MAX14723ATP+T [MAXIM]

High-Accuracy, Adjustable Power Limiter;
MAX14723ATP+T
型号: MAX14723ATP+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

High-Accuracy, Adjustable Power Limiter

文件: 总20页 (文件大小:825K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX14721/  
MAX14722/  
MAX14723  
High-Accuracy, Adjustable Power Limiter  
General Description  
Benefits and Features  
The MAX14721–MAX14723 adjustable overvoltage,  
undervoltage, and overcurrent protection devices guard  
systems against overcurrent faults in addition to positive  
overvoltage and reverse-voltage faults. When used with  
an optional external p-channel MOSFET, the devices also  
protect downstream circuitry from voltage faults up to  
+60V, -60V (for -60V external pFET rating). The devices  
feature a low, 76mΩ, on-resistance integrated FET.  
During startup, the devices are designed to charge large  
capacitances on the output in a continuous mode for  
applications where large reservoir capacitors are used  
on the inputs to downstream devices. Additionally, the  
MAX14721–MAX14723 feature a dual-stage, current-limit  
mode in which the current is continuously limited to 1x,  
1.5x, and 2x the programmed limit, respectively, for a  
short time after startup. This enables faster charging of  
large loads during startup.  
Robust, High-Power Protection Reduces System  
Downtime  
• Wide Input Supply Range: +5.5V to +60V  
• Programmable Input Supply Overvoltage Setting  
Up to 40V  
• Thermal Foldback Current-Limit Protection  
• Negative Input Tolerance to -60V (for -60V External  
pFET Rating)  
Low 76mΩ (typ) R  
ON  
• Reverse Current-Blocking Protection with External  
pFET  
Enables Safer Startup By Preventing Overheating  
of FETs  
• Dual-Stage Current Limiting  
• 1.0x Startup Current (MAX14721)  
• 1.5x Startup Current (MAX14722)  
• 2.0x Startup Current (MAX14723)  
The MAX14721–MAX14723 also feature reverse-current  
and overtemperature protection. The devices are available  
in a 20-pin (5mm x 5mm) TQFN package and operate  
over a -40°C to 125°C temperature range.  
Applications  
Industrial Power Systems  
Control and Automation  
Motion System Drives  
Human Machine Interfaces  
Flexible Design Enables Reuse and Less  
Requalification  
• Adjustable OVLO and UVLO Thresholds  
• Programmable Forward Current Limit From 0.2A  
to 2A with ±15% Accuracy Over Full Temperature  
Range  
• Normal and High-Voltage Enable Inputs  
(EN and HVEN)  
• Protected External pFET Gate Drive  
High-Power Applications  
Saves Board Space and Reduces External BOM  
Count  
• 20-Pin, 5mm x 5mm TQFN Package  
• Integrated nFET  
Ordering Information appears at end of data sheet.  
Typical Application Circuit  
VIN  
*R1, R2, R3, AND R4 ARE ONLY  
REQURED FOR ADJUSTABLE UVLO/  
OVLO FUNCTIONALITY. OTHERWISE,  
CIN  
C
IN_C  
TIE THE PIN TO GND TO USE THE  
GP  
IN  
IN IN  
INTERNAL, PREPROGRAMMED  
VIN  
THRESHOLD.  
R1*  
R3*  
OUT  
OUT  
OUT  
SYSTEM  
UVLO  
OVLO  
POWER  
CONTROLLER  
PROTECTED  
POWER  
220kΩ  
R2*  
R4*  
SYSTEM  
INPUT  
ADC  
MAX14721–  
MAX14723  
COUT  
VIN  
HVEN  
SETI  
RIPEN  
FLAG  
EN  
GND  
ENB  
FAULT  
EN  
HVEN  
x
CLTS2  
10kΩ  
CLTS1  
GND  
19-7370; Rev 3; 11/17  
MAX14721/  
MAX14722/  
MAX14723  
High-Accuracy, Adjustable Power Limiter  
Absolute Maximum Ratings  
(All voltages referenced to GND.)  
SETI................................................-0.3V to min(V + 0.3V, 6V)  
IN  
IN (Note 1)..........................................................-0.3V to +60.5V  
Continuous Power Dissipation (T = +70°C)  
A
OUT..............................................................-0.3V to V + 0.3V  
TQFN (derate 31.3mW/ºC above +70°C)..................2500mW  
Operating Temperature Range......................... -40°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
IN  
HVEN (Note 1) .............................................-0.3V to V + 0.3V  
IN  
GP .....................................max (-0.3V, V - 20V) to V + 0.3V  
IN  
IN  
UVLO, OVLO...............................-0.3V to min (V + 0.3V, 20V)  
IN  
FLAG, EN, RIPEN, CLTS1, CLTS2.........................-0.3V to +6V  
Maximum Current into IN (DC) (Note 2) .................................2A  
Note 1: An external pFET or diode is required to achieve negative input protection.  
Note 2: DC current-limited by R as well as by thermal design.  
SETI  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
PACKAGE TYPE: 20 TQFN  
Package Code  
T2055+3C  
21-0140  
90-0008  
Outline Number  
Land Pattern Number  
THERMAL RESISTANCE, FOUR-LAYER BOARD  
Junction to Ambient (θ  
)
32°C/W  
3°C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX14721/  
MAX14722/  
MAX14723  
High-Accuracy, Adjustable Power Limiter  
Electrical Characteristics  
(V = 5.5V to 60V, T = -40°C to +125°C, unless otherwise noted. Typical values are at V = 24V, T = +25°C.) (Note 3)  
IN  
A
IN  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY  
IN Voltage Range  
V
5.5  
60  
15  
V
IN  
V
V
V
V
= 0V, V  
= 0V, V  
= 5V, V < 40V  
5.25  
5.25  
1.4  
EN  
HVEN  
IN  
Shutdown IN Current  
I
µA  
SHDN  
= 5V  
150  
