MAX1454AUE/V+ [MAXIM]

Analog Circuit, 1 Func, BICMOS, PDSO16, ROHS COMPLIANT, TSSOP-16;
MAX1454AUE/V+
型号: MAX1454AUE/V+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Analog Circuit, 1 Func, BICMOS, PDSO16, ROHS COMPLIANT, TSSOP-16

信息通信管理 光电二极管
文件: 总25页 (文件大小:1102K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
19-5945 Rev 0; 6/11  
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
General Description  
Benefits and Features  
The MAX1454 is a highly integrated analog sensor  
signal conditioner targeted for automotive applications.  
The device provides amplification, calibration, and tem-  
perature compensation to enable an overall performance  
approaching the inherent repeatability of the sensor. The  
fully analog signal path introduces no quantization noise  
in the output signal while enabling digitally controlled  
trimming of the output. Offset and span are calibrated  
with integrated 16-bit DACs, allowing sensors to be truly  
interchangeable.  
S Complete Signal Conditioning in a Single IC  
Package  
Provides Amplification, Calibration, and  
Temperature Compensation  
Accommodates Sensor Output Sensitivities  
from 1mV/V to 200mV/V  
Overvoltage Protection to 45V  
Reverse-Voltage Protection to 45V  
S High-Precision Compensation Reduces  
Downstream Circuit Complexity  
The device architecture includes a programmable sen-  
sor excitation, a 32-step programmable-gain amplifier  
(PGA), a 2K x 8 bits internal flash memory, four 16-bit  
DACs, and an on-chip temperature sensor. In addition  
to offset and span compensation, the device provides a  
unique temperature-compensation method for offset TC  
and FSO TC to provide a remarkable degree of flexibility  
while minimizing manufacturing costs.  
Fully Analog Signal Path  
16-Bit Offset and Span-Calibration Resolution  
On-Chip Lookup Table Supports Multipoint  
Calibration Temperature Correction  
S Supports Both Current and Voltage-Bridge  
Excitation  
S Fast 85µs Step Response  
S Sensor Fault Detection  
The device is packaged in a 16-pin TSSOP and covers  
the automotive AEC-Q100 Grade 1 temperature range of  
-40NC to +125NC.  
S Simple PCB Layout  
S Single-Pin Digital Programming  
S No External Trim Components Required  
Applications  
Pressure Sensors  
Strain Gauges  
Pressure Calibrators and Controllers  
Resistive Element Sensors  
Humidity Sensors  
Ordering Information appears at end of data sheet.  
For related parts and recommended products to use with this part,  
refer to www.maxim-ic.com/MAX1454.related.  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
ABSOLUTE MAXIMUM RATINGS  
(Voltages referenced to GND.)  
Operating Temperature Range........................ -40NC to +125NC  
Junction Temperature .....................................................+150NC  
Storage Temperature Range............................ -65NC to +150NC  
Lead Temperature (soldering, 10s) .............................. +300NC  
Soldering Temperature (reflow) ......................................+260NC  
V
, V  
............................................................-0.3V to +3.0V  
DD DDF  
V
.......................................................................-45V to +45V  
DDX  
All Other Pins............................. -0.3V to Min (V  
+ 0.3V, 6V)  
DDX  
Continuous Power Dissipation (T = +70NC)  
A
16-Pin TSSOP (derate 11.1mW/NC above +70NC) ...888.9mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS (Note 1)  
TSSOP  
Junction-to-Ambient Thermal Resistance (q ) ..........90NC/W  
JA  
Junction-to-Case Thermal Resistance (q )...............27NC/W  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
ELECTRICAL CHARACTERISTICS  
(V  
= 5V, V  
= 0V, T = +25NC, unless otherwise noted.) (Note 2)  
DDX  
GND A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL CHARACTERISTICS  
External Supply Voltage  
External Supply Current  
Oscillator Frequency  
V
3.0  
5.0  
2.5  
1
5.5  
3
V
DDX  
DDX  
OSC  
I
(Note 3)  
mA  
MHz  
f
0.85  
1.15  
Not to be loaded by external circuitry, must  
be connected to a 0.1FF capacitor to GND  
LDO Regulator Output Voltage  
Power-On-Reset Threshold  
V
2.375  
2.5  
2.4  
2.625  
V
V
DD  
V
Referred to V pin  
DDX  
POR  
External Supply Voltage-Ramp  
Rate  
(Note 4)  
1
V/ms  
ANALOG INPUT  
Input Impedance  
R
IN  
1
MI  
Input-Referred Offset-  
Temperature Coefficient  
(Notes 5, 6)  
Q1  
FV/NC  
Input-Referred Adjustable-  
Offset Range  
Offset TC = 0 at gain = 44 (Note 7)  
-150  
+150  
mV  
%
Percent of 4V span, no load, IRO[3:0] =  
0000bin, source impedance = 5kI, V  
OUT  
Nonlinearity of Signal Path  
0.01  
90  
= 0.5V to 4.5V; measured at V  
2.5V, 4.5V] at a gain of 112  
= [0.5V,  
OUT  
Common-Mode Rejection  
Ratio  
Specified for common-mode voltages  
CMRR  
dB  
between GND and V  
DDX  
Input-Referred Adjustable FSO  
(Note 8)  
1
200  
mV/V  
Maxim Integrated  
2
 
