MAX1333ETE-T [MAXIM]

ADC, Successive Approximation, 12-Bit, 1 Func, 2 Channel, Serial Access, BICMOS, 3 X 3 MM, 0.8 MM HEIGHT, MO-220, TQFN-16;
MAX1333ETE-T
型号: MAX1333ETE-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Successive Approximation, 12-Bit, 1 Func, 2 Channel, Serial Access, BICMOS, 3 X 3 MM, 0.8 MM HEIGHT, MO-220, TQFN-16

信息通信管理 转换器
文件: 总25页 (文件大小:372K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3712; Rev 0; 5/05  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
General Description  
Features  
The MAX1332/MAX1333 2-channel, serial-output,  
12-bit, analog-to-digital converters (ADCs) feature two  
true-differential analog inputs and offer outstanding noise  
immunity and dynamic performance. Both devices easily  
interface with SPI™/QSPI™/MICROWIRE™ and standard  
digital signal processors (DSPs).  
3Msps Sampling Rate (+5V, MAX1332)  
2Msps Sampling Rate (+3V, MAX1333)  
Separate Logic Supply: +2.7V to +3.6V  
Two True-Differential Analog Input Channels  
Bipolar/Unipolar Selection Input  
The MAX1332 operates from a single supply of +4.75V  
to +5.25V with sampling rates up to 3Msps. The  
MAX1333 operates from a single supply of +2.7V to  
+3.6V with sampling rates up to 2Msps. These devices  
feature a partial power-down mode and a full power-  
down mode that reduce the supply current to 3.3mA  
and 0.2µA, respectively. Also featured is a separate  
Only 38mW (typ) Power Consumption  
Only 2µA (max) Shutdown Current  
High-Speed, SPI-Compatible, 3-Wire Serial  
Interface  
power supply input (DV ) that allows direct interfacing  
DD  
2MHz Full-Linear Bandwidth  
to +2.7V to +3.6V digital logic. The fast conversion  
speed, low power dissipation, excellent AC perfor-  
mance, and DC accuracy ( 0.6 ꢀSB Iꢁꢀ) maꢂe the  
MAX1332/MAX1333 ideal for industrial process control,  
motor control, and base-station applications.  
71.4dB SINAD and -93dB THD at 525kHz Input  
Frequency  
No Pipeline Delays  
Space-Saving (3mm x 3mm), 16-Pin, TQFN  
The MAX1332/MAX1333 are available in a space-sav-  
ing (3mm x 3mm), 16-pin, TQFꢁ pacꢂage and operate  
over the extended (-40°C to +85°C) temperature range.  
Package  
Ordering Information  
Applications  
PART  
TEMP RANGE PIN-PACKAGE  
Data Acquisition  
Bill Validation  
MAX1332ETE* -40°C to +85°C 16 TQFꢁ-EP** (3mm x 3mm)  
MAX1333ETE -40°C to +85°C 16 TQFꢁ-EP** (3mm x 3mm)  
Motor Control  
*Future product—contact factory for availability.  
**EP = Exposed paddle.  
Base Stations  
High-Speed Modems  
Optical Sensors  
Industrial Process Control  
Selector Guide and Pin Configuration appear at end of data  
sheet.  
Typical Operating Circuit  
+2.7V TO +3.6V  
+4.75V TO +5.25V  
1µF  
0.1µF  
0.1µF  
1µF  
AV  
DD  
DV  
DD  
SHDN  
+
AIN1P  
AIN1N  
AIN0P  
AIN0N  
BIP/UNI  
-
DIFFERENTIAL  
INPUTS  
µC/DSP  
+
MAX1332  
CHSEL  
CNVST  
SCLK  
-
REF INPUT  
VOLTAGE  
REF  
DOUT  
0.1µF  
1µF  
AGND  
AGND DGND  
SPI/QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin TQFꢁ (derate 17.5mW/°C above +70°C) ....1398.6mW  
Operating Temperature Range  
AGꢁD to DGꢁD.....................................................-0.3V to +0.3V  
MAX133_ETE...................................................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
ꢀead Temperature (soldering, 10s) .................................+300°C  
SCꢀK, CꢁVST, SHDN, CHSEꢀ, BIP/UNI,  
DOUT to DGꢁD ...................................-0.3V to (DV  
AIꢁ0P, AIꢁ0ꢁ, AIꢁ1P, AIꢁ1ꢁ, REF to  
+ 0.3V)  
DD  
AGꢁD...................................................-0.3V to (AV  
+ 0.3V)  
DD  
Maximum Current into Any Pin ......................................... 50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS (MAX1332)  
(AV  
= +4.75V to +5.25V, DV  
= +2.7V to +3.6V, f  
= 48MHz, V  
= 4.096V, T = T  
to T  
, unless otherwise noted.  
MAX  
DD  
DD  
SCꢀK  
REF  
A
MIꢁ  
Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY (BIP/UNI = DGND) (Note 1)  
Resolution  
12  
Bits  
ꢀSB  
ꢀSB  
ꢀSB  
ꢀSB  
Integral ꢁonlinearity  
Differential ꢁonlinearity  
Offset Error  
Iꢁꢀ  
Dꢁꢀ  
0.6  
0.6  
0.9  
0.6  
1.0  
1.0  
3.0  
6.0  
Gain Error  
Offset-Error Temperature  
Coefficient  
0.2  
1.1  
ppm/°C  
ppm/°C  
Gain-Error Temperature  
Coefficient  
DYNAMIC SPECIFICATIONS (A = -0.2dBFS, f = 525kHz, BIP/UNI = DV , unless otherwise noted) (Note 1)  
IN  
IN  
DD  
Signal-to-ꢁoise Ratio  
SꢁR  
SIꢁAD  
THD  
70  
70  
71.5  
71.4  
-93  
93  
76  
2
dB  
dB  
Signal-to-ꢁoise Plus Distortion  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Channel-to-Channel Isolation  
Full-ꢀinear Bandwidth  
-84  
dBc  
dBc  
dB  
SFDR  
84  
SIꢁAD > 68dB  
MHz  
MHz  
MHz  
Full-Power Bandwidth  
6
Small-Signal Bandwidth  
CONVERSION RATE  
6
Minimum Conversion Time  
Maximum Throughput Rate  
t
Figure 5  
Figure 5  
271  
52  
ns  
COꢁV  
3
Msps  
Minimum Tracꢂ-and-Hold  
Acquisition Time  
t
ns  
ACQ  
2
_______________________________________________________________________________________  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
ELECTRICAL CHARACTERISTICS (MAX1332) (continued)  
(AV  
= +4.75V to +5.25V, DV  
= +2.7V to +3.6V, f  
= 48MHz, V  
= 4.096V, T = T  
to T  
, unless otherwise noted.  
MAX  
DD  
DD  
SCꢀK  
REF  
A
MIꢁ  
Typical values are at T = +25°C.)  
A
PARAMETER  
Aperture Delay  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ns  
t
Figure 21  
Figure 21  
<10  
<10  
AD  
Aperture Jitter  
t
ps  
AJ  
DIFFERENTIAL ANALOG INPUTS (AIN0P, AIN0N, AIN1P, AIN1N)  
BIP/UNI = DGꢁD  
0
V
V
V
REF  
Differential Input Voltage Range  
V
Iꢁ  
(V  
AIꢁ_P  
- V  
)
AIꢁ_ꢁ  
BIP/UNI = DV  
-V  
/ 2  
+V  
REF  
/ 2  
DD  
REF  
AV  
DD  
+
AGꢁD  
- 50mV  
Absolute Input Voltage Range  
50mV  
DC ꢀeaꢂage Current  
Input Capacitance  
I
1
µA  
pF  
ꢀKG  
C
14  
14  
Iꢁ  
REFERENCE INPUT (REF)  
AV  
DD  
+
50mV  
REF Input Voltage Range  
V
1.0  
V
REF  
REF Input Capacitance  
REF DC ꢀeaꢂage Current  
C
pF  
µA  
REF  
I
10  
REF  
DIGITAL INPUTS (SCLK, CNVST, SHDN, CHSEL, BIP/UNI)  
0.3 x  
Input-Voltage ꢀow  
Input-Voltage High  
V
V
V
Iꢀ  
DV  
DD  
0.7 x  
V
IH  
DV  
DD  
Input Hysteresis  
100  
0.2  
15  
mV  
µA  
pF  
Input ꢀeaꢂage Current  
Input Capacitance  
I
IꢀKG  
5
C
Iꢁ  
DIGITAL OUTPUT (DOUT)  
Output-Voltage ꢀow  
V
I
I
= 5mA  
0.4  
V
V
Oꢀ  
SIꢁK  
DV  
0.5  
-
DD  
Output-Voltage High  
V
= 1mA  
SOURCE  
OH  
Tri-State ꢀeaꢂage Current  
Tri-State Output Capacitance  
POWER REQUIREMENTS  
Analog Supply Voltage  
I
Between conversions, CꢁVST = DV  
Between conversions, CꢁVST = DV  
1
µA  
pF  
ꢀKGT  
DD  
C
15  
11  
OUT  
DD  
AV  
DV  
4.75  
2.7  
5.25  
3.6  
V
V
DD  
Digital Supply Voltage  
DD  
ꢁormal mode; average current (f  
=
SAMPꢀE  
12  
3MHz, f  
= 48MHz)  
mA  
µA  
SCꢀK  
Analog Supply Current  
I
AVDD  
Partial power-down mode  
Full power-down mode  
3.5  
0.1  
6
2
_______________________________________________________________________________________  
3
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
ELECTRICAL CHARACTERISTICS (MAX1332) (continued)  
(AV  
= +4.75V to +5.25V, DV  
= +2.7V to +3.6V, f  
= 48MHz, V  
= 4.096V, T = T  
to T  
, unless otherwise noted.  
MAX  
DD  
DD  
SCꢀK  
REF  
A
MIꢁ  
Typical values are at T = +25°C.)  
A
PARAMETER  
Digital Supply Current  
Power-Supply Rejection  
SYMBOL  
CONDITIONS  
Average current (f = 3MHz, f  
MIN  
TYP  
MAX  
UNITS  
=
SCꢀK  
SAMPꢀE  
4.5  
15  
7
mA  
48MHz, zero-scale input)  
Power-down (f = 48MHz), CꢁVST =  
SCꢀK  
I
30  
DVDD  
PSR  
DV  
DD  
µA  
Static; all digital inputs are connected to  
0.2  
2
2
DV  
or DGꢁD  
DD  
AV  
= 4.75V to 5.25V, full-scale input  
mV  
DD  
TIMING CHARACTERISTICS (MAX1332) (Figure 4)  
(AV  
= +4.75V to +5.25V, DV  
= +2.7V to +3.6V, T = T  
A
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD  
DD  
MIꢁ  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
20.8  
6
TYP  
MAX  
UNITS  
ns  
SCꢀK Clocꢂ Period  
t
CP  
SCꢀK Pulse Width  
t
ns  
SPW  
CꢁVST Rise to DOUT Disable  
CꢁVST Fall to DOUT Enable  
CHSEꢀ to CꢁVST Fall Setup  
BIP/UNI to CꢁVST Fall Setup  
CꢁVST Fall to CHSEꢀ Hold  
SCꢀK Fall to BIP/UNI Hold  
t
15  
15  
40  
40  
0
ns  
CRDD  
t
ns  
CFDE  
t
ns  
CHCF  
t
ns  
BUCF  
t
ns  
CFCH  
t
0
ns  
CFBU  
DOUT Remains Valid After SCꢀK  
