IN_N  
N + 1  
N + 7  
N + 4  
t
SAMPLE  
CLK  
6.5 CLOCK-CYCLE DATA LATENCY  
(V  
-
FRAMEP  
V
)*  
FRAMEN  
(V  
CLKOUTP  
-
V
)
CLKOUTN  
(V  
-
OUT_P  
V
)
OUT_N  
OUTPUT  
OUTPUT  
DATA FOR  
SAMPLE  
N - 6  
DATA FOR  
SAMPLE N  
*DUTY CYCLE VARIES DEPENDING ON INPUT CLOCK FREQUENCY.  
Figure 3. Global Timing Diagram  
N + 2  
N
(V  
- V  
)
IN_N  
IN_P  
N + 1  
t
t
SF  
SAMPLE  
CLK  
(V  
V
-
FRAMEP  
)
t
CF  
FRAMEN  
(V  
-
CLKOUTP  
V
)
CLKOUTN  
(V  
V
-
OUT_P  
D5  
N-7  
D6  
N-7  
D7  
N-7  
D8  
N-7  
D9  
N-7  
D10 D11  
N-7 N-7  
D0  
N-6  
D1  
N-6  
D2  
N-6  
D3  
N-6  
D4  
N-6  
D5  
N-6  
D6  
N-6  
D7  
N-6  
D8  
N-6  
D9  
N-6  
D10 D11  
N-6 N-6  
D0  
N-5  
D1  
N-5  
D2  
N-5  
D3  
N-5  
D4  
N-5  
D5  
N-5  
D6  
N-5  
)
OUT_N  
*DUTY CYCLE DEPENDS ON INPUT CLOCK FREQUENCY.  
Figure 4. Detailed Two-Conversion Timing Diagram  
PLL Inputs (PLLO–PLL3)  
The MAX1126 features a PLL that generates an output  
clock signal with 6 times the frequency of the input  
clock. The output clock signal is used to clock data out  
of the MAX1126 (see the System Timing Requirements  
section). Set the PLL1, PLL2, and PLL3 bits according  
to the input clock range provided in Table 1. PLL0 is  
reserved for factory testing and must always be con-  
nected to GND.  
System Timing Requirements  
Figure 3 shows the relationship between the analog  
inputs, input clock, frame alignment output, serial clock  
output, and serial data output. The differential analog  
input (IN_P and IN_N) is sampled on the rising edge of  
the CLK signal and the resulting data appears at the  
digital outputs 6.5 clock cycles later. Figure 4 provides  
a detailed, two-conversion timing diagram of the rela-  
tionship between the inputs and the outputs.  
______________________________________________________________________________________ 19  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
Clock Output (CLKOUTP, CLKOUTN)  
t
t
CL  
CH  
The MAX1126 provides a differential clock output that  
consists of CLKOUTP and CLKOUTN. As shown in  
Figure 4, the serial output data is clocked out of the  
MAX1126 on both edges of the clock output. The fre-  
quency of the output clock is 6 times the frequency  
of CLK.  
(V  
V
-
)
CLKOUTP  
CLKOUTN  
t
t
OD  
OD  
(V  
-
OUT_P  
D0  
D1  
D2  
D3  
V
)
OUT_N  
Frame Alignment Output (FRAMEP, FRAMEN)  
The MAX1126 provides a differential frame alignment  
signal that consists of FRAMEP and FRAMEN. As  
shown in Figure 4, the rising edge of the frame align-  
ment signal corresponds to the first bit (D0) of the  
12-bit serial data stream. The frequency of the frame  
alignment signal is identical to the frequency of the  
sample clock.  
Figure 5. Serialized Output Detailed Timing Diagram  
output and the analog input. For two’s complement  
(T/B = 0):  
CODE  
4096  
10  
V
V  
= FSR×2×  
IN_P  
IN_N  
and for offset binary (T/B = 1):  
V = FSR×2×  
Serial Output Data (OUT_P, OUT_N)  
The MAX1126 provides its conversion results through  
individual differential outputs consisting of OUT_P and  
OUT_N. The results are valid 6.5 input clock cycles  
after the sample is taken. As shown in Figure 3, the out-  
put data is clocked out on both edges of the output  
clock, LSB (D0) first. Figure 5 provides the detailed ser-  
ial output timing diagram.  
CODE 2048  
10  
V
IN_P  
IN_N  
4096  
where CODE is the decimal equivalent of the digital  
10  
output code as shown in Table 2. FSR is the full-scale  
range as shown in Figures 6 and 7.  
Keep the capacitive load on the MAX1126 digital out-  
puts as low as possible.  
Output Data Format (T/B), Transfer Functions  
The MAX1126 output data format is either offset binary  
or two’s complement, depending on the logic input T/B.  
With T/B low, the output data format is two’s comple-  
ment. With T/B high, the output data format is offset  
binary. The following equations, Table 2, Figure 6, and  
Figure 7 define the relationship between the digital  
LVDS and SLVS Signals (SLVS/LVDS)  
Drive SLVS/LVDS low for LVDS or drive SLVS/LVDS  
high for scalable low-voltage signaling (SLVS) levels at  
the MAX1126 outputs (OUT_P, OUT_N, CLKOUTP,  