1.9  
100  
EN  
HVEN  
Supply Current  
I
= V  
= 24V, V = 0V  
HVEN  
mA  
µA  
IN  
IN  
OUT  
Shutdown OUT Current  
UVLO, OVLO  
I
= 0V, V = 5V  
HVEN  
50  
OFF  
EN  
V
V
falling, UVLO trip point  
rising  
11.5  
11.9  
12  
12.4  
3
12.5  
13  
IN  
Internal UVLO Trip Level  
UVLO Hysteresis  
V
V
%
V
UVLO  
IN  
% of typical UVLO  
V
V
falling  
32.1  
34.5  
33.8  
36  
35.6  
37.4  
IN  
Internal OVLO Trip Level  
V
OVLO  
rising, OVLO trip point  
IN  
OVLO Hysteresis  
% of typical OVLO  
6
%
V
External UVLO Adjustment  
Range (Note 4)  
5.5  
24  
0.5  
External UVLO Select Voltage  
V
0.15  
-250  
0.38  
V
UVLO_SEL  
External UVLO Leakage  
Current  
I
+250  
nA  
UVLO_LEAK  
External OVLO Adjustment  
Range (Note 4)  
6
40  
0.5  
V
V
External OVLO Select Voltage  
V
0.15  
-250  
0.38  
1.22  
OVLO_SEL  
External OVLO Leakage  
Current  
I
+250  
nA  
OVLO_LEAK  
External UVLO/OVLO Set  
Voltage  
V
1.18  
1.27  
V
V
SET  
V
V
falling, UVLO trip point  
11.5  
11.9  
12  
12.5  
13  
OUT  
Undervoltage Trip Level on OUT  
V
UVLO_OUT  
rising  
12.4  
OUT  
GP  
Gate Clamp Voltage  
Gate Active Pullup  
Gate Active Pulldown  
Shutdown Gate Active Pullup  
V
10  
50  
16.1  
25  
20  
50  
V
Ω
GP  
V
V
= 5V  
110  
2.2  
µA  
MΩ  
EN  
= 0V, V  
= 5V  
EN  
HVEN  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX14721/  
MAX14722/  
MAX14723  
High-Accuracy, Adjustable Power Limiter  
Electrical Characteristics (continued)  
(V = 5.5V to 60V, T = -40°C to +125°C, unless otherwise noted. Typical values are at V = 24V, T = +25°C.) (Note 3)  
IN  
A
IN  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INTERNAL FETs  
I
T
= 100mA, V ≥ 10V,  
IN  
= +25ºC  
LOAD  
Internal FETs On-Resistance  
Current Limit Adjustment Range  
R
76  
101  
mΩ  
ON  
A
I
0.2  
-10  
-15  
2
A
LIM  
0.3A ≤ I  
0.2A ≤ I  
≤ 2A (T = +25°C)  
+10  
+15  
LIM  
A
Current Limit Accuracy  
I
%
LIM_ACC  
≤ 2A  
LIM  
FLAG Assertion Drop Voltage  
Threshold  
Increase in (V - V  
FLAG asserts, V = 24V  
IN  
) drop until  
IN  
OUT  
V
480  
-9  
mV  
mV  
FA  
Reverse Current-Blocking  
Threshold  
V
V
- V  
OUT  
-4  
-14  
1.55  
3900  
RIB  
IN  
(V - V  
) changes from 0.2V to  
IN  
OUT  
Reverse Current-Blocking  
Response Time  
-0.3V in 100nsec, t  
is the interval  
RIB  
t
1
µs  
RIB  
between V = V  
and V  
=
IN  
OUT  
IN-GP  
0.5V without capacitive load on GP  
Reverse-Blocking Supply  
Current  
I
V
= 24V  
2000  
µA  
RBS  
OUT  
LOGIC INPUT (HVEN, CLTS1, CLTS2, EN, RIPEN)  
HVEN Threshold Voltage  
HVEN Threshold Hysteresis  
HVEN Input Leakage Current  
V
1
2
5
3.1  
67  
V
%
HVEN _TH  
I
V
= 60V  
46  
µA  
HVEN_LEAK  
HVEN  
EN, RIPEN, CLTS1, CLTS2  
Input Logic-High  
V
1.4  
V
V
IH  
EN, RIPEN, CLTS1, CLTS2  
Input Logic-Low  
V
0.4  
+1  
IL  
EN Input Leakage Current  
RIPEN Leakage Current  
I
V
= 0V, 5V  
EN  
-1  
µA  
EN_LEAK  
I
RIPEN = GND  
CLTS_ = GND  
25  
25  
µA  
µA  
RIPEN_LEAK  
CLTS_ Leakage Current  
LOGIC OUTPUT (FLAG)  
Logic-Low Voltage  
Input Leakage Current  
SETI  
I
= 1mA  
0.4  
1
V
SINK  
V
= 5.5V, FLAG deasserted  
µA  
IN  
R
x I  
V
1.5  
V
See Setting the Current-Limit  
Threshold section  
SETI  
LIM  
RI  
Current Mirror Output Ratio  
C
8333  
IRATIO  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX14721/  
MAX14722/  
MAX14723  
High-Accuracy, Adjustable Power Limiter  
Electrical Characteristics (continued)  
(V = 5.5V to 60V, T = -40°C to +125°C, unless otherwise noted. Typical values are at V = 24V, T = +25°C.) (Note 3)  
IN  
A
IN  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DYNAMIC PERFORMANCE (NOTE 5)  
V
= 24V, switch OFF to ON, R  
IN  
LOAD  
Switch Turn-On Time  
t
= 240Ω, I  
= 1A, C = 4.7µF,  
118  
420  
µs  
µs  
ON  
LIM  
OUT  
V
from 20% to 80% of V  
IN  
OUT  
Fault Recovery nFET Turn-on  
Time  
V
> V  
, turn-on delay  
OUT  
UVLO_OUT  
t
730  
ON_NFET  
after fault timers expired  
Reverse-Current Fault  
Recovery Time  
t
t
2.18  
2.40  
3
2.64  
ms  
µs  
µs  
REV_REC  
OVP_RES  
OCP_RES  
OVP Switch Response Time  
Overcurrent Switch Response  
time  
t
I
= 2A  
3
LIM  
Initial start current-limit foldback  
timeout (Figure 1)  
Startup Timeout  
t
1090  
21.8  
0.25  
1200  
24  
1320  
26.4  
0.75  
ms  
ms  
ms  
STO  
Current is continuously limited to  
1x/1.5x/2x in this interval (Figure 1)  
Startup Initial Time  
IN Debounce Time  
t
STI  
Interval between V > V  
and  
IN  
UVLO  
t
0.50  
DEB  
V
= 10% of V (Figure 2)  
IN  
OUT  
Blanking Time  
t
(Figure 3 and Figure 4)  
(Figure 3, Note 6)  
21.8  
554  
24  
26.4  
792  
ms  
ms  
BLANK  
Autoretry Time  
t
720  
RETRY  
THERMAL PROTECTION  
Thermal Foldback  
T
145  
170  
20  
°C  
°C  
°C  
J_FB  
Thermal Shutdown  
Thermal-Shutdown Hysteresis  
T
J_MAX  
Note 3: All devices are 100% production-tested at T = +25ºC. Specifications over the operating temperature range are guaranteed  
A
by design.  
Note 4: Not production-tested, user-adjustable. See the Overvoltage Lockout (OVLO) and Undervoltage Lockout (UVLO) sections.  
Note 5: All timing is measured using 20% and 80% levels, unless otherwise specified.  
Note 6: The autoretry time-to-blanking time ratio is fixed and is equal to 30.  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX14721/  
MAX14722/  
MAX14723  
High-Accuracy, Adjustable Power Limiter  
Timing Diagrams  
tDEB  
tSTI  
tSTO*  
OVLO  
UVLO  
IN  
1x /1.5x /2x I LIMIT  
ILIMIT  
IOUT  
VIN  
OUT  
GND  
THERMALLY-CONTROLLED  
CURRENT FOLDBACK  
TJMAX  
TJ  
NOT DRAWN TO SCALE  
*IF OUT DOES NOT REACH VIN - VFA WITHIN t STO, THE DEVICE IS LATCHED OFF, AND EN, HVEN, OR IN MUST BE TOGGLED TO RESUME NORMAL  
OPERATION .  
Figure 1. Startup Timing  
< tDEB  
< tDEB  
tDEB  
OVLO  
IN UVLO  
ON  
SWITCH  
STATUS  
OFF  
NOT DRAWN TO SCALE  
Figure 2. Debounce Timing  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX14721/  
MAX14722/  
MAX14723  
High-Accuracy, Adjustable Power Limiter  
Typical Operating Characteristics  
(V = 12V, C = 1µF, C  
= 4.7µF, T = +25°C, unless otherwise noted.)  
A
IN  
IN  
OUT  
QUIESCENT IN CURRENT  
vs. TEMPERATURE  
QUIESCENT IN CURRENT  
vs. IN VOLTAGE  
HVEN INPUT CURRENT vs. VHVEN  
toc03  
toc02  
toc01  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2
1.8  
1.6  
1.4  
1.2  
1
VEN = 3V  
VEN = 3V  
VEN = 3V  
VIN = VHVEN  
VIN = 34V  
VIN = 24V  
VIN = 12V  
TA = +125°C  
TA = +85°C  
TA = +25°C  
0.8  
0.6  
0.4  
0.2  
0
TA = -40°C  
0
20  
40  
60  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
5
10 15 20 25 30 35 40 45 50 55 60  
IN VOLTAGE (V)  
V
HVEN (V)  
NORMALIZED ON-RESISTANCE  
vs. SUPPLYVOLTAGE  
NORMALIZED ON-RESISTANCE  
vs. TEMPERATURE  
toc04  
toc05  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.1  
1.05  
1
NORMALIZED TO TA = +25°C  
IOUT = 1A  
VIN = 24V  
NORMALIZED TO VIN = 12V  
IOUT = 1A  
VEN = 3V  
V
EN = 3V  
0.95  
0.9  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
5
10 15 20 25 30 35 40 45 50 55 60  
IN VOLTAGE (V)  
NORMALIZED ON-RESISTANCE  
NORMALIZED CURRENT LIMIT  
vs. SUPPLY VOLTAGE  
vs. OUTPUT CURRENT  
toc7  
toc06  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
1.03  
1.02  
1.01  
1
NORMALIZED TO IOUT = 1A  
VIN = 24V  
VEN = 3V  
NORMALIZED TO VIN = 12V  
RILIM = 13kW  
0.99  
0.98  
0.97  
5
10 15 20 25 30 35 40 45 50 55 60  
IN VOLTAGE (V)  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
OUTPUT CURRENT (A)  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX14721/  
MAX14722/  
MAX14723  
High-Accuracy, Adjustable Power Limiter  
Typical Operating Characteristics (continued)  
(V = 12V, C = 1µF, C  
= 4.7µF, T = +25°C, unless otherwise noted.)  
A
IN  
IN  
OUT  
NORMALIZED CURRENT LIMIT  
vs. TEMPERATURE  
SHUTDOWNIN CURRENT  
vs. TEMPERATURE  
SHUTDOWN OUTPUT CURRENT  
vs. TEMPERATURE  
toc9  
toc08  
toc10  
16  
14  
12  
10  
8
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
250  
200  
150  
100  
50  
NORMALIZED TO TA = +25°C  
IN = 24V  
RILIM = 12.4kW  
V
VIN = +60V  
VIN = +34V  
VIN = +34V  
VIN = +24V  
VIN = +12V  
6
4
2
VIN = +24V  
VIN = + 12V  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
SWITCH TURN-ON TIME  
vs. TEMPERATURE  
SWITCH TURN-OFF TIME  
vs. TEMPERATURE  
toc12  
toc11  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
200  
180  
160  
140  
120  
100  
80  
MAX14721  
IN = +24V  
RL = 240W  
CL = 4.7µF  
V
60  
40  
VIN = +24V  
RL = 240W  
20  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
REVERSE-BLOCKING  
RESPONSE  
POWER-UP RESPONSE  
toc13  
toc14  
MAX14723  
24V  
V
20V/div  
20V/div  
20V/div  
VIN  
IN  
30V  
24V  
VOUT  
20V/div  
1A/div  
VOUT  
1A/div  
IOUT  
IOUT  
ILIM = 1A  
CL = 26mF  
V
RIPEN  
= 1.7V  
200ms/div  
10µs/div  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX14721/  
MAX14722/  
MAX14723  
High-Accuracy, Adjustable Power Limiter  
Typical Operating Characteristics  
(V = 12V, C = 1µF, C  
= 4.7µF, T = +25°C, unless otherwise noted.)  
A
IN  
IN  
OUT  
CURRENT LIMIT RESPONSE  
FLAG RESPONSE  
toc16  
toc15  
VIN  
0V  
20V/div  
20V/div  
20V/div  
20V/div  
VIN  
0V  
VOUT  
0V  
VOUT  
0V  
IOUT  
1A/div  
VFLAG  
5V/div  
I
= 1A  
LIM
IL = 100mA TO SUDDEN SHORT APPLIED  
10ms/div  
20µs/div  
CURRENT LIMIT RESPONSE  
BLANKING TIME  
toc17  
toc18  
AUTORETRY MODE  
MAX14723  
20V/div  
20V/div  
VIN  
0V  
VOUT  
0V  
VOUT  
200mV/div  
IOUT  
1A/div  
ILIM = 1A  
IL = 100mA TO SHORT ON OUT WITH 1A/s  
20ms/div  
200ms/div  
AUTORETRY TIME  
MAX14723  
toc19  
AUTORETRY MODE  
200mV/div  
VOUT  
200ms/div  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX14721/  
MAX14722/  
MAX14723  
High-Accuracy, Adjustable Power Limiter  
Pin Configurations  
TOP VIEW  
15  
14  
13  
12  
11  
16  
17  
18  
19  
20  
10  
9
UVLO  
OVLO  
RIPEN  
HVEN  
CLTS2  
CLTS1  
MAX14721–  
MAX14723  
8
FLAG  
SETI  
GP  
7
6
GND/EP  
EN  
+
1
2
3
4
5
TQFN  
(5mm x 5mm)  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 5, 11, 15  
N.C.  
Not Connected  
Switch Input. Bypass IN to ground with a 1µF ceramic capacitor for ±15kV Human Body Model  
ESD protection on IN. In applications in which an external pFET is used, a 4.7µF capacitor should  
be placed at the drain of the pFET and a reduced capacitor of 10nF to 100nF should be placed at  
IN. The maximum slew rate allowed at IN is 30V/µs. IN serves as the under/overvoltage sensed  
input when preprogrammed UVLO/OVLO is used.  
2, 3, 4  
IN  
6
7
GP  
Gate Driver Output for External pFET  
Overload Current-Limit Adjust. Connect a resistor from SETI to GND to program the overcurrent  
limit. SETI must be connected to a resistor. If SETI is connected to GND during startup, then the  
switch does not turn on. Do not connect more than 30pF to SETI.  
SETI  
Open-Drain Fault Indicator Output. FLAG asserts low when the V - V  
voltage exceeds  
IN  
OUT  
8
9
FLAG  
OVLO  
UVLO  
V
, reverse-current is detected, thermal shutdown mode is active, OVLO or UVLO threshold is  
FA  
reached, or SETI is connected to GND.  
Externally-Programmable Overvoltage Lockout Threshold. Connect OVLO to GND to use the  
default internal OVLO threshold. Connect OVLO to an external resistor-divider to define a  
threshold externally and override the preset internal OVLO threshold.  
Externally-Programmable Undervoltage Lockout Threshold. Connect UVLO to GND to use the  
default internal UVLO threshold. Connect UVLO to an external resistor-divider to define a threshold  
externally and override the preset internal UVLO threshold.  
10  
Switch Output. Bypass OUT to GND with a 4.7µF ceramic capacitor placed as close to the device  
as possible.  
12, 13, 14  
16  
OUT  
Reverse-Current Protection Enable. Internally pulled up. Connect RIPEN to GND with 10kW  
resistor or lower to disable the reverse-current flow protection.  
RIPEN  
17  
18  
19  
20  
HVEN  
CLTS2  
CLTS1  
EN  
60V Capable Active-Low Enable Input. See Table 1.  
Current-Limit Type Select 2. See Table 2.  
Current-Limit Type Select 1. See Table 2.  
Active-High Enable Input. See Table 1.  
GND/EP  
Ground/Exposed Pad. Connect to a large copper ground plane to maximize thermal performance.  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX14721/  
MAX14722/  
MAX14723  
High-Accuracy, Adjustable Power Limiter  
Functional Diagram  
GP  
IN  
IN  
IN  
OUT  
OUT  
OUT  
MAX14721–  
MAX14723  
RIPEN  
VIN  
VIN  
SETI  
150kΩ  
REVERSE-  
CURRENT FLOW  
CONTROL  
CURRENT-  
LIMIT  
CONTROL  
CHARGE  
PUMP  
CONTROL  
VUVLO  
UVLO  
VSEL  
FLAG  
VIN  
CONTROL LOGIC  
VOVLO  
OVLO  
VSEL  
EN  
VIN  
150kΩ  
150kΩ  
HVEN  
CLTS1 CLTS2 GND  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX14721/  
MAX14722/  
MAX14723  
High-Accuracy, Adjustable Power Limiter  
power-limiting mode (Figure 1). In this mode, the device  
thermally regulates the current through the switch in order  
to protect itself while still delivering as much current as  
possible to the output regardless of the current limit type  
selected. If the output is not charged within the startup  
Detailed Description  
The MAX14721–MAX14723 adjustable overvoltage,  
undervoltage, and overcurrent protection devices guard  
systems against overcurrent faults in addition to posi-  
tive overvoltage and reverse-voltage faults. When used  
with an optional external p-channel MOSFET, these  
devices also protect downstream circuitry from voltage  
faults up to +60V, -60V (for-60V external pFET rating).  
The MAX14721–MAX14723 feature a low, 76mΩ, on-  
resistance integrated FET. During startup, the devices  
are designed to charge large capacitances on the out-  
put in a continuous mode for applications where large  
reservoir capacitors are used on the inputs to down-  
stream devices. Additionally, the MAX14721, MAX14722,  
and MAX14723 feature a dual-stage current-limit mode in  
which the current is continuously limited to 1x, 1.5x, and  
2x the programmed limit, respectively, for a short time  
after startup. This enables faster charging of large loads  
during startup.  
timeout period (t  
), the switch turns off and IN, EN, or  
STO  
HVEN must be toggled to resume normal operation.  
The MAX14721–MAX14723 have a 16ms (typ) time delay  
at the end of startup, during which the reverse threshold  
is set at -90mV (typ) to prevent false reverse faults due to  
oscillation. After this delay, the reverse current-blocking  
threshold is reduced to -9mV (V , typ).  
RIB  
Overvoltage Lockout (OVLO)  
The devices feature two methods for determining the  
OVLO threshold. By connecting the OVLO pin to GND, the  
preset internal OVLO threshold of 36V (typ) is selected.  
If the voltage at OVLO rises above the OVLO select  
threshold (V ), the device enters adjustable  
OVLO_SEL  
OVLO mode. Connect an external voltage divider to the  
OVLO pin as shown in the Typical Application Circuit  
to adjust the OVLO threshold. The permitted overvoltage  
lockout set point range of the device is 6V to 40V.  
R3 = 2.2MΩ is a good starting value for minimum current  
The MAX14721–MAX14723 feature the option to set the  
overvoltage lockout (OVLO) and undervoltage lockout (UVLO)  
thresholds manually using external voltage dividers or to use  
the factory-preset internal thresholds by connecting the OVLO  
and/or UVLO pin(s) to GND. The permitted overvoltage lockout  
set point range of the devices is 6V to 40V, while the permitted  
undervoltage lockout set point range is 5.5V to 24V. Therefore,  
the pFET and internal nFET must be kept off in the 40V to 60V  
range by appropriate OVLO resistor divider.  
The devices’ programmable current-limit threshold can be  
set for currents up to 2A in autoretry, latchoff, or continuous  
fault response mode. When the device is set to autoretry  
mode and the current exceeds the threshold for more than  
24ms (typ), both FETs are turned off for 720ms (typ), then  
turned back on. If the fault is still present, the cycle repeats.  
In latchoff mode, if a fault is present for more than 24ms  
(typ), both FETs are turned off until enable is toggled or the  
power is cycled. In continuous mode, the current is limited  
continuously to the programmed current-limit value. In all  
consumption. Since V  
is known (1.22V, typ), R3 has  
is the target OVLO value, R4  
SET  
been chosen, and V  
OVLO  
can then be calculated by the following equation:  
R3× V  
SET  
R4 =  
V
V  
SET  
OVLO  
Undervoltage Lockout (UVLO)  
The devices feature two methods for determining the  
UVLO threshold. By connecting the UVLO pin to GND,  
the preset, internal UVLO threshold of 12V (typ) is  
selected. If the voltage at UVLO rises above the UVLO  
select threshold (V ) the device enters adjustable  
UVLO_SEL  
UVLO mode. Connect an external voltage divider to the  
UVLO pin as shown in the Typical Application Circuit to  
adjust the UVLO threshold. The permitted undervoltage  
lockout set point range of the device is 5.5V to 24V.  
R1 = 2.2MΩ is a good starting value for minimum current  
modes, FLAG asserts if V - V  
is greater than the  
IN  
OUT  
FLAG assertion drop voltage threshold (V ).  
FA  
Startup Control  
These devices feature a dual-stage startup sequence  
that continuously limits the current to 1x/1.5x/2x the set  
current limit during the startup initial time (t ), allowing  
STI  
consumption. Since V  
is known (1.22V, typ), R1 has  
is the target value, R2 can then  
SET  
been chosen, and V  
UVLO  
be calculated by the following equation:  
large capacitors present on the output of the switch to be  
rapidly charged. The MAX14721 limits the current to 1x  
the set limit during this period while the MAX14722 and  
MAX14723 limit the current to 1.5x and 2x the set limit,  
respectively. If the temperature of any device rises to the  
R1× V  
SET  
R2 =  
V
V  
SET  
UVLO  
Switch Control  
There are two independent enable inputs on the devices:  
HVEN and EN. HVEN is a high-voltage-capable input,  
thermal foldback threshold (T  
), the device will enter  
J_FB  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX14721/  
MAX14722/  
MAX14723  
High-Accuracy, Adjustable Power Limiter  
Table 1. Enable Inputs  
Table 2. Current-Limit Type Select  
HVEN  
EN  
0
SWITCH STATUS  
CLTS2  
CLTS1  
CURRENT-LIMIT TYPE  
LATCHOFF MODE  
0
0
1
1
ON  
ON  
0
0
1
1
0
1
0
1
AUTORETRY MODE  
CONTINUOUS MODE  
CONTINUOUS MODE  
1
0
OFF  
ON  
1
accepting signals up to 60V. EN is a low-voltage input,  
accepting a maximum voltage of 5V. In case of a fault  
condition, toggling HVEN or EN resets the fault. The  
enable inputs control the state of the switch based on the  
truth table (Table 1).  
if there is no fault. In Latchoff mode, the device will latch  
off if the overcurrent fault last longer than t  
.
BLANK  
Autoretry Mode (Figure 3)  
In autoretry current-limit mode, when current through the  
device reaches the threshold, the t timer begins  
BLANK  
Input Debounce  
The MAX14721–MAX14723 feature a built-in input  
counting. The FLAG output asserts low when the voltage  
drop across the switch rises above V . If the overcurrent  
FA  
condition is present for t  
, the switch is turned off.  
debounce time (t  
between a POR event and the switch being turned on. If  
the input voltage rises above the UVLO threshold voltage  
). The debounce time is a delay  
BLANK  
DEB  
The timer resets if the overcurrent condition disappears  
before t has elapsed. A retry time delay (t  
)
RETRY  
BLANK  
starts immediately once t  
retry time, the switch remains off and, once t  
elapsed, the switch is turned back on. If the fault still  
exists, the cycle is repeated and FLAG remains low. If the  
fault has been removed, the switch stays on.  
has elapsed. During the  
or if, with a voltage greater than V  
present on IN,  
BLANK  
UVLO  
has  
the enable pins toggle to the on state, the switch turns on  
after t . In cases where the voltage at IN falls below  
RETRY  
DEB  
V
UVLO  
before t  
has passed, the switch remains  
DEB  
off (Figure 2). If the voltage at OUT is already above  
when the device is turned on through either  
V
UVLO_OUT  
The autoretry feature reduces system power in case of  
overcurrent or short-circuit conditions. When the switch is  
enable pin or coming out of OVLO, there is no debounce  
interval. This is due to the device already being out of the  
on during t  
time, the supply current is held at the  
BLANK  
POR condition with OUT above V  
.
UVLO_OUT  
currentlimit.Whentheswitchisoffduringt  
time,there  
RETRY  
is no current through the switch. Thus, the output current  
is much less than the programmed current limit. Calculate  
the average output current using the following equation.  
Current-Limit Type Select  
The MAX14721–MAX14723 feature three selectable  
current-limiting modes. During power-up, all devices  
default to continuous mode and follow the procedure  
defined in the Startup Control section. Once the part has  
t
+ t  
×K  
+ t  
BLANK  
STI  
+ t  
RETRY  
I
= I  
LOAD LIM  
t
BLANK  
STI  
been successfully powered on and t  
has expired,  
STO  
the device senses the condition of CLTS1 and CLTS2.  
The condition of CLTS1 and CLTS2 sets the current-limit  
mode type according to Table 2. CLTS1,2 are internally  
pulled up to an internal 5V supply. Therefore, the device is  
in continuous current-limit mode when CLTS1 and CLTS2  
are open. To set CLTS_ state to low, connect a 10kΩ  
resistor or below to ground.  
where K is the multiplication factor of the initial current  
limit (1x, 1.5x or 2x). With a 24ms (typ) t 24ms  
BLANK,  
t
, K = 1 and 720ms (typ) t , the duty cycle is  
STI RETRY  
3.1%, resulting in 97% power saving as compared to the  
switch being on the entire time.  
Latchoff Mode (Figure 4)  
In latchoff current-limit mode, when current through the  
In addition to the selectable current-limiting modes, the  
device has a protection feature against a severe over  
load condition. If the output current exceeds 2 times the  
set current limit, the device will turn off the internal nFET  
and external pFET immediately and will attempt to restart  
device reaches the threshold, the t  
timer begins  
BLANK  
counting. The FLAG asserts when the voltage drop across  
the switch rises above V . The timer resets if the overcurrent  
FA  
condition disappears before t  
has elapsed. The  
BLANK  
switch turns off if the overcurrent condition remains for the  
blanking time. The switch remains off until the control logic  
(EN or HVEN) is toggled or the input voltage is cycled.  
to allow the overcurrent to last for t  
time. The OFF  
BLANK  
duration depends on fault condition occurred after the  
FETs turn off, with the shortest duration of 420µs (t  
)
ON_FET  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX14721/  
MAX14722/  
MAX14723  
High-Accuracy, Adjustable Power Limiter  
tBLANK  
tBLANK  
tRETRY  
tDEB  
tSTI  
tBLANK  
tRETRY  
tSTI  
1x /1.5x /2x ILIMIT  
1x /1.5x /2x ILIMIT  
ILIMIT  
IOUT  
VIN  
VOUT  
VFA  
VUVLO_OUT  
FLAG  
NOT DRAWN TO SCALE  
VUVLO < VIN < VOVLO, HVEN= LOW, EN = HIGH  
Figure 3. Autoretry Fault Diagram  
tBLANK  
tBLANK  
tSTI  
tBLANK  
tDEB  
tSTI  
1x /1.5x /2x ILIMIT  
ILIMIT  
1x /1.5x /2x ILIMIT  
IOUT  
VIN  
VOUT  
VFA  
VUVLO  
_
OUT  
EN  
HVEN  
FLAG  
NOT DRAWN TO SCALE  
VUVLO < VIN < VOVLO  
Figure 4. Latchoff Fault Diagram  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX14721/  
MAX14722/  
MAX14723  
High-Accuracy, Adjustable Power Limiter  
time, the device monitors the voltage difference between  
OUT and IN pins to determine whether the reverse current  
Continuous Mode (Figure 5)  
In continuous current-limit mode, when current through  
the device reaches the threshold, the device limits the  
current to the programmed limit. FLAG asserts when  
the voltage drop across the switch rises above V , and  
deasserting when it falls below V  
is still present. Once t  
expired and the reverse-  
REV_REC  
current condition has been removed, the nFET and pFET  
are turned back on after an additional time delay follows by  
the dual-stage startup control mechanism as defined in the  
Startup Control section above. The additional time delay  
FA  
.
FA  
Reverse-Current Blocking (Figure 6)  
will be 420us (t  
equal to V  
otherwise the delay will be 0.5ms (t  
) if voltage at OUT is more than or  
ON_NFET  
falling at the end of t  
delay,  
The MAX14721–MAX14723 feature current-blocking func-  
tionality to be used with external pFET. To enable the  
reverse-current blocking feature, pull RIPEN high. With  
UVLO_OUT  
REV_REC  
). After a reverse-  
DEB  
current event, the device will attempt a restart regardless  
of the current-type select.  
RIPEN high, if a reverse-current condition is detected (V  
IN  
- V  
OUT  
< V ), the internal nFET and the external pFET  
RIB  
are turned off for 2.4ms (t  
). During and after this  
REV_REC  
tDEB  
tSTI  
tSTO  
tSTI  
OVLO  
UVLO  
IN  
ILIMIT  
1x /1.5x /2x ILIMIT  
1x /1.5x /2x ILIMIT  
IOUT  
THERMAL CURRENT LIMIT  
THERMAL CURRENT  
LIMIT  
VIN  
VFA  
VOUT_UVLO  
VOUT  
TJMAX  
TJ  
HVEN  
EN  
FLAG  
NOT DRAWN TO SCALE  
Figure 5. Continuous Fault Diagram  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX14721/  
MAX14722/  
MAX14723  
High-Accuracy, Adjustable Power Limiter  
t
t
t
t
t
t
STI  
REV_REC  
ON_NFET  
STI  
REV_REC  
DEB  
t
t
RIB  
RIB  
I
IN  
IN_REF  
(V /R  
1x/1.5x/2x  
1x/1.5x/2x  
I
I
LIMIT  
I
LIMIT  
)
RIB DSON  
V
OUT  
V
UVLO_OUT  
I
LOAD  
NOT DRAWN TO SCALE  
Figure 6. Reverse-Current Timing Diagram  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX14721/  
MAX14722/  
MAX14723  
High-Accuracy, Adjustable Power Limiter  
Do not use a R  
