MAX13444EASA+T [MAXIM]

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO8, 0.150 INCH, LEAD FREE, MS-012AA, SOP-8;
MAX13444EASA+T
型号: MAX13444EASA+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO8, 0.150 INCH, LEAD FREE, MS-012AA, SOP-8

驱动 信息通信管理 光电二极管 接口集成电路 驱动器
文件: 总18页 (文件大小:1351K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX13442E/MAX13443E/  
MAX13444E  
±15kV ESD-Protected, ±80V Fault-Protected,  
Fail-Safe RS-485/J1708 Transceivers  
General Description  
Features  
The MAX13442E/MAX13444E are fault-protected RS-485  
and J1708 transceivers that feature ±80V protection  
from signal faults on communication bus lines. The  
MAX13442E/MAX13444E feature a reduced slew-rate  
driver that minimizes EMI and reflections, allowing error-  
free transmission up to 250kbps. The MAX13443E driver  
can transmit up to 10Mbps. The high-speed MAX13443E  
RS-485 transceiver features ±60V protection from signal  
faults on communication bus lines. These transceivers  
feature foldback current limit. Each device contains one  
differential line driver with three-state output and one dif-  
ferential line receiver with three-state input. The 1/4-unit-  
load receiver input impedance allows up to 128 transceiv-  
ers on a single bus. The devices operate from a 5V sup-  
ply. True fail-safe inputs guarantee a logic-high receiver  
output when the receiver inputs are open, shorted, or  
connected to an idle data line.  
±15kV ESD Protection  
±80V Fault Protection (±60V MAX13443E)  
Guaranteed 10Mbps Data Rate (MAX13443E)  
Hot-Swappable for Telecom Applications  
True Fail-Safe Receiver Inputs  
Enhanced Slew-Rate-Limiting Facilitates Error-Free  
Data Transmission (MAX13442E/MAX13444E)  
Allow Up to 128 Transceivers on the Bus  
-7V to +12V Common-Mode Input Range  
±6mA FoldBack Current Limit  
Industry-Standard Pinout  
Applications  
RS-422/RS-485  
Communications  
Truck and Trailer  
Applications  
Telecommunications  
Systems  
Automotive Applications  
HVAC Controls  
Hot-swap circuitry eliminates false transitions on the data  
bus during circuit initialization or connection to a live back-  
plane. Short-circuit current-limiting and thermal-shutdown  
circuitry protect the driver against excessive power dis-  
sipation, and on-chip ±15kV ESD protection eliminates  
costly external protection devices.  
Industrial Networks  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX13442EASA+  
MAX13443EASA+  
MAX13444EASA/V+T  
-40°C to +125°C 8 SO  
The MAX13442E/MAX13443E/MAX13444E are available  
in an 8-pin SO package and are specified over the auto-  
motive temperature range.  
-40°C to +125°C 8 SO  
-40°C to +125°C 8 SO  
+Denotes lead(Pb)-free/RoHS-compliant package.  
/V denotes an automotive qualified part.  
T = Tape and reel.  
Selector Guide  
DATA RATE  
(Mbps)  
FAULT  
LOW-POWER RECEIVER/DRIVER TRANSCEIVERS  
PART  
TYPE  
HOT SWAP  
PROTECTION (V) SHUTDOWN  
ENABLE  
Yes  
ON BUS  
128  
MAX13442E RS-485  
MAX13443E RS-485  
MAX13444E J1708  
0.25  
10  
±80  
±60  
±80  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
128  
0.25  
Yes  
128  
Yes (only RE)  
Pin Configurations and Typical Operating Circuits  
DE  
TOP VIEW  
MAX13442E  
MAX13443E  
+
+
RO  
RE  
DE  
DI  
R
R
RO  
RE  
DE  
DI  
1
2
3
4
1
2
3
4
V
8
8
7
6
5
V
D
CC  
CC  
DI  
B
B
7
B
R
T
R
T
6
A
A
GND  
A
RO  
R
D
D
GND  
5
RE  
SO  
SO  
Pin Configurations and Typical Operating Circuits continued at end of data sheet.  
19-3898; Rev 3; 3/11  
MAX13442E/MAX13443E/  
MAX13444E  
±15kV ESD-Protected, ±80V Fault-Protected,  
Fail-Safe RS-485/J1708 Transceivers  
Absolute Maximum Ratings  
(Voltages referenced to GND.)  
Continuous Power Dissipation (T = +70°C)  
A
V
........................................................................................+7V  
SO (derate 7.6mW/°C above +70°C)..........................606mW  
Operating Temperature Range......................... -40°C to +125°C  
Storage Temperature Range............................ -65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
CC  
RE, DE, DE, DI, TXD ............................... -0.3V to (V  
A, B (Note 1) (MAX13442E/MAX13444E)...........................±80V  
A, B (Note 1) (MAX13443E)................................................±60V  
RO ............................................................ -0.3V to (V  
Short-Circuit Duration (RO, A, B)..............................Continuous  
+ 0.3V)  
CC  
+ 0.3V)  
CC  
Note 1: During normal operation, a termination resistor must be connected between A and B in order to guarantee overvoltage protec-  
tion up to the absolute maximum rating of this device. When not in operation, these devices can withstand fault voltages up  
to the maximum rating without a termination resistor and will not be damaged.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
(Note 2)  
Package Thermal Characteristics  
SO  
Junction-to-Ambient Thermal Resistance (θ ) ........132°C/W  
Junction-to-Case Thermal Resistance (θ )...............38°C/W  
JC  
JA  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
DC Electrical Characteristics  
(V  
= +4.75V to +5.25V, T = T  
A
to T  
, unless otherwise noted. Typical values are at V  
= +5V and T = +25°C.)  
CC  
MIN  
MAX  
CC A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DRIVER  
Figure 1, R = 100Ω  
2
V
V
L
CC  
Differential Driver Output  
V
V
OD  
Figure 1, R = 54Ω  
1.5  
L
CC  
Change in Magnitude of  
Differential Output Voltage  
ΔV  
Figure 1, R = 100Ω or 54Ω (Note 3)  