CLKOUTN, FRAMEP, and FRAMEN). For SLVS levels,  
Table 2. Output Code Table (V  
= 1.24V)  
REFIO  
TWO’S COMPLEMENT DIGITAL OUTPUT CODE  
OFFSET BINARY DIGITAL OUTPUT CODE  
(T/B = 0)  
(T/B = 1)  
V
(V  
- V  
REFIO  
(mV)  
= 1.24V)  
IN_P  
IN_P  
HEXADECIMAL  
EQUIVALENT  
OF  
DECIMAL  
EQUIVALENT  
OF  
HEXADECIMAL  
EQUIVALENT  
OF  
DECIMAL  
EQUIVALENT  
OF  
BINARY  
D11 D0  
BINARY  
D11 D0  
D11 D0  
D11 D0  
D11 D0  
D11 D0  
0111 1111 1111  
0111 1111 1110  
0x7FF  
0x7FE  
+2047  
+2046  
1111 1111 1111  
1111 1111 1110  
0xFFF  
0xFFE  
+4095  
+4094  
+699.66  
+699.32  
0000 0000 0001  
0000 0000 0000  
1111 1111 1111  
0x001  
0x000  
0xFFF  
+1  
0
1000 0000 0001  
1000 0000 0000  
0111 1111 1111  
0x801  
0x800  
0x7FF  
+2049  
+2048  
+2047  
+0.34  
0
-1  
-0.34  
1000 0000 0001  
1000 0000 0000  
0X801  
0x800  
-2047  
-2048  
0000 0000 0001  
0000 0000 0000  
0x001  
0x000  
+1  
0
-699.66  
-700.00  
20 ______________________________________________________________________________________  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
V
V
REFIO  
1.24V  
2 x FSR  
4096  
2 x FSR  
4096  
REFIO  
1 LSB =  
FSR = 700mV x  
1 LSB =  
FSR = 700mV x  
1.24V  
FSR  
FSR  
FSR  
FSR  
0x7FF  
0x7FE  
0x7FD  
0xFFF  
0xFFE  
0xFFD  
0x001  
0x000  
0xFFF  
0x801  
0x800  
0x7FF  
0x803  
0x802  
0x801  
0x800  
0x003  
0x002  
0x800  
0x000  
-2047 -2045  
-1 0 +1  
+2045 +2047  
-2047 -2045  
-1 0 +1  
+2045 +2047  
DIFFERENTIAL INPUT VOLTAGE (LSB)  
DIFFERENTIAL INPUT VOLTAGE (LSB)  
Figure 6. Bipolar Transfer Function with Two’s Complement  
Output Code (T/B = 0)  
Figure 7. Bipolar Transfer Function with Offset Binary Output  
Code (T/B = 1)  
LSB first. Drive LVDSTEST low for normal operation  
(test pattern disabled).  
DT  
Common-Mode Output Voltage (CMOUT)  
CMOUT provides a common-mode reference for DC-  
coupled analog inputs. If the input is DC-coupled,  
match the output common-mode voltage of the circuit  
OUT_P/  
CLKOUTP/  
FRAMEP  
Z = 50  
0
driving the MAX1126 to the output voltage at V  
CMOUT  
to within 50mV. It is recommended that the output  
common-mode voltage of the driving circuit be derived  
from CMOUT.  
100Ω  
100Ω  
Double Termination (DT)  
As shown in Figure 8, the MAX1126 offers an optional,  
internal 100termination between the differential  
output pairs (OUT_P and OUT_N, CLKOUTP and  
CLKOUTN, FRAMEP and FRAMEN). In addition to the  
termination at the end of the line, a second termination  
directly at the outputs helps eliminate unwanted reflec-  
tions down the line. This feature is useful in applications  
where trace lengths are long (> 5in) or with mis-  
matched impedance. Drive DT high to select double  
termination, or drive DT low to disconnect the internal  
termination resistor (single termination). Selecting dou-  
Z = 50Ω  
0
OUT_N/  
CLKOUTN/  
FRAMEN  
MAX1126  
SWITCHES ARE CLOSED WHEN DT IS HIGH.  
SWITCHES ARE OPEN WHEN DT IS LOW.  
Figure 8. Double Termination  
ble termination increases the OV  
supply current (see  
DD  
enable double termination by driving DT high. See the  
Electrical Characteristics table for LVDS and SLVS out-  
put voltage levels.  
the Electrical Characteristics table).  
Power-Down Modes  
The MAX1126 offers two types of power-down inputs,  
PD0–PD3 and PDALL. The power-down modes allow  
the MAX1126 to efficiently use power by transitioning to  
a low-power state when conversions are not required.  
LVDS Test Pattern (LVDSTEST)  
Drive LVDSTEST high to enable the output test pattern  
on all LVDS or SLVS output channels. The output test  
pattern is 0000 1011 1101 MSBLSB. As with the ana-  
log conversion results, the test pattern data is output  
______________________________________________________________________________________ 21  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
Independent Channel Power-Down (PD0–PD3)  
Applications Information  
PD0–PD3 control the power-down mode of each chan-  
nel independently. Drive a power-down input high to  
power down its corresponding input channel. For exam-  
ple, to power down channel 1, drive PD1 high. Drive a  