current-limit thresholds for different resistor values at  
SETI.  
A current mirror with a ratio of C  
with a current sense auto-zero operational amplifier. The  
mirrored current of the IN-OUT FET is provided on the  
SETI pin. Therefore, the voltage (V  
SETI pin should be interpreted as the current through the  
IN-OUT FET, as shown below:  
smaller than 6kΩ. Table 3 shows  
Fault Indicator (FLAG) Output  
SETI  
FLAG is an open-drain fault indicator output. It requires  
an external pullup resistor to a DC supply. FLAG asserts  
when any of the following conditions occur:  
is implemented  
IRATIO  
V
- V  
> V  
IN  
OUT FA  
The reverse-current protection is tripped  
The die temperature exceeds +170ºC  
SETI is connected to ground  
UVLO threshold has not been reached  
OVLO threshold is reached  
) read on the  
SETI  
V
(V)  
SETI  
I
= I  
× C  
=
IRATIO  
INOUT  
SETI  
R
(kW)  
SETI  
Thermal Shutdown Protection  
V
(V)  
SETI  
× C  
=
×I  
LIM  
Thermal shutdown circuitry protects the devices from  
overheating. The switch turns off and FLAG asserts  
when the junction temperature exceeds +170ºC (typ).  
The MAX14721–MAX14723 exit thermal shutdown and  
resume normal operation once the junction tempera-  
ture cools by 20ºC (typ) if the device is in autoretry or  
continuous current-limiting mode. When in latchoff mode,  
the device remains latched off until the input voltage is  
cycled or one of the enable pins is toggled.  
IRATIO  
V (V)  
RI  
IN Bypass Capacitor  
In applications in which an external PFET is not used,  
connect a minimum of 1µF capacitor from IN to GND  
to limit the input voltage drop during momentary output  
short-circuit conditions. Larger capacitor values further  
reduce the voltage droop at the input caused by load  
transients.  
The thermal-shutdown technology built into the  
MAX14721–MAX14723 behaves in accordance with  
the selected current limit mode. While the devices are  
in autoretry mode, the thermal limit uses the autore-  
try timing when coming out of a fault condition. When  
the MAX14721–MAX14723 detects an overtemperature  
fault, the switch turns off. Once the temperature of the  
junction falls below the falling thermal threshold, the  
In applications in which an external PFET is used, a  
4.7µF capacitor is placed at the drain of the PFET and  
capacitor at IN is reduced to 10nF (100nF, max).  
Hot Plug-In  
In many power applications, an input filtering capacitor  
is required to lower the radiated emission, enhance the  
ESD capability, etc. In hot plug applications, parasitic  
cable inductance, along with the input capacitor, causes  
overshoot and ringing when a powered cable is suddenly  
connected to the input terminal. This effect causes the  
protection device to see almost twice the applied voltage.  
An input voltage of 24V can easily exceed 40V due to  
ringing. The MAX14721–MAX14723 contain internal  
protection against hot plug input transients on the IN  
pins, with slew rate up to 30V/µs. However, in the case  
where the harsh industrial EMC test is required, use a  
device turns on after the time interval t . In latchoff  
RETRY  
mode, the device latches off until the input is cycled or  
one of the enable pins is toggled. In continuous current-  
limiting mode, the device turns off while the temperature  
is over the limit, then turns back on after t  
when the  
DEB  
temperature reaches the falling threshold. There is no  
retry time for thermal protection.  
Applications Information  
Setting the Current-Limit Threshold  
Connect a resistor between SETI and ground to program  
the current-limit threshold for the MAX14721–MAX14723.  
Leaving SETI unconnected sets the current-limit thresh-  
old to 0A and, since connecting SETI to ground is a fault  
condition, this causes the switch to remain off and FLAG  
to assert. Use the following formula to calculate the  
current-limit threshold:  
Table 3. Current-Limit Threshold  
vs. Resistor Values  
R
(kΩ)  
CURRENT LIMIT (A)  
SETI  
62.5  
0.2  
0.5  
1.0  
1.5  
2.0  
25.0  
12.5  
8.3  
V (W × A)  
RI  
R
(kW) =  
× C  
IRATIO  
SETI  
I
(mA)  
LIM  
6.25  
transient voltage suppressor (TVS) placed close to the  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX14721/  
MAX14722/  
MAX14723  
High-Accuracy, Adjustable Power Limiter  
input terminal that is capable of limiting the input surge to  
a maximimum of 60V.  
OUT Freewheeling Diode for Inductive Hard  
Short to Ground  
OUT Capacitance  
In applications with a highly inductive load, a freewheeling  
diode is required between the OUT terminal and GND.  
This protects the device from inductive kickback that  
occurs during short-to-ground events.  
For stable operation over the full temperature range and  
over the entire programmable current-limit range, connect  
a 4.7µF ceramic capacitor from OUT to ground. Other  
circuits connected to the output of the device may  
introduce additional capacitance, but it should be noted  
that excessive output capacitance on the MAX14721–  
MAX14723 can cause faults. If the capacitance is too  
high, the MAX14721–MAX14723 may not be able to  