0.2  
3
V
V
V
OD  
L
Driver Common-Mode  
Output Voltage  
V
Figure 1, R = 100Ω or 54Ω  
V
/2  
OC  
L
CC  
Change in Magnitude of  
Common-Mode Voltage  
Figure 1, R = 100Ω or 54Ω (Note 3)  
L
DV  
0.2  
OC  
(MAX13442E/MAX13443E)  
DRIVER LOGIC  
Driver-Input High Voltage  
Driver-Input Low Voltage  
Driver-Input Current  
V
2
V
V
DIH  
V
0.8  
±2  
DIL  
I
µA  
DIN  
0V ≤ V  
≤ +12V  
+350  
OUT  
Driver Short-Circuit Output  
Current (Note 4)  
I
mA  
mA  
mA  
OSD  
-7V ≤ V  
≤ V  
-350  
+25  
OUT  
CC  
(V  
- 1V) ≤ V  
≤ +12V (Note 4)  
CC  
OUT  
Driver Short-Circuit Foldback  
Output Current  
I
OSDF  
-7V ≤ V  
≤ +1V (Note 4)  
-25  
-6  
OUT  
V
V
≥ +20V, R = 100Ω  
+6  
OUT  
L
Driver-Limit Short-Circuit  
Foldback Output Current  
I
OSDL  
≤ -15V, R = 100Ω  
OUT  
L
Maxim Integrated  
2  
www.maximintegrated.com  
MAX13442E/MAX13443E/  
MAX13444E  
±15kV ESD-Protected, ±80V Fault-Protected,  
Fail-Safe RS-485/J1708 Transceivers  
DC Electrical Characteristics (continued)  
(V  
= +4.75V to +5.25V, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= +5V and T = +25°C.)  
CC  
A
MIN  
MAX  
CC A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RECEIVER  
V
V
V
= GND, V  
= 12V  
250  
-150  
±6  
CC  
A, B  
A, B  
receive  
mode  
µA  
Input Current  
I
= -7V  
A,B  
A, B  
A, B  
= ±80V  
mA  
mV  
mV  
Receiver-Differential Threshold  
Voltage  
V
-7V ≤ V  
≤ +12V  
-200  
-50  
TH  
CM  
Receiver-Input Hysteresis  
RECEIVER LOGIC  
ΔV  
25  
TH  
Output-High Voltage  
Output-Low Voltage  
V
Figure 2, I  
= -1.6mA  
V - 0.6  
CC  
V
V
OH  
OH  
V
Figure 2, I = 1mA  
0.4  
OL  
OL  
Three-State Output Current at  
Receiver  
I
0V ≤ V  
≤ V  
CC  
±1  
µA  
kΩ  
mA  
OZR  
A, B  
Receiver Input Resistance  
R
-7V ≤ V  
≤ +12V  
48  
IN  
CM  
Receiver Output Short-Circuit  
Current  
I
0V ≤ V  
≤ V  
CC  
±95  
OSR  
RO  
CONTROL  
Control-Input High Voltage  
V
DE, DE, RE  
DE, RE  
2
V
CIH  
Input-Current Latch During First  
Rising Edge  
I
90  
µA  
IN  
SUPPLY CURRENT  
DE = V , RE = GND  
CC  
(MAX13442E)  
(DE = RE = GND)  
(MAX13444E)  
30  
No load,  
Normal Operation  
I
DI = V  
mA  
CC  
CC  
or GND  
(DE = V , RE = GND)  
(MAX13443E)  
CC  
10  
20  
DE = GND, RE = V  
CC  
(MAX13442E/MAX13443E)  
DE = GND, RE = V , T = +25°C  
(MAX13442E/MAX13443E)  
CC  
A
10  
100  
10  
Supply Current in Shutdown  
Mode  
I
µA  
SHDN  
DE = RE = V (MAX13444E)  
CC  
DE = RE = V , T = +25°C (MAX13444E)  
CC  
A
Supply Current with Output  
Shorted to ±60V  
DE = GND, RE = GND, no load  
output in three-state (MAX13443E)  
I
±15  
mA  
SHRT  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX13442E/MAX13443E/  
MAX13444E  
±15kV ESD-Protected, ±80V Fault-Protected,  
Fail-Safe RS-485/J1708 Transceivers  
Protection Specifications  
(V  
= +4.75V to +5.25V, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= +5V and T = +25°C.)  
CC  
A
MIN  
MAX  
CC A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
±80  
±60  
TYP  
MAX  
UNITS  
V
MAX13442E/  
MAX13444E  
A, B; R  
= 0,  
SOURCE  
Overvoltage Protection  
ESD Protection  
R = 54  
L
MAX13443E  
A, B  
Human Body Model  
±15  
kV  
Switching Characteristics (MAX13442E/MAX13444E)  
(V  
= +4.75V to +5.25V, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= +5V and T = +25°C.)  
CC  
A
MIN  
MAX  
CC A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Figure 3, R = 54Ω, C = 50pF (MAX13442E)  
t
t
,
L
L
PLHA  
Driver Propagation Delay  
2000  
ns  
PLHB  
R
R
= 60Ω, C  
= 100pF (MAX13444E)  
DIFF  
DIFF  
t
,
DPLH  
Driver Differential Propagation Delay  
= 54Ω, C = 50pF, Figure 4  
2000  
2000  
ns  
ns  
L
L
L
t
DPHL  
Driver Differential Output  
Transition Time  
t
,t  
LH HL  
R
R
= 54Ω, C = 50pF, Figure 4  
200  
L
= 54Ω, C = 50pF,  
L
L
t
t
,
SKEWAB  
Driver Output Skew  
t
t
= |t  
= |t  
- t  
|,  
|
350  
200  
ns  
SKEWAB  
SKEWBA  
PLHA PHLB  
SKEWBA  
- t  
PLHB PHLA  
R
= 54Ω, C = 50pF,  
L
L
Differential Driver Output Skew  
t
DSKEW  
ns  
t
= |t |  
- t  
DSKEW  
DPLH DPHL  
Maximum Data Rate  
f
250  
kbps  
ns  
MAX  
Driver Enable Time to Output High  
Driver Disable Time from Output High  
t
R
R
= 500Ω, C = 50pF, Figure 5  
2000  
2000  
PDZH  
L
L
L
t
= 500Ω, C = 50pF, Figure 5  
ns  
PDHZ  
L
Driver Enable Time from Shutdown to  
Output High  
t
R
= 500Ω, C = 50pF, Figure 5  
4.2  
µs  
PDHS  
L
L
Driver Enable Time to Output Low  
t
R
R
= 500Ω, C = 50pF, Figure 6  
2000  
2000  
ns  
ns  
PDZL  
L
L
L
Driver Disable Time from Output Low  
t
= 500Ω, C = 50pF, Figure 6  
L
PDLZ  
Driver Enable Time from Shutdown to  
Output Low  
t
R
R
C
= 500Ω, C = 50pF, Figure 6  
4.2  
800  
µs  
ns  
ns  
PDLS  
L
L
L
L
Driver Time to Shutdown  
t
= 500Ω, C = 50pF  
L
SHDN  
t
,
RPLH  
Receiver Propagation Delay  
= 20pF, V = 2V, V  
ID CM  
= 0V, Figure 7  
2000  
t
RPHL  
Receiver Output Skew  
t
C
R
R
R
R
R
R
= 20pF, t  
= |t  
- t  
= 1kΩ, C = 20pF, Figure 8  
|
200  
2000  
2000  
4.2  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
RSKEW  
L
L
L
L
L
L
L
RSKEW  
RPLH RPHL  
Receiver Enable Time to Output High  
Receiver Disable Time from Output High  
Receiver Wake Time from Shutdown  
Receiver Enable Time to Output Low  
Receiver Disable Time from Output Low  
Receiver Time to Shutdown  
t
t
RPZH  
RPHZ  
L
= 1kΩ, C = 20pF, Figure 8  
L
t
= 1kΩ, C = 20pF, Figure 8  
L
RPWAKE  
t
= 1kΩ, C = 20pF, Figure 8  
2000  
2000  
800  
RPZL  
RPLZ  
L
t
= 1kΩ, C = 20pF, Figure 8  
L
t
= 500Ω, C = 50pF  
L