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 5V, V  
= 0V, T = +25NC, unless otherwise noted.) (Note 2)  
DDX  
GND A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG OUTPUT  
Selectable in 32 steps  
6 to 2048  
6
PGA[4:0] = 00000bin  
PGA[4:0] = 00101bin  
PGA[4:0] = 01010bin  
PGA[4:0] = 01100bin  
PGA[4:0] = 01101bin  
PGA[4:0] = 01110bin  
PGA[4:0] = 01111bin  
PGA[4:0] = 10000bin  
PGA[4:0] = 10110bin  
PGA[4:0] = 11100bin  
PGA[4:0] = 11111bin  
5.5  
12.5  
40  
6.5  
15.5  
48  
14  
44  
58  
64  
70  
72  
80  
88  
Differential Signal Gain  
V/V  
86  
96  
106  
123  
158  
458  
1267  
2253  
101  
130  
374  
1037  
1823  
112  
144  
416  
1152  
2048  
V
+
V
-
GND  
0.02  
DDX  
0.32  
Output-Voltage Swing  
Output-Voltage Low  
Output-Voltage High  
No load  
V
V
V
I
I
= 1mA sinking, T = T  
to T  
MAX  
0.25  
OUT  
A
MIN  
V
-
DDX  
0.55  
= 1mA sourcing, T = T  
to T  
MAX  
OUT  
A
MIN  
Output Current Drive  
Capability  
Maintain DC output to 2mV error compared  
to no load case (Note 4)  
Q1  
mA  
Output Source Current Limit  
Output Sink Current Limit  
Output Impedance at DC  
8
mA  
mA  
I
-8  
V
= 2.5V  
0.2  
85  
OUT  
DV  
/
OUT  
Output Offset Ratio  
0.9  
0.9  
1.2  
1.2  
V/V  
V/V  
DOffset DAC  
DV  
/
OUT  
Output Offset TC Ratio  
DOffset TC DAC  
Step Response  
(63% Final Value)  
Fs  
FF  
Maximum Capacitive Load  
0.01  
0.5  
1.5  
3
Gain = 36  
Gain = 256  
Gain = 512  
Gain = 1024  
Gain = 2048  
DC to 1kHz, source  
impedance = 5kI  
Noise at Output Pin  
mV  
RMS  
6
12  
Maxim Integrated  
3
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 5V, V  
= 0V, T = +25NC, unless otherwise noted.) (Note 2)  
DDX  
GND A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
BRIDGE DRIVE  
Bridge Current  
I
0.1  
4.8  
9.6  
14.4  
24  
2.5  
7.2  
mA  
BDR  
AA  
CMRATIO[1:0] = 00  
6
CMRATIO[1:0] = 01  
CMRATIO[1:0] = 10  
CMRATIO[1:0] = 11  
12  
18  
30  
14.4  
21.6  
36  
Current-Mirror Ratio  
A/A  
Maximum Bridge Load  
Capacitance  
Voltage excitation mode (Note 4)  
1
nF  
Hex  
V
FSO DAC Code Range  
(Note 4)  
(Note 4)  
0x4000  
0.75  
0xC000  
V
DDX  
-
Output Voltage Range  
V
BDR  
0.75  
DIGITAL-TO-ANALOG CONVERTERS (DACs)  
DAC Resolution  
16  
76  
38  
76  
38  
Bits  
Offset DAC Bit Weight  
Offset TC DAC Bit Weight  
FSO DAC Bit Weight  
DV  
DV  
DV  
DV  
/DCode DAC reference = V  
/DCode DAC reference = V  
/DCode DAC reference = V  
/DCode DAC reference = V  
= 5V  
FV/bit  
FV/bit  
FV/bit  
FV/bit  
OUT  
OUT  
BDR  
BDR  
DDX  
BDR  
DDX  
BDR  
= 2.5V  
= 5V  
FSO TC DAC Bit Weight  
COARSE-OFFSET DAC  
IRO DAC Resolution  
= 2.5V  
Including sign  
5
Bits  
Input referred, DAC reference = V  
(Note 9)  
= 5V  
DDX  
IRO DAC Bit Weight  
DV  
/DCode  
3.7  
mV/bit  
OUT  
INTERNAL RESISTORS  
OUT/DIO Pullup Resistance  
R
100  
10  
kI  
kI  
PULLUP  
Current Source Reference  
Resistor  
R
ISRC  
Current Source Reference  
Resistor Temperature  
Coefficient  
TCR  
600  
ppm/NC  
ISRC  
FLASH MEMORY  
Endurance  
(Notes 4, 10)  
10,000  
10  
Cycles  
Years  
ms  
Retention  
T = +85NC (Note 4)  
A
Page Erase Time  
Mass Erase Time  
(Notes 4, 11)  
(Notes 4, 11)  
32  
32  
ms  
Maxim Integrated  
4
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 5V, V  
= 0V, T = +25NC, unless otherwise noted.) (Note 2)  
DDX  
GND A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
mA  
Operating Current  
(Note 4)  
(Note 4)  
8
7
Program/Erase Current  
mA  
TEMPERATURE-TO-DIGITAL CONVERTER  
Temperature ADC Resolution  
Offset  
8
Bits  
LSB  
NC/Bit  
LSB  
hex  
Q3  
Gain  
1.5  
Nonlinearity  
Q0.5  
0x00  
0xAF  
Lowest Digital Output  
Highest Digital Output  
DIGITAL INPUT (OUT/DIO)  
hex  
Input Low Voltage  
V
0
V
/3  
V
V
IL  
DDX  
V
x
DDX  
2/3  
Input High Voltage  
V
IH  
V
DDX  
OVERVOLTAGE PROTECTION  
Overvoltage-Protection  
Threshold  
5.53  
5.75  
6.0  
V
FAULT DETECTION  
IN+/IN- Low Comparator  
Threshold  
0.2 x  
V
V
V
BDR  
IN+/IN- High Comparator  
Threshold  
0.8 x  
V
BDR  
Detection-Threshold Accuracy  
Comparator Hysteresis  
Q25  
mV  
mV  
20  
Output Clip Level During Fault  
Conditions  
I
= 1mA sinking  
150  
250  
mV  
OUT  
Note 2: All units are production tested at T = +25NC and +125NC. Specifications over temperature are guaranteed by design.  
A
Note 3: Excludes sensor or load current. Analog mode with voltage excitation on BDR pin, FSODAC = 0x8000.  
Note 4: Specification is guaranteed by design.  
Note 5: All electronics temperature errors are compensated together with sensor errors.  
Note 6: The sensor and the device must be at the same temperature during calibration and use.  
Note 7: This is the maximum allowable sensor offset.  
Note 8: This is the sensor’s sensitivity normalized to its drive voltage, assuming a desired full-span output of V  
- 1V and a  
DDX  
nominal bridge voltage of V  
/2.  
DDX  
Note 9: Bit weight is ratiometric to V  
.
DDX  
Note 10: Programming of the flash memory at room temperature is recommended.  
Note 11: No commands can be executed until the erase operation has completed. During erase operations, all commands sent to  
the device are ignored.  
Maxim Integrated  
5
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
(VA = 5V, T = +25NC, unless otherwise noted.)  
DD  
A
16-BIT DAC DIFFERENTIAL  
NONLINEARITY  
OUTPUT NOISE  
IRO DAC DIFFERENTIAL NONLINEARITY  
20  
15  
10  
5
10  
8
0.5  
0.4  
V
= V = GND, C = 10nF, NO LOAD  
IN-  
PGA GAIN = 44V/V  
IN+  
36V/V GAIN SETTTING  
6
0.3  
4
0.2  
2
0.1  
0
0
0
-2  
-4  
-6  
-8  
-10  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
0
100  
200  
300  
400  
500  
0
16,384  
32,768  
49,152  
65,536  
0
5
10  
IRO DAC CODE  
15  
TIME (ms)  
16-BIT DAC CODE  
SIGNAL-PATH GAIN DEVIATION  
vs. TEMPERATURE  
OUTPUT VOLTAGE vs. INPUT  
SIGNAL FREQUENCY  
SIGNAL-PATH NONLINEARITY  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.50  
0.40  
0.30  
0.20  
0.10  
0
3
0
SPAN = 4V  
OUTPUT VOLTAGES NORMALIZED TO DC  
256V/V  
6V/V  
256V/V  
-3  
-6  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
44V/V  
6V/V  
44V/V  
-9  
1024V/V  
-12  
-15  
20mV SINE-WAVE INPUT SIGNAL,  
P-P  
PGA GAIN = 52V/V, 112V/V, 208V/V  
1024V/V  
0
15  
2.5  
3.5  
4.5  
-50 -25  
0
25  
50  
75 100 125  
100  
1k  
10k  
OUT/DIO VOLTAGE (V)  
TEMPERATURE (°C)  
INPUT SIGNAL FREQUENCY (Hz)  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
(FAULT DETECTION ENABLED)  
STEP RESPONSE  
(VARIOUS GAIN SETTINGS)  
MAX1454 toc07  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 2.5V,  
1kHz SQUARE  
WAVE  
BDR  
OUTPUT PROGRAMMED TO 2.5V  
6V/V  
256V/V, 1024V/V  
44V/V  
OUTPUT CLIP LEVEL  
OUT/DIO  
1V/div  
0
0.5  
1.0  
1.5  
= V (V)  
2.0  
2.5  
100µs/div  
V
IN+  
IN-  
Maxim Integrated  
6
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
Pin Configuration  
TOP VIEW  
+
1
16  
N.C.  
N.C.  
GND  
IN+  
N.C.  
V
DDX  
2
3
15  
14  
V
V
DD  
MAX1454  
4
5
6
7
8
13  
12  
11  
10  
9
DDF  
BDR  
IN-  
OUT/DIO  
I.C.  
I.C.  
I.C.  
N.C.  
GND  
TSSOP  
Pin Description  
PIN  
NAME  
N.C.  
FUNCTION  
1, 2, 8, 16  
No Connection. Not internally connected.  
Ground  
3, 9  
GND  
IN+  
4
Positive Bridge Input. IN+ can be swapped to IN- by Configuration Register 1.  
Bridge Drive  
5
BDR  
6
7, 10, 11  
12  
IN-  
Negative Bridge Input. IN- can be swapped to IN+ by Configuration Register 1.  
Internally Connected. Connect I.C. to GND.  
I.C.  
OUT/DIO  
Analog Output and Digital I/O (Multiplexed)  
13  
V
Flash Memory Supply Voltage. Connect V  
to V  
.
DDF  
DDF  
DD  
14  
V
Regulated Supply Voltage. Requires a 0.1FF capacitor from V  
to GND.  
DD  
DD  
15  
V
DDX  
External Supply Voltage. Bypass to GND with a 0.1FF capacitor.  
Maxim Integrated  
7
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
customer can retest to verify performance as part of a  
Detailed Description  
regular QA audit, or to generate final test data on indi-  
vidual sensors.  
The MAX1454 is a highly integrated analog sensor  
signal conditioner targeted for automotive applications.  
The device provides amplification, calibration, and tem-  
perature compensation to enable an overall performance  
approaching the inherent repeatability of the sensor. The  
fully analog signal path introduces no quantization noise  
in the output signal while enabling digitally controlled cal-  
ibration of offset and span with integrated 16-bit DACs,  
allowing sensors to be truly interchangeable.  
The device (Figure 1) provides an analog amplifica-  
tion path for the sensor signal. It also uses an analog  
architecture for 1st-order temperature correction. A  
digitally controlled analog path is then used for nonlin-  
ear temperature correction. Calibration and correction  
is achieved by varying the offset and gain of a PGA,  
and by varying the sensor bridge excitation current or  
voltage. The PGA utilizes a switched-capacitor CMOS  
The device architecture includes a programmable sen-  
sor excitation, a 32-step PGA, a 2K x 8 bits internal flash  
memory, four 16-bit DACs, and an on-chip temperature  
sensor. In addition to offset and span compensation, the  
device provides a unique temperature-compensation  
method for offset TC and FSO TC, which was developed  
to provide a remarkable degree of flexibility while minimiz-  
ing manufacturing costs.  
V
DDX  
OVERVOLTAGE,  
UNDERVOLTAGE, AND  
REVERSE-VOLTAGE  
PROTECTION  
V
V
DDX  
DD  
LDO  
MAX1454  
OUT  
V
DDX  
The device uses four 16-bit DACs (offset, FSO, offset TC,  
and FSO TC) with coefficients ranging from 0x0000 to  
0xFFFF. The offset DAC and FSO DAC are referenced to  
IRO  
DAC  
V
(76FV resolution when V  
DAC and FSO TC DAC are referenced to the bridge volt-  
= 5V). The offset TC  
DDX  
DDX  
IN+  
IN-  
OUT/DIO  
PGA  
C
age (38FV resolution when bridge voltage is 2.5V).  
The user can select from one to 110 temperature points  
to compensate their sensor. This allows the latitude  
to compensate a sensor with a simple 1st-order linear  
correction or to match an unusual temperature curve.  
Programming up to 110 independent 16-bit flash mem-  
ory locations corrects performance in 1.5NC temperature  
increments, over a range of -40NC to +125NC. For sensors  
that exhibit a characteristic temperature performance,  
a select number of calibration points can be used with  
a number of preset values that define the temperature  
curve. For full temperature compensation, the sensor and  
the device must be at the same temperature. In cases  
where the sensor is at a different temperature than the  
device, the device can use the sensor excitation voltage  
to provide 1st-order temperature compensation.  
5V DIO  
FAULT  
DETECTION  
BDR  
CURRENT  
SOURCE  
TEMP  
SENSOR  
8-BIT  
ADC  
DIGITAL  
INTERFACE  
AND  
FLASH  
MEMORY  
V
DDF  
The single-pin, multiplexed, serial digital input/output  
(DIO) communication architecture, and the ability to time-  
share its activity with the sensor’s output signal, enables  
output sensing and calibration programming on a single  
line.  
V
V
BDR  
DDX  
GND  
The device allows complete calibration and sensor veri-  
fication to be performed at a single test station. Once  
calibration coefficients have been stored in the device, the  
Figure 1. Functional Diagram  
Maxim Integrated  
8
 
