MAX15062CATA+T [MAXIM]

Switching Regulator, Current-mode, 0.62A, 535kHz Switching Freq-Max, BICMOS, PDSO8, 2 X 2 MM, ROHS COMPLIANT, TDFN-8;
MAX15062CATA+T
型号: MAX15062CATA+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switching Regulator, Current-mode, 0.62A, 535kHz Switching Freq-Max, BICMOS, PDSO8, 2 X 2 MM, ROHS COMPLIANT, TDFN-8

信息通信管理 开关 光电二极管
文件: 总23页 (文件大小:3161K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
General Description  
Benefits and Features  
●ꢀ EliminatesꢀExternalꢀComponentsꢀandꢀReduces  
The MAX15062 high-efficiency, high-voltage, synchronous  
step-down DC-DC converter with integrated MOSFETs  
operates over a 4.5V to 60V input voltage range. The  
converter delivers output current up to 300mA at 3.3V  
(MAX15062A), 5V (MAX15062B), and adjustable output  
voltages (MAX15062C). The device operates over the  
-40°C to +125°C temperature range and is available in a  
compact 8-pin (2mm x 2mm) TDFN package. Simulation  
models are available.  
Total Cost  
•ꢀ NoꢀSchottky—SynchronousꢀOperationꢀforꢀHighꢀ  
EfficiencyꢀandꢀReducedꢀCost  
•ꢀ InternalꢀCompensation  
•ꢀ InternalꢀFeedbackꢀDividerꢀforꢀFixedꢀ3.3V,ꢀ5Vꢀ  
Output Voltages  
•ꢀ InternalꢀSoft-Start  
• All-Ceramic Capacitors, Ultra-Compact Layout  
●ꢀ ReducesꢀNumberꢀofꢀDC-DCꢀRegulatorsꢀtoꢀStock  
•ꢀ Wideꢀ4.5Vꢀtoꢀ60VꢀInputꢀVoltageꢀRange  
The device employs a peak-current-mode control archi-  
tecture with a MODE pin that can be used to operate the  
device in pulse-width modulation (PWM) or pulse-fre-  
quency modulation (PFM) control schemes. PWM opera-  
tion provides constant frequency operation at all loads  
and is useful in applications sensitive to variable switch-  
ing frequency. PFM operation disables negative inductor  
current and additionally skips pulses at light loads for high  
efficiency. The low-resistance on-chip MOSFETs ensure  
high efficiency at full load and simplify the PCB layout.  
• Fixed 3.3V and 5V Output Voltage Options  
• Adjustable 0.9V to 0.89 x V Output Voltage Option  
IN  
• Delivers Up to 300mA Load Current  
• Configurable Between PFM and Forced-PWM  
Modes  
●ꢀ ReducesꢀPowerꢀDissipation  
• Peak Efficiency = 92%  
•ꢀ PFMꢀFeatureꢀforꢀHighꢀLight-LoadꢀEfficiency  
• Shutdown Current = 2.2µA (typ)  
To reduce input inrush current, the device offers an  
internal soft-start. The device also incorporates an EN/  
UVLO pin that allows the user to turn on the part at the  
desired input-voltage level. An open-drain RESET pin can  
be used for output-voltage monitoring.  
●ꢀ OperatesꢀReliablyꢀinꢀAdverseꢀIndustrialꢀEnvironments  
•ꢀ Hiccup-ModeꢀCurrentꢀLimitꢀandꢀAutoretryꢀStartup  
•ꢀ Built-InꢀOutputꢀVoltageꢀMonitoringꢀwithꢀOpen-Drainꢀ  
RESET Pin  
• Programmable EN/UVLO Threshold  
• Monotonic Startup into Prebiased Output  
• Overtemperature Protection  
Applications  
●ꢀ ProcessꢀControl  
●ꢀ IndustrialꢀSensors  
●ꢀ 4–20mAꢀCurrentꢀLoops  
●ꢀ HVACꢀandꢀBuildingꢀControl  
●ꢀ High-VoltageꢀLDOꢀReplacement  
●ꢀ General-PurposeꢀPoint-of-Load  
•ꢀ HighꢀIndustrialꢀ-40°Cꢀtoꢀ+125°CꢀAmbientꢀOperatingꢀ  
TemperatureꢀRange/-40°Cꢀtoꢀ+150°CꢀJunctionꢀ  
TemperatureꢀRange  
Typical Operating Circuit  
L1  
33µH  
V
V
OUT  
IN  
3.3V,  
4.5V TO  
60V  
V
LX  
IN  
C
IN  
300mA  
C
OUT  
Ordering Information appears at end of data sheet.  
1µF  
10µF  
EN/UVLO  
GND  
MAX15062A  
V
CC  
RESET  
C
VCC  
1µF  
V
MODE  
OUT  
19-6685; Rev 2; 7/16  
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Absolute Maximum Ratings  
V
ꢀtoꢀGND..............................................................-0.3Vꢀtoꢀ70V  
Continuous Power Dissipation (T ꢀ=ꢀ+70°C)  
IN  
A
EN/UVLOꢀtoꢀGND....................................................-0.3Vꢀtoꢀ70V  
LXꢀtoꢀGND....................................................-0.3V to V + 0.3V  
8-PinꢀTDFNꢀ(derateꢀ6.2mW/NCꢀaboveꢀ+70°C) ...........496mW  
JunctionꢀTemperature......................................................+150°C  
StorageꢀTemperatureꢀRange............................ -65°C to +150°C  
Soldering Temperature (reflow).......................................+260°C  
Lead Temperature (soldering, 10s) .................................+300°C  
IN  
V
, FB/V  
, RESETꢀtoꢀGND ...............................-0.3V to 6V  
CC  
OUT  
MODEꢀtoꢀGND.............................................-0.3V to V  
+ 0.3V  
CC  
LXꢀtotalꢀRMSꢀCurrent.....................................................±800mA  
Output Short-Circuit Duration....................................Continuous  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability. Junction temperature greater than +125°C degrades operating lifetimes.  
(Note 1)  
Package Thermal Characteristics  
TDFN  
Junction-to-AmbientꢀThermalꢀResistanceꢀ(θ ) ......+162°C/W  
JA  
Junction-to-CaseꢀThermalꢀResistanceꢀ(θ ).............+20°C/W  
JC  
Note 1:ꢀ PackageꢀthermalꢀresistancesꢀwereꢀobtainedꢀusingꢀtheꢀmethodꢀdescribedꢀinꢀJEDECꢀspecificationꢀJESD51-7,ꢀusingꢀaꢀfour-layerꢀ  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, LX = MODE = RESET = unconnected; T = -40°C to +125°C, unless  
IN  
GND  
IN  
VCC  
EN/UVLO A  
otherwise noted. Typical values are at T ꢀ=ꢀ+25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀGND,ꢀunlessꢀotherwiseꢀnoted.)ꢀ(Noteꢀ2)  
A
PARAMETER  
INPUT SUPPLY (VIN)  
InputꢀVoltageꢀRange  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
4.5  
60  
4
V
IN  
InputꢀShutdownꢀCurrent  
I
V
= 0V, shutdown mode  
2.2  
95  
µA  
IN-SH  
EN/UVLO  
MODE = unconnected,  
FB/V = 1.03 x FB/V  
I
160  
4
µA  
Q-PFM  
InputꢀSupplyꢀCurrent  
OUT  
OUT-REG  
I
Normal switching mode, V = 24V  
2.5  
mA  
Q-PWM  
IN  
ENABLE/UVLO (EN/UVLO)  
V
V
V
rising  
1.19  
1.06  
1.215  
1.09  
0.75  
1.24  
1.15  
ENR  
EN/UVLO  
EN/UVLO Threshold  
V
falling  
V
ENF  
EN/UVLO  
V
V
falling, true shutdown  
EN-TRUESD EN/UVLO  
EN/UVLOꢀInputꢀLeakageꢀCurrent  
I
V
= 60V, T = +25°C  
-100  
+100  
nA  
EN/UVLO  
EN/UVLO  
A
LDO (V  
)
CC  
V
V
V
ꢀOutputꢀVoltageꢀRange  
Current Limit  
V
6V < V ꢀ<ꢀ60V,ꢀ0mAꢀ<ꢀI < 10mA  
VCC  
4.75  
5
5.25  
50  
V
mA  
V
CC  
CC  
CC  
CC  
IN  
I
V
V
V
V
= 4.3V, V = 12V  
13  
30  
VCC-MAX  
CC  
INꢀ  
Dropout  
V
=ꢀ4.5V,ꢀI = 5mA  
VCC  
0.15  
4.18  
3.8  
0.3  
CC-DO  
INꢀ  
CC  
CC  
V
rising  
falling  
4.05  
4.3  
CC-UVR  
V
UVLO  
V
CC  
V
3.7  
3.95  
CC-UVF  
MaximꢀIntegratedꢀꢀ  
2  
www.maximintegrated.com  
 