SHDN  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX13442E/MAX13443E/  
MAX13444E  
±15kV ESD-Protected, ±80V Fault-Protected,  
Fail-Safe RS-485/J1708 Transceivers  
Switching Characteristics (MAX13443E)  
(V  
= +4.75V to +5.25V, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= +5V and T = +25°C.)  
CC  
A
MIN  
MAX  
CC A  
PARAMETER  
SYMBOL  
CONDITIONS  
, C = 50pF, Figure 3  
MIN  
TYP  
MAX  
UNITS  
t
,
PLHA  
Driver Propagation Delay  
R = 27  
60  
ns  
L
L
t
PLHB  
t
t
,
DPLH  
Driver Differential Propagation Delay  
R = 54  
, C = 50pF, Figure 4  
L
60  
25  
ns  
ns  
L
DPHL  
Driver Differential Output  
Transition Time  
t
,t  
R = 54  
, CL = 50pF, Figure 4  
LH HL  
L
R = 54  
, C = 50pF,  
L
L
t
t
,
SKEWAB  
Driver Output Skew  
t
t
= |t  
- t  
|,  
|
10  
10  
ns  
ns  
SKEWAB  
SKEWBA  
PLHA PHLB  
SKEWBA  
= |t - t  
PLHB PHLA  
R = 54, C = 50pF,  
L
L
Differential Driver Output Skew  
t
DSKEW  
t
= |t |  
- t  
DSKEW  
DPLH DPHL  
Maximum Data Rate  
f
10  
Mbps  
ns  
MAX  
Driver Enable Time to Output High  
Driver Disable Time from Output High  
t
R
R
= 500  
, C = 50pF, Figure 5  
1200  
1200  
PDZH  
PDHZ  
L
L
L
t
= 500  
, C = 50pF, Figure 5  
ns  
L
Driver Enable Time from Shutdown to  
Output High  
t
R = 500  
, C = 50pF, Figure 5  
4.2  
µs  
PDHS  
L
L
Driver Enable Time to Output Low  
Driver Disable Time from Output Low  
t
R = 500  
, C = 50pF, Figure 6  
1200  
1200  
ns  
ns  
PDZL  
L
L
t
R
R
= 500Ω, C = 50pF, Figure 6  
L
PDLZ  
L
L
Driver Enable Time from Shutdown to  
Output Low  
t
= 500Ω, C = 50pF, Figure 6  
4.2  
800  
85  
Fs  
ns  
ns  
PDLS  
L
Driver Time to Shutdown  
t
R = 500Ω, C = 50pF, Figure 6  
L L  
SHDN  
t
,
RPLH  
Receiver Propagation Delay  
C = 20pF, V = 2V, V  
= 0V, Figure 7  
L
ID  
CM  
t
RPHL  
Receiver Output Skew  
t
RSKEW  
C = 20pF, t  
= |t  
- t  
|
15  
400  
400  
4.2  
ns  
ns  
ns  
µs  
L
RSKEW  
RPLH RPHL  
Receiver Enable Time to Output High  
Receiver Disable Time from Output High  
Receiver Wake Time from Shutdown  
t
R
R
= 1kΩ, C = 20pF, Figure 8  
L
RPZH  
RPHZ  
L
L
t
= 1kΩ, C = 20pF, Figure 8  
L
t
R = 1k, C = 20pF, Figure 8  
L L  
RPWAKE  
Receiver Enable Wake Time from  
Shutdown  
t
R
= 1kΩ, C = 20pF, Figure 8  
400  
ns  
RPSH  
L
L
Receiver Disable Time from Output Low  
Receiver Time to Shutdown  
t
R
R
= 1kΩ, C = 20pF, Figure 8  
400  
800  
ns  
ns  
RPLZ  
L
L
L
t
= 500Ω, C = 50pF  
L
SHDN  
Note 3: ΔV  
and ΔV  
are the changes in V  
and V , respectively, when the DI input changes state.  
OD  
OC  
OD OC  
Note 4: The short-circuit output current applies to peak current just before foldback current limiting. The short-circuit foldback output  
current applies during current limiting to allow a recovery from bus contention.  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX13442E/MAX13443E/  
MAX13444E  
±15kV ESD-Protected, ±80V Fault-Protected,  
Fail-Safe RS-485/J1708 Transceivers  
Typical Operating Characteristics  
(V  
= +5V, T = +25°C, unless otherwise noted.)  
A
CC  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
NO-LOAD SUPPLY CURRENT  
vs. TEMPERATURE  
NO-LOAD SUPPLY CURRENT  
vs. TEMPERATURE  
6
24  
10  
1
MAX13442E  
DI = DE = GND  
DRIVER AND RECEIVER  
ENABLED  
DRIVER AND RECEIVER  
ENABLED  
5
4
3
2
1
0
20  
16  
12  
8
RE = V  
CC  
0.1  
0.01  
DRIVER DISABLED,  
RECEIVER ENABLED  
0.001  
0.0001  
0.00001  
0.000001  
DRIVER DISABLED,  
RECEIVER ENABLED  
4
MAX13443E  
MAX13442E/MAX13444E  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
RECEIVER OUTPUT CURRENT  
vs. OUTPUT-LOW VOLTAGE  
RECEIVER OUTPUT CURRENT  
vs. OUTPUT-HIGH VOLTAGE  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT LOW VOLTAGE (V)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT LOW VOLTAGE (V)  
RECEIVER OUTPUT VOLTAGE  
vs. TEMPERATURE  
DRIVER OUTPUT CURRENT  
vs. DIFFERENTIAL OUTPUT VOLTAGE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R = 54  
L
MAX13442E  
DI = GND, DE = V  
VOLTAGE APPLIED  
TO OUTPUT A  
140  
,
CC  
V
, I  
= 10mA  
120  
100  
OH OUT  
80  
60  
40  
20  
0
V
, I  
= -10mA  
OL OUT  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
10  
20  
30  
40  
50  
60  
70  
80  
TEMPERATURE (°C)  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX13442E/MAX13443E/  
MAX13444E  
±15kV ESD-Protected, ±80V Fault-Protected,  
Fail-Safe RS-485/J1708 Transceivers  
Typical Operating Characteristics (continued)  
(V  
= +5V, T = +25°C, unless otherwise noted.)  
A
CC  
DIFFERENTIAL OUTPUT VOLTAGE  
vs. TEMPERATURE  
DRIVER OUTPUT CURRENT  
vs. DIFFERENTIAL OUTPUT VOLTAGE  
100  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R = 54  
L
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
MAX13442E  
DI = GND, DE = V  
VOLTAGE APPLIED  
TO OUTPUT B  
R = 100  
L
,
CC  
R = 54Ω  
L
MAX13442E  
-40 -25 -10 5 20 35 50 65 80 95 110 125  
-80  
-65  
-50  
-35  
-20  
-5  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
DIFFERENTIAL OUTPUT VOLTAGE  
vs. TEMPERATURE  
A, B CURRENT vs. A, B  
VOLTAGE (TO GROUND)  
3.5  
3200  
DRIVER DISABLED,  
RECEIVER ENABLED  
2800  
2400  
2000  
1600  
1200  
800  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
RL = 100  
RL = 54Ω  
400  
0
-400  
-800  
-1200  
NO LOAD  
R = 54  
L
-1600  
-2000  
MAX13442E  
MAX13443E  
0
80  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-60 -40 -20  
20 40 60  
-80  
TEMPERATURE (°C)  
A, B VOLTAGE (V)  
A, B CURRENT vs. A, B VOLTAGE  
(TO GROUND)  
2000  
1600  
1200  
800  
DRIVER DISABLED,  