power-down input low to place the corresponding input  
channel in normal operation. The differential output  
impedance of a powered-down output channel is  
approximately 378, when DT is low. The output imped-  
ance of OUT_P, with respect to OUT_N, is 100when  
DT is high. See the Electrical Characteristics table for  
typical supply currents with powered-down channels.  
Full-Scale Range Adjustments Using the  
Internal Reference  
The MAX1126 supports a full-scale adjustment range  
of 10% ( 5%). To decrease the full-scale range, add a  
25kto 250kexternal resistor or potentiometer  
(R  
) between REFADJ and GND. To increase the  
ADJ  
full-scale range, add a 25kto 250kresistor  
between REFADJ and REFIO. Figure 9 shows the two  
possible configurations.  
The following equations provide the relationship between  
R
ADJ  
and the change in the analog full-scale range:  
The state of the internal reference is independent of the  
PD0–PD3 inputs. To power down the internal reference  
circuitry, drive PDALL high (see the Global Power-  
Down (PDALL) section).  
1.25kΩ  
FSR = 0.7V 1+  
R
ADJ  
Global Power-Down (PDALL)  
PDALL controls the power-down mode of all channels  
and the internal reference circuitry. Drive PDALL high to  
enable global power-down. In global power-down mode,  
the output impedance of all the LVDS/SLVS outputs is  
approximately 378, if DT is low. The output impedance  
of the differential LVDS/SLVS outputs is 100when DT is  
high. See the Electrical Characteristics table for typical  
supply currents with global power-down. The following  
list shows the state of the analog inputs and digital out-  
puts in global power-down mode:  
for R  
for R  
connected between REFADJ and REFIO, and  
ADJ  
ADJ  
FSR = 0.7V 11.25kΩ  
R
ADJ  
connected between REFADJ and GND.  
ADC FULL-SCALE = REFT - REFB  
REFERENCE-  
SCALING  
• IN_P, IN_N analog inputs are disconnected from the  
internal input amplifier.  
AMPLIFIER  
REFT  
REFB  
G
• REFIO has > 1Mresistance to GND.  
REFERENCE  
BUFFER  
• OUT_P, OUT_N, CLKOUTP, CLKOUTN, FRAMEP,  
and FRAMEN have approximately 378between the  
output pairs when DT is low. When DT is high, the dif-  
ferential output pairs have 100between each pair.  
REFIO  
0.1µF  
1V  
25kΩ  
TO 250kΩ  
When operating from the internal reference, the wake-  
up time from global power-down is typically 132µs.  
When using an external reference, the wake-up time is  
dependent on the external reference drivers.  
REFADJ  
CONTROL LINE TO  
DISABLE REFERENCE  
BUFFER  
25kΩ  
TO 250kΩ  
MAX1126  
AV  
CC  
AV / 2  
CC  
Figure 9. Circuit Suggestions to Adjust the ADC’s Full-Scale  
Range  
22 ______________________________________________________________________________________  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
inductance ground connection. Isolate the ground  
plane from any noisy digital system ground planes.  
10Ω  
0.1µF  
IN_P  
Route high-speed digital signal traces away from the  
1
2
3
6
5
4
39pF  
V
IN  
T1  
sensitive analog traces. Keep all signal lines short and  
free of 90° turns.  
N.C.  
MAX1126  
Ensure that the differential analog input network layout  
is symmetric and that all parasitics are balanced equal-  
ly. Refer to the MAX1126 EV kit data sheet for an exam-  
ple of symmetric input layout.  
0.1µF  
MINICIRCUITS  
ADT1-1WT  
10Ω  
IN_N  
Parameter Definitions  
39pF  
Integral Nonlinearity (INL)  
Integral nonlinearity is the deviation of the values on an  
Figure 10. Transformer-Coupled Input Drive  
actual transfer function from a straight line. For the  
MAX1126, this straight line is between the end points of  
the transfer function, once offset and gain errors have  
been nullified. INL deviations are measured at every  
step and the worst-case deviation is reported in the  
Electrical Characteristics table.  
Using Transformer Coupling  
An RF transformer (Figure 10) provides an excellent  
solution to convert a single-ended input source signal  
to a fully differential signal, required by the MAX1126  
for optimum performance. The MAX1126 input com-  
mon-mode voltage is internally biased to 0.76V (typ)  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between an  