charge the capacitor before the startup timeout. Calculate  
Layout and Thermal Dissipation  
To optimize the switch response to output short-circuit  
conditions, it is important to reduce the effect of undesir-  
able parasitic inductance by keeping all traces as short as  
possible. Place input and output capacitors as close as  
possible to the device (no more than 5mm). IN and OUT  
must be connected with wide short traces to the power  
bus. During steady-state operation, the power dissipation  
is typically low and the package temperature change is  
usually minimal.  
Attention must be given when using continuous current-  
limit mode. In this mode, the power dissipation during a  
fault condition can quickly cause the device to reach the  
thermal shutdown threshold. A large copper plane and  
multiple thermal vias from the exposed pad to ground  
plane are necessary to increase the thermal capacitance  
and reduce the thermal resistance of the board.  
the maximum capacitive load (C  
connected to OUT using the following formula:  
) value that can be  
MAX  
M x t (ms) + t  
(ms)  
STO  
STI  
V
C
(mF) = I (A)  
LIM  
MAX  
(V)  
IN_MAX  
where M is the multiplier (1x/1.5x/2x) applied to the current  
limit during startup. For example, when using MAX14721,  
if V  
= 20V, t  
(min) = 1090ms, t  
(min) = 22ms,  
results in the theoretical maximum  
IN_MAX  
STO  
STI  
and I = 2A, C  
LIM  
MAX  
of 111mF. In this case, any capacitance larger than 111mF  
will cause a fault condition because the capacitor cannot  
be charged to a sufficient voltage before t  
In practical applications, the output capacitor size is lim-  
ited by the thermal performance of the PCB board. Poor  
thermal design can cause the thermal foldback current-  
limiting function of the device to kick in too early, which may  
further limit the maximum capacitance that can be charged.  
Therefore, good thermal PCB design is imperative in order  
to charge large capacitor banks.  
ESD Test Conditions  
has expired.  
STO  
The MAX14721–MAX14723 are specified for ±15kV  
(HBM) ESD on IN when IN is bypassed to ground with a  
F, low ESR ceramic capacitor. No capacitor is required  
for ±2kV (HBM) (typ) ESD on IN. All pins have ±2kV  
(HBM) ESD protection. In applications in which an external  
pFET is used, see IN Bypass Capacitor section.  
HBM ESD Protection  
Figure 7 shows the Human Body Model and Figure 8  
shows the current waveform it generates when discharged  
into low impedance. This model consists of a 100pF  
capacitor charged to the ESD voltage of interest, which is  
then discharged into the device through a 1.5kΩ resistor.  
RC  
RD  
1MΩ  
1.5KΩ  
IP 100%  
90%  
IR  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
AMPERES  
36.8%  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
STORAGE  
CAPACITOR  
10%  
0
TIME  
SOURCE  
tRL  
tDL  
CURRENT WAVEFORM  
Figure 7. Human Body ESD Test Model  
Figure 8. Human Body Current Waveform  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX14721/  
MAX14722/  
MAX14723  
High-Accuracy, Adjustable Power Limiter  
Typical Application Circuit  
VIN  
*R1, R2, R3, AND R4 ARE ONLY  
REQURED FOR ADJUSTABLE UVLO/  
OVLO FUNCTIONALITY. OTHERWISE,  
TIE THE PIN TO GND TO USE THE  
INTERNAL, PREPROGRAMMED  
CIN  
C
IN_C  
GP  
IN  
IN IN  
VIN  
THRESHOLD.  
R1*  
R3*  
OUT  
SYSTEM  
CONTROLLER  
UVLO  
POWER  
OUT  
OUT  
PROTECTED  
POWER  
220kΩ  
R2*  
R4*  
SYSTEM  
INPUT  
ADC  
MAX14721–  
MAX14723  
COUT  
VIN  
OVLO  
HVEN  
SETI  
RIPEN  
FLAG  
EN  
GND  
ENB  
FAULT  
EN  
HVEN  
x
CLTS2  
10kΩ  
CLTS1  
GND  
Ordering Information  
PART  
INITIAL CURRENT LIMIT  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
MAX14721ATP+T  
MAX14722ATP+T  
MAX14723ATP+T  
1.0x  
1.5x  
2.0x  
20 TQFN-EP*  
20 TQFN-EP*  
20 TQFN-EP*  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
*EP = Exposed pad.  
Chip Information  
PROCESS: BiCMOS  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX14721/  
MAX14722/  
MAX14723  
High-Accuracy, Adjustable Power Limiter  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
10/14  
7/16  
0
1
2
3
Initial release  
1–19  
Improved latch-up and more robust protection capability  
Updated text and functional diagrams  
Updated the Benefits and Features section  
7/17  
1, 10, 11, 17,  
1
11/17  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2017 Maxim Integrated Products, Inc.  
20  

相关型号:

MAX14724

Serial-Controlled 8:4 Matrix Switch Multiplexer
MAXIM

MAX14724ETP+

Multiplexer,
MAXIM

MAX14724ETP+T

Serial-Controlled 8:4 Matrix Switch Multiplexer
MAXIM

MAX14724EWP+

Serial-Controlled 8:4 Matrix Switch Multiplexer
MAXIM

MAX14724EWP+T

Multiplexer,
MAXIM

MAX14724PMB1

8:4 Matrix Switch Multiplexer
MAXIM

MAX14727

3V to 28V Operating Voltage Range
MAXIM

MAX14727EVKIT

3V to 28V Operating Voltage Range
MAXIM

MAX14727EWV+

Power Supply Support Circuit,
MAXIM

MAX14728

3V to 28V Operating Voltage Range
MAXIM

MAX1472AKA T

300MHz-to-450MHz Low-Power, Crystal-Based ASK Transmitter
MAXIM

MAX1472AKA+T

300MHz-to-450MHz Low-Power, Crystal-Based ASK Transmitter
MAXIM