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
technology, with an input-referred offset-trimming range  
of more than Q150mV. The PGA provides gain values  
trim from the table with one 16-bit value at every 1.5NC,  
from -40NC to +125NC.  
from 6V/V to 2048V/V in 32 steps.  
Linear and Nonlinear  
Temperature Compensation  
The device includes an internal 2K x 8-bit flash memory  
to store calibration coefficients and user data. The inter-  
nal memory contains the following information as 16-bit-  
wide words:  
In most applications, the device and the sensor are at  
the same temperature, and coefficients in the offset and  
FSO lookup table correct both linear and nonlinear tem-  
perature errors to an accuracy approaching the sensor’s  
repeatability error. In these applications, the offset TC  
DAC and FSO TC DACs should be set to nominal values.  
U Configuration Register 1 (CONFIG1)  
U Configuration Register 2 (CONFIG2)  
U Offset calibration coefficient (ODAC) table  
U Offset Temperature Coefficient register (OTCDAC)  
In applications where the sensor and the device are at  
different temperatures, the FSO and offset DAC lookup  
tables cannot be used. Writing 16-bit calibration coef-  
ficients into the offset TC and FSO TC registers compen-  
sates 1st-order temperature errors. The piezoresistive  
sensor is powered by a current source, resulting in a  
temperature-dependent bridge voltage due to the sen-  
sor’s temperature coefficient of resistance (TCR). The ref-  
erence inputs of the offset TC DAC and FSO TC DAC are  
connected to the bridge voltage, causing their outputs  
to change as a function of temperature. When properly  
programmed, they provide 1st-order temperature com-  
pensation of the input signal. Only two test temperatures  
are required for linear temperature compensation.  
U Full-span output calibration coefficient (FSODAC)  
table  
U FSO Temperature Coefficient register (FSOTCDAC)  
U Power-Up Configuration register (PWRUPCFG)  
U 256 bytes (2048 bits) uncommitted for customer pro-  
gramming of manufacturing data (e.g., serial number  
and date)  
Offset Correction  
Initial offset correction is accomplished at the input  
stage of the signal-gain amplifiers by a coarse offset set-  
ting. Final offset correction occurs through the use of a  
temperature-indexed lookup table with 176 16-bit entries.  
The on-chip temperature sensor provides a unique 16-bit  
offset-trim value from the table with an indexing resolu-  
tion of approximately 1.5NC, from -40NC to +125NC. Every  
4ms (programmable through the CONFIG2 register), the  
on-chip temperature sensor provides indexing into the  
offset lookup table in flash memory, with the resulting  
value transferred to the offset DAC register. The result-  
ing voltage is fed into a summing junction at the PGA  
output, compensating the sensor offset with a resolution  
of Q76FV (Q0.0019% FSO). If the offset TC DAC is set  
to zero, then the maximum temperature error is typically  
one degree of temperature drift of the sensor, given the  
offset DAC has corrected the sensor at every 1.5NC.  
The device uses a 10kI internal feedback resistor  
(R  
ISRC  
) for FSO temperature compensation. Since the  
required feedback resistor value is sensor dependent, the  
device offers the ability to adjust the current-mirror ratio  
(CMRATIO) of the bridge driver. By selecting one of four  
CMRATIO settings in the CONFIG1 register, the bridge  
driver’s feedback loop can be optimized for silicon piezo-  
resistive sensors typically ranging from 2kIto 10kI.  
Internal Temperature Sensor/ADC  
The signal conditioner uses an internal temperature sen-  
sor to generate an 8-bit temperature index. An ADC con-  
verts the integrated temperature-sensor output to an 8-bit  
value every 4ms (programmable through the CONFIG2  
register). This digitized value is then transferred into the  
temperature index register.  
FSO Correction  
Two functional blocks control the FSO gain calibration.  
First, a coarse gain is set by digitally selecting the gain  
of the PGA. Second, FSO DAC (and FSO TC DAC in  
current excitation mode) sets the sensor bridge current  
or voltage with the digital input obtained from the flash  
memory. FSO correction occurs through the use of a  
temperature-indexed lookup table with 176 16-bit entries.  
The on-chip temperature sensor provides a unique FSO  
The typical transfer function for the temperature index is  
as follows:  
TEMPINDEX = 0.6561 x temperature (NC) + 53.6  
where TEMPINDEX is truncated to an 8-bit integer value.  
Typical values for the temperature index register are  
given in Table 13.  
Maxim Integrated  
9
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
This index determines which FSO and offset DAC  
U The internal temperature sensor stores the 8-bit  
settings get loaded from the flash memory. The  
temperature-indexing boundaries are outside of the  
specified Absolute Maximum Ratings to eliminate index-  
ing wrap-around errors. The minimum indexing value  
is 0x00, corresponding to approximately -82NC. All  
temperatures below this value generate the index 0x00.  
The maximum indexing value is 0xAF, corresponding  
to approximately +185NC. All temperatures higher than  
+185NC generate the index 0xAF.  
TEMPINDEX value.  
U Registers CONFIG1, CONFIG2, ODAC, FSODAC,  
OTCDAC, and FSOTCDAC are loaded from flash  
memory.  
U After each time the DAC refresh timer reaches its set  
time period, the internal-temperature ADC updates the  
8-bit TEMPINDEX value and the ODAC and FSODAC  
registers are refreshed from the temperature-indexed  
flash memory locations.  
Overvoltage, Undervoltage,  
Reverse-Voltage Protection  
Calibration Operation  
(Registers Updated by Serial Communications)  
U Power is applied to the device.  
Overvoltage protection shuts down the device when the  
supply voltage is typically above 5.75V. A power-on reset  
prevents erroneous operation with supply voltages below  
2.4V. Reverse voltage protects the device from negative  
voltages due to transients, reverse battery, etc. These  
protections allow the device to withstand any supply volt-  
age from -45V to +45V.  
U The power-on-reset functions have completed.  
U The digital listening mode detects serial communication.  
U The registers can then be loaded from the serial  
digital interface by use of serial commands. See the  
Serial-Interface Command Format section.  
Sensor Fault Detection  
When enabled, the fault-detection circuitry on the device  
detects faults on the sensor inputs (IN+ and IN-). If either  
one of the sensor inputs is below the input low threshold  
U (Optionally) After calibration, the device can be set to  
run in fixed analog operation using a software com-  
mand. Note that the configuration and DAC registers  
refresh from flash memory upon entering fixed analog  
mode.  
(20% of V  
) or above the input high threshold (80% of  
BDR  
V
), a fault signal is asserted internally. If the part is in  
BDR  
Internal Flash Memory  
The internal flash memory is organized as a 2K by 8-bit  
memory. It is divided into four pages with 512 bytes  
per page. Each page can be individually erased. The  
memory structure is arranged as shown in Table 1. The  
lookup tables for ODAC and FSODAC are also shown,  
with the respective TEMPINDEX pointer. The ODAC table  
occupies a segment from address 0x000 to address  
0x15F, and the FSODAC table occupies a segment from  
0x200 to 0x35F.  
analog mode, the internal fault signal causes the voltage  
on the OUT/DIO pin to clip to a fixed DC level (typically  
150mV). Enable or disable fault detection through the  
CONFIG2 register, bit 6 (ENFDET).  
Internal Calibration Registers (ICRs)  
The device has six 16-bit ICRs (ODAC, FSODAC,  
OTCDAC, FSOTCDAC, CONFIG1, and CONFIG2) that  
are loaded from flash memory, or loaded from the serial  
digital interface when in the digital programming mode.  
Data can be loaded into the ICRs under two different  
modes of operations (fixed analog operation and calibra-  
tion operation).  
The flash memory is configured as an 8-bit wide array so  
each of the 16-bit registers is stored as two 8-bit quanti-  
ties. The configuration registers and the FSOTCDAC  
and OTCDAC registers are loaded from the preassigned  
locations in the flash memory. The ODAC and FSODAC  
registers are loaded from memory lookup tables using an  
index pointer that is a function of temperature.  
Fixed Analog Operation  
U The device has been calibrated.  
U Power is applied to the device.  
U The power-on-reset functions have completed.  
Maxim programs all flash memory locations to 0xFF,  
except for the reserved locations, 0x400 and 0x401.  
Values stored at 0x400 and 0x401 should be kept at the  
factory-programmed defaults.  
U The digital listening mode times out and the device  
goes into the fixed analog mode.  
Maxim Integrated  
10  
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
Table 1. Flash Memory Address Map  
LOW-BYTE  
ADDRESS (hex)  
HIGH-BYTE  
ADDRESS (hex)  
TEMPINDEX[7:0]  
(hex)  
PAGE  
CONTENTS  
000  
002  
:
001  
003  
:
00  
01  
:
AE  
ODAC lookup table  
15C  
15E  
160  
162  
164  
166  
168  
16A  
16C  
16E  
:
15D  
15F  
161  
163  
165  
167  
169  
16B  
16D  
16F  
:
AF to FF  
CONFIG1  
CONFIG2  
Reserved  
OTCDAC  
0
Reserved  
FSOTCDAC  
PWRUPCFG  
Reserved  
17E  
180  
:
17F  
181  
:
128 general-purpose user bytes  
1FE  
200  
202  
:
1FF  
201  
203  
:
00  
01  
:
FSODAC lookup table  
Reserved  
35C  
35E  
360  
:
35D  
35F  
361  
:
AE  
AF to FF  
1
37E  
380  
:
37F  
381  
:
128 general-purpose user bytes  
Reserved*  
3FE  
400  
402  
:
3FF  
401  
403  
:
2
3
Reserved  
5FE  
600  
:
5FF  
601  
:
Reserved  
7FE  
7FF  
*Do not change values stored at locations 0x400 and 0x401 from the factory defaults.  
Maxim Integrated  
11  
 