actual step width and the ideal value of 1 LSB. A DNL  
error specification of less than 1 LSB guarantees no  
missing codes and a monotonic transfer function. For  
the MAX1126, DNL deviations are measured at every  
step and the worst-case deviation is reported in the  
Electrical Characteristics table.  
with f  
= 40MHz. Although a 1:1 transformer is  
CLK  
shown, a step-up transformer can be selected to  
reduce the drive requirements. A reduced signal swing  
from the input driver, such as an op amp, can also  
improve the overall distortion.  
Grounding, Bypassing, and Board Layout  
The MAX1126 requires high-speed board layout design  
techniques. Refer to the MAX1127 EV kit data sheet for  
a board layout reference. Locate all bypass capacitors  
as close to the device as possible, preferably on the  
same side as the ADC, using surface-mount devices  
Offset Error  
Offset error is a figure of merit that indicates how well  
the actual transfer function matches the ideal transfer  
function at a single point. For the MAX1126, the ideal  
midscale digital output transition occurs when there is  
-1/2 LSB across the analog inputs (Figures 6 and 7).  
Bipolar offset error is the amount of deviation between  
the measured midscale transition point and the ideal  
midscale transition point.  
for minimum inductance. Bypass AV  
to GND with a  
DD  
0.1µF ceramic capacitor in parallel with a 2.2µF  
ceramic capacitor. Bypass OV to GND with a 0.1µF  
DD  
ceramic capacitor in parallel with a 2.2µF ceramic  
capacitor. Bypass CV  
to GND with a 0.1µF ceramic  
DD  
capacitor in parallel with a 2.2µF ceramic capacitor.  
Gain Error  
Gain error is a figure of merit that indicates how well the  
slope of the actual transfer function matches the slope  
of the ideal transfer function. For the MAX1126, the gain  
error is the difference of the measured full-scale and  
zero-scale transition points minus the difference of the  
ideal full-scale and zero-scale transition points.  
Multilayer boards with ample ground and power planes  
produce the highest level of signal integrity. Connect  
MAX1126 ground pins and the exposed backside pad-  
dle to the same ground plane. The MAX1126 relies on  
the exposed backside paddle connection for a low-  
______________________________________________________________________________________ 23  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
For the bipolar devices (MAX1126), the full-scale transi-  
tion point is from 0x7FE to 0x7FF for two’s complement  
output format (0xFFE to 0xFFF for offset binary) and the  
CLK  
zero-scale transition point is from 0x800 to 0x801 for  
two’s complement (0x000 to 0x001 for offset binary).  
ANALOG  
t
AD  
Crosstalk  
INPUT  
Crosstalk indicates how well each analog input is isolat-  
t
AJ  
ed from the others. For the MAX1126, a 5.3MHz,  
SAMPLED  
-0.5dBFS analog signal is applied to one channel while  
DATA  
a 19.3MHz, -0.5dBFS analog signal is applied to all  
other channels. An FFT is taken on the channel with the  
5.3MHz analog signal. From this FFT, the crosstalk is  
T/H  
HOLD  
TRACK  
HOLD  
measured as the difference in the 5.3MHz and  
19.3MHz amplitudes.  
Figure 11. Aperture Jitter/Delay Specifications  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
rising edge of the sampling clock and the instant when  
an actual sample is taken. See Figure 10.  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS sig-  
nal to the RMS noise plus distortion. RMS noise plus  
distortion includes all spectral components to the  
Nyquist frequency, excluding the fundamental and the  
DC offset.  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the aperture delay. See Figure 11.  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
the full-scale analog input (RMS value) to the RMS  
quantization error (residual error). The ideal, theoretical  
minimum analog-to-digital noise is caused by quantiza-  
tion error only and results directly from the ADC’s reso-  
lution (N bits):  
Effective Number of Bits (ENOB)  
ENOB specifies the dynamic performance of an ADC at  