RECEIVER ENABLED  
400  
0
NO LOAD  
-400  
-800  
-1200  
-1600  
-2000  
R = 54  
L
MAX13443E  
0 10 20 30 40 50 60  
-60 -50 -40 -30 -20 -10  
A, B VOLTAGE (V)  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX13442E/MAX13443E/  
MAX13444E  
±15kV ESD-Protected, ±80V Fault-Protected,  
Fail-Safe RS-485/J1708 Transceivers  
Test Circuits and Waveforms  
R
L
2
A
B
V
OD  
DI  
D
R
L
V
OC  
V
CC  
2
Figure 1. Driver V  
and V  
OC  
OD  
A
ID  
B
RO  
V
R
0
V
V
OL  
OH  
I
I
OH  
OL  
(+)  
(-)  
Figure 2. Receiver V  
and V  
OH  
OL  
3V  
0V  
V
OM  
DI  
1.5V  
1.5V  
R
L
A
B
2
S1  
t
t
PHLA  
DI  
PLHA  
OUT  
D
V
OH  
OL  
GENERATOR  
(NOTE 5)  
50Ω  
C = 50pF  
L
(NOTE 6)  
V
V
OM  
OM  
A
B
V
CC  
V
t
t
PHLB  
PLHB  
V
OH  
+ V  
OL  
V
=
1.5V  
OM  
2
V
V
OH  
V
OM  
V
OM  
OL  
Figure 3. Driver Propagation Times  
3V  
0V  
1.5V  
1.5V  
DI  
A
C
C
L
DI  
D
OUT  
t
DPHL  
t
DPLH  
R
L
GENERATOR  
(NOTE 5)  
B
50Ω  
2.0V  
90%  
90%  
V
CC  
50%  
10%  
50%  
10%  
L
(A–B)  
-2.0V  
C = 50pF (NOTE 6)  
L
t
t
HL  
LH  
Figure 4. Driver Differential Output Delay and Transition Times  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX13442E/MAX13443E/  
MAX13444E  
±15kV ESD-Protected, ±80V Fault-Protected,  
Fail-Safe RS-485/J1708 Transceivers  
Test Circuits and Waveforms (continued)  
3V  
A
S1  
DI  
A, B  
0 OR 3V  
D
DE  
1.5V  
1.5V  
PDZH  
t
B
0V  
V
DE  
R = 500Ω  
L
t
t
PDHZ  
PDHS  
C = 50pF  
L
(NOTE 6)  
GENERATOR  
(NOTE 5)  
50Ω  
OH  
0.25V  
A, B  
V
OM  
V
OH  
+ V  
OL  
V
=
1.5V  
OM  
0V  
2
Figure 5. Driver Enable and Disable Times  
V
CC  
3V  
R = 500  
L
1.5V  
1.5V  
PDZL  
DE  
A
S1  
t
t
DI  
0V  
A, B  
0 OR 3V  
D
t
PDLS  
PDLZ  
B
DE  
C = 50pF  
L
(NOTE 6)  
V
CC  
OL  
GENERATOR  
(NOTE 5)  
A, B  
V
OM  
50Ω  
0.25V  
V
Figure 6. Driver Enable and Disable Times  
2.0V  
0V  
A
R
O
V
ID  
R
(A–B)  
t
1.0V  
1.0V  
GENERATOR  
(NOTE 5)  
50W  
B
C = 20pF  
(NOTE 6)  
L
t
RPLH  
RPHL  
V
CC  
1.0V  
0V  
V
OM  
V
OM  
RO  
0V  
Figure 7. Receiver Propagation Delay  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX13442E/MAX13443E/  
MAX13444E  
±15kV ESD-Protected, ±80V Fault-Protected,  
Fail-Safe RS-485/J1708 Transceivers  
S1  
S3  
+1.5V  
A
B
V
CC  
1k  
R
O
-1.5V  
V
ID  
R
S2  
C = 20pF  
L
(NOTE 6)  
GENERATOR  
(NOTE 5)  
50Ω  
3V  
0V  
3V  
0V  
S1 OPEN  
S2 CLOSED  
S1 CLOSED  
S2 OPEN  
RE  
RO  
RE  
RO  
RE  
RO  
1.5V  
1.5V  
V
= 1.5V  
V
S3  
= -1.5V  
S3  
t
RPZH  
t
t
RPZL  
RPSL  
t
t
RPSH  
RPWAKE  
V
OH  
V
CC  
1.5V  
1.5V  
0V  
3V  
V
OL  
3V  
0V  
S1 OPEN  
S2 CLOSED  
S1 CLOSED  
S2 OPEN  
RE  
RO  
1.5V  
1.5V  
V
= 1.5V  
V
= -1.5V  
S3  
S3  
0V  
t
RPHZ  
t
RPLZ  
V
OH  
V
CC  
OL  
0.5V  
0.5V  
0V  
V
Figure 8. Receiver Enable and Disable Times  
Note 5: The input pulse is supplied by a generator with the following characteristics: f = 5MHz, 50% duty cycle; t ≤ 6ns; Z = 50Ω.  
r
0
Note 6: C includes probe and stray capacitance.  
L
Maxim Integrated  
10  
www.maximintegrated.com  
MAX13442E/MAX13443E/  
MAX13444E  
±15kV ESD-Protected, ±80V Fault-Protected,  
Fail-Safe RS-485/J1708 Transceivers  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX13442E  
MAX13444E  
MAX13443E  
Receiver Output. If the receiver is enabled and (V - V ) ≥ -50mV,  
A
B
1
2
1
2
RO  
RO = high; if (V - V ) ≤ -200mV, RO = low.  
A
B
RE  
Receiver Output Enable. Pull RE low to enable RO.  
Driver Output Enable. Force DE high to enable driver. Pull DE low  
to three-state the driver output. Drive RE high and pull DE low to  
enter low-power shutdown mode.  
3
4
DE  
DI  
Driver Input. A logic-low on DI forces the noninverting output  
low and the inverting output high. A logic-high on DI forces the  
noninverting output high and the inverting output low.  
5
6
7
5
6
7
GND  
A
Ground  
Noninverting Receiver Input/Driver Output  
Inverting Receiver Input/Driver Output  
B
Positive Supply, V  
= +4.75V to +5.25V. For normal operation,  
CC  
8
8
3
4
V
bypass V  
protection, bypass V  
to GND with a 0.1µF ceramic capacitor. For full ESD  
CC  
CC  
to GND with 1µF ceramic capacitor.  
CC  
Driver Output Enable. Pull DE low to enable the outputs. Force DE  
high to three-state the outputs. Drive RE and DE high to enter low-  
power shutdown mode.  
DE  
J1708 Input. A logic-low on TXD forces outputs A and B to the  
dominant state. A logic-high on TXD forces outputs A and B to the  
recessive state.  
TXD  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX13442E/MAX13443E/  
MAX13444E  
±15kV ESD-Protected, ±80V Fault-Protected,  
Fail-Safe RS-485/J1708 Transceivers  
Function Tables  
Table 1. MAX13442E/MAX13443E  
(RS-485/RS-422)  
Table 3. MAX13442E/MAX13443E  
(RS-485/RS-422)  
TRANSMITTING  
RECEIVING  
INPUTS  
OUTPUTS  
INPUTS  
OUTPUTS  
RE  
DE  
0
DI  
X
0
A
B
RE  
DE  
X
(V - V )  
RO  
A
B
0
High-Z  
High-Z  
0
≥-0.05V  
1
0
1
0
1
1
0
0
X
≤-0.2V  
0
1
0
1
1
0
X
Open/shorted  
1
0
X
0
Shutdown Shutdown  
1
1
X
X
High-Z  
Shutdown  
1
1
0
1
1
0
1
0
1
1
1
X = Don’t care.  
X = Don’t care.  
Table 2. MAX13444E (J1708) Application  
Table 4. MAX13444E (RS-485/RS-422)  
TRANSMITTING  
RECEIVING  
INPUTS  
OUTPUTS  
CONDITIONS  
INPUTS  
OUTPUTS  
TXD  
DE  
1
A
B
RE  
DE  
X
(V - V )  
RO  
A
B
0
1
0
1
High-Z  
High-Z  
0
High-Z  
High-Z  
1
0
≥-0.05V  
1
1
0
X
≤-0.2V  
0
1
0
Dominant state  
Recessive state  
0
X
Open/shorted  
0
High-Z  
High-Z  
1
0
X
X
High-Z  
Shutdown  
1
1
X = Don’t care.  
Maxim Integrated  
12  
www.maximintegrated.com  
 