SCꢀK Rise to DOUT Transition  
CꢁVST to SCꢀK Rise  
t
C
C
= 0pF (ꢁote 2)  
= 30pF  
1
2
ns  
DHOꢀD  
ꢀOAD  
ꢀOAD  
t
6
ns  
DOT  
t
6
0
6
ns  
SETUP  
SCꢀK Rise to CꢁVST  
t
ns  
HOꢀD  
CꢁVST Pulse Width  
t
ns  
CSW  
Minimum Recovery Time (Full  
Power-Down)  
t
From CꢁVST fall or SHDN rise  
4
µs  
ns  
FPD  
Minimum Recovery Time (Partial  
Power-Down)  
t
From CꢁVST fall  
500  
PPD  
Note 1: Tested with AV  
= 4.75V and DV  
= +2.7V.  
DD  
DD  
Note 2: Guaranteed by design, not production tested.  
4
_______________________________________________________________________________________  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
ELECTRICAL CHARACTERISTICS (MAX1333)  
(AV  
= +2.7V to +3.6V, DV  
= +2.7V to AV , f  
= 32MHz, V  
= 2.5V, T = T  
to T  
, unless otherwise noted. Typical  
MAX  
DD  
DD  
DD SCꢀK  
REF  
A
MIꢁ  
values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY (Note 3) (BIP/UNI = DGND)  
Resolution  
12  
Bits  
ꢀSB  
ꢀSB  
ꢀSB  
ꢀSB  
Relative Accuracy  
Differential ꢁonlinearity  
Offset Error  
Iꢁꢀ  
Dꢁꢀ  
0.6  
0.6  
0.9  
0.6  
1.0  
1.0  
3.0  
6.0  
Gain Error  
Offset-Error Temperature  
Coefficient  
1.1  
0.2  
ppm/°C  
ppm/°C  
Gain-Error Temperature  
Coefficient  
DYNAMIC SPECIFICATIONS (A = -0.2dBFS, f = 525kHz, BIP/UNI = DV , unless otherwise noted) (Note 3)  
IN  
IN  
DD  
Signal-to-ꢁoise Ratio  
SꢁR  
SIꢁAD  
THD  
70  
70  
71.5  
71.4  
-93  
93  
dB  
dB  
Signal-to-ꢁoise Plus Distortion  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Channel-to-Channel Isolation  
Full-ꢀinear Bandwidth  
-86.5  
dBc  
dBc  
dB  
SFDR  
83.5  
76  
SIꢁAD > 68dB  
1.7  
5.5  
5
MHz  
MHz  
MHz  
Full-Power Bandwidth  
Small-Signal Bandwidth  
CONVERSION RATE  
Minimum Conversion Time  
Maximum Throughput Rate  
t
Figure 5  
Figure 5  
406  
78  
ns  
COꢁV  
2.0  
Msps  
Minimum Tracꢂ-and-Hold  
Acquisition Time  
t
ns  
ACQ  
Aperture Delay  
Aperture Jitter  
t
Figure 21  
Figure 21  
<10  
<10  
ns  
ps  
AD  
t
AJ  
DIFFERENTIAL ANALOG INPUTS (AIN0P, AIN0N, AIN1P, AIN1N)  
BIP/UNI = DGꢁD  
0
V
REF  
Differential Input Voltage Range  
V
V
Iꢁ  
(V  
AIꢁ_P  
- V  
)
AIꢁ_ꢁ  
BIP/ UNI = DV  
-V  
/ 2  
+V  
/ 2  
DD  
REF  
REF  
AV  
+
50mV  
DD  
AGꢁD  
- 50mV  
Absolute Input Voltage Range  
DC ꢀeaꢂage Current  
V
I
1
µA  
ꢀKG  
_______________________________________________________________________________________  
5
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
ELECTRICAL CHARACTERISTICS (MAX1333) (continued)  
(AV  
= +2.7V to +3.6V, DV  
= +2.7V to AV , f  
= 32MHz, V  
= 2.5V, T = T  
to T  
, unless otherwise noted. Typical  
MAX  
DD  
DD  
DD SCꢀK  
REF  
A
MIꢁ  
values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Capacitance  
C
14  
pF  
Iꢁ  
REFERENCE INPUT (REF)  
AV  
DD  
+
REF Input Voltage  
V
1.0  
V
REF  
50mV  
REF Input Capacitance  
REF DC ꢀeaꢂage Current  
C
14  
pF  
µA  
REF  
I
10  
REF  
DIGITAL INPUTS (SCLK, CNVST, SHDN, CHSEL, BIP/UNI)  
0.3 x  
Input-Voltage ꢀow  
Input-Voltage High  
V
V
V
Iꢀ  
DV  
DD  
0.7 x  
V
IH  
DV  
DD  
Input Hysteresis  
100  
0.2  
15  
mV  
µA  
pF  
Input ꢀeaꢂage Current  
Input Capacitance  
I
IꢀKG  
5
C
Iꢁ  
DIGITAL OUTPUT (DOUT)  
Output-Voltage ꢀow  
V
I
I
= 5mA  
0.4  
V
V
Oꢀ  
SIꢁK  
= 1mA  
SOURCE  
DV  
0.5  
-
DD  
Output-Voltage High  
V
OH  
Tri-State ꢀeaꢂage Current  
Tri-State Output Capacitance  
POWER REQUIREMENTS  
Analog Supply Voltage  
I
Between conversions, CꢁVST = DV  
Between conversions, CꢁVST = DV  
1
µA  
pF  
ꢀKGT  
DD  
C
15  
OUT  
DD  
AV  
DV  
2.7  
2.7  
3.6  
AV  
V
V
DD  
Digital Supply Voltage  
DD  
DD  
ꢁormal mode; average current (f  
=
SAMPꢀE  
9.5  
11.5  
2MHz, f  
= 32MHz)  
SCꢀK  
mA  
Analog Supply Current  
I
AVDD  
Partial power-down mode  
Full power-down mode  
3.3  
0.1  
4
2
µA  
Average current (f  
32MHz, zero-scale input)  
= 2MHz, f  
=
SAMPꢀE  
SCꢀK  
3
5.4  
20  
mA  
Power-down (f = 32MHz, CꢁVST =  
SCꢀK  
Digital Supply Current  
I
10  
0.2  
DVDD  
PSR  
DV  
)
DD  
µA  
Static; all digital inputs are connected to  
2
3
DV  
or DGꢁD  
DD  
Positive Supply Rejection  
AV  
= 2.7V to 3.6V, full-scale input  
mV  
DD  
6
_______________________________________________________________________________________  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
TIMING CHARACTERISTICS (MAX1333) (Figure 4)  
(AV  
= +2.7V to +3.6V, DV  
= +2.7V to AV , T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD  
DD  
DD  
A
MIꢁ  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
31.2  
10  
15  
15  
50  
50  
0
TYP  
MAX  
UNITS  
ns  
SCꢀK Clocꢂ Period  
SCꢀK Pulse Width  
t
CP  
t
ns  
CPW  
CꢁVST Rise to DOUT Disable  
CꢁVST Fall to DOUT Enable  
CHSEꢀ to CꢁVST Fall Setup  
BIP/UNI to CꢁVST Fall Setup  
CꢁVST Fall to CHSEꢀ Hold  
SCꢀK Fall to BIP/UNI Hold  
DOUT Remains Valid After SCꢀK  
SCꢀK Rise to DOUT Transition  
CꢁVST to SCꢀK Rise  
t
ns  
CRDD  
t
ns  
CFDE  
t
ns  
CHCF  
t
ns  
BUCF  
t
ns  
CFCH  
t
0
ns  
CFBU  
t
C
= 0pF (ꢁote 4)  
= 30pF  
1
2
ns  
DHOꢀD  
ꢀOAD  
ꢀOAD  
t
C
6
ns  
DOT  
t
6
0
6
ns  
SETUP  
SCꢀK Rise to CꢁVST  
t
ns  
HOꢀD  
CꢁVST Pulse Width  
t
ns  
CSW  
Minimum Recovery Time (Full  
Power-Down)  
t
From CꢁVST fall or SHDN rise  
4
µs  
ns  
FPD  
Minimum Recovery Time (Partial  
Power-Down)  
t
From CꢁVST fall  
500  
PPD  
Note 3: Tested with AV  
= DV  
= +2.7V.  
DD  
DD  
Note 4: Guaranteed by design, not production tested.  
DV  
DD  
6k  
DOUT  
DOUT  
30pF  
30pF  
6kΩ  
DGND  
DGND  
a) HIGH IMPEDANCE TO V , V TO V  
OH OL  
,
b) HIGH IMPEDANCE TO V , V TO V  
OL OH  
,
OH  
OL  
AND V TO HIGH IMPEDANCE  
AND V TO HIGH IMPEDANCE  
OH  
OL  
Figure 1. Load Circuits for Enable/Disable Times  
_______________________________________________________________________________________  
7
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
Typical Operating Characteristics  
(AV  
= +5V, DV  
= +3V, V  
= 4.096V, f  
= 64MHz. T = +25°C, unless otherwise noted.)  
DD  
DD  
REF  
SCꢀK  
A
MAX1332  
OFFSET ERROR vs. AV  
GAIN ERROR vs. AV  
DD  
DD  
2.0  
2.0  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
DV = +3V  
DV = +3V  
DD  
DD  
f
= 64MHz  
f
= 64MHz  
SCLK  
SCLK  
4.75  
4.75  
0
4.85  
4.95  
5.05  
5.15  
5.25  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
AV (V)  
AV (V)  
DD  
DD  
GAIN ERROR vs. AV  
AV SUPPLY CURRENT vs. TEMPERATURE  
DD  
DD  
2.0  
1.5  
12.0  
11.8  
11.6  
11.4  
11.2  
11.0  
10.8  
10.6  
10.4  
10.2  
10.0  
1.0  
0.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
DV = +3V  
DD  
ZERO-SCALE INPUT  
f
= 64MHz  
SCLK  
f
= 64MHz  
SCLK  
4.85  
4.95  
5.05  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
AV (V)  
TEMPERATURE (°C)  
DD  
AV SUPPLY CURRENT vs. f  
DD  
AV SUPPLY CURRENT vs. AV  
DD DD  
SCLK  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
9.0  
DV = +3V  
DD  
9.0  
ZERO-SCALE INPUT  
8.5  
f
= 64MHz  
SCLK  
8.5  
8.0  
8.0  
8
16 24 32 40 48 56 64  
(MHz)  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
f
AV (V)  
SCLK  
DD  
8
_______________________________________________________________________________________  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
Typical Operating Characteristics (continued)  
(AV  
= +5V, DV  
= +3V, V  
= 4.096V, f = 64MHz. T = +25°C, unless otherwise noted.)  
SCꢀK A  
DD  
DD  
REF  
MAX1332  
DV SUPPLY CURRENT vs. TEMPERATURE  
DD  
DV SUPPLY CURRENT vs. f  
DD  
DV SUPPLY CURRENT vs. DV  
DD  
SCLK  
DD  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
6
5
4
3
2
1
0
8
7
6
5
4
3
2
AV = +5V  
DD  
ZERO-SCALE INPUT  
= 64MHz  
ZERO-SCALE INPUT  
f
SCLK  
f
= 64MHz  
SCLK  
-40  
-15  
10  
35  
60  
85  
0
8
16 24 32 40 48 56 64  
2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6  
TEMPERATURE (°C)  
f
(MHz)  
DV (V)  
DD  
SCLK  
TOTAL SUPPLY CURRENT  
vs. THROUGHPUT RATE  
100  
10  
1
NO POWER-DOWN  
FULL POWER-DOWN  
PARTIAL POWER-DOWN  
0.1  
0.001  
0.01  
0.1  
(MHz)  
1
10  
f
CNVST  
_______________________________________________________________________________________  
9
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
Typical Operating Characteristics (continued)  
(AV  
= +3V, DV  
= +3V, V  
= 2.5V, f  
= 40MHz. T = +25°C, unless otherwise noted.)  
SCꢀK A  