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
where:  
Communications Protocol  
The DIO serial interface is used for asynchronous serial  
data communications between the device and a host  
calibration test system. The device automatically detects  
the baud rate of the host computer when the host trans-  
mits the initialization sequence. Baud rates between  
4800bps and 38,400bps can be detected and used  
regardless of the internal oscillator frequency setting.  
Data format is always 1 start bit, 8 data bits, 1 stop bit,  
and no parity. Communications are only allowed when  
the device is in digital mode.  
IRSA[3:0] is the 4-bit interface register set address  
and indicates which register receives the data nibble  
IRSD[3:0];  
IRSA[0] is the first bit on the serial interface after the  
start bit;  
IRSD[3:0] is the 4-bit interface register set data;  
IRSD[0] is the 5th bit received on the serial interface  
after the start bit  
The IRSA address decoding is shown in Table 14.  
Initialization Sequence  
Sending the initialization sequence shown below enables  
the device to establish the baud rate that initializes the  
serial port. The initialization sequence is 1 byte transmis-  
sion of 01hex, as follows: 1111111101000000011111111.  
The first start bit 0 initiates the baud-rate synchronization  
sequence. The 8 data bits 01hex (LSB first) follow this  
and then the stop bit, which is indicated above as a  
1, terminates the baud-rate synchronization sequence.  
This initialization sequence on OUT/DIO should occur  
after a period of 2ms after stable power is applied to the  
device. This allows time for the power-on-reset function  
to complete.  
Special Command Sequences  
A special command register to internal logic (CRIL[3:0])  
causes execution of special command sequences within  
the device. These command sequences are listed as  
CRIL command codes, as shown in Table 15.  
Write Examples  
A 16-bit write to any of the internal calibration registers is  
performed as follows:  
1) Write the 16 data bits to DHR[15:0] using 4 byte  
accesses into the interface register set.  
2) Write the address of the target internal calibration  
register to ICRA[3:0].  
Serial-Interface Command Format  
All communication commands into the device follow a  
defined format utilizing an interface register set (IRS).  
The IRS is an 8-bit command that contains both an  
interface register set data (IRSD) nibble (4 bits) and an  
interface register set address (IRSA) nibble (4 bits). All  
internal calibration registers and flash memory locations  
are accessed for read and write through this interface  
register set. The IRS byte command is structured as  
follows:  
3) Write the load internal calibration register (LdICR)  
command to CRIL[3:0]. When a LdICR command is  
issued to the CRIL register, the calibration register  
loaded depends on the address in the internal cali-  
bration register address (ICRA). Table 16 specifies  
which calibration register is decoded.  
IRS[7:0] = IRSD[3:0], IRSA[3:0]  
THREE-STATE  
NEED WEAK  
PULLUP*  
THREE-STATE  
NEED WEAK  
PULLUP*  
DRIVEN BY TESTER  
1 1  
DRIVEN BY MAX1454  
OUT/DIO  
0
1 1 1 1 1  
0
1
0
0
0
1
1 1 1 1  
1 1 1 1  
0
0
0
0
0
1
0 0 0  
1 1 1 1 1 1 1 1 1  
*PROGRMMABLE DELAY DETERMINED BY READDLY SETTING.  
Figure 2. OUT/DIO Output Data Format  
Maxim Integrated  
12  
 