 
MAX13442E/MAX13443E/  
MAX13444E  
±15kV ESD-Protected, ±80V Fault-Protected,  
Fail-Safe RS-485/J1708 Transceivers  
outputs/receiver inputs of the MAX13442E/MAX13444E  
withstand voltage faults up to ±80V (±60V for the  
MAX13443E) with respect to ground without damage.  
Protection is guaranteed regardless whether the device is  
active, shut down, or without power.  
Detailed Description  
The MAX13442E/MAX13443E/MAX13444E fault-protect-  
ed transceivers for RS-485/RS-422 and J1708 com-  
munication contain one driver and one receiver. These  
devices feature fail-safe circuitry, which guarantees a  
logic-high receiver output when the receiver inputs are  
open or shorted, or when they are connected to a termi-  
nated transmission line with all drivers disabled (see the  
True Fail-Safe section). All devices have a hot-swap input  
structure that prevents disturbances on the differential  
signal lines when a circuit board is plugged into a hot  
backplane (see the Hot-Swap Capability section). The  
MAX13442E/MAX13444E feature a reduced slew-rate  
driver that minimizes EMI and reduces reflections caused  
by improperly terminated cables, allowing error-free data  
transmission up to 250kbps (see the Reduced EMI and  
Reflections section). The MAX13443E driver is not slew-  
rate limited, allowing transmit speeds up to 10Mbps.  
True Fail-Safe  
The MAX13442E/MAX13443E/MAX13444E use a -50mV  
to -200mV differential input threshold to ensure true  
fail-safe receiver inputs. This threshold guarantees the  
receiver outputs a logic-high for shorted, open, or idle  
data lines. The -50mV to -200mV threshold complies with  
the ±200mV threshold EIA/TIA-485 standard.  
±15kV ESD Protection  
As with all Maxim devices, ESD-protection structures are  
incorporated on all pins to protect against ESD encoun-  
tered during handling and assembly. The MAX13442E/  
MAX13443E/MAX13444E receiver inputs/driver outputs  
(A, B) have extra protection against static electricity found  
in normal operation. Maxim’s engineers have developed  
state-of-the-art structures to protect these pins against  
±15kV ESD without damage. After an ESD event, the  
MAX13442E/MAX13443E/MAX13444E continue working  
without latchup.  
Driver  
The driver accepts a single-ended, logic-level input (DI)  
and transfers it to a differential, RS-485/RS-422 level  
output (A and B). Deasserting the driver enable places  
the driver outputs (A and B) into a high-impedance state.  
Receiver  
ESD protection can be tested in several ways. The receiv-  
er inputs are characterized for protection to ±15kV using  
the Human Body Model.  
The receiver accepts a differential, RS-485/RS-422 level  
input (A and B), and transfers it to a single-ended logic-  
level output (RO). Deasserting the receiver enable places  
the receiver inputs (A and B) into a high-impedance state  
(see Table 1Table 4).  
ESD Test Conditions  
ESD performance depends on a number of conditions.  
Contact Maxim for a reliability report that documents test  
setup, methodology, and results.  
Low-Power Shutdown  
The MAX13442E/MAX13443E/MAX13444E offer a low-  
power shutdown mode. Force DE low and RE high to shut  
down the MAX13442E/MAX13443E. Force DE and RE  
high to shut down the MAX13444E. A time delay of 50ns  
prevents the device from accidentally entering shutdown  
due to logic skews when switching between transmit and  
receive modes. Holding DE low and RE high for at least  
800ns guarantees that the MAX13442E/MAX13443E  
enter shutdown. In shutdown, the devices consume a  
maximum 20μA supply current.  
Human Body Model  
Figure 9a shows the Human Body Model, and Figure 9b  
shows the current waveform it generates when discharged  
into a low impedance. This model consists of a 100pF  
capacitor charged to the ESD voltage of interest, which is  
then discharged into the device through a 1.5kΩ resistor.  
Driver Output Protection  
Two mechanisms prevent excessive output current and  
power dissipation caused by faults or bus contention. The  
first, a foldback current limit on the driver output stage,  
provides immediate protection against short circuits over  
the whole common-mode voltage range. The second, a  
thermal shutdown circuit, forces the driver outputs into  
a high-impedance state if the die temperature exceeds  
+160°C. Normal operation resumes when the die temper-  
ature cools to +140°C, resulting in a pulsed output during  
continuous short-circuit conditions.  
±80V Fault Protection  
The driver outputs/receiver inputs of RS-485 devices in  
industrial network applications often experience voltage  
faults resulting from shorts to the power grid that exceed  
the -7V to +12V range specified in the EIA/TIA-485 stan-  
dard. In these applications, ordinary RS-485 devices  
(typical absolute maximum -8V to +12.5V) require costly  
external protection devices. To reduce system complexity  
and eliminate this need for external protection, the driver  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX13442E/MAX13443E/  
MAX13444E  
±15kV ESD-Protected, ±80V Fault-Protected,  
Fail-Safe RS-485/J1708 Transceivers  
Hot-Swap Input Circuitry  
Hot-Swap Capability  
At the driver-enable input (DE), there are two NMOS  
Hot-Swap Inputs  
devices, M1 and M2 (Figure 10). When V  
ramps from  
CC  
Inserting circuit boards into a hot, or powered, backplane  
may cause voltage transients on DE, RE, and receiver  
inputs A and B that can lead to data errors. For example,  
upon initial circuit board insertion, the processor under-  
goes a power-up sequence. During this period, the high-  
impedance state of the output drivers makes them unable  
to drive the MAX13442E/MAX13443E/MAX13444E  
enable inputs to a defined logic level. Meanwhile, leakage  
currents of up to 10μA from the high-impedance output, or  
zero, an internal 15μs timer turns on M2 and sets the SR  
latch, which also turns on M1. Transistors M2, a 2mA cur-  
rent sink, and M1, a 100μA current sink, pull DE to GND  
through a 5.6kΩ resistor. M2 pulls DE to the disabled  
state against an external parasitic capacitance up to  
100pF that may drive DE high. After 15μs, the timer deac-  
tivates M2 while M1 remains on, holding DE low against  
three-state leakage currents that may drive DE high. M1  
remains on until an external current source overcomes  
the required input current. At this time, the SR latch resets  
M1 and turns off. When M1 turns off, DE reverts to a stan-  
capacitively coupled noise from V  
or GND, could cause  
CC  
an input to drift to an incorrect logic state. To prevent such  
a condition from occurring, the MAX13442E/MAX13443E/  
MAX13444E feature hot-swap input circuitry on DE, and  
RE to guard against unwanted driver activation during  
hot-swap situations. The MAX13444E has hot-swap input  
dard, high-impedance CMOS input. Whenever V  
below 1V, the input is reset.  
drops  
CC  
A complementary circuit for RE uses two PMOS devices  
to pull RE to V  
.
circuitry only on RE. When V  
rises, an internal pulldown  
CC  
CC  
(or pullup for RE) circuit holds DE low for at least 10μs,  
and until the current into DE exceeds 200μA. After the  
initial power-up sequence, the pulldown circuit becomes  
transparent, resetting the hot-swap tolerable input.  
R
R
D
C
1.5k  
1MΩ  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
V
CC  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
100pF  
STORAGE  
CAPACITOR  
s
15µs  
TIMER  
SOURCE  
TIMER  
Figure 9a. Human Body ESD Test Model  
I
P
100%  
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
r
5.6k  
DE  
(HOT SWAP)  
AMPERES  
2mA  
100µA  
36.8%  
M1  
M2  
10%  
0
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 9b. Human Body Model Current Waveform  
Figure 10. Simplified Structure of the Driver Enable Pin (DE)  
Maxim Integrated  
14  
www.maximintegrated.com  
 