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Electrical Characteristics (continued)  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, LX = MODE = RESET = unconnected; T = -40°C to +125°C, unless  
IN  
GND  
IN  
VCC  
EN/UVLO  
A
otherwise noted. Typical values are at T ꢀ=ꢀ+25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀGND,ꢀunlessꢀotherwiseꢀnoted.)ꢀ(Noteꢀ2)  
A
PARAMETER  
POWER MOSFETs  
SYMBOL  
CONDITIONS  
MIN  
TYP  
1.35  
0.45  
MAX  
UNITS  
T
T
T
T
= +25°C  
1.75  
2.7  
A
A
A
A
I
= 0.3A  
LX  
High-SideꢀpMOSꢀOn-Resistance  
R
Ω
DS-ONH  
(sourcing)  
= T = +125°C  
J
= +25°C  
0.55  
0.9  
I
= 0.3A  
LX  
Low-SideꢀnMOSꢀOn-Resistance  
R
Ω
DS-ONL  
(sinking)  
= T = +125°C  
J
V
V
= 0V, V = 60V, T = +25°C,  
INꢀ A  
EN/UVLO  
LX Leakage Current  
I
-1  
+1  
µA  
LX-LKG  
= (V  
+ 1V) to (V - 1V)  
LX  
GND  
IN  
SOFT-START (SS)  
Soft-Start Time  
t
3.8  
4.1  
4.4  
ms  
SS  
FEEDBACK (FB)  
MODEꢀ=ꢀGND,ꢀMAX15062C  
MODE = unconnected, MAX15062C  
MAX15062C  
0.887  
0.887  
-100  
0.9  
0.915  
-25  
0.913  
0.936  
FBꢀRegulationꢀVoltage  
V
V
FB-REG  
FB Leakage Current  
I
nA  
FB  
OUTPUT VOLTAGE (V  
)
OUT  
MODEꢀ=ꢀGND,ꢀMAX15062A  
3.25  
3.25  
4.93  
4.93  
3.3  
3.35  
5
3.35  
3.42  
5.07  
5.18  
MODE = unconnected, MAX15062A  
MODEꢀ=ꢀGND,ꢀMAX15062B  
V
ꢀRegulationꢀVoltage  
V
V
OUT  
OUT-REG  
MODE = unconnected, MAX15062B  
5.08  
CURRENT LIMIT  
Peak Current-Limit Threshold  
I
0.49  
0.58  
0.25  
0.56  
0.66  
0.62  
0.73  
0.35  
A
A
PEAK-LIMIT  
I
RUNAWAY-  
LIMIT  
RunawayꢀCurrent-LimitꢀThreshold  
MODEꢀ=ꢀGND  
0.3  
A
mA  
A
Negative Current-Limit Threshold  
I
SINK-LIMIT  
0.01  
0.13  
PFM Current Level  
TIMING  
I
PFM  
Switching Frequency  
f
465  
500  
1
535  
kHz  
SW  
EventsꢀtoꢀHiccupꢀAfterꢀCrossingꢀ  
RunawayꢀCurrentꢀLimit  
Cycles  
FB/V  
toꢀCauseꢀHiccup  
Undervoltage Trip Level  
OUT  
62.5  
64.5  
66.5  
%
HiccupꢀTimeout  
131  
90  
ms  
ns  
%
Minimum On-Time  
Maximum Duty Cycle  
t
130  
94  
ON-MIN  
D
FB/V  
= 0.98 x FB/V  
OUT-REG  
89  
91.5  
MAX  
OUT  
MaximꢀIntegratedꢀꢀ  
3  
www.maximintegrated.com  
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Electrical Characteristics (continued)  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, LX = MODE = RESET = unconnected; T = -40°C to +125°C, unless  
IN  
GND  
IN  
VCC  
EN/UVLO  
A
otherwise noted. Typical values are at T ꢀ=ꢀ+25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀGND,ꢀunlessꢀotherwiseꢀnoted.)ꢀ(Noteꢀ2)  
A
PARAMETER  
LX Dead Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
5
ns  
RESET  
FB/V  
Rising  
Threshold for RESET  
Threshold for RESET  
OUT  
FB/V  
FB/V  
rising  
93.5  
90  
95.5  
92  
2
97.5  
%
%
OUT  
FB/V  
OUT  
falling  
94  
OUT  
Falling  
RESET Delay After FB/V  
OUT  
ms  
Reachesꢀ95%ꢀRegulation  
RESET Output Level Low  
RESET Output Leakage Current  
MODE  
I
= 5mA  
0.2  
0.1  
V
RESET  
V
= 5.5V, T = +25°C  
µA  
RESET  
A
MODEꢀInternalꢀPullupꢀResistor  
THERMAL SHUTDOWN  
Thermal-Shutdown Threshold  
Thermal-ShutdownꢀHysteresis  
500  
kΩ  
Temperature rising  
166  
10  
°C  
°C  
Note 2: All the limits are 100% tested at T = +25°C. Limits over temperature are guaranteed by design.  
A
MaximꢀIntegratedꢀꢀ  
4  
www.maximintegrated.com  
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Typical Operating Characteristics  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, T = +25°C, unless otherwise noted.)  
A
IN  
GND  
IN  
VCC  
EN/UVLO  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
toc02a  
100  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
V
= 12V  
VIN = 6V  
IN  
V
= 12V  
IN  
VIN = 12V  
90  
80  
70  
60  
50  
40  
30  
20  
V
IN  
= 24V  
V
IN  
= 24V  
VIN = 24V  
VIN = 36V  
V
= 36V  
IN  
V
IN  
= 36V  
VIN = 48V  
FIGURE 7 APPLICATION  
CIRCUIT, PFM MODE  
FIGURE 5 APPLICATION  
CIRCUIT, PFM MODE  
= 3.3V  
FIGURE 6 APPLICATION  
CIRCUIT, PFM MODE  
V
= 48V  
IN  
V
IN  
= 48V  
V
= 2.5V  
OUT  
V
V
OUT  
= 5V  
OUT  
30  
1
1
10  
LOAD CURRENT (mA)  
100  
10  
100  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
toc02b  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
100  
90  
80  
70  
60  
50  
40  
VIN = 24V  
V = 12V  
IN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 18V  
V
IN  
= 12V  
V
= 24V  
IN  
V
= 24V  
IN  
V
= 36V  
V
= 36V  
IN  
IN  
VIN = 36V  
VIN = 48V  
V
IN  
= 48V  
V
IN  
= 48V  
VIN = 60V  
FIGURE 8 APPLICATION  
CIRCUIT, PFM MODE  
FIGURE 5 APPLICATION  
CIRCUIT, PWM MODE  
FIGURE 6 APPLICATION  
CIRCUIT, PWM MODE  
V
= 12V  
OUT  
V
= 3.3V  
V
OUT  
= 5V  
OUT  
0
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
1
10  
LOAD CURRENT (mA)  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
OUTPUT VOLTAGE  
vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY VS. LOAD CURRENT  
toc04a  
toc04b  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.37  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VIN = 6V  
FIGURE 5 APPLICATION  
CIRCUIT, PFM MODE  
VIN = 18V  
VIN = 24V  
V
= 12V, 24V  
IN  
VIN = 12V  
VIN = 24V  
VIN = 36V  
V
= 36V  
IN  
V
VIN = 36V  
VIN = 48V  
VIN = 48V  
VIN = 60V  
= 48V  
IN  
FIGURE 7 APPLICATION  
CIRCUIT, PWM MODE  
FIGURE 8 APPLICATION  
CIRCUIT, PWM MODE  
V
= 2.5V  
OUT  
V
= 12V  
OUT  
0
0
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
MaximꢀIntegratedꢀꢀ  
5  
www.maximintegrated.com  
 