DD  
DD  
REF  
MAX1333  
INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
OFFSET ERROR vs. TEMPERATURE  
1.0  
1.0  
0.8  
2.0  
1.5  
1.0  
0.5  
0
f
= 32MHz  
f
= 32MHz  
SCLK  
SCLK  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.5  
-1.0  
-1.5  
-2.0  
AV = +3V  
DD  
0
512 1024 1536 2048 2560 3072 3584 4096  
OUTPUT CODE  
0
512 1024 1536 2048 2560 3072 3584 4096  
OUTPUT CODE  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
OFFSET ERROR vs. AV  
DD  
GAIN ERROR vs. AV  
GAIN ERROR vs. TEMPERATURE  
DD  
4
3
2
1
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
DV = AV  
DD  
DD  
DV = AV  
DD DD  
1.0  
0.5  
0
-1  
-2  
-3  
-4  
0
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
AV = +3V  
DD  
2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6  
AV (V)  
2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6  
-40  
-15  
10  
35  
60  
85  
AV (V)  
DD  
TEMPERATURE (°C)  
DD  
AV SUPPLY CURRENT vs. f  
DD  
SCLK  
AV SUPPLY CURRENT vs. AV  
DD DD  
AV SUPPLY CURRENT vs. TEMPERATURE  
DD  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
12.0  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
11.5  
11.0  
10.5  
10.0  
9.5  
9.0  
9.0  
9.0  
8.5  
AV = DV  
DD  
DD  
ZERO-SCALE INPUT  
= 40MHz  
ZERO-SCALE INPUT  
8.5  
8.5  
f
SCLK  
f
= 40MHz  
SCLK  
8.0  
8.0  
8.0  
0
5
10 15 20 25 30 35 40  
(MHz)  
-40  
-15  
10  
35  
60  
85  
2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6  
f
SCLK  
AV (V)  
DD  
TEMPERATURE (°C)  
10 ______________________________________________________________________________________  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
Typical Operating Characteristics (continued)  
(AV  
= +3V, DV  
= +3V, V  
= 2.5V, f = 40MHz. T = +25°C, unless otherwise noted.)  
SCꢀK A  
DD  
DD  
REF  
MAX1333  
DV SUPPLY CURRENT  
DD  
vs. TEMPERATURE  
DV SUPPLY CURRENT vs. f  
DV SUPPLY CURRENT vs. DV  
DD DD  
DD  
SCLK  
4.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
AV = +3V  
DD  
ZERO-SCALE INPUT  
= 40MHz  
ZERO-SCALE INPUT  
f
SCLK  
f
= 40MHz  
SCLK  
-40  
-15  
10  
35  
60 85  
0
5
10 15 20 25 30 35 40  
(MHz)  
2.70 2.75 2.80 2.85 2.90 2.95 3.00  
TEMPERATURE (°C)  
f
DV (V)  
DD  
SCLK  
THD vs. INPUT FREQUENCY  
SINAD vs. INPUT FREQUENCY  
SFDR vs. INPUT FREQUENCY  
-70  
-76  
-82  
-88  
-94  
72  
100  
94  
88  
82  
76  
70  
70  
68  
66  
64  
62  
f = 32MHz  
SCLK  
f
= 32MHz  
400  
f
= 32MHz  
SCLK  
SCLK  
-100  
0
400  
800  
1200  
1600  
2000  
0
800  
1200  
1600  
2000  
0
400  
800  
1200  
1600  
2000  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
TOTAL SUPPLY CURRENT  
vs. THROUGHPUT RATE  
OUTPUT AMPLITUDE  
vs. INPUT FREQUENCY  
100  
0
-1  
-2  
-3  
-4  
-5  
-6  
NO POWER-DOWN  
10  
1
FULL POWER-DOWN  
PARTIAL POWER-DOWN  
f
= 32MHz  
SCLK  
AIN = -0.1dBFS  
0.1  
0.001  
0.01  
0.1  
(MHz)  
1
10  
0
1
2
3
4
5
6
7
8
f
CNVST  
INPUT FREQUENCY (MHz)  
______________________________________________________________________________________ 11  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
Pin Description  
PIN  
1
NAME  
AIꢁ0P  
AIꢁ0ꢁ  
AIꢁ1P  
AIꢁ1ꢁ  
FUNCTION  
Positive Analog-Input Channel 0  
ꢁegative Analog-Input Channel 0  
Positive Analog-Input Channel 1  
ꢁegative Analog-Input Channel 1  
2
3
4
External Reference Voltage Input. V  
and a 1µF.  
= 1V to (AV  
+ 50mV). Bypass REF to AGꢁD with a 0.1µF  
DD  
REF  
5
6
7
REF  
Shutdown Input. Pull SHDN low to enter full power-down mode. Drive SHDN high to resume normal  
operation regardless of previous software entered into power-down mode.  
SHDN  
BIP/UNI  
Analog-Input-Mode Select. Drive BIP/UNI high to select bipolar-input mode. Pull BIP/UNI low to select  
unipolar-input mode.  
8
9
AGꢁD  
Analog Ground. Connect all AGꢁDs and EP to the same potential.  
CHSEꢀ  
Channel-Select Input. Drive CHSEꢀ high to select channel 1. Pull CHSEꢀ low to select channel 0.  
Conversion-Start Input. The first rising edge of CꢁVST powers up the MAX1332/MAX1333 and begins  
acquiring the analog input. A falling edge samples the analog input and starts a conversion. CꢁVST  
also controls the power-down mode of the device (see the Partial Power-Down (PPD) and Full Power-  
Down (FPD) Mode section).  
10  
CꢁVST  
11  
12  
SCꢀK  
DOUT  
Serial-Clocꢂ Input. Clocꢂs data out of the serial interface. SCꢀK also sets the conversion speed.  
Serial-Data Output. Data is clocꢂed out on the rising edge of SCꢀK (see the Starting a Conversion  
section).  
Positive-Digital-Supply Input. DV  
is the positive supply input for the digital section of the  
DD  
MAX1332/MAX1333. Connect DV to a 2.7V to 3.6V power supply. Bypass DV to DGꢁD with a  
0.1µF capacitor in parallel with a 1µF capacitor. Place the bypass capacitors as close to the device  
as possible.  
DD  
DD  
13  
14  
15  
DV  
DD  
DGꢁD  
Digital Ground. Ensure that the potential difference between AGꢁD and DGꢁD is less than 0.3V.  
Positive-Analog-Supply Input. AV  
MAX1332/MAX1333. Connect AV  
is the positive supply input for the analog section of the  
to a 4.75V to 5.25V power supply for the MAX1332. Connect  
DD  
DD  
AV  
DD  
AV  
to a 2.7V to 3.6V power supply for the MAX1333. Bypass AV to AGꢁD with a 0.1µF capacitor  
DD  
DD  
in parallel with a 1µF capacitor. Place the bypass capacitors as close to the device as possible.  
16  
AGꢁD  
EP  
Analog Ground. Connect all AGꢁDs and EP to the same potential.  
Exposed Paddle. Internally connected to AGꢁD. Connect the exposed paddle to the analog ground plane.  
12 ______________________________________________________________________________________  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
Detailed Description  
AV  
DD  
DV  
DD  
The MAX1332/MAX1333 use an input tracꢂ and hold  
(T/H) circuit along with a successive-approximation  
register (SAR) to convert a differential analog input sig-  
nal to a digital 12-bit output. The serial interface  
requires only three digital lines (SCꢀK, CꢁVST, and  
DOUT) and provides easy interfacing to microcon-  
trollers (µCs) and DSPs. Figure 2 shows the simplified  
blocꢂ diagram for the MAX1332/MAX1333.  
CHSEL  
BIP/UNI  
AIN0P  
AIN0N  
AIN1P  
AIN1N  
INPUT  
MUX  
AND T/H  
OUTPUT  
BUFFER  
12-BIT SAR  
ADC  
DOUT  
Power Supplies  
The MAX1332/MAX1333 accept two power supplies  
that allow the digital noise to be isolated from sensitive  
analog circuitry. For both the MAX1332 and MAX1333,  
the digital power-supply input accepts a supply voltage  
of +2.7V to +3.6V. However, the supply voltage range  
for the analog power supply is different for each  
device. The MAX1332 accepts a +4.75V to +5.25V  
analog power supply, and the MAX1333 accepts  
a +2.7V to +3.6V analog power supply. See the Layout,  
Grounding, and Bypassing section for information on  
how to isolate digital noise from the analog power input.  
REF  
CNVST  
SCLK  
CONTROL  
LOGIC AND  
TIMING  
MAX1332  
MAX1333  
SHDN  
AGND  
DGND  
Figure 2. Simplified Functional Diagram  
the acquisition time lengthens. The acquisition time,  
, is the minimum time needed for the signal to be  
t
The MAX1332/MAX1333s’ analog power supply con-  
ACQ  
acquired. It is calculated by the following equation:  
sists of one AV  
input, two AGꢁD inputs, and the  
DD  
exposed paddle (EP). The digital power input consists  
of one DV input and one DGꢁD input. Ensure that  
the potential on both AGꢁD inputs is the same.  
Furthermore, ensure that the potential between AGꢁD  
and DGꢁD is limited to 0.3V. Ideally there should be  
no potential difference between AGꢁD and DGꢁD.  
t
ꢂ x (R  
+ R ) x C  
Iꢁ Iꢁ  
ACQ  
SOURCE  
DD  
where:  
= 9 ln(2×2 )  
The constant ꢂ is the number of RC time constants  
required so that the voltage on the internal sampling  
capacitor reaches ꢁ-bit accuracy, i.e., so that the dif-  
ference between the input voltage and the sampling  
capacitor voltage is equal to 0.5 ꢀSB. ꢁ = 12 for the  
MAX1332/MAX1333.  
There are no power sequencing issues between AV  
DD  
and DV . The analog and digital power supplies are  
DD  
insensitive to power-up sequencing.  
True-Differential Analog Input T/H  
The equivalent input circuit of Figure 3 shows the  
MAX1332/MAX1333s’ input architecture, which is com-  
posed of a T/H, a comparator, and a switched-capaci-  
tor DAC. On power-up, the MAX1332/MAX1333 enter  
full power-down mode. Drive CꢁVST high to exit full  
power-down mode and to start acquiring the input. The  
positive input capacitor is connected to AIꢁ_P and the  
negative input capacitor is connected to AIꢁ_ꢁ. The  
T/H enters its hold mode on the falling edge of CꢁVST  
and the ADC starts converting the sampled difference  
between the analog inputs. Once a conversion has  
been initiated, the T/H enters acquisition mode for the  
next conversion on the 13th falling edge of SCꢀK after  
CꢁVST has been transitioned from high to low.  
R
= 250is the equivalent differential analog input  
resistance, C = 14pF is the equivalent differential ana-  
log input capacitance, and R  
impedance of the input signal. ꢁote that t  
less than 52µs for the MAX1332 and 78µs for the  
MAX1333, and any source impedance below 160does  
not significantly affect the ADC’s AC performance.  
Iꢁ  
Iꢁ  
is the source  
SOURCE  
is never  
ACQ  
Input Bandwidth  
The ADC’s input-tracꢂing circuitry has a 5MHz small-  
signal bandwidth, maꢂing it possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADC’s sampling rate by  
using undersampling techniques. To avoid high-fre-  
quency signals being aliased into the frequency band  
The time required for the T/H to acquire an input signal  
is determined by how quicꢂly its input capacitance is  
charged. If the input signal’s source impedance is high,  
______________________________________________________________________________________ 13  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
AV  
DD  
CAPACITIVE  
DAC  
C
IN+  
R
IN+  
AIN_P  
AIN_N  
CONTROL  
LOGIC  
COMP  
C
IN-  
R
IN-  
AGND  
Figure 3a. Equivalent Input Circuit (Acquisition Mode)  
AV  
DD  
CAPACITIVE  
DAC  
C
IN+  
R
IN+  
AIN_P  
AIN_N  
CONTROL  
LOGIC  
COMP  
C
IN-  
R
IN-  
AGND  
Figure 3b. Equivalent Input Circuit (Hold/Conversion Mode)  
of interest, lowpass or bandpass filtering is recom-  
mended to limit the bandwidth of the input signal.  
wideband amplifier that settles quicꢂly and is stable  
with the ADC’s 14pF input capacitance.  
See the Maxim website (www.maxim-ic.com) for appli-  
cation notes on how to choose the optimum buffer  
amplifier for an ADC application. The MAX4430 is one  
of the devices that is ideal for this application.  
Input Buffer  
To improve the input signal bandwidth under AC condi-  
tions, drive the input with a wideband buffer (>50MHz)  
that can drive the ADC’s input capacitance (14pF) and  
settle quicꢂly. Most applications require an input buffer  
to achieve 12-bit accuracy. Although slew rate and  
bandwidth are important, the most critical input buffer  
specification is settling time. The sampling requires an  
acquisition time of 52µs for the MAX1332 and 78µs for  
the MAX1333. At the beginning of the acquisition, the  
ADC internal sampling capacitors connect to the ana-  
log inputs, causing some disturbance. Ensure the  
amplifier is capable of settling to at least 12-bit accura-  
cy during this interval. Use a low-noise, low-distortion,  
Differential Analog Input Range and  
Protection  
The MAX1332/MAX1333 produce a digital output that  
corresponds to the differential analog input voltage as  
long as the differential analog inputs are within the  
specified range. When operating in unipolar mode  
(BIP/UNI = 0), the usable differential analog input range  
is from 0 to V  
. When operating in bipolar mode  
REF  
(BIP/UNI = 1), the differential analog input range is from  
-V /2 to +V /2. In both unipolar and bipolar  
REF  
REF  
14 ______________________________________________________________________________________  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
CNVST  
t
t
HOLD  
t
SETUP  
CSW  
SCLK  
DOUT  
t
CP  
t
DOT  
t
t
CRDD  
CFDE  
t
DHOLD  
Figure 4. Detailed Serial-Interface Timing  
t
CONV  
CNVST  
t
POWER- MODE SELECTION WINDOW  
10  
t
SETUP  
ACQ  
SCLK  
1
2
3
4
5
6
7
8
9
11  
12  
13  
14  
15  
16  
CONTINUOUS-CONVERSION  
SELECTION WINDOW  
HIGH-Z  
0
0
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
DOUT  
ANALOG  
INPUT TRACK  
AND HOLD STATE  
HOLD  
TRACK  
Figure 5. Interface Timing Sequence  
modes, the input common-mode voltage can vary as  
long as the voltage at any single analog input (V  
AIꢁ_ꢁ  
and Full Power-Down (FPD) Mode section). SCꢀK  
clocꢂs data out of the serial interface and sets the con-  
version speed. Figures 4 and 5 show timing diagrams  
that outline the serial-interface operation.  
,
AIꢁ_P  
V
) remains within 50mV of the analog power sup-  
ply rails (AV , AGꢁD).  
DD  
As shown in Figure 3, internal protection diodes confine  
the analog input voltage within the region of the analog  
Starting a Conversion  
On power-up, the MAX1332/MAX1333 enter full power-  
down mode. The first rising edge of CꢁVST exits the full  
power-down mode and the MAX1332/MAX1333 begin  
acquiring the analog input. A CꢁVST falling edge initi-  
ates a conversion sequence. The T/H stage holds the  
input voltage; DOUT changes from high impedance to  
logic low; and the ADC begins to convert at the first  
SCꢀK rising edge. SCꢀK is used to drive the conver-  
sion process, and it shifts data out of DOUT. SCꢀK  
begins shifting out the data after the 4th rising edge of  
power-supply rails (AV , AGꢁD) and allow the analog  
DD  
input voltage to swing from AGꢁD - 0.3V to AV  
+ 0.3V  
DD  
without damage. Input voltages beyond AGꢁD - 0.3V  
and AV + 0.3V forward bias the internal protection  
DD  
diodes. In this situation, limit the forward diode current to  
50mA to avoid damaging the MAX1332/MAX1333.  
Serial Digital Interface  
Timing and Control  
Conversion-start and data-read operations are con-  
trolled by the CꢁVST and SCꢀK digital inputs. CꢁVST  
controls the state of the T/H as well as when a conver-  
sion is initiated. CꢁVST also controls the power-down  
mode of the device (see the Partial Power-Down (PPD)  
SCꢀK. DOUT transitions t  
after each SCꢀK’s rising  
after the next rising  
DOT  
edge and remains valid for t  
DHOꢀD  
edge. The 4th rising clocꢂ edge produces the MSB of  
the conversion result at DOUT, and the MSB remains  
valid t  
after the 5th rising edge of SCꢀK. Sixteen  
DHOꢀD  
______________________________________________________________________________________ 15  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
CNVST  
1
13  
16  
1
SCLK  
DOUT  
0
0
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
Figure 6. Continuous Conversion with Burst or Continuous Clock  
CONVST MUST GO HIGH AFTER 4TH BUT BEFORE 13TH SCLK RISING EDGE  
CNVST  
ONE 8-BIT TRANSFER  
SCLK  
1ST SCLK RISING EDGE  
DOUT GOES HIGH IMPEDANCE ONCE CONVST GOES HIGH  
DOUT  
MODE  
0
0
0
D11  
D10  
D9  
D8  
D7  
NORMAL  
PPD  
Figure 7. SPI Interface—Partial Power-Down  
rising SCꢀK edges are needed to clocꢂ out the three  
leading zeros, 12 data bits, and a trailing zero. For con-  
tinuous operation, pull CꢁVST high between the 14th  
and the 15th rising edges of SCꢀK. The highest  
throughput is achieved when performing continuous  
conversions. If CꢁVST is low during the rising edge of  
the 16th SCꢀK, the DOUT line goes to a high-imped-  
ance state on either CꢁVST’s rising edge or the next  
SCꢀK’s rising edge, enabling the serial interface to be  
shared by multiple devices. Figure 6 illustrates a con-  
version using a typical serial interface.  
of the SCꢀK to enter partial power-down mode (see  
Figure 7). Drive CꢁVST low and then drive high before  
the 4th SCꢀK to remain in partial power-down mode. This  
reduces the supply current to 3.3mA. Drive CꢁVST low  
and allow at least 13 SCꢀK cycles to elapse before dri-  
ving CꢁVST high to exit partial power-down mode.  
Full power-down mode reduces the supply current to  
0.2µA and is ideal for infrequent data sampling. To  
enter full power-down mode, the MAX1332/MAX1333  
must first be in partial power-down mode. While in par-  
tial power-down mode, repeat the sequence used to  
enter partial power-down mode to enter full power-  
down mode (see Figure 8). Drive CꢁVST low and allow  
at least 13 SCꢀK cycles to elapse before driving  
CꢁVST high to exit full power-down mode.  
Partial Power-Down (PPD) and Full Power-  
Down (FPD) Mode  
Power consumption is reduced significantly by placing  
the MAX1332/MAX1333 in either partial power-down  
mode or full power-down mode. Partial power-down  
mode is ideal for infrequent data sampling and fast  
waꢂe-up time applications. Once CꢁVST is transitioned  
from high to low, pull CꢁVST high any time after the 4th  
rising edge of the SCꢀK but before the 13th rising edge  
Maintain a logic low or a logic high on SCꢀK and all  
digital inputs at DV  
or DGꢁD while in either partial  
DD  
power-down or full power-down mode to minimize  
power consumption.  
16 ______________________________________________________________________________________  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
CNVST  
SCLK  
EXECUTE PARTIAL POWER-DOWN TWICE  
1ST 8-BIT TRANSFER  
2ND 8-BIT TRANSFER  
1ST SCLK RISING EDGE  
1ST SCLK RISING EDGE  
D8 D7  
DOUT  
MODE  
0
0
0
D11  
D10  
D9  
0
0
0
0
0
0
0
0
NORMAL  
PPD  
RECOVERY  
FPD  
Figure 8. SPI Interface—Full Power-Down  
FULL-SCALE  
TRANSITION  
FULL-SCALE  
TRANSITION  
V
REF  
2
FS  
V
=
REF  
V
+FS  
=
FFF  
FFE  
FFD  
7FF  
ZS = 0  
ZS = 0  
-FS =  
REF  
7FE  
1 LSB =  
-V  
4096  
REF  
2
V
4096  
REF  
1 LSB =  
FFC  
FFB  
001  
000  
FFF  
FFE  
004  
003  
002  
001  
000  
801  
800  
0
1
2
3
4
FS  
-FS  
0
+FS  
FS - 1.5 LSB  
-FS + 0.5 LSB  
+FS - 1.5 LSB  
DIFFERENTIAL INPUT VOLTAGE (LSB)  
DIFFERENTIAL INPUT VOLTAGE (LSB)  
Figure 9. Unipolar Transfer Function  
Figure 10. Bipolar Transfer Function  
Another way of entering the full power-down mode is  
using the SHDN input. Drive SHDN to a logic low to put  
the device into the full power-down mode. Drive SHDN  
high to exit full power-down mode and return to normal  
operating mode. SHDN overrides any software-controlled  
power-down mode and every time it is deasserted, it  
places the MAX1332/MAX1333 in its normal mode of  
operation regardless of its previous state.  
Transfer Function  
The MAX1332/MAX1333 output is straight binary in  
unipolar mode and is two’s complement in bipolar mode.  
Figure 9 shows the unipolar transfer function for the  
MAX1332/MAX1333. Table 1 shows the unipolar relation-  
ship between the differential analog input voltage and  
the digital output code. Figure 10 shows the bipolar  
transfer function for the MAX1332/MAX1333. Table 2  
shows the bipolar relationship between the differential  
analog input voltage and the digital output code.  
______________________________________________________________________________________ 17  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
Table 1. Unipolar Code Table (MAX1332)  
BINARY DIGITAL OUTPUT HEXADECIMAL EQUIVALENT  
DECIMAL EQUIVALENT OF  
DIFFERENTIAL INPUT  
VOLTAGE (V) (V = 4.096V )  
CODE D11–D0  
OF D11–D0  
D11–D0 (CODE )  
10  
REF  
1111 1111 1111  
1111 1111 1110  
1000 0000 0001  
1000 0000 0000  
0111 1111 1111  
0000 0000 0001  
0000 0000 0000  
0xFFF  
0xFFE  
0x801  
0x800  
0x7FF  
0x001  
0x000  
4095  
4094  
2049  
2048  
2047  
1
+4.095 0.5 ꢀSB  
+4.094 0.5 ꢀSB  
+2.049 0.5 ꢀSB  
+2.048 0.5 ꢀSB  
+2.047 0.5 ꢀSB  
+0.001 0.5 ꢀSB  
+0.000 0.5 ꢀSB  
0
Table 2. Bipolar Code Table (MAX1332)  
TWO’s-COMPLEMENT  
HEXADECIMAL EQUIVALENT  
DIGITAL OUTPUT CODE  
OF D11–D0  
DECIMAL EQUIVALENT OF  
DIFFERENTIAL INPUT  
D11–D0 (CODE  
)
VOLTAGE (V) (V  
= 4.096V)  
10  
REF  
D11–D0  
0111 1111 1111  
0111 1111 1110  
0000 0000 0001  
0000 0000 0000  
1111 1111 1111  
1000 0000 0001  
1000 0000 0000  
0x7FF  
0x7FE  
0x001  
0x000  
0xFFF  
0x801  
0x800  
+2047  
+2046  
+1  
+2.047 0.5 ꢀSB  
+2.046 0.5 ꢀSB  
+0.001 0.5 ꢀSB  
0.000 0.5 ꢀSB  
-0.001 0.5 ꢀSB  
-2.047 0.5 ꢀSB  
-2.048 0.5 ꢀSB  
0
-1  
-2047  
-2048  
Determine the differential analog input voltage as a  
function of V and the digital output code with the fol-  
Applications Information  
REF  
External Reference  
lowing equation:  
The MAX1332/MAX1333 use an external reference  
between 1V and (AV  
+ 50mV). Bypass REF with  
DD  
V  
=ꢀSB×CODE  
0.5×ꢀSB  
AIꢁ  
10  
a 1µF capacitor in parallel with a 0.1µF capacitor  
to AGꢁD for best performance (see the Typical  
Operating Circuit).  
where:  
V  
= V  
V  
AIꢁ  
AIꢁ_P AIꢁ_ꢁ  
Connection to Standard Interfaces  
The MAX1332/MAX1333 serial interface is fully compat-  
ible with SPI, QSPI and MICROWIRE (see Figure 11). If  
a serial interface is available, set the µC’s serial inter-  
face in master mode so the µC generates the serial  
V
V
REF  
REF  
ꢀSB=  
=
212 4096  
CODE = the decimal equivalent of the digital output  
10  
code (see Tables 1 and 2).  
clocꢂ. Choose a clocꢂ frequency based on the AV  
DD  
and DV  
amplitudes.  
DD  
0.5 x ꢀSB represents the quantization error that is  
inherent to any ADC.  
SPI and MICROWIRE  
When using a 4.096V reference, 1 ꢀSB equals 1.0mV.  
When using a 2.5V reference, 1 ꢀSB equals 0.61mV.  
When using SPI or MICROWIRE, the MAX1332/  
MAX1333 are compatible with all four modes pro-  
grammed with the CPHA and CPOꢀ bits in the SPI or  
MICROWIRE control register. (This control register is in  
18 ______________________________________________________________________________________  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
the bus master, not the MAX1332/MAX1333.)  
Conversion begins with a CꢁVST falling edge. DOUT  
goes low, indicating a conversion is in progress. Two  
consecutive 1-byte reads are required to get the full 12  
bits from the ADC. DOUT transitions on SCꢀK rising  
I/O  
SCK  
CNVST  
SCLK  
MISO  
DOUT  
+3V TO +5V  
edges and is guaranteed to be valid t  
later and  
DOT  
MAX1332  
MAX1333  
remain valid until t  
after the following SCꢀK rising  
DHOꢀD  
SS  
edge. When using CPOꢀ = 0 and CPHA = 0 or CPOꢀ =  
1 and CPHA = 1, the data is clocꢂed into the µC on the  
following or next SCꢀK rising edge. When using CPOꢀ  
= 0 and CPHA = 1 or CPOꢀ = 1 and CPHA = 0, the  
data is clocꢂed into the µC on the next falling edge.  
See Figure 11 for connections and Figures 12 and 13  
for timing. See the Timing Characteristics table to deter-  
mine the best mode to use.  
a) SPI  
CS  
SCK  
CNVST  
SCLK  
DOUT  
MISO  
+3V TO +5V  
MAX1332  
MAX1333  
SS  
QSPI  
Unliꢂe SPI, which requires two 1-byte reads to acquire  
the 12 bits of data from the ADC, QSPI allows acquiring  
the conversion data with a single 16-bit transfer. The  
MAX1332/MAX1333 require 16 clocꢂ cycles from the  
µC to clocꢂ out the 12 bits of data. Figure 14 shows a  
transfer using CPOꢀ = 1 and CPHA = 1. The conver-  
sion result contains three zeros, followed by the 12 data  
bits and a trailing zero with the data in MSB-first format.  
b) QSPI  
I/O  
SK  
SI  
CNVST  
SCLK  
DOUT  
MAX1332  
MAX1333  
DSP Interface to the TMS320C54_  
The MAX1332/MAX1333 can be directly connected to  
the TMS320C54_ family of DSPs from Texas  
Instruments. Set the DSP to generate its own clocꢂs or  
use external clocꢂ signals. Use either the standard or  
buffered serial port. Figure 15 shows the simplest inter-  
face between the MAX1332/MAX1333 and the  
TMS320C54_, where the transmit serial clocꢂ (CꢀKX)  
drives the receive serial clocꢂ (CꢀKR) and SCꢀK, and  
the transmit frame sync (FSX) drives the receive frame  
sync (FSR) and CꢁVST.  
c) MICROWIRE  
Figure 11. Common Serial-Interface Connections to the  
MAX1332/MAX1333  
down modes. The CꢁVST pin must idle high to remain  
in either power-down state.  
Another method of connecting the MAX1332/MAX1333  
to the TMS320C54_ is to generate the clocꢂ signals  
external to either device. This connection is shown in  
Figure 16 where serial clocꢂ (CꢀOCK) drives the  
receive serial clocꢂ (CꢀKR) and SCꢀK, and the convert  
signal (COꢁVERT) drives the receive frame sync (FSR)  
and CꢁVST.  
For continuous conversion, set the serial port to trans-  
mit a clocꢂ and pulse the frame sync signal for a clocꢂ  
period before data transmission. Use the serial port  
configuration (SPC) register to set up with internal  
frame sync (TXM = 1), CꢀKX driven by an on-chip clocꢂ  
source (MCM = 1), burst mode (FSM = 1), and 16-bit  
word length (FO = 0).  
The serial port must be set up to accept an external  
receive clocꢂ and external receive frame sync. Write  
the serial port configuration (SPC) register as follows:  
• TXM = 0, external frame sync  
This setup allows continuous conversions provided that  
the data transmit register (DXR) and the data-receive  
register (DRR) are serviced before the next conversion.  
Alternately, autobuffering can be enabled when using  
the buffered serial port to execute conversions and  
• MCM = 0, CꢀKX is taꢂen from the CꢀKX pin  
• FSM = 1, burst mode  
• FO = 0, data transmitted/received as 16-bit words  
read the data without µC intervention. Connect DV  
to  
DD  
This setup allows continuous conversion provided that  
the data-receive register (DRR) is serviced before the  
next conversion. Alternately, autobuffering can be  
the TMS320C54_ supply voltage. The word length can  
be set to 8 bits with FO = 1 to implement the power-  
______________________________________________________________________________________ 19  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
CNVST  
1
8
9
16  
SCLK  
DOUT  
HIGH  
IMPEDANCE  
HIGH  
IMPEDANCE  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1ST BYTE READ  
2ND BYTE READ  
Figure 12. SPI/MICROWIRE Serial-Interface Timing—Single Conversion  
CNVST  
1
13  
14  
16  
1
SCLK  
DOUT  
0
0
0
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
Figure 13. SPI/MICROWIRE Serial-Interface Timing—Continuous Conversion  
CNVST  
1
2
16  
SCLK  
DOUT  
HIGH  
IMPEDANCE  
HIGH  
IMPEDANCE  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 14. QSPI Serial-Interface Timing  
DV  
DD  
DV  
DD  
DV  
DV  
DD  
DD  
CLKX  
CLKR  
FSX  
SCLK  
CLKR  
SCLK  
TMS320C54x  
TMS320C54x  
FSR  
DR  
CNVST  
DOUT  
MAX1332  
MAX1333  
MAX1332  
MAX1333  
CNVST  
FSR  
CLOCK  
CONVERT  
DR  
DOUT  
Figure 16. Interfacing to the TMS320C54_ External Clocks  
20 ______________________________________________________________________________________  
Figure 15. Interfacing to the TMS320C54_ Internal Clocks  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
CNVST  
SCLK  
1
8
16  
1
DOUT  
D0  
0
0
0
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
Figure 17. DSP Interface—Continuous Conversion  
CNVST  
1
1
SCLK  
DOUT  
0
0
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
Figure 18. DSP Interface—Single Conversion—Continuous/Burst Clock  
enabled when using the buffered serial port to read the  
high frame (ꢀTFS = 0, ꢀRFS = 0) signal. In this mode,  
the data-independent frame-sync bit (DITFS = 1) can  
be selected to eliminate the need for writing to the  
transmit data register more than once. For single con-  
versions, idle CꢁVST high and pulse it low for the entire  
conversion. Configure the ADSP21_ _ _ STCTꢀ and  
SRCTꢀ registers for late framing (ꢀAFR = 1) and for an  
active-low frame (ꢀTFS = 1, ꢀRFS = 1) signal. This is  
also the best way to enter the power-down modes by  
setting the word length to 8 bits (SꢀEꢁ = 0111).  
data without µC intervention. Connect DV  
TMS320C54_ supply voltage.  
to the  
DD  
The MAX1332/MAX1333 can also be connected to the  
TMS320C54_ by using the data transmit (DX) pin to  
drive CꢁVST and the transmit clocꢂ (CꢀKX) generated  
internally to drive SCꢀK. A pullup resistor is required on  
the CꢁVST signal to ꢂeep it high when DX goes high  
impedance and write (0001)h to the data transmit regis-  
ter (DXR) continuously for continuous conversions. The  
power-down modes can be entered by writing (00FF)h  
to the DXR (see Figures 17 and 18).  
Connect the DV  
pin to the ADSP21_ _ _ supply volt-  
DD  
age (see Figures 17 and 18).  
Layout, Grounding, and Bypassing  
DSP Interface to the ADSP21_ _ _  
The MAX1332/MAX1333 can be directly connected to  
the ADSP21_ _ _ family of DSPs from Analog Devices.  
Figure 19 shows the direct connection of the  
MAX1332/MAX1333 to the ADSP21_ _ _. There are two  
modes of operation that can be programmed to inter-  
face with the MAX1332/MAX1333. For continuous con-  
versions, idle CꢁVST low and pulse it high for one  
clocꢂ cycle during the ꢀSB of the previous transmitted  
word. Configure the ADSP21_ _ _ STCTꢀ and SRCTꢀ  
registers for early framing (ꢀAFR = 0) and for an active-  
For best performance, use PC boards. Wire-wrap  
boards must not be used. Board layout must ensure  
that digital and analog signal lines are separated from  
each other. Do not run analog and digital (especially  
clocꢂ) lines parallel to one another, or digital lines  
underneath the ADC pacꢂage.  
Figure 20 shows the recommended system ground  
connections. Establish an analog ground point at  
AGꢁD and a digital ground point at DGꢁD. Connect all  
other analog grounds to the analog ground point.  
______________________________________________________________________________________ 21  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
DIGITAL  
GROUND  
POINT  
ANALOG SUPPLY  
RETURN  
DIGITAL SUPPLY  
RETURN DV  
AV  
DD  
DD  
ANALOG  
GROUND  
POINT  
DV  
VDDINT  
TCLK  
DD  
SCLK  
CNVST  
DOUT  
10*  
ADSP21_ _ _  
RCLK  
TFS  
RFS  
DR  
MAX1332  
MAX1333  
AV  
DD  
DGND  
AGND  
DV  
DGND  
DV  
DD  
DD  
DIGITAL  
CIRCUITRY  
DATA  
MAX1332  
MAX1333  
*OPTIONAL  
Figure 19. Interfacing to the ADSP21_ _ _  
Figure 20. Power-Supply Grounding Condition  
Connect all digital grounds to the digital ground point.  
For lowest noise operation, maꢂe the power supply  
returns as low impedance and as short as possible.  
Connect the analog ground point to the digital ground  
point together at the IC.  
the transfer function once offset and gain errors have  
been nullified. Iꢁꢀ deviations are measured at every  
step and the worst-case deviation is reported in the  
electrical characteristics table.  
Differential Nonlinearity (DNL)  
Dꢁꢀ is the difference between an actual step width and  
the ideal value of 1 ꢀSB. A Dꢁꢀ error specification of  
less than 1 ꢀSB guarantees no missing codes and a  
monotonic transfer function. For the MAX1332/  
MAX1333, Dꢁꢀ deviations are measured at every step  
and the worst-case deviation is reported in the electri-  
cal characteristics table.  
High-frequency noise in the power supplies degrades  
the ADC’s performance. Bypass AV  
to AGꢁD with  
DD  
0.1µF and 1µF bypass capacitors. ꢀiꢂewise, bypass  
DV to DGꢁD with 0.1µF and 1µF bypass capacitors.  
DD  
Minimize capacitor lead lengths for best supply noise  
rejection. To reduce the effects of supply noise, a 10Ω  
resistor can be connected as a lowpass filter to attenu-  
ate supply noise (see Figure 20).  
Offset Error  
Offset error is a figure of merit that indicates how well  
the actual transfer function matches the ideal transfer  
function at a single point. Typically, the point at which  
the offset error is specified is at or near the zero-scale  
of the transfer function or at or near the midscale of the  
transfer function.  
Exposed Paddle  
The MAX1332/MAX1333 TQFꢁ pacꢂage has an exposed  
paddle on the bottom of the pacꢂage, providing a very  
low thermal resistance path for heat removal from the IC,  
as well as a low-inductance path to ground. The pad is  
electrically connected to AGꢁD on the MAX1332/  
MAX1333 and must be soldered to the circuit board ana-  
log ground plane for proper thermal and electrical perfor-  
mance. Refer to the Maxim Application ꢁote HFAꢁ-08.1:  
Thermal Considerations for QFN and Other Exposed Pad  
Packages, for additional information.  
For the MAX1332/MAX1333, operating with a unipolar  
transfer function, the ideal zero-scale digital output  
transition from 0x000 to 0x001 occurs at 0.5 ꢀSB above  
AGꢁD. Unipolar offset error is the amount of deviation  
between the measured zero-scale transition point and  
the ideal zero-scale transition point.  
Definitions  
For the MAX1332/MAX1333, operating with a bipolar  
transfer function, the ideal midscale digital output tran-  
sition from 0xFFF to 0x000 occurs at 0.5 ꢀSB below  
AGꢁD. Bipolar offset error is the amount of deviation  
Integral Nonlinearity (INL)  
Iꢁꢀ is the deviation of the values on an actual transfer  
function from a straight line. For the MAX1332/  
MAX1333, this straight line is between the end points of  
22 ______________________________________________________________________________________  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
tion error only and results directly from the ADC’s reso-  
lution (ꢁ bits):  
CNVST  
SꢁR  
= 6.02 x ꢁ + 1.76  
dB dB  
dB[max]  
In reality, there are other noise sources such as thermal  
noise, reference noise, and clocꢂ jitter that also  
degrade SꢁR.  
ANALOG  
INPUT  
t
AD  
For the MAX1332/MAX1333, SꢁR is computed by taꢂ-  
ing the ratio of the RMS signal to the RMS noise. RMS  
noise includes all spectral components to the ꢁyquist  
frequency excluding the fundamental, the first five har-  
monics, and the DC offset.  
t
AJ  
SAMPLED  
DATA (T/H)  
TRACK  
HOLD  
TRACK  
T/H  
Signal-to-Noise Plus Distortion (SINAD)  
SIꢁAD is a dynamic figure of merit that indicates the  
converter’s noise and distortion performance.  
Figure 21. T/H Aperture Timing  
SIꢁAD is computed by taꢂing the ratio of the RMS sig-  
nal to the RMS noise plus distortion. RMS noise plus  
distortion includes all spectral components to the  
ꢁyquist frequency excluding the fundamental and the  
DC offset:  
between the measured midscale transition point and  
the ideal midscale transition point.  
Gain Error  
Gain error is a figure of merit that indicates how well the  
slope of the actual transfer function matches the slope  
of the ideal transfer function. For the MAX1332/  
MAX1333, the gain error is the difference of the mea-  
sured full-scale and zero-scale transition points minus  
the difference of the ideal full-scale and zero-scale  
transition points.  
SIGꢁAꢀ  
(ꢁOISE+DISTORTIO)  
RMS  
SIꢁAD(dB) = 20×log  
RMS  
Effective Number of Bits (ENOB)  
EꢁOB specifies the global accuracy of an ADC at a spe-  
cific input frequency and sampling rate. An ideal ADC’s  
error consists of quantization noise only. EꢁOB for a full-  
scale sinusoidal input waveform is computed from:  
For the unipolar input, the full-scale transition point is  
from 0xFFE to 0xFFF and the zero-scale transition point  
if from 0x000 to 0x001.  
For the bipolar input, the full-scale transition point is  
from 0x7FE to 0x7FF and the zero-scale transition point  
is from 0x800 to 0x801.  
SIꢁAD1.76  
EꢁOB=  
6.02  
Aperture Jitter  
Total Harmonic Distortion (THD)  
THD is a dynamic figure of merit that indicates how much  
harmonic distortion the converter adds to the signal.  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the aperture delay.  
Aperture Delay  
THD is the ratio of the RMS sum of the first five harmon-  
ics of the fundamental signal to the fundamental itself.  
This is expressed as:  
Aperture delay (t ) is the time defined between the  
AD  
falling edge of the CꢁVST and the instant when an  
actual sample is taꢂen (Figure 21).  
2
2
2
2
2
Signal-to-Noise Ratio (SNR)  
SꢁR is a dynamic figure of merit that indicates the con-  
verter’s noise performance.  
V2 + V3 + V4 + V5 + V6  
THD = 20×log  
V1  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SꢁR is the ratio of  
the full-scale analog input (RMS value) to the RMS  
quantization error (residual error). The ideal, theoretical  
minimum analog-to-digital noise is caused by quantiza-  
where V is the fundamental amplitude, and V through  
6
harmonics.  
1
2
V
are the amplitudes of the 2nd- through 6th-order  
______________________________________________________________________________________ 23  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
then swept up to the point where the amplitude of the  
Spurious-Free Dynamic Range (SFDR)  
SFDR is a dynamic figure of merit that indicates the  
lowest usable input signal amplitude. SFDR is the ratio  
of the RMS amplitude of the fundamental (maximum  
signal component) to the RMS value of the next-largest  
spurious component, excluding DC offset. SFDR is  
specified in decibels relative to the carrier (dBc).  
digitized conversion result has decreased by -3dB.  
Power-Supply Rejection (PSR)  
PSR is defined as the shift in offset error when the ana-  
log power supply is moved from 2.7V to 3.6V.  
Pin Configuration  
Intermodulation Distortion (IMD)  
IMD is the total power of the IM2 to IM5 intermodulation  
products to the ꢁyquist frequency relative to the total  
TOP VIEW  
input power of the two input tones f  
and f . The  
Iꢁ2  
Iꢁ1  
individual input tone levels are at -7dBFS. The inter-  
modulation products are as follows:  
• 2nd-order intermodulation products (IM2): f  
+
DV  
DD 13  
Iꢁ1  
8
7
6
5
AGND  
BIP/UNI  
SHDN  
REF  
f
, f  
- f  
Iꢁ2 Iꢁ2 Iꢁ1  
DGND  
14  
15  
• 3rd-order intermodulation products (IM3): 2f  
-
Iꢁ1  
Iꢁ1  
Iꢁ1  
MAX1332  
MAX1333  
f
, 2f  
- f , 2f  
Iꢁ2 Iꢁ1  
+ f , 2f  
+ f  
Iꢁ2 Iꢁ1  
Iꢁ2  
Iꢁ1  
Iꢁ2  
AV  
DD  
• 4th-order intermodulation products (IM4): 3f  
, 3f - f , 3f + f , 3f + f  
-
f
Iꢁ2  
Iꢁ2 Iꢁ1  
Iꢁ1  
Iꢁ2  
Iꢁ2  
Iꢁ1  
AGND 16  
• 5th-order intermodulation products (IM5): 3f  
2f , 3f - 2f , 3f + 2f , 3f + 2f  
-
Iꢁ2  
Iꢁ2  
Iꢁ1  
Iꢁ1  
Iꢁ2  
Iꢁ2  
Iꢁ1  
Channel-to-Channel Isolation  
Channel-to-channel isolation is a figure of merit that  
indicates how well each analog input is isolated from  
the others. The channel-to-channel isolation for the  
MAX1332/MAX1333 is measured by applying a low-fre-  
quency 500ꢂHz -0.5dBFS sine wave to the on channel  
while a high-frequency 900ꢂHz -0.5dBFS sine wave is  
applied to the off channel. An FFT is taꢂen for the on  
channel. From the FFT data, channel-to-channel  
crosstalꢂ is expressed in dB as the power ratio of the  
500ꢂHz low-frequency signal applied to the on channel  
and the 900ꢂHz high-frequency crosstalꢂ signal from  
the off channel.  
Selector Guide  
AV  
(V)  
MAX SAMPLING RATE  
(Msps)  
DD  
PART  
MAX1332ETE  
MAX1333ETE  
+5  
+3  
3
2
Full-Power Bandwidth  
A large -0.5dB FS analog input signal is applied to an  
ADC, and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by -3dB. This point is defined as full-  
power input bandwidth frequency.  
Chip Information  
PROCESS: BiCMOS  
Full-Linear Bandwidth  
Full-linear bandwidth is the frequency at which the sig-  
nal-to-noise plus distortion (SIꢁAD) is equal to 68dB.  
The amplitude of the analog input signal is -0.5dBFS.  
Small-Signal Bandwidth  
A small -20dBFS analog input signal is applied to an  
ADC in such a way that the signal’s slew rate does not  
limit the ADC’s performance. The input frequency is  
24 ______________________________________________________________________________________  
3Msps/2Msps, 5V/3V, 2-Channel, True-  
Differential 12-Bit ADCs  
Package Information  
(The pacꢂage drawing(s) in this data sheet may not reflect the most current specifications. For the latest pacꢂage outline information,  
go to www.maxim-ic.com/packages.)  
D2  
b
0.10 M  
C
A
B
D
D2/2  
D/2  
E/2  
E2/2  
(NE - 1)  
X e  
C
E2  
E
L
L
k
e
C
L
(ND - 1)  
X e  
C
L
C
L
0.10  
C
0.08 C  
A
A2  
A1  
L
L
e
e
PACKAGE OUTLINE  
12, 16L, THIN QFN, 3x3x0.8mm  
1
21-0136  
E
2
PKG  
12L 3x3  
16L 3x3  
NOM.  
0.75  
REF. MIN. NOM.  
MAX.  
0.80  
MIN.  
0.70  
MAX.  
EXPOSED PAD VARIATIONS  
DOWN  
BONDS  
ALLOWED  
0.70  
0.75  
0.80  
A
b
D2  
E2  
PKG.  
PIN ID  
JEDEC  
CODES  
MIN. NOM. MAX. MIN. NOM. MAX.  
0.20  
2.90  
2.90  
0.25  
3.00  
0.30  
3.10  
3.10  
0.20  
2.90  
2.90  
0.25  
3.00  
3.00  
0.30  
3.10  
3.10  
T1233-1  
T1233-3  
T1633-1  
T1633-2  
T1633F-3  
T1633-4  
0.95  
0.95  
0.95  
0.95  
0.65  
0.95  
1.10  
1.10  
1.10  
1.10  
0.80  
1.10  
1.25  
1.25  
1.25  
1.25  
0.95  
1.25  
0.95  
0.95  
0.95  
0.95  
0.65  
0.95  
1.10  
1.10  
1.10  
1.10  
0.80  
1.10  
1.25  
1.25  
1.25  
1.25  
0.95  
1.25  
0.35 x 45WEED-1  
0.35 x 45WEED-1  
0.35 x 45WEED-2  
0.35 x 45WEED-2  
0.225 x 45WEED-2  
0.35 x 45WEED-2  
NO  
YES  
NO  
D
E
e
L
3.00  
0.50 BSC.  
0.55  
0.50 BSC.  
0.40  
0.45  
0.65  
0.30  
0.50  
YES  
N/A  
NO  
N
12  
3
16  
4
ND  
NE  
3
4
A1  
A2  
k
0
0.02  
0.05  
-
0
0.02  
0.05  
-
0.20 REF  
-
0.20 REF  
-
0.25  
0.25  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO  
JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED  
WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR  
MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220 REVISION C.  
PACKAGE OUTLINE  
12, 16L, THIN QFN, 3x3x0.8mm  
2
21-0136  
E
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 25  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademarꢂ of Maxim Integrated Products, Inc.  

相关型号:

MAX13342EETD+

Interface Circuit, BICMOS, PDSO14, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, DFN-14
MAXIM

MAX13342EETD+T

Interface Circuit, BICMOS, PDSO14, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, DFN-14
MAXIM

MAX13345EETD+

Interface Circuit, BICMOS, PDSO14, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, DFN-14
MAXIM

MAX13345EETD+T

Interface Circuit, BICMOS, PDSO14, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, DFN-14
MAXIM

MAX13362

24-Channel Automotive Switch Monitor
MAXIM

MAX13362ATL/V+

24-Channel Automotive Switch Monitor
MAXIM

MAX13362ATL/V+T

Power Supply Support Circuit, Fixed, 24 Channel, BICMOS, 6 X 6 MM, ROHS COMPLIANT, TQFN-40
MAXIM

MAX1338

14-Bit, 4-Channel, Software-Programmable, Multiranging, Simultaneous-Sampling ADC
MAXIM

MAX1338ETN

14-Bit, 4-Channel, Software-Programmable, Multiranging, Simultaneous-Sampling ADC
MAXIM

MAX1338ETN-T

ADC, Proprietary Method, 14-Bit, 1 Func, 4 Channel, Parallel, Word Access, BICMOS, 8 X 8 MM, 0.80 MM HEIGHT, MO-220, QFN-56
MAXIM

MAX133C/D

3 Digit DMM Circuit
MAXIM

MAX133CMH

Analog-to-Digital Converter, 3-3/4-Digit
MAXIM