 
 
 
MAX13442E/MAX13443E/  
MAX13444E  
±15kV ESD-Protected, ±80V Fault-Protected,  
Fail-Safe RS-485/J1708 Transceivers  
In general, a transmitter’s rise time relates directly to the  
length of an unterminated stub that can be driven with  
only minor waveform reflections. The following equation  
Applications Information  
128 Transceivers on the Bus  
The MAX13442E/MAX13443E/MAX13444E transceivers  
1/4-unit-load receiver input impedance (48kΩ) allows up  
to 128 transceivers connected in parallel on one commu-  
nication line. Connect any combination of these devices,  
and/or other RS-485 devices, for a maximum of 32-unit  
loads to the line.  
expresses this relationship conservatively:  
length = t /(10 x 1.5ns/ft)  
RISE  
where t  
is the transmitter’s rise time.  
RISE  
For example, the MAX13442E’s rise time is typically  
800ns, which results in excellent waveforms with a stub  
length up to 53ft. A system can work well with longer  
unterminated stubs, even with severe reflections, if the  
waveform settles out before the UART samples them.  
Reduced EMI and Reflections  
The MAX13442E/MAX13444E are slew-rate limited, mini-  
mizing EMI and reducing reflections caused by improp-  
erly terminated cables. Figure 11 shows the driver output  
waveform and its Fourier analysis of a 125kHz signal  
transmitted by a MAX13443E. High-frequency harmonic  
components with large amplitudes are evident.  
RS-485 Applications  
The MAX13442E/MAX13443E/MAX13444E transceivers  
provide bidirectional data communications on multipoint  
bus transmission lines. Figure 13 shows a typical net-  
work application circuit. The RS-485 standard covers line  
lengths up to 4000ft. To minimize reflections and reduce  
data errors, terminate the signal line at both ends in its  
characteristic impedance, and keep stub lengths off the  
main line as short as possible.  
Figure 12 shows the same signal displayed for the  
MAX13442E transmitting under the same conditions.  
Figure 12’s high-frequency harmonic components are  
much lower in amplitude, compared with Figure 11’s, and  
the potential for EMI is significantly reduced.  
20dB/div  
2V/div  
20dB/div  
2V/div  
0
500kHz/div  
5.00MHz  
0
500kHz/div  
5.00MHz  
Figure 11. Driver Output Waveform and FFT Plot of the  
MAX13443E Transmitting a 125kHz Signal  
Figure 12. Driver Output Waveform and FFT Plot of the  
MAX13442E Transmitting a 125kHz Signal  
Maxim Integrated  
15  
www.maximintegrated.com  
 