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Typical Operating Characteristicsc (continued)  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, T = +25°C, unless otherwise noted.)  
A
IN  
GND  
IN  
VCC  
EN/UVLO  
OUTPUT VOLTAGE  
vs. LOAD CURRENT  
OUTPUT VOLTAGE  
vs. LOAD CURRENT  
OUTPUT VOLTAGE  
vs. LOAD CURRENT  
toc06b  
toc06a  
5.10  
5.08  
5.06  
5.04  
5.02  
5.00  
4.98  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
12.35  
FIGURE 6 APPLICATION  
CIRCUIT, PFM MODE  
FIGURE 8 APPLICATION  
CIRCUIT, PFM MODE  
FIGURE 7 APPLICATION  
CIRCUIT, PFM MODE  
12.30  
12.25  
VIN = 18V  
VIN = 24V  
VIN = 36V  
VIN = 12V  
V
IN  
= 24V  
12.20  
12.15  
12.10  
12.05  
12.00  
VIN = 6V,24V  
VIN = 36V  
V
= 12V, 36V, 48V  
IN  
VIN = 48V  
VIN = 48V,60V  
2.47  
0
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
OUTPUT VOLTAGE  
vs. LOAD CURRENT  
OUTPUT VOLTAGE  
vs. LOAD CURRENT  
FEEDBACK VOLTAGE  
vs. LOAD CURRENT  
toc06c  
0.920  
0.915  
0.910  
0.905  
0.900  
0.895  
3.303  
3.302  
3.301  
3.300  
3.299  
3.298  
3.297  
5.003  
5.002  
5.001  
5.000  
4.999  
4.998  
4.997  
PFM MODE  
FIGURE 5 APPLICATION  
CIRCUIT, PWM MODE  
FIGURE 6 APPLICATION  
CIRCUIT, PWM MODE  
V
= 48V  
IN  
VIN = 12V  
V
= 36V  
IN  
V
= 48V  
IN  
VIN = 6V, 24V  
V
= 36V  
IN  
VIN = 36V  
VIN = 48V  
V
IN  
= 24V  
100  
V
IN  
= 12V  
V
IN  
= 12V  
V
= 24V  
200  
IN  
0
50  
150  
200  
250  
300  
0
50  
100  
150  
250  
300  
0
50  
100  
150  
200  
250  
300  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
OUTPUT VOLTAGE  
vs. TEMPERATURE  
OUTPUT VOLTAGE vs. TEMPERATURE  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
FIGURE 6 APPLICATION  
CIRCUIT, LOAD = 300mA  
FIGURE 5 APPLICATION  
CIRCUIT, LOAD = 300mA  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
MaximꢀIntegratedꢀꢀ  
6  
www.maximintegrated.com  
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Typical Operating Characteristicsc (continued)  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, T = +25°C, unless otherwise noted.)  
IN  
GND  
IN  
VCC  
EN/UVLO A  
FEEDBACK VOLTAGE  
VS. TEMPERATURE  
NO-LOAD SUPPLY CURRENT  
vs. INPUT VOLTAGE  
toc10a  
100  
98  
96  
94  
92  
90  
0.908  
0.904  
0.900  
0.896  
0.892  
0.888  
0.884  
0.880  
PFM MODE  
5
5
5
15  
25  
35  
45  
55  
-40 -20  
0
20 40 60 80 100 120  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
NO-LOAD SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN CURRENT  
vs. INPUT VOLTAGE  
140  
130  
120  
110  
100  
90  
6
5
4
3
2
1
0
80  
70  
PFM MODE  
60  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
15  
25  
35  
45  
55  
INPUT VOLTAGE (V)  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
SWITCH CURRENT LIMIT  
vs. INPUT VOLTAGE  
600  
550  
500  
450  
400  
350  
300  
250  
200  
2.40  
2.25  
2.10  
1.95  
1.80  
1.65  
1.50  
SWITCH PEAK CURRENT LIMIT  
SWITCH NEGATIVE CURRENT LIMIT  
15  
25  
35  
45  
55  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
MaximꢀIntegratedꢀꢀ  
7  
www.maximintegrated.com  
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Typical Operating Characteristicsc (continued)  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, T = +25°C, unless otherwise noted.)  
IN  
GND  
IN  
VCC  
EN/UVLO A  
EN/UVLO THRESHOLD  
vs. TEMPERATURE  
SWITCH CURRENT LIMIT  
vs. TEMPERATURE  
600  
550  
500  
450  
400  
350  
300  
250  
200  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
1.08  
RISING  
SWITCH PEAK CURRENT LIMIT  
SWITCH NEGATIVE CURRENT LIMIT  
FALLING  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
SWITCHING FREQUENCY  
vs. TEMPERATURE  
RESET THRESHOLD  
vs. TEMPERATURE  
98  
97  
96  
95  
94  
93  
92  
91  
90  
560  
540  
520  
500  
480  
460  
RISING  
FALLING  
440  
0
10  
20  
30  
40  
50  
60  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LOAD TRANSIENT RESPONSE,  
LOAD TRANSIENT RESPONSE,  
PFM MODE (LOAD CURRENT STEPPED  
PFM MODE (LOAD CURRENT STEPPED  
FROM 5mA TO 150mA)  
FROM 5mA TO 150mA)  
MAX15062 toc20  
MAX15062 toc21  
V
OUT  
(AC)  
100mV/div  
V
OUT  
(AC)  
100mV/div  
FIGURE 5  
FIGURE 6  
APPLICATION CIRCUIT  
APPLICATION CIRCUIT  
V
OUT  
= 3.3V  
V
OUT  
= 5V  
I
I
OUT  
OUT  
100mA/div  
100mA/div  
100µs/div  
100µs/div  
MaximꢀIntegratedꢀꢀ  
8  
www.maximintegrated.com  
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Typical Operating Characteristicsc (continued)  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, T = +25°C, unless otherwise noted.)  
IN  
GND  
IN  
VCC  
EN/UVLO A  
LOAD TRANSIENT RESPONSE  
PFM MODE (LOAD CURRENT STEPPED  
FROM 5mA TO 150mA)  
LOAD TRANSIENT RESPONSE,  
PFM MODE (LOAD CURRENT STEPPED  
FROM 5mA TO 150mA)  
toc21b  
toc21a  
VOUT (AC)  
VOUT (AC)  
100mV/div  
200mV/div  
FIGURE 8  
APPLICATION CIRCUIT  
FIGURE 7  
APPLICATION CIRCUIT  
V
OUT = 2.5V  
V
= 12V  
OUT  
IOUT  
IOUT  
100mA/div  
100mA/div  
100µs/div  
100µs/div  
LOAD TRANSIENT RESPONSE,  
LOAD TRANSIENT RESPONSE,  
PFM OR PWM MODE (LOAD CURRENT  
PFM OR PWM MODE (LOAD CURRENT  
STEPPED FROM 150mA TO 300mA)  
STEPPED FROM 150mA TO 300mA)  
MAX15062 toc22  
MAX15062 toc23  
V
OUT  
(AC)  
V
OUT  
(AC)  
100mV/div  
100mV/div  
I
OUT  
I
OUT  
100mA/div  
100mA/div  
FIGURE 5  
FIGURE 6  
APPLICATION CIRCUIT  
APPLICATION CIRCUIT  
V
OUT  
= 3.3V  
V
OUT  
= 5V  
40µs/div  
LOAD TRANSIENT RESPONSE  
PFM OR PWM MODE (LOAD CURRENT  
STEPPED FROM 150mA TO 300mA)  
40µs/div  
LOAD TRANSIENT RESPONSE  
PFM OR PWM MODE (LOAD CURRENT  
STEPPED FROM 150mA TO 300mA)  
toc23a  
toc23b  
VOUT (AC)  
50mV/div  
VOUT (AC)  
200mV/div  
IOUT  
100mA/div  
IOUT  
FIGURE 7  
APPLICATION CIRCUIT  
FIGURE 8  
APPLICATION CIRCUIT  
100mA/div  
V
= 2.5V  
V
= 12V  
OUT  
OUT  
40µs/div  
40µs/div  
MaximꢀIntegratedꢀꢀ  
9  
www.maximintegrated.com  
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Typical Operating Characteristicsc (continued)  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, T = +25°C, unless otherwise noted.)  
IN  
GND  
IN  
VCC  
EN/UVLO A  
LOAD TRANSIENT RESPONSE,  
PWM MODE (LOAD CURRENT  
LOAD TRANSIENT RESPONSE,  
PWM MODE PWM mode (LOAD CURRENT  
STEPPED FROM NO LOAD TO 150mA)  
STEPPED FROM NO LOAD TO 150mA)  
MAX15062 toc24  
MAX15062 toc25  
V
OUT  
(AC)  
V
OUT  
(AC)  
100mV/div  
100mV/div  
FIGURE 5  
FIGURE 6  
APPLICATION CIRCUIT  
APPLICATION CIRCUIT  
V
OUT  
= 3.3V  
V
OUT  
= 5V  
I
I
OUT  
OUT  
100mA/div  
100mA/div  
40µs/div  
LOAD TRANSIENT RESPONSE  
40µs/div  
LOAD TRANSIENT RESPONSE  
PWM MODE (LOAD CURRENT STEPPED  
PWM MODE (LOAD CURRENT STEPPED  