 
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
The data returned on an RdIRS command depends on  
the address in IRSP. Table 17 defines what is returned  
for the various addresses.  
Erasing and Writing the Flash Memory  
The internal flash memory needs to be erased (bytes set  
to FFhex) prior to programming the desired contents.  
When an RdAlg command is written to CRIL[3:0] the  
analog signal designated by ALOC[4:0] is asserted on  
the OUT/DIO pin. The duration of the analog signal is  
determined by ATIM[3:0], after which the pin reverts to a  
digital I/O. The host computer or calibration system must  
three-state its connection to OUT/DIO after asserting the  
stop bit. Do not load the OUT/DIO line when reading  
nonbuffered internal signals.  
The internal flash memory can be entirely erased with the  
ERASE command, or partially erased with the PageErase  
command (see Table 15). It is necessary to wait 32ms  
after issuing the ERASE or PageErase command before  
sending the next command.  
After the memory has been erased (value of every byte  
= FFhex), the user can program its contents using the  
following procedure:  
The analog output sequence is shown in Figure 3. The  
digital serial interface and analog output are internally  
multiplexed onto OUT/DIO. The duration of the analog  
signal is controlled by ATIM[3:0], as given in Table 18.  
1) Write the 8 data bits to DHR[7:0] using 2 byte accesses  
into the interface register set.  
2) Write the address of the target internal memory loca-  
tion to IEEA[10:0] using 3 byte accesses into the  
interface register set.  
The analog signal driven onto the OUT/DIO pin is deter-  
mined by the value in the ALOC register. The signals are  
specified in Table 19.  
3) Write the flash memory write command (EEPW) to  
CRIL[3:0].  
Burst Mode Operation  
The device supports burst mode operation for reading/  
writing blocks of data from/to flash memory addresses  
0x000 to 0x3FF. Addresses 0x400 and 0x401 cannot be  
accessed with burst mode. First, program the starting  
address of the flash memory into IEEA[10:0]. Next, enable  
burst mode by writing a 1 to the burst mode enable bit  
(BURSTEN). In burst mode, an internal counter is used  
to increment the memory address with every read/write  
operation. With the 0-to-1 transition of BURSTEN, the  
memory address stored in IEEA[10:0] is latched into the  
internal counter as the starting address. Once the burst  
enable is high, the internal counter takes precedence  
over the memory address bits. All the memory read/  
write operations happen on the address indicated by the  
internal counter.  
Caution: It is not recommended to change values of flash  
memory locations 0x400 and 0x401. Changing the values  
at these locations (through a memory write or page/total  
erasure) can cause the device to lose its factory trim set-  
tings, which can affect device performance.  
Multiplexed Analog and  
Serial Digital Output  
When an RdIRS command is written to CRIL[3:0], OUT/  
DIO is configured as a digital output and the contents  
of the register designated by IRSP[3:0] are sent out as  
a byte framed by a start bit. Once the tester finishes  
sending the RdIRS command, it must three-state its  
connection to OUT/DIO to allow the device to drive the  
OUT/DIO line. The device three-states OUT/DIO high for  
a programmable number of byte times (determined by  
READDLY[1:0]) and then sends out the data byte (with  
a start and stop bit). The sequence is shown in Figure 2.  
ATIM  
THREE-STATE  
NEED WEAK  
PULLUP  
2
+1 BYTE  
THREE-STATE  
NEED WEAK  
PULLUP  
TIMES  
DRIVEN BY TESTER  
OUT/DIO  
0
1 1 1 1 1  
0
1
0
0
1 1  
0
1
1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1  
VALID OUT  
Figure 3. Analog Output Timing  
Maxim Integrated  
13  
 