a specific input frequency and sampling rate. An ideal  
ADC’s error consists of quantization noise only. ENOB for  
a full-scale sinusoidal input waveform is computed from:  
SINAD1.76  
ENOB=  
6.02  
SNR  
= 6.02 x N + 1.76  
dB dB  
dB[max]  
Total Harmonic Distortion (THD)  
THD is the ratio of the RMS sum of the first six harmon-  
ics of the input signal to the fundamental itself. This is  
expressed as:  
In reality, there are other noise sources besides quantiza-  
tion noise: thermal noise, reference noise, clock jitter, etc.  
2
2
2
2
2
2
For the MAX1126, SNR is computed by taking the ratio  
of the RMS signal to the RMS noise. RMS noise  
includes all spectral components to the Nyquist fre-  
quency excluding the fundamental, the first six harmon-  
ics (HD2–HD7), and the DC offset.  
V
+ V + V + V + V + V  
3 4 5 6 7  
2
THD = 20 × log  
V
1
24 ______________________________________________________________________________________  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
Spurious-Free Dynamic Range (SFDR)  
Full-Power Bandwidth  
A large -0.5dBFS analog input signal is applied to an  
ADC, and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by 3dB. This point is defined as full-  
power input bandwidth frequency.  
SFDR is the ratio expressed in decibels of the RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next-largest spurious  
component, excluding DC offset. SFDR is specified in  
decibels relative to the carrier (dBc).  
Intermodulation Distortion (IMD)  
IMD is the total power of the IM2 to IM5 intermodulation  
products to the Nyquist frequency relative to the total  
input power of the two input tones, f1 and f2. The indi-  
vidual input tone levels are at -6.5dBFS. The intermodu-  
lation products are as follows:  
Gain Matching  
Gain matching is a figure of merit that indicates how  
well the gain of all four ADC channels is matched to  
each other. For the MAX1126, gain matching is mea-  
sured by applying the same 19.3MHz, -0.5dBFS analog  
signal to all analog input channels. These analog inputs  
are sampled at 40MHz and the maximum deviation in  
amplitude is reported in dB as gain matching in the  
Electrical Characteristics table.  
• 2nd-order intermodulation products (IM2): f1 + f2,  
f2 - f1  
• 3rd-order intermodulation products (IM3): 2 x f1 - f2,  
2 x f2 - f1, 2 x f1 + f2, 2 x f2 + f1  
Phase Matching  
Phase matching is a figure of merit that indicates how  
well the phase of all four ADC channels is matched to  
each other. For the MAX1126, phase matching is mea-  
sured by applying the same 19.3MHz, -0.5dBFS analog  
signal to all analog input channels. These analog inputs  
are sampled at 40MHz and the maximum deviation in  
phase is reported in degrees as phase matching in the  
Electrical Characteristics table.  
• 4th-order intermodulation products (IM4): 3 x f1 - f2,  
3 x f2 - f1, 3 x f1 + f2, 3 x f2 + f1  
• 5th-order intermodulation products (IM5): 3 x f1 - 2 x  
f2, 3 x f2 - 2 x f1, 3 x f1 + 2 x f2, 3 x f2 + 2 x f1  
Third-Order Intermodulation (IM3)  
IM3 is the total power of the 3rd-order intermodulation  
product to the Nyquist frequency relative to the total  
input power of the two input tones f1 and f2. The indi-  
vidual input tone levels are at -6.5dBFS. The 3rd-order  
intermodulation products are 2 x f1 - f2, 2 x f2 - f1, 2 x  
f1 + f2, 2 x f2 + f1.  
Small-Signal Bandwidth  
A small -20dBFS analog input signal is applied to an  
ADC so the signal’s slew rate does not limit the ADC’s  
performance. The input frequency is then swept up to  
the point where the amplitude of the digitized conver-  
sion result has decreased by 3dB.  
______________________________________________________________________________________ 25  
Quad, 12-Bit, 40Msps, 1.8V ADC with  
Serial LVDS Outputs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 68L QFN, 10x10x0.9 MM  
1
21-0122  
C
2
Note: For the MAX1126 Exposed Pad Variation,  
the package code is G6800-4.  
PACKAGE OUTLINE, 68L QFN, 10x10x0.9 MM  
1
21-0122  
C
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
26 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX1126EGK+TD

ADC, Proprietary Method, 12-Bit, 1 Func, 4 Channel, Parallel, Word Access, Bipolar, 10 X 10 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, QFN-68
MAXIM

MAX1126EGK-D

暂无描述
MAXIM

MAX1126EGK-TD

ADC, Proprietary Method, 12-Bit, 1 Func, 4 Channel, Parallel, Word Access, Bipolar, 10 X 10 MM, 0.90 MM HEIGHT, MO-220, QFN-68
MAXIM

MAX1127

Quad, 12-Bit, 65Msps, 1.8V ADC with Serial LVDS Outputs
MAXIM

MAX11270EUG+

ADC, Delta-Sigma, 24-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO24, ROHS COMPLIANT, TSSOP-24
MAXIM

MAX11270EUG+T

IC ADC 24-BIT DELTA SIG 24TSSOP
MAXIM

MAX1127EGK

Quad, 12-Bit, 65Msps, 1.8V ADC with Serial LVDS Outputs
MAXIM

MAX1127EGK+TD

ADC, Proprietary Method, 12-Bit, 1 Func, 4 Channel, Parallel, Word Access, 10 X 10 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, QFN-68
MAXIM

MAX1127EGK-TD

ADC, Proprietary Method, 12-Bit, 1 Func, 4 Channel, Parallel, Word Access, 10 X 10 MM, 0.90 MM HEIGHT, MO-220, QFN-68
MAXIM

MAX113

4-Digit.Up/Down Counter Decoder Driver[MM74C945/MM74C947/MM74C945C/D/MM74C945N ]
MAXIM

MAX113-MAX117

3V, 400ksps, 4/8-Channel, 8-Bit ADCs with 1UA Power-Down
MAXIM

MAX11311

PIXI, 12-Port Programmable Mixed-Signal I/O with 12-Bit ADC, 12-Bit DAC, Analog Switches, and GPIO
MAXIM