FROM NO LOAD TO 150mA)  
FROM NO LOAD TO 150mA)  
toc25b  
toc25a  
VOUT (AC)  
VOUT (AC)  
50mV/div  
200mV/div  
FIGURE 8  
APPLICATION CIRCUIT  
FIGURE 7  
APPLICATION CIRCUIT  
V
= 12V  
OUT  
V
= 2.5V  
OUT  
IOUT  
100mA/div  
IOUT  
100mA/div  
40µs/div  
40µs/div  
FULL-LOAD SWITCHING WAVEFORMS  
SWITCHING WAVEFORMS  
(PFM MODE)  
(PWM OR PFM MODE)  
MAX15062 toc27  
MAX15062 toc26  
V
= 5V,  
OUT  
FIGURE 6 APPLICATION CIRCUIT  
= 5V, LOAD = 20mA  
LOAD = 300mA  
V
OUT  
V
(AC)  
OUT  
V
(AC)  
OUT  
20mV/div  
100mV/div  
V
LX  
10V/div  
V
LX  
10V/div  
I
OUT  
I
OUT  
200mA/div  
100mA/div  
s/div  
10µs/div  
MaximꢀIntegratedꢀꢀ  
10  
www.maximintegrated.com  
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Typical Operating Characteristicsc (continued)  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, T = +25°C, unless otherwise noted.)  
IN  
GND  
IN  
VCC  
EN/UVLO A  
NO-LOAD SWITCHING WAVEFORMS  
(PWM MODE)  
SOFT-START  
MAX15062 toc28  
MAX15062 toc29  
V
= 5V  
OUT  
V
EN/UVLO  
5V/div  
V
OUT  
(AC)  
20mV/div  
V
LX  
V
OUT  
10V/div  
1V/div  
FIGURE 5  
APPLICATION CIRCUIT  
= 3.3V  
V
OUT  
I
OUT  
I
OUT  
100mA/div  
100mA/div  
V
RESET  
5V/div  
s/div  
1ms/div  
SOFT-START  
SOFT-START  
toc30a  
MAX15062 toc30  
VEN/UVLO  
5V/div  
V
EN/UVLO  
5V/div  
VOUT  
1V/div  
IOUT  
V
OUT  
100mA/div  
1V/div  
FIGURE 6  
FIGURE 7  
APPLICATION CIRCUIT  
APPLICATION CIRCUIT  
= 5V  
V
OUT  
I
V
= 2.5V  
OUT  
OUT  
VRESET  
5V/div  
100mA/div  
V
RESET  
5V/div  
1ms/div  
1ms/div  
SOFT-START  
SHUTDOWN WITH ENABLE  
MAX15062 toc31  
toc30b  
VEN/UVLO  
5V/div  
V
EN/UVLO  
5V/div  
V
OUT  
VOUT  
5V/div  
1V/div  
I
OUT  
100mA/div  
IOUT  
100mA/div  
FIGURE 8  
APPLICATION CIRCUIT  
V
= 12V  
OUT  
V
RESET  
5V/div  
VRESET  
5V/div  
400µs/div  
1ms/div  
MaximꢀIntegratedꢀꢀ  
11  
www.maximintegrated.com  
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Typical Operating Characteristicsc (continued)  
(V = 24V, V  
= 0V, C = C  
= 1µF, V = 1.5V, T = +25°C, unless otherwise noted.)  
EN/UVLO A  
IN  
GND  
IN  
VCC  
BODE PLOT  
SOFT-START WITH 3V PREBIAS  
OVERLOAD PROTECTION  
MAX15062 toc34  
MAX15062 toc3  
MAX15062 toc33  
50  
180  
144  
108  
72  
40  
30  
20  
10  
0
V
V
IN  
20V/div  
EN/UVLO  
5V/div  
GAIN  
PHASE  
V
OUT  
V
OUT  
2V/div  
1V/div  
36  
FIGURE 6  
APPLICATION CIRCUIT  
NO LOAD  
0
f
= 47kHz,  
PHASE MARGIN = 59°  
CR  
-10  
-36  
-72  
-108  
-144  
-180  
-20  
-30  
-40  
-50  
PWM MODE  
FIGURE 5 APPLICATION CIRCUIT  
I
OUT  
200mA/div  
V
= 3.3V  
OUT  
V
RESET  
5V/div  
2
4
6 8 1  
10k  
FREQUENCY (Hz)  
2
4
6 8 1  
2
1k  
100k  
1ms/div  
20ms/div  
BODE PLOT  
BODE PLOT  
BODE PLOT  
MAX15062 toc35  
MAX15062 toc35b  
MAX15062 toc35a  
50  
40  
180  
144  
108  
72  
50  
40  
180  
144  
108  
72  
50  
180  
144  
108  
72  
40  
30  
GAIN  
GAIN  
GAIN  
30  
30  
PHASE  
20  
20  
20  
PHASE  
PHASE  
10  
36  
10  
36  
10  
36  
0
0
0
0
0
0
f
= 43kHz,  
CR  
f
= 36kHz,  
CR  
f
= 47kHz,  
CR  
PHASE MARGIN = 60°  
-10  
-20  
-30  
-40  
-50  
-36  
-72  
-108  
-144  
-180  
-10  
-20  
-30  
-40  
-50  
-36  
-72  
-108  
-144  
-180  
-10  
-20  
-30  
-40  
-50  
-36  
-72  
-108  
-144  
-180  
PHASE MARGIN = 66°  
PHASE MARGIN = 60°  
FIGURE 7 APPLICATION CIRCUIT  
= 2.5V  
FIGURE 6 APPLICATION CIRCUIT  
= 5V  
FIGURE 8 APPLICATION CIRCUIT  
V
OUT  
V
OUT  
V
= 12V  
OUT  
2
4
6 8 1  
10k  
FREQUENCY (Hz)  
2
4
6 8 1  
2
1k  
10k  
100k  
1k  
10k  
100k  
1k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
MAX15062, 5V OUTPUT, 0.3A LOAD CURRENT,  
CONDUCTED EMI CURVE  
70  
QUASI-PEAK LIMIT  
AVERAGE LIMIT  
60  
50  
40  
30  
20  
10  
PEAK  
EMISSIONS  
AVERAGE  
EMISSIONS  
30  
1
10  
0.15  
FREQUENCY (MHz)  
MeasuredꢀonꢀtheꢀMAX15062BEVKITꢀwithꢀInputꢀFilter–  
ꢀ=ꢀ4.7µF,ꢀꢀL ꢀ=ꢀ10µH  
C
IN  
IN  
MaximꢀIntegratedꢀꢀ  
12  
www.maximintegrated.com  
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Pin Configuration  
TOP VIEW  
LX  
8
GND RESET MODE  
5
7
6
MAX15062  
1
2
3
4
FB/V  
+
V
EN/UVLO  
V
CC  
IN  
OUT  
TDFN  
(2mm x 2mm)  
Pin Description  
PIN  
NAME  
FUNCTION  
1
V
SwitchingꢀRegulatorꢀPowerꢀInput.ꢀConnectꢀaꢀX7Rꢀ1µFꢀceramicꢀcapacitorꢀfromꢀV ꢀtoꢀGNDꢀforꢀbypassing.ꢀ  
IN  
IN  
Active-High,ꢀEnable/Undervoltage-DetectionꢀInput.ꢀPullꢀEN/UVLOꢀtoꢀGNDꢀtoꢀdisableꢀtheꢀregulatorꢀoutput.ꢀ  
2
3
4
EN/UVLO Connect EN/UVLO to V for always-on operation. Connect a resistor-divider between V and EN/UVLO  
IN  
IN  
toꢀGNDꢀtoꢀprogramꢀtheꢀinputꢀvoltageꢀatꢀwhichꢀtheꢀdeviceꢀisꢀenabledꢀandꢀturnsꢀon.  
V
InternalꢀLDOꢀPowerꢀOutput.ꢀBypassꢀV ꢀtoꢀGNDꢀwithꢀaꢀminimumꢀ1µFꢀcapacitor.  
CC  
CC  
FeedbackꢀInput.ꢀForꢀfixedꢀoutputꢀvoltageꢀversions,ꢀconnectꢀFB/V  
directly to the output. For the  
OUT  
FB/V  
adjustable output voltage version, connect FB/V  
to a resistor-divider between V  
ꢀandꢀGNDꢀtoꢀ  
OUT  
OUT  
OUT  
adjust the output voltage from 0.9V to 0.89 x V  
.
IN  
PFM/PWMꢀModeꢀSelectionꢀInput.ꢀConnectꢀMODEꢀtoꢀGNDꢀtoꢀenableꢀtheꢀfixed-frequencyꢀPWMꢀoperation.ꢀ  
Leave unconnected for light-load PFM operation.  
5
6
MODE  
Open-DrainꢀResetꢀOutput.ꢀPullꢀupꢀRESET to an external power supply with an external resistor.  
RESET goes low when the output voltage drops below 92% of the set nominal regulated voltage. RESET  
goes high impedance 2ms after the output voltage rises above 95% of its regulation value. See the  
Electrical Characteristics table for threshold values.  
RESET  
Ground.ꢀConnectꢀGNDꢀtoꢀtheꢀpowerꢀgroundꢀplane.ꢀConnectꢀallꢀtheꢀcircuitꢀgroundꢀconnectionsꢀtogetherꢀatꢀ  
a single point. See the PCB Layout Guidelines section.  
7
GND  
InductorꢀConnection.ꢀConnectꢀLXꢀtoꢀtheꢀswitchingꢀsideꢀofꢀtheꢀinductor.ꢀLXꢀisꢀhighꢀimpedanceꢀwhenꢀtheꢀ  
device is in shutdown.  
8
LX  
MaximꢀIntegratedꢀꢀ  
13  
www.maximintegrated.com  
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Block Diagram  
V
IN  
LDO  
REGULATOR  
PEAK-LIMIT  
RUNAWAY-  
LIMIT  
CURRENT-  
SENSE  
LOGIC  
CURRENT-  
SENSE  
AMPLIFIER  
V
CC  
CS  
PFM  
MAX15062  
POK  
EN/UVLO  
DH  
HIGH-SIDE  
DRIVER  
CHIPEN  
CLK  
1.215V  
THERMAL  
SHUTDOWN  
LX  
V
CC  
OSCILLATOR  
SLOPE  
500kΩ  
MODE  
DL  
PFM/PWM  
CONTROL  
LOGIC  
LOW-SIDE  
DRIVER  
MODE SELECT  
0.55V  
CC  
SLOPE  
CS  
R1  
*
LOW-SIDE  
CURRENT  
SENSE  
SINK-LIMIT  
PWM  
FB/V  
OUT  
NEGATIVE  
CURRENT  
REF  
ERROR  
AMPLIFIER  
GND  
R2  
3.135V FOR MAX15062A  
4.75V FOR MAX15062B  
0.859V FOR MAX15062C  
CLK  
RESET  
REFERENCE  
SOFT-START  
2ms  
DELAY  
FB/V  
OUT  
*RESISTOR-DIVIDER ONLY FOR MAX15062A, MAX15062B  
MaximꢀIntegratedꢀꢀ  
14  
www.maximintegrated.com  
 
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
tive applications and provides fixed switching frequency  
atꢀallꢀloads.ꢀHowever,ꢀtheꢀPWMꢀmodeꢀofꢀoperationꢀgivesꢀ  
lower efficiency at light loads compared to PFM mode of  
operation.  
Detailed Description  
The MAX15062 high-efficiency, high-voltage, syn-  
chronous step-down DC-DC converter with integrated  
MOSFETs operates over a wide 4.5V to 60V input voltage  
range. The converter delivers output current up to 300mA  
at 3.3V (MAX15062A), 5V (MAX15062B), and adjustable  
output voltages (MAX15062C). When EN/UVLO and  
PFM Mode Operation  
PFM mode operation disables negative inductor  
current and additionally skips pulses at light loads for high  
efficiency.ꢀInꢀPFMꢀmode,ꢀtheꢀinductorꢀcurrentꢀisꢀforcedꢀtoꢀ  
a fixed peak of 130mA every clock cycle until the output  
rises to 102.3% of the nominal voltage. Once the output  
reaches 102.3% of the nominal voltage, both high-side  
and low-side FETs are turned off and the part enters  
hibernate operation until the load discharges the output  
to 101.1% of the nominal voltage. Most of the internal  
blocks are turned off in hibernate operation to save  
quiescent current. After the output falls below 101.1%  
of the nominal voltage, the device comes out of hiber-  
nate operation, turns on all internal blocks, and again  
commences the process of delivering pulses of energy  
to the output until it reaches 102.3% of the nomi-  
nal output voltage. The device naturally exits PFM  
mode when the load current exceeds 55mA  
(typ). The advantage of the PFM mode is higher  
efficiency at light loads because of lower quiescent  
current drawn from supply.  
V
CC  
UVLO are satisfied, an internal power-up sequence  
soft-starts the error-amplifier reference, resulting in a  
clean monotonic output-voltage soft-start independent of  
the load current. The FB/V  
pin monitors the output  
OUT  
voltage through a resistor-divider. RESET transitions  
to a high-impedance state 2ms after the output voltage  
reaches 95% of regulation. The device selects either  
PFM or forced-PWM mode depending on the state of the  
MODE pin at power-up. By pulling the EN/UVLO pin to  
low, the device enters the shutdown mode and consumes  
only 2.2µA (typ) of standby current.  
DC-DC Switching Regulator  
The device uses an internally compensated, fixed-fre-  
quency, current-mode control scheme (see the Block  
Diagram). On the rising edge of an internal clock, the  
high-side pMOSFET turns on. An internal error amplifier  
compares the feedback voltage to a fixed internal refer-  
ence voltage and generates an error voltage. The error  
voltage is compared to a sum of the current-sense voltage  
and a slope-compensation voltage by a PWM comparator  
to set the on-time. During the on-time of the pMOSFET,  
the inductor current ramps up. For the remainder of the  
switching period (off-time), the pMOSFET is kept off and  
the low-side nMOSFET turns on. During the off-time, the  
inductor releases the stored energy as the inductor current  
ramps down, providing current to the output. Under over-  
load conditions, the cycle-by-cycle current-limit feature  
limits the inductor peak current by turning off the high-side  
pMOSFET and turning on the low-side nMOSFET.  
Internal 5V Linear Regulator  
An internal regulator provides a 5V nominal supply to  
power the internal functions and to drive the power  
MOSFETs. The output of the linear regulator (V ) should  
CC  
beꢀbypassedꢀwithꢀaꢀ1µFꢀcapacitorꢀtoꢀGND.ꢀTheꢀV  
regu-  
CC  
lator dropout voltage is typically 150mV. An undervoltage-  
lockout circuit that disables the regulator when V falls  
CC  
below 3.8V (typ). The 400mV V  
UVLO hysteresis pre-  
CC  
vents chattering on power-up and power-down.  
Enable Input (EN/UVLO), Soft-Start  
When EN/UVLO voltage is above 1.21V (typ), the device’s  
internal error-amplifier reference voltage starts to ramp  
up. The duration of the soft-start ramp is 4.1ms, allowing a  
smooth increase of the output voltage. Driving EN/UVLO  
low disables both power MOSFETs, as well as other inter-  
Mode Selection (MODE)  
The logic state of the MODE pin is latched after V  
CC  
and EN/UVLO voltages exceed respective UVLO rising  
thresholds and all internal voltages are ready to allow  
LXꢀꢀswitching.ꢀIfꢀtheꢀMODEꢀꢀpinꢀisꢀunconnectedꢀatꢀpower-  
up,thepartoperatesinPFMmodeatlightloads.Iftheꢀ  
MODE pin is grounded at power-up, the part operates in  
constant-frequency PWM mode at all loads. State chang-  
es on the MODE pin are ignored during normal operation.  
nal circuitry, and reduces V quiescent current to below  
IN  
2.2µA. EN/UVLO can be used as an input-voltage UVLO  
adjustment input. An external voltage-divider between V  
IN  
andꢀEN/UVLOꢀtoꢀGNDꢀadjustsꢀtheꢀinputꢀvoltageꢀatꢀwhichꢀ  
thedeviceturnsonorturnsoff.IfinputUVLOprogram-  
ming is not desired, connect EN/UVLO to V (see the  
Electrical Characteristics table for EN/UVLO rising and  
falling threshold voltages).  
IN  
PWM Mode Operation  
Inꢀ PWMꢀ mode,ꢀ theꢀ inductorꢀ currentꢀ isꢀ allowedꢀ toꢀ goꢀ  
negative. PWM operation is useful in frequency sensi-  
MaximꢀIntegratedꢀꢀ  
15  
www.maximintegrated.com  
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
to a fault condition, output voltage drops to 65% (typ) of  
its nominal value any time after soft-start is complete,  
Reset Output (RESET)  
The device includes an open-drain RESET output to  
monitor the output voltage. RESET goes high impedance  
2ms after the output rises above 95% of its nominal set  
value and pulls low when the output voltage falls below  
92% of the set nominal regulated voltage. RESET asserts  
low during the hiccup timeout period.  
hiccupmodeistriggered.Inhiccupmode,theconverterꢀ  
is protected by suspending switching for a hiccup timeout  
period of 131ms. Once the hiccup timeout period expires,  
soft-startꢀ isꢀ attemptedꢀ again.ꢀ Hiccupꢀ modeꢀ ofꢀ operationꢀ  
ensures low power dissipation under output short-circuit  
conditions.  
Startup into a Prebiased Output  
Care should be taken in board layout and system wiring  
to prevent violation of the absolute maximum rating of the  
The device is capable of soft-start into a prebiased out-  
put, without discharging the output capacitor in both the  
PFM and forced-PWM modes. Such a feature is useful in  
applications where digital integrated circuits with multiple  
rails are powered.  
FB/V  
pin under short-circuit conditions. Under such  
OUT  
conditions, it is possible for the ceramic output capacitor  
to oscillate with the board or wiring inductance between  
the output capacitor or short-circuited load, thereby caus-  
ing the absolute maximum rating of FB/V  
(-0.3V) to  
OUT  
Operating Input Voltage Range  
be exceeded. The parasitic board or wiring inductance  
shouldꢀ beꢀ minimizedꢀ andꢀ theꢀ outputꢀ voltageꢀ waveformꢀ  
under short-circuit operation should be verified to ensure  
The maximum operating input voltage is determined by  
the minimum controllable on-time and the minimum oper-  
ating input voltage is determined by the maximum duty  
cycle and circuit voltage drops. The minimum and maxi-  
mum operating input voltages for a given output voltage  
should be calculated as follows:  
the absolute maximum rating of FB/V  
is not exceeded.  
OUT  
Thermal Overload Protection  
Thermal overload protection limits the total power dis-  
sipation in the device. When the junction temperature  
exceeds +166°C, an on-chip thermal sensor shuts down  
the device, turns off the internal power MOSFETs, allow-  
ing the device to cool down. The thermal sensor turns the  
device on after the junction temperature cools by 10°C.  
V
+ (I  
×(R  
+ 0.5))  
DCR  
OUT  
OUT  
D
V
=
+ (I  
×1.0)  
OUT  
INMIN  
MAX  
V
OUT  
V
=
INMAX  
t
× f  
ONMIN SW  
Applications Information  
where V  
theꢀmaximumꢀloadꢀcurrent,ꢀR  
the inductor, f  
is maximum duty cycle (0.89), and t  
isthesteady-stateoutputvoltage,I  
is  
OUT  
OUT  
is the DC resistance of  
DCR  
Inductor Selection  
A low-loss inductor having the lowest possible DC resis-  
tance that fits in the allotted dimensions should be selected.  
is the switching frequency (max), D  
SW  
MAX  
is the worst-  
ONMIN  
case minimum controllable switch on-time (130ns).  
Theꢀ saturationꢀ currentꢀ (I ) must be high enough to  
SAT  
ensure that saturation cannot occur below the maximum  
current-limit value. The required inductance for a given  
application can be determined from the following equation:  
Overcurrent Protection/Hiccup Mode  
The device is provided with a robust overcurrent  
protection scheme that protects the device under over-  
load and output short-circuit conditions. A cycle-by-cycle  
peak current limit turns off the high-side MOSFET when-  
ever the high-side switch current exceeds an internal limit  
of 0.56A (typ). A runaway current limit on the high-side  
switch current at 0.66A (typ) protects the device under  
high input voltage, and short-circuit conditions when  
there is insufficient output voltage available to restore the  
inductor current that was built up during the on period of  
the step-down converter. One occurrence of the runaway  
currentꢀ limitꢀ triggersꢀ aꢀ hiccupꢀ mode.ꢀ Inꢀ addition,ꢀ ifꢀ dueꢀ  
L = 9.3 x V  
OUT  
whereLisinductanceinµHandV  
is output voltage.  
OUT  
Once the L value is known, the next step is to select the  
right core material. Ferrite and powdered iron are com-  
monly available core materials. Ferrite cores have low  
core losses and are preferred for high-efficiency designs.  
Powdered iron cores have more core losses and are rela-  
tively cheaper than ferrite cores. See Table 1 to select the  
inductors for typical applications.  
MaximꢀIntegratedꢀꢀ  
16  
www.maximintegrated.com  
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Table 1. Inductor Selection  
INPUT VOLTAGE  
V
(V)  
I
(mA)  
L (µH)  
RECOMMENDED PART NO.  
Coilcraft LPS4018-333ML  
OUT  
OUT  
RANGE V (V)  
IN  
4.5 to 60  
6 to 60  
3.3 (Fixed)  
5 (Fixed)  
1.8 or 2.5  
12  
300  
33  
47  
300  
300  
300  
300  
CoilcraftꢀLPS4018-473ML  
Coilcraft LPS4018-223ML  
Wurthꢀ74408943101  
4.5 to 60  
14 to 60  
17ꢀtoꢀ60  
22  
100  
150  
15  
TDK VLC6045T-151M  
Table 2. Output Capacitor Selection  
INPUT VOLTAGE  
V
(V)  
I
(mA)  
C (µF)  
OUT  
RECOMMENDED PART NO.  
OUT  
OUT  
RANGE V (V)  
IN  
4.5 to 60  
6 to 60  
3.3 (Fixed)  
5 (Fixed)  
1.8 or 2.5  
12  
300  
10µF/1206/X7R/6.3V  
10µF/1206/X7R/6.3V  
22µF/1206/X7R/6.3V  
4.7µF/1206/X7R/16V  
4.7µF/1206/X7R/25V  
MurataꢀGRM31CR70J106K  
MurataꢀGRM31CR70J106K  
MurataꢀGRM31CR70J226K  
MurataꢀGRM31CR71C475K  
MurataꢀGRM31CR71E475K  
300  
300  
300  
300  
4.5 to 60  
14 to 60  
17ꢀtoꢀ60  
15  
withꢀ high-ripple-currentꢀ capabilityꢀ atꢀ theꢀ input.ꢀ X7Rꢀ capacitorsꢀ  
are recommended in industrial applications for their  
temperature stability. Calculate the input capacitance  
using the following equation:  
V
IN  
V
IN  
MAX15062  
EN/UVLO  
R1  
R2  
(1 - D)  
C
= I  
x D x  
IN  
OUT(MAX)  
η x f  
x ∆V  
IN  
SW  
where D = V  
/V is the duty ratio of the converter,  
OUT IN  
f
ꢀisꢀtheꢀswitchingꢀfrequency,ꢀΔV is the allowable input  
SW  
IN  
voltageꢀripple,ꢀandꢀηꢀisꢀtheꢀefficiency.ꢀ  
Inapplicationswherethesourceislocateddistantfromꢀ  
the device input, an electrolytic capacitor should be  
added in parallel to the ceramic capacitor to provide  
necessary damping for potential oscillations caused by the  
inductance of the longer input power path and input  
ceramic capacitor.  
Figure 1. Adjustable EN/UVLO Network  
Input Capacitor  
The input filter capacitor reduces peak currents drawn  
from the power source and reduces noise and voltage  
ripple on the input caused by the circuit’s switching.  
Theꢀ inputꢀ capacitorꢀ RMSꢀ currentꢀ requirementꢀ (I  
defined by the following equation:  
) is  
Output Capacitor  
RMS  
Smallꢀ ceramicꢀ X7R-gradeꢀ capacitorsꢀ areꢀ sufficientꢀ andꢀ  
recommended for the device. The output capacitor has  
twoꢀfunctions.ꢀItꢀfiltersꢀtheꢀsquareꢀwaveꢀgeneratedꢀbyꢀtheꢀ  
devicealongwiththeoutputinductor.Itstoressufficientꢀ  
energy to support the output voltage under load transient  
conditionsꢀandꢀstabilizesꢀtheꢀdevice’sꢀinternalꢀcontrolꢀloop.ꢀ  
Usuallyꢀ theꢀ outputꢀ capacitorꢀ isꢀ sizedꢀ toꢀ supportꢀ aꢀ stepꢀ  
load of 50% of the maximum output current in the appli-  
cation, such that the output-voltage deviation is less than  
3%.ꢀRequiredꢀoutputꢀcapacitanceꢀcanꢀbeꢀcalculatedꢀfromꢀ  
the following equation:  
√(V  
x (VIN - V  
V
)
OUT  
OUT  
I
= I  
x
RMS  
OUT(MAX)  
IN  
ꢀisꢀtheꢀmaximumꢀloadꢀcurrent.ꢀI  
a maximum value when the input voltage equals twice  
where,ꢀI  
has  
OUT(MAX)  
RMS  
the output voltage (V = 2 x V ),ꢀ soꢀ I  
=
RMS(MAX)  
IN  
OUT  
I
/2.  
OUT(MAX)  
Choose an input capacitor that exhibits less than +10°C  
temperatureꢀ riseꢀ atꢀ theꢀ RMSꢀ inputꢀ currentꢀ forꢀ optimalꢀ  
long-termꢀ reliability.ꢀ Useꢀ low-ESRꢀ ceramicꢀ capacitorsꢀ  
MaximꢀIntegratedꢀꢀ  
17  
www.maximintegrated.com  
 
 
 
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
where P  
powerꢀconversion,ꢀandꢀR  
ꢀ isꢀ theꢀ outputꢀ power,ꢀ ηꢀ isꢀ theꢀ efficiencyꢀ ofꢀ  
OUT  
30  
is the DC resistance of the  
C
=
DCR  
OUT  
V
OUT  
output inductor. See the Typical Operating Characteristics  
for the power-conversion efficiency or measure the effi-  
ciency to determine the total power dissipation.  
where C  
is the output capacitance in µF and V  
OUT  
OUT  
is the output voltage. Derating of ceramic capacitors with  
DC-voltage must be considered while selecting the output  
capacitor. Derating curves are available from all major  
ceramic capacitor vendors. See Table 2 to select the out-  
put capacitor for typical applications.  
Setting the Input Undervoltage-Lockout Level  
The devices offer an adjustable input undervoltage-  
lockout level. Set the voltage at which the device turns  
The junction temperature (T ) of the device can be esti-  
J
mated at any ambient temperature (T ) from the following  
A
equation:  
T = T + θ ×P  
LOSS  
(
)
J
A
JA  
whereθ is the junction-to-ambient thermal impedance  
JA  
of the package.  
Junctionꢀ temperatureꢀ greaterꢀ thanꢀ +125°Cꢀ degradesꢀ  
operating lifetimes.  
on with a resistive voltage-divider connected from V  
toGND(seeFigure 1). Connect the center node of the  
IN  
divider to EN/UVLO.  
ChooseR1toꢀbeꢀ3.3MΩꢀmax,ꢀandꢀthenꢀcalculateꢀR2ꢀasꢀ  
follows:  
PCB Layout Guidelines  
Careful PCB layout is critical to achieve clean and stable  
operation. The switching power stage requires particular  
attention. Follow the guidelines below for good PCB layout.  
R1×1.215  
R2 =  
(V  
-1.215)  
INU  
●ꢀ Placeꢀtheꢀinputꢀceramicꢀcapacitorꢀasꢀcloseꢀasꢀpossibleꢀ  
to the V ꢀandꢀGNDꢀpins.  
IN  
where V  
is the voltage at which the device is required  
INU  
to turn on.  
●ꢀ Connectꢀ theꢀ negativeꢀ terminalꢀ ofꢀ theꢀ V  
bypass  
CC  
capacitorꢀtoꢀtheꢀGNDꢀpinꢀwithꢀshortestꢀpossibleꢀtraceꢀorꢀ  
ground plane.  
IfꢀtheꢀEN/UVLOꢀpinꢀisꢀdrivenꢀfromꢀanꢀexternalꢀsignalꢀsource,ꢀ  
aꢀseriesꢀresistanceꢀofꢀminimumꢀ1kΩꢀisꢀrecommendedꢀtoꢀbeꢀ  
placed between the signal source output and the EN/UVLO  
pin, to reduce voltage ringing on the line.  
●ꢀ MinimizeꢀtheꢀareaꢀformedꢀbyꢀtheꢀLXꢀpinꢀandꢀtheꢀinduc-  
torꢀconnectionꢀtoꢀreduceꢀtheꢀradiatedꢀEMI.  
Adjusting the Output Voltage  
The MAX15062C output voltage can be programmed  
●ꢀ PlaceꢀtheꢀV  
decoupling capacitor as close as pos-  
CC  
sible to the V  
pin.  
CC  
from 0.9V to 0.89 x V . Set the output voltage by con-  
IN  
●ꢀ Ensureꢀ thatꢀ allꢀ feedbackꢀ connectionsꢀ areꢀ shortꢀ andꢀ  
nectingꢀaꢀresistor-dividerꢀfromꢀoutputꢀtoꢀFBꢀtoꢀGNDꢀ(seeꢀ  
Figure 2).  
direct.  
●ꢀ Routeꢀtheꢀhigh-speedꢀswitchingꢀnodeꢀ(LX)ꢀawayꢀfromꢀ  
Fortheoutputvoltageslessthan6V,chooseR2intheꢀ  
50kΩꢀ toꢀ 150kΩꢀ range.ꢀ Forꢀ theꢀ outputꢀ voltagesꢀ greaterꢀ  
thanꢀ6V,ꢀchooseꢀR2ꢀinꢀtheꢀ25kΩꢀtoꢀ75kΩꢀrangeꢀandꢀcalcu-  
lateꢀR1ꢀwithꢀtheꢀfollowingꢀequation:  
the FB/V , RESET, and MODE pins.  
OUT  
For a sample PCB layout that ensures the first-pass  
success, refer to the MAX15062 evaluation kit layouts  
available at www.maximintegrated.com.  
V
OUT  
R1 = R2 ×  
1  
0.9  
V
OUT  
Power Dissipation  
R1  
R2  
At a particular operating condition, the power losses that  
lead to temperature rise of the part are estimated as fol-  
lows:  
FB  
MAX15062C  
1  
2
GND  
P
= P  
×
- 1 - (I  
×R  
)
DCR  
LOSS  
OUT  
OUT  
η
P
= V  
×I  
OUT OUT  
OUT  
Figure 2. Setting the Output Voltage  
MaximꢀIntegratedꢀꢀ  
18  
www.maximintegrated.com  
 
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
L1  
V
IN  
V
V
OUT  
LX  
IN  
C
IN  
C
OUT  
R1  
R2  
GND  
EN/UVLO  
MAX15062A/B  
V
OUT  
V
CC  
V
CC  
RESET  
C
VCC  
R3  
MODE  
V
CC  
V
PLANE  
IN  
C
IN  
U1  
L1  
LX  
R1  
V
IN  
EN/UVLO  
GND  
RESET  
C
OUT  
V
CC  
R2  
V
OUT  
C
VCC  
MODE  
V
OUT  
PLANE  
GND  
PLANE  
R3  
VIAS TO V  
VIAS TO V  
VIAS TO BOTTOM-SIDE GROUND PLANE  
OUT  
CC  
Figure 3. Layout Guidelines for MAX15062A and MAX15062B  
MaximꢀIntegratedꢀꢀ  
19  
www.maximintegrated.com  
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
L1  
V
IN  
V
V
OUT  
LX  
IN  
C
IN  
C
OUT  
R1  
R2  
GND  
EN/UVLO  
R4  
R5  
MAX15062C  
FB  
V
CC  
V
CC  
RESET  
C
VCC  
R3  
MODE  
V
CC  
V
PLANE  
IN  
C
IN  
U1  
L1  
LX  
R1  
V
IN  
EN/UVLO  
GND  
RESET  
C
OUT  
V
CC  
R2  
FB  
C
VCC  
MODE  
V
OUT  
PLANE  
R5  
R4  
GND  
PLANE  
R3  
VIAS TO V  
VIAS TO V  
VIAS TO BOTTOM-SIDE GROUND PLANE  
OUT  
CC  
Figure 4. Layout Guidelines for MAX15062C  
MaximꢀIntegratedꢀꢀ  
20  
www.maximintegrated.com  
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
L1  
33µH  
L1  
47µH  
V
V
V
V
IN  
6V TO  
60V  
OUT  
OUT  
IN  
3.3V,  
5V,  
4.5V TO  
V
LX  
V
LX  
IN  
IN  
C
IN  
1µF  
C
IN  
1µF  
300mA  
300mA  
C
C
OUT  
10µF  
60V  
OUT  
10µF  
EN/UVLO  
GND  
EN/UVLO  
GND  
MAX15062A  
MAX15062B  
V
CC  
V
CC  
RESET  
RESET  
C
VCC  
1µF  
C
VCC  
1µF  
V
V
MODE  
MODE  
OUT  
OUT  
MODE = GND FOR PWM  
MODE = OPEN FOR PFM  
MODE = GND FOR PWM  
MODE = OPEN FOR PFM  
L1: COILCRAFT LPS4018-333ML  
L1: COILCRAFT LPS4018-473ML  
C
: MURATA 10µF/X7R/6.3V/1206 GRM31CR70J106K  
OUT  
C
: MURATA 10µF/X7R/6.3V/1206 GRM31CR70J106K  
OUT  
C : MURATA 1µF/X7R/100V/1206 GRM31CR72A105K  
IN  
C : MURATA 1µF/X7R/100V/1206 GRM31CR72A105K  
IN  
Figure 6. 5V, 300mA Step-Down Regulator  
Figure 5. 3.3V, 300mA Step-Down Regulator  
L1  
100µH  
L1  
22µH  
V
V
OUT  
IN  
V
V
OUT  
IN  
12V,  
14V TO  
60V  
V
LX  
2.5V,  
IN  
4.5V TO  
60V  
V
LX  
IN  
C
IN  
1µF  
300mA  
C
C
IN  
1µF  
OUT  
300mA  
C
OUT  
4.7µF  
22µF  
EN/UVLO  
GND  
EN/UVLO  
GND  
R1  
R1  
MAX15062C  
MAX15062C  
499kΩ  
133kΩ  
V
CC  
FB  
V
CC  
FB  
C
VCC  
1µF  
C
VCC  
1µF  
R2  
R2  
MODE  
RESET  
MODE  
RESET  
40.2kΩ  
75kΩ  
MODE = GND FOR PWM  
MODE = OPEN FOR PFM  
MODE = GND FOR PWM  
MODE = OPEN FOR PFM  
L1: Wurth 74408943101  
L1: COILCRAFT LPS4018-223ML  
C
C
: MURATA 4.7µF/X7R/16V/1206 (GRM31CR71C475K)  
C
: MURATA 22µF/X7R/6.3V/1206 (GRM31CR70J226K)  
OUT  
OUT  
: MURATA 1µF/X7R/100V/1206 (GRM31CR72A105K)  
C : MURATA 1µF/X7R/100V/1206 (GRM31CR72A105K)  
IN  
IN  
Figure 8. 12V, 300mA Step-Down Regulator  
Figure 7. 2.5V, 300mA Step-Down Regulator  
MaximꢀIntegratedꢀꢀ  
21  
www.maximintegrated.com  
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Ordering Information  
L1  
22µH  
PIN-  
PACKAGE  
V
V
OUT  
IN  
PART  
TEMP RANGE  
V
OUT  
1.8V,  
4.5V TO  
V
LX  
IN  
C
IN  
300mA  
C
60V  
OUT  
1µF  
MAX15062AATA+  
MAX15062BATA+  
MAX15062CATA+  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
8 TDFN  
3.3V  
5V  
22µF  
EN/UVLO  
GND  
8 TDFN  
R1  
MAX15062C  
75kΩ  
8 TDFN  
Adj  
V
CC  
FB  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
C
VCC  
1µF  
R2  
MODE  
RESET  
75kΩ  
Chip Information  
PROCESS:ꢀBiCMOS  
MODE = GND FOR PWM  
MODE = OPEN FOR PFM  
L1: COILCRAFT LPS4018-223ML  
C
C
: MURATA 22µF/X7R/6.3V/1206 (GRM31CR70J226K)  
OUT  
IN  
Package Information  
: MURATA 1µF/X7R/100V/1206 (GRM31CR72A105K)  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
thatꢀaꢀ“+”,ꢀ“#”,ꢀorꢀ“-”ꢀinꢀtheꢀpackageꢀcodeꢀindicatesꢀRoHSꢀstatusꢀ  
only. Package drawings may show a different suffix character, but  
theꢀdrawingꢀpertainsꢀtoꢀtheꢀpackageꢀregardlessꢀofꢀRoHSꢀstatus.  
Figure 9. 1.8V, 300mA Step-Down Regulator  
L1  
150µH  
V
V
OUT  
IN  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
15V,  
17V TO  
60V  
V
IN  
LX  
C
IN  
300mA  
C
OUT  
1µF  
4.7µF  
EN/UVLO  
GND  
8 TDFN  
T822CN+1  
21-0487  
90-0349  
R1  
MAX15062C  
499kΩ  
V
CC  
FB  
C
VCC  
1µF  
R2  
MODE  
RESET  
31.6kΩ  
MODE = GND FOR PWM  
MODE = OPEN FOR PFM  
L1: TDK VLC6045T-151M  
C
C
: MURATA 4.7µF/X7R/25V/1206 (GRM31CR71E475K)  
OUT  
IN  
: MURATA 1µF/X7R/100V/1206 (GRM31CR72A105K)  
Figure 10. 15V, 300mA Step-Down Regulator  
MaximꢀIntegratedꢀꢀ  
22  
www.maximintegrated.com  
 
MAX15062  
60V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
1
2
6/13  
Initialꢀrelease  
10/13  
7/16  
AddedꢀMAX15062C,ꢀaddedꢀfigures,ꢀupdatedꢀtablesꢀandꢀfiguresꢀthroughout  
OperatingꢀandꢀJunctionꢀtemperatureꢀvalueꢀupdate,ꢀadditionalꢀTOCꢀandꢀtext.  
1–17  
1–4,ꢀ12,ꢀ16–18  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2016 MaximꢀIntegratedꢀProducts,ꢀInc.ꢀꢀ  
23  

相关型号:

MAX15066

High-Efficiency, 4A, Step-Down DC-DC Regulators with Internal Power Switches
MAXIM

MAX15066EWE+

High-Efficiency, 4A, Step-Down DC-DC Regulators with Internal Power Switches
MAXIM

MAX15066EWE+T

Battery Charge Controller, Current-mode, 4A, 550kHz Switching Freq-Max, BICMOS, PBGA16,
MAXIM

MAX1507

Linear Li+ Battery Charger with Integrated Pass FET Regulation in 3mm x 3mm Thin DFN
MAXIM

MAX1507/MAX1508EVKIT

Evaluation Kit for the MAX1507/MAX1508
MAXIM

MAX15070A

7A Sink, 3A Source, 12ns, SOT23 MOSFET Drivers
MAXIM

MAX15070AAUT

7A Sink, 3A Source, 12ns, SOT23 MOSFET Drivers
MAXIM

MAX15070AAUT/V

7A Sink, 3A Source, 12ns, SOT23 MOSFET Drivers
MAXIM

MAX15070AEUT+T

Buffer/Inverter Based MOSFET Driver, 7A, BICMOS, PDSO6, ROHS COMPLIANT, SOT-23, 6 PIN
MAXIM

MAX15070A_13

7A Sink, 3A Source, 12ns, SOT23 MOSFET Drivers
MAXIM

MAX15070B

7A Sink, 3A Source, 12ns, SOT23 MOSFET Drivers
MAXIM

MAX15070BAUT

7A Sink, 3A Source, 12ns, SOT23 MOSFET Drivers
MAXIM