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
To write to a flash memory location in burst mode, the  
an internal read; the device sends the contents of the  
flash memory out of the DIO/OUT pin through the serial  
interface. Similar to the burst write operation, the burst  
read operation does not skip memory locations. To skip  
memory locations, first write a zero to BURSTEN to end  
burst mode. Next, change the memory address bits  
using the corresponding command bytes. Once the  
desired starting address is loaded, reenable burst mode  
to resume burst reading.  
user simply writes DHR[3:0], followed by DHR[7:4].  
Since the internal counter keeps track of the memory  
address, there is no need to send address information  
to the part. After DHR[7:4] is written, a write command  
to the flash memory is automatically generated, the data  
in DHR[7:0] is written to the memory, and the address  
counter is incremented. If the user wishes to skip certain  
memory locations, first exit burst mode (by writing a 0 to  
BURSTEN), then program a new starting address. The  
user can now reenable burst mode again.  
Always disable burst mode (IRSD = 0000 when IRSA =  
1101) after burst reading/writing all the locations. This is  
necessary to continue in digital programming mode after  
all the burst read/writes are complete.  
During burst read operations, the device waits for a  
read command before sending out data whose address  
is derived from the internal counter. To start burst read  
mode, first program the flash memory address into  
IEEA[10:0]. Next, write a 1 to BURSTEN to enable burst  
mode. The IRSP register must then be programmed  
to 0 (through an IRSA = 8 command). Then, send the  
flash memory read (RdEEP) CRIL command to initiate  
Note: Use burst mode to program a maximum of 1024  
locations. Care must be taken to avoid additional writes  
to prevent unintentionally rewriting locations. The internal  
address counter wraps around to address 0x000 after  
reaching address 0x3FF.  
Register Map  
Table 2. Registers  
REGISTER  
DESCRIPTION  
CONFIG1  
CONFIG2  
ODAC  
Configuration Register 1  
Configuration Register 2  
Offset DAC  
OTCDAC  
FSODAC  
FSOTCDAC  
PWRUPCFG  
Offset Temperature Coefficient DAC  
Full-Span Output DAC  
Full-Span Output Temperature Coefficient DAC  
Power-Up Configuration  
Table 3. Configuration Register 1 (CONFIG1[15:0])  
BIT  
15:11  
10  
9
NAME  
PGA[4:0]  
DESCRIPTION  
Programmable-gain amplifier setting  
Logic 1 inverts IN- and IN+ polarity  
PGA Sign  
IRO Sign  
Logic 1 for positive input-referred offset (IRO), logic 0 for negative input-referred offset (IRO)  
Input-referred coarse-offset adjustment  
8:5  
4:3  
2
IRO[3:0]  
CMRATIO[1:0]  
Reserved  
Bridge driver current-mirror ratio  
Set to logic 0  
1
ODAC Sign  
OTCDAC Sign  
Logic 1 for positive offset DAC output, logic 0 for negative offset DAC output  
Logic 1 for positive offset TC DAC output, logic 0 for negative offset TC DAC output  
0
Maxim Integrated  
14  
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
Table 4. Configuration Register 2 (CONFIG2[15:0])  
BIT  
15:7  
6
NAME  
Reserved  
DESCRIPTION  
Reserved. Set to logic 0.  
ENFDET  
Enable fault-detection circuitry. Logic 1 enables fault detection.  
DAC register refresh rate during fixed analog mode  
5:4  
3
REFRATE[1:0]  
ENPULLUP  
READDLY[1:0]  
EXCIMODE  
Enable internal pullup resistor on OUT/DIO pin. Logic 1 enables pullup.  
Number of byte times the part waits before responding to read requests  
Logic 1 for voltage excitation mode, logic 0 for current excitation mode  
2:1  
0
Table 5. Power-Up Configuration Register (PWRUPCFG[15:0])  
BIT  
15:7  
6:3  
NAME  
Reserved  
DESCRIPTION  
Reserved. Set to logic 0.  
DIGMODETIME[3:0]  
CTRLREP[2:0]  
Number of ms the part waits to receive a control word before switching to analog mode  
Number of repetitions of the control word required to switch the part into digital mode  
2:0  
Table 6. PGA Setting (PGA[4:0])  
PGA[4:0]  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
PGA GAIN (V/V)  
PGA[4:0]  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
PGA GAIN (V/V)  
144  
6
7
176  
9
208  
11  
12  
14  
18  
22  
28  
36  
44  
52  
64  
80  
96  
112  
256  
288  
352  
416  
512  
576  
704  
832  
1024  
1152  
1408  
1664  
2048  
Maxim Integrated  
15  
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
Table 7. Input-Referred Offset Setting (IRO Sign, IRO[3:0])  
INPUT-  
REFERRED  
OFFSET  
INPUT-REFERRED  
OFFSET  
CORRECTION  
INPUT-REFERRED  
OFFSET  
CORRECTION  
INPUT-REFERRED  
OFFSET  
CORRECTION  
IRO SIGN IRO[3:0]  
IRO SIGN IRO[3:0]  
CORRECTION  
AT V  
= 5V DC  
AT V  
= 5V DC  
DDX  
DDX  
AS % OF V  
DDX  
AS % OF V  
(mV)  
(mV)  
DDX  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1111  
1110  
1101  
1100  
1011  
1010  
1001  
1000  
0111  
0110  
0101  
0100  
0011  
0010  
0001  
0000  
1.11  
1.04  
0.96  
0.89  
0.81  
0.74  
0.67  
0.59  
0.52  
0.44  
0.37  
0.30  
0.22  
0.15  
0.07  
0
55.5  
51.8  
48.1  
44.4  
40.7  
37  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0
0
-0.07  
-0.15  
-0.22  
-0.30  
-0.37  
-0.44  
-0.52  
-0.59  
-0.67  
-0.74  
-0.81  
-0.89  
-0.96  
-1.04  
-1.11  
-3.7  
-7.4  
-11.1  
-14.8  
-18.5  
-22.2  
-25.9  
-29.6  
-33.3  
-37  
33.3  
29.6  
25.9  
22.2  
18.5  
14.8  
11.1  
7.4  
-40.7  
-44.4  
-48.1  
-51.8  
-55.5  
3.7  
0
Table 8. Bridge Driver Current-Mirror  
Ratio Setting (CMRATIO[1:0])  
Table 9. DAC Refresh Rate  
(REFRATE[1:0])  
REFRATE[1:0]  
UPDATE INTERVAL (ms)  
CURRENT-  
MIRROR RATIO  
BRIDGE  
RESISTANCE (kI)  
CMRATIO[1:0]  
00  
01  
10  
11  
4.096  
16.384  
65.536  
131.072  
00  
01  
10  
11  
6
10  
5
12  
18  
30  
3.33  
2
Table 10. Wait Time for Read Requests (READDLY[1:0])*  
READDLY[1:0]  
RESPONSE DELAY IN BYTE TIMES (8-BIT TIME)  
00  
01  
10  
11  
1 byte time (i.e., (1 x 8)/baud rate)  
2 byte times  
4 byte times  
8 byte times  
*The selected delay time is applied before and after the requested byte is read.  
Maxim Integrated  
16  
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
Table 11. DIGMODETIME Setting*  
(DIGMODETIME[3:0] )  
Table 12. CTRLREP Setting  
(CTRLREP[2:0])  
CTRLREP[2:0]  
DESCRIPTION  
DIGMODETIME[3:0]  
DESCRIPTION  
000  
001  
010  
011  
100  
101  
110  
111  
1 control word expected  
1 control word expected  
2 control words expected  
3 control words expected  
4 control words expected  
5 control words expected  
6 control words expected  
Part powers up in digital mode*  
Part stays in digital mode for 1ms  
after power-up (for each repetition of  
the control word)  
0000  
0001  
0010  
2ms wait  
3ms wait  
0011  
4ms wait  
0100  
5ms wait  
0101  
8ms wait  
0110  
10ms wait  
15ms wait  
20ms wait  
25ms wait  
30ms wait**  
*Parts ship with a CTRLREP setting of 111.  
0111  
Table 13. Temperature Index Typical Values  
1000  
1001  
TEMPERATURE  
TEMPINDEX[7:0]  
1010 to 1111  
(NC)  
-40  
DECIMAL  
HEXADECIMAL  
*Wait times specified are based on a typical oscillator fre-  
quency of 1MHz. Wait times are proportional to the oscillation  
frequency. Actual wait times depend on the factory-trimmed  
oscillator frequency.  
27  
70  
1B  
46  
6D  
88  
+25  
+85  
+125  
109  
136  
**Parts ship with a DIGMODETIME setting of 1111.  
Table 14. IRSA Decoding (IRSA[3:0])  
IRSA[3:0]  
DESCRIPTION  
0000  
0001  
0010  
0011  
0100  
0101  
Write IRSD[3:0] to DHR[3:0] (data hold register).  
Write IRSD[3:0] to DHR[7:4] (data hold register).  
Write IRSD[3:0] to DHR[11:8] (data hold register).  
Write IRSD[3:0] to DHR[15:12] (data hold register).  
Reserved.  
Reserved.  
Write IRSD[3:0] to ICRA[3:0] or IEEA[3:0] (internal calibration register address or internal flash memory  
address nibble 0).  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
Write IRSD[3:0] to IEEA[7:4] (internal flash memory address nibble 1).  
Write IRSD[3:0] to IRSP[3:0] or IEEA[10:8] (interface register set pointer where IRSP[2:0] is IEEA[10:8]).  
Write IRSD[3:0] to CRIL[3:0] (command register to internal logic).  
Write IRSD[3:0] to ATIM[3:0] (analog timeout value on read).  
Write IRSD[3:0] to ALOC[3:0] (analog location).  
Write IRSD[0] to ALOC[4] (analog location).  
Write IRSD[0] to the burst mode enable bit (BURSTEN). See the Burst Mode Operation section for details  
regarding read/write operations in this mode. Logic 1 enables burst mode.  
1101  
1100 to 1111  
Reserved.  
Maxim Integrated  
17  
 
 
 
 
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
Table 15. CRIL Command Codes (CRIL[3:0])  
CRIL[3:0]  
0000  
NAME  
LdlCR  
EEPW  
ERASE  
RdICR  
RdEEP  
DESCRIPTION  
Load internal calibration register at address given in ICRA with data from DHR[15:0].  
Flash memory write of 8 data bits from DHR[7:0] to address location pointed by IEEA[10:0].  
Erase all flash memory (all bytes equal FFhex).  
0001  
0010  
0011  
Read internal calibration register as pointed to by ICRA and load data into DHR[15:0].  
Read internal flash memory location pointed by IEEA[10:0] and load data into DHR[7:0].  
0100  
Read interface register set pointer IRSP[3:0] and output the multiplexed digital signal onto  
OUT/DIO (see Table 17).  
0101  
RdIRS  
Output the multiplexed analog signal (i.e., test mux output) onto OUT/DIO. The duration (in  
byte times) that the signal is asserted onto the pin is specified by ATIM[3:0] (Table 18) and  
the analog location is specified by ALOC[4:0] (Table 19).  
0110  
RdAlg  
0111  
1000  
PageErase  
SwToANA  
Reserved  
RELEARN  
Erases the page of the flash memory as pointed by IEEA[10:9]. There are 512 bytes per page.  
Switch to fixed analog mode.  
Reserved.  
1001 to 1110  
1111  
Relearn the baud rate.  
Table 16. ICRA Decoding (ICRA[3:0])  
IRCA[3:0]  
0000  
NAME  
CONFIG1  
CONFIG2  
ODAC  
DESCRIPTION  
Configuration Register 1  
Configuration Register 2  
Offset DAC  
0001  
0010  
0011  
OTCDAC  
FSODAC  
FSOTCDAC  
PWRUPCFG  
Reserved  
Offset Temperature Coefficient DAC  
Full-Span Output DAC  
0100  
0101  
Full-Span Output Temperature Coefficient DAC  
Power-Up Configuration  
0110  
0111 to 1111  
Reserved (do not write to these locations)  
Table 17. IRSP Decoding (IRSP[3:0])  
IRSP[3:0]  
0000  
RETURNED VALUE  
IRSP[3:0]  
0110  
RETURNED VALUE  
IEED[7:0] flash memory data byte  
TEMPINDEX[7:0]  
DHR[7:0]  
0001  
DHR[15:8]  
0111  
0010  
0bin, IEEA[10:8], ICRA[3:0] concatenated  
CRIL[3:0], IRSP[3:0] concatenated  
0000bin, ATIM[3:0] concatenated  
1000  
BitClock[7:0]  
0011  
1001  
00bin, BURSTEN, ALOC[4:0] concatenated  
Reserved  
0100  
1010 to 1110  
11001010 (CAhex) (this can be used to test  
communication)  
0101  
IEEA[7:0] flash memory address byte  
1111  
Maxim Integrated  
18  
 
 
 
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
Table 18. ATIM Definition (ATIM[3:0])  
DURATION OF ANALOG SIGNAL SPECIFIED  
IN BYTE TIMES (8-BIT TIME)  
DURATION OF ANALOG SIGNAL  
SPECIFIED IN BYTE TIMES (8-BIT TIME)  
ATIM[3:0]  
ATIM[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
20 + 1 = 2 byte times (i.e., (2 x 8)/baud rate)  
21+ 1 = 3 byte times  
0111  
1000  
27 + 1 = 129 byte times  
28 + 1 = 257 byte times  
29 + 1 = 513 byte times  
210 + 1 = 1025 byte times  
211 + 1 = 2049 byte times  
212 + 1 = 4097 byte times  
213 + 1 = 8193 byte times  
214 + 1 = 16,385 byte times  
22 + 1 = 5 byte times  
1001  
23+ 1 = 9 byte times  
1010  
24 + 1 = 17 byte times  
1011  
25 + 1 = 33 byte times  
1100  
1101  
0110  
26 + 1 = 65 byte times  
1110 or 1111  
Table 19. ALOC Definition (ALOC[4:0])  
ALOC[4:0]  
BUFFERED OUTPUTS  
00000  
NAME  
DESCRIPTION  
OUT  
PGA output  
00001  
BDR1  
Bridge drive voltage  
00010  
V
Bridge drive current-setting voltage (see the Detailed Block Diagram)  
ISRC  
00011  
V
Internal regulated supply  
DD  
00100  
AGND  
Internal analog ground; approximately 1/2 of V  
DD  
00101  
V
Full-scale output plus full-scale output TC DAC (see the Detailed Block Diagram)  
Offset DAC (see the Detailed Block Diagram)  
Offset TC DAC (see the Detailed Block Diagram)  
Bandgap voltage reference (nominally 1.25V)  
Reserved  
DUALDAC  
00110  
V
ODAC  
00111  
V
OTCDAC  
01000  
V
REF  
01001  
Reserved  
Reserved  
REFD3BUF  
Reserved  
Reserved  
IN+  
01010  
Reserved  
01011  
Ratiometric reference; approximately 1/3 of V  
Reserved  
DDX  
01100  
01101  
Reserved  
01110  
Sensor’s positive input  
Sensor’s negative input  
01111  
IN-  
NONBUFFERED OUTPUTS  
10000  
10001  
BDR2  
Bridge drive voltage  
Internal positive supply  
Internal ground  
V
DDI  
10010  
GND  
10011 to 11101  
Reserved  
Reserved  
SPECIAL-PURPOSE OUTPUTS  
11110  
11111  
CLIPLVL  
Hi-Z  
Output clip level during fault conditions (buffered output)  
High-impedance state on OUT/DIO  
Maxim Integrated  
19  
 
 
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
POWER-ON  
POWER-ON RESET LOADS VALUES  
FROM FLASH MEMORY.  
SERIAL COMMUNICATION READY  
AFTER 2ms  
NO  
YES  
CTRLREP = 0x7?  
NO  
SET DIGITAL MODE TIMEOUT  
COUNTER AND CONTROL WORD  
REPETITION COUNTER BASED ON  
PWRUPCFG REGISTER SETTING  
NO  
NO  
NO  
NO  
YES  
INITIALIZATION  
BYTE RECEIVED?  
INITIALIZATION  
BYTE RECEIVED?  
DECREMENT DIGITAL MODE  
TIMEOUT COUNTER  
TIMEOUT  
COUNTER = 0?  
YES  
YES  
SYNCHRONIZE BAUD RATE FROM  
INITIALIZATION BYTE  
SYNCHRONIZE BAUD RATE FROM  
INITIALIZATION BYTE  
RESET DIGITAL MODE TIMEOUT  
COUNTER BASED ON  
DIGMODETIME SETTING  
NO  
NO  
NO  
YES  
CONTROL WORD  
RECEIVED? (0xAD)  
DECREMENT DIGITAL MODE  
TIMEOUT COUNTER  
TIMEOUT  
COUNTER = 0?  
YES  
DECREMENT CONTROL WORD  
REPETITION COUNTER  
NO  
REPETITION  
COUNTER = 0?  
YES  
DEVICE ENTERS DIGITAL  
PROGRAMMING MODE  
NO  
COMMAND BYTE  
RECEIVED?  
YES  
NO  
YES  
COMMAND  
BYTE = 0x89?  
DEVICE ENTERS FIXED  
ANALOG MODE  
EXECUTE COMMAND  
Figure 4. Power-Up Flow Chart  
Maxim Integrated  
20  
 
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
DAC based on sensor parameters (offset, sensitivity,  
bridge resistance, etc). Select a current-mirror ratio value  
corresponding to the sensor in use. Initialization is an  
important step to ensure that the device output remains  
in range over the full operating conditions. When the  
device is initialized successfully, the excitation voltage is  
within the normal range, and the output voltage is around  
the desired offset value (when zero pressure is applied).  
Power-Up Control Sequence  
The device uses a power-up state machine to determine  
whether the device should switch to the fixed analog  
mode, or enable the digital programming mode (Figure 4).  
At power-up, the device loads the PWRUPCFG register to  
establish a wait time (Table 11), and the number of control  
words (Table 12) required to enter the digital program-  
ming mode. If the wait time expires, the device automati-  
cally switches to the fixed analog mode. However, if the  
interface receives the correct number of control words  
within the established wait times, the device enters the  
digital programming mode. A serial command enables the  
device to switch into the fixed analog mode after the part  
has been programmed.  
Characterize the Sensor at Test Temperatures  
1) Set the temperature to the first test temperature point  
and allow the system to reach equilibrium.  
2) By changing the FSO DAC through an iterative pro-  
cess, set the bridge voltage to a value that produces  
the desired output span. Change the offset DAC as  
necessary.  
Note: Setting CTRLREP[2:0] to 111 in the PWRUPCFG  
flash memory location forces the part into the digital pro-  
gramming mode without the need for control words (an  
initialization byte is still required). By default, parts shipped  
from the factory are programmed to start in the digital  
programming mode.  
3) Once the desired output span is achieved, change  
the offset DAC to produce the final offset.  
4) Record the values of TEMPINDEX, FSODAC, and  
ODAC. The device flash memory can be used to store  
the information.  
Sensor Compensation Overview  
The device compensates for sensor offset, FSO, and  
temperature errors by loading the internal calibra-  
tion registers with the compensation values. These  
compensation values can be loaded to registers directly  
through the serial digital interface during calibration, or  
loaded automatically from flash memory at power-on.  
During the calibration process, the device is configured,  
tested, and compensation values are calculated and  
stored in the internal flash memory. Once programmed,  
after each power-up, the device autoloads the registers  
from flash memory and is ready for use without further  
configuration.  
5) Change the temperature to the next value and repeat  
this procedure to determine a unique value for the  
TEMPINDEX, FSODAC, and ODAC at every test tem-  
perature.  
Calculate Compensation Coefficients  
1) FSO Lookup Table: Using a fitting function, fit the  
FSODAC and TEMPINDEX values obtained during the  
characterization step and generate an array of 176  
elements (FSODAC vs. TEMPINDEX array, where 0 ≤  
TEMPINDEX ≤ 175).  
2) Offset Lookup Table: Using a fitting function, fit the  
ODAC and TEMPINDEX values obtained during the  
characterization step and generate an array of 176  
elements (ODAC vs. TEMPINDEX array).  
Program Flash Memory and Final Test  
1) Program the device by writing to the ODAC  
and FSODAC lookup tables, and the OTCDAC,  
FSOTCDAC, CONFIG1, CONFIG2, PWRUPCFG, and  
user data locations in flash memory.  
Compensation requires an examination of the sensor per-  
formance over the operating pressure and temperature  
range. A minimum of two test temperatures and two test  
pressures (zero and full scale) are required to correct the  
linear component of temperature error to achieve pres-  
sure calibration. For higher temperature accuracy, more  
test temperatures must be used. A typical compensation  
procedure can be summarized in the following sections.  
2) While the sensor is still at the last test temperature  
point, perform a final test to verify the compensation  
accuracy.  
Initialize the Device  
Initialize the device registers with known values (e.g.,  
compensation coefficients of a similar device) or deter-  
mine values for IRO, PGA gain, FSO DAC, and offset  
Maxim Integrated  
21  
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
U 0.1FF output capacitor (V  
)
DD  
Applications Information  
U Optional output capacitor (OUT/DIO)  
Typical Ratiometric Operating Circuit  
Ratiometric output configuration provides an output that is  
proportional to the power-supply voltage. This output can  
then be applied to a ratiometric ADC to produce a digital  
value independent of supply voltage. Ratiometricity is an  
important consideration for battery-operated instruments,  
automotive, and some industrial applications.  
Typical Nonratiometric Operating Circuit  
(6V DC < V  
< 40V DC)  
PWR  
Nonratiometric output configuration enables the sensor  
power to vary over a wide range. A high-performance  
voltage reference, such as the MAX15006B, is incorpo-  
rated in the circuit to provide a stable supply and refer-  
ence for device operation. A typical nonratiometric circuit  
is shown in Figure 6. Nonratiometric operation is valuable  
when a wide range of input voltage is to be expected  
and the system ADC or readout device does not enable  
ratiometric operation.  
The device provides a high-performance ratiometric output  
with a minimum number of external components (Figure 5).  
These external components include the following:  
U Supply bypass capacitor (V  
)
DDX  
+5V  
15  
V
DDX  
5
6
14  
13  
BDR  
IN-  
V
DD  
V
DDF  
MAX1454  
4
12  
OUT/DIO  
IN+  
OUT/DIO  
0.1µF  
0.1µF  
0.01µF  
GND  
9
GND  
Figure 5. Basic Ratiometric Output Configuration  
MAX15006B  
8
1
V
PWR  
OUT  
IN  
+6V TO +40V  
2N4392  
15  
5
14  
GND  
5
V
DDX  
BDR  
IN-  
V
DD  
6
4
13  
12  
V
DDF  
MAX1454  
OUT/DIO  
IN+  
OUT/DIO  
GND  
0.1µF  
2.2µF  
0.1µF  
0.01µF  
GND  
9
Figure 6. Basic Nonratiometric Output Configuration  
Maxim Integrated  
22  
 
 
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
Detailed Block Diagram  
V
DDX  
V
DD  
LDO  
OVERVOLTAGE,  
UNDERVOLTAGE,  
AND REVERSE-  
VOLTAGE  
FLASH MEMORY  
(LOOKUP PLUS CONFIGURATION DATA)  
FLASH  
USAGE  
PROTECTION  
ADDRESS  
0x000 + 0x001  
OFFSET DAC LOOKUP TABLE  
(176 x 16 BITS)  
:
1/3  
0x15E + 0x15F  
0x160 + 0x161 CONFIGURATION REGISTER 1  
0x162 + 0x163 CONFIGURATION REGISTER 2  
0x164 + 0x165 RESERVED  
V
DDX  
1/3 V  
DDX  
BDR  
BDR  
16  
16  
V
DUALDAC  
FSO  
DAC  
C
6x, 12x, 18x,  
OR 30x  
CURRENT  
MIRROR  
0x166 + 0x167 OFFSET TC REGISTER  
0x168 + 0x169 RESERVED  
1/3 V  
0x16A + 0x16B FSO TC REGISTER  
0x16C + 0x16D POWER-UP CONFIG REGISTER  
0x16E + 0x16F  
FSO TC  
DAC  
-1/2  
CURRENT  
MODE  
V
DDF  
:
RESERVED  
CURRENT  
MODE  
1/3 V  
0x17E + 0x17F  
0x180 + 0x181  
:
16 + SIGN  
V
V
OTCDAC  
OFFSET TC  
DAC  
CURRENT  
MODE  
USER STORAGE  
(128 BYTES)  
50kI  
0x1FE + 0x1FF  
0x200 + 0x201  
:
V
ISRC  
1/3 V  
FSO DAC LOOKUP TABLE  
(176 x 16 BITS)  
DDX  
R
ISRC  
16 + SIGN  
10kI  
0x35E + 0x35F  
0x360 + 0x361  
:
ODAC  
OFFSET  
DAC  
VOLTAGE  
MODE  
C
RESERVED  
GND  
0x37E + 0x37F  
0x380 + 0x381  
:
1/3  
USER STORAGE  
(128 BYTES)  
0x3FE + 0x3FF  
0x400 + 0x401  
:
BANDGAP  
TEMP  
SENSOR  
TEMP ADC  
RESERVED  
0x7FE + 0x7FF  
8
DIO  
BDR  
FAULT  
DETECTION  
IN-  
5V DIO  
DRIVER  
3
DIGITAL INTERFACE  
OUT/DIO  
OUT/DIO  
MUX  
PHASE  
REVERSAL  
MUX  
OUT  
C
C
IN+  
GND  
PROGRAMMABLE GAIN STAGE  
INPUT-REFERRED OFFSET (COARSE OFFSET)  
IRO SIGN, IRO[3:0] OFFSET (mV) IRO SIGN, IRO[3:0] OFFSET (mV)  
PGA[4:0]  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
PGA GAIN (V/V)  
PGA[4:0]  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
PGA GAIN (V/V)  
144  
1, 1111  
1, 1110  
1, 1101  
1, 1100  
1, 1011  
1, 1010  
1, 1001  
1, 1000  
1, 0111  
1, 0110  
1, 0101  
1, 0100  
1, 0011  
1, 0010  
1, 0001  
1, 0000  
55.5  
51.8  
48.1  
44.4  
40.7  
37.0  
33.3  
29.6  
25.9  
22.2  
18.5  
14.8  
11.1  
7.4  
0, 0000  
0, 0001  
0, 0010  
0, 0011  
0, 0100  
0, 0101  
0, 0110  
0, 0111  
0, 1000  
0, 1001  
0, 1010  
0, 1011  
0, 1100  
0, 1101  
0, 1110  
0, 1111  
0
6
7
-3.7  
176  
-7.4  
9
208  
-11.1  
-14.8  
-18.5  
-22.2  
-25.9  
-29.6  
-33.3  
-37.0  
-40.7  
-44.4  
-48.1  
-51.8  
-55.5  
11  
12  
14  
18  
22  
28  
36  
44  
52  
64  
80  
96  
112  
256  
288  
352  
416  
512  
576  
704  
832  
1024  
1152  
1408  
1664  
2048  
3.7  
0
Maxim Integrated  
23  
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
Chip Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
Ordering Information  
PACKAGE PACKAGE  
LAND PATTERN  
NO.  
OUTLINE NO.  
21-0066  
PART  
TEMP RANGE  
PIN-PACKAGE  
TYPE  
CODE  
MAX1454AUE/V+  
-40NC to +125NC  
16 TSSOP  
16 TSSOP  
U16M+1  
90-0117  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
/V denotes an automotive qualified part.  
Maxim Integrated  
24  
 
MAX1454  
Precision Sensor Signal Conditioner  
with Overvoltage Protection  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
DESCRIPTION  
CHANGED  
0
6/11  
Initial release  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical  
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000  
25  
©
2012 Maxim Integrated  
The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.  

相关型号:

MAX1454AUV

Precision Sensor Signal Conditioner with Overvoltage Protection
MAXIM

MAX1454_11

Precision Sensor Signal Conditioner with Overvoltage Protection
MAXIM

MAX1455

Dual.10-Bit.40MHz Current/Voltage Output DACs with Simultaneous Update[MAX5180/MAX5183/MAX5180BEEI/MAX5180BEEI-T/MAX5183BEEI/MAX5183BEEI-T/MAX5183EVKIT ]
MAXIM

MAX14550E

Test Points for Easy Evaluation
MAXIM

MAX14550EETB+

SPST, 1 Func, 1 Channel, BICMOS, PDSO10, 3 X 3 MM, ROHS COMPLIANT, TDFN-10
MAXIM

MAX14550EEVKIT

Test Points for Easy Evaluation
MAXIM

MAX14550EEVKIT+

Test Points for Easy Evaluation
MAXIM

MAX1455AAE

Low-Cost Automotive Sensor Signal Conditioner
MAXIM

MAX1455AAE+

Analog Circuit, 1 Func, CMOS, PDSO16, 5.30 MM, 0.65 MM PITCH, SSOP-16
MAXIM

MAX1455AAE+T

Analog Circuit, 1 Func, CMOS, PDSO16, 5.30 MM, 0.65 MM PITCH, SSOP-16
MAXIM

MAX1455AUE

Low-Cost Automotive Sensor Signal Conditioner
MAXIM