 
 
MAX13442E/MAX13443E/  
MAX13444E  
±15kV ESD-Protected, ±80V Fault-Protected,  
Fail-Safe RS-485/J1708 Transceivers  
idle in this configuration, all receivers output logic-high  
because of the pullup resistor on A and pulldown resistor  
J1708 Applications  
The MAX13444E is designed for J1708 applications. To  
configure the MAX13444E, connect DE and RE to GND.  
Connect the signal to be transmitted to TXD. Terminate  
the bus with the load circuit as shown in Figure 14. The  
drivers used by SAE J1708 are used in a dominant-mode  
application. DE is active low; a high input on DE places  
the outputs in high impedance. When the driver is dis-  
abled (TXD high or DE high), the bus is pulled high by  
external bias resistors R1 and R2. Therefore, a logic-level  
high is encoded as recessive. When all transceivers are  
on B. R1 and R2 provide the bias for the recessive state.  
C1 and C2 combine to form a lowpass filter, effective for  
reducing FM interference. R2, C1, R4, and C2 combine  
to form a 1.6MHz lowpass filter, effective for reducing AM  
interference. Because the bus is unterminated, at high  
frequencies, R3 and R4 perform a pseudotermination.  
This makes the implementation more flexible, as no spe-  
cific termination nodes are required at the ends of the bus.  
120  
120Ω  
DE  
B
B
DI  
D
D
DI  
DE  
A
A
B
A
B
A
RO  
RE  
RO  
RE  
R
R
R
R
D
D
MAX13442E  
MAX13443E  
DI  
DE RO  
DI  
DE RO  
RE  
RE  
Figure 13. MAX13442E/MAX13443E Typical RS-485 Network  
Maxim Integrated  
16  
www.maximintegrated.com  
 
MAX13442E/MAX13443E/  
MAX13444E  
±15kV ESD-Protected, ±80V Fault-Protected,  
Fail-Safe RS-485/J1708 Transceivers  
Chip Information  
PROCESS: BiCMOS  
DE  
R1  
4.7k  
Package Information  
R3  
47Ω  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
T
X
D
TXD  
B
A
C1  
2.2nF  
J1708 BUS  
C2  
2.2nF  
MAX13444E  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
R4  
47Ω  
R2  
4.7kΩ  
R
X
R
RO  
8 SO  
S8+4  
21-0041  
90-0096  
V
CC  
RE  
Figure 14. J1708 Application Circuit (See Tables 2 and 4)  
Pin Configurations and Typical Operating Circuits (continued)  
DE  
D
+
+
MAX13444E  
V
1
2
3
8
7
6
RO  
RE  
DE  
CC  
R
R
V
RO  
1
2
3
4
8
7
6
5
CC  
TXD  
RO  
B
B
A
B
RE  
DE  
R
T
R
T
A
A
GND  
R
4
TXD  
GND  
D
5
D
TXD  
RE  
SO  
SO  
Maxim Integrated  
17  
www.maximintegrated.com  
 
MAX13442E/MAX13443E/  
MAX13444E  
±15kV ESD-Protected, ±80V Fault-Protected,  
Fail-Safe RS-485/J1708 Transceivers  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
10/05  
Initial release  
Corrected the part numbers in the conditions for ΔV  
in the DC Electrical  
OC  
1
3/06  
Characteristics table; corrected the A, B current units from mA to FA for the A, B Current  
2, 7  
vs. A, B Voltage (to Ground) graphs in the Typical Operating Characteristics section  
Added lead(Pb)-free parts to the Ordering Information table; added the soldering  
temperature to the Absolute Maximum Ratings section; updated Table 2 outputs  
2
3
11/10  
3/11  
1, 2, 12  
1, 2  
Added an automotive qualified part to the Ordering Information; added the Package  
Thermal Characteristics section  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2011 Maxim Integrated Products, Inc.  
18  

相关型号:

MAX13444EASA-T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO8, 0.150 INCH, MS-012AA, SOP-8
MAXIM

MAX13444EASA/V+

Line Transceiver,
MAXIM

MAX13448E

80V Fault-Protected Full-Duplex RS-485 Transceiver
MAXIM

MAX13448EESD

80V Fault-Protected Full-Duplex RS-485 Transceiver
MAXIM

MAX13448EESD+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO14, 0.150 INCH, LEAD FREE, MS-012AB, SOP-14
MAXIM

MAX13448EESD+T

Line Driver/Receiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO14, LEAD FREE, SOP-14
MAXIM

MAX13450E

RS-485 Transceivers with Integrated 100Ω/120Ω Termination Resistors
MAXIM

MAX13450EAUD+

RS-485 Transceivers with Integrated 100Ω/120Ω Termination Resistors
MAXIM

MAX13450E_1011

RS-485 Transceivers with Integrated 100Ω/120Ω Termination Resistors
MAXIM

MAX13451E

RS-485 Transceivers with Integrated 100Ω/120Ω Termination Resistors
MAXIM

MAX13451EAUD+

RS-485 Transceivers with Integrated 100Ω/120Ω Termination Resistors
MAXIM

MAX1346

12-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM