MAX1601EAI+T [MAXIM]

Power Supply Management Circuit, Fixed, 2 Channel, PDSO28, 0.200 INCH, SSOP-28;
MAX1601EAI+T
型号: MAX1601EAI+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Management Circuit, Fixed, 2 Channel, PDSO28, 0.200 INCH, SSOP-28

光电二极管
文件: 总16页 (文件大小:187K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1085; Rev 1; 10/96  
Du a l-Ch a n n e l Ca rd Bu s a n d P CMCIA  
P o w e r S w it c h e s w it h S MBu s ™ S e ria l In t e rfa c e  
/MAX1604  
________________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Supports Two CardBus Sockets  
The MAX1601/MAX1604 DC power-switching ICs con-  
tain a network of low-resistance MOSFET switches that  
d e live r s e le c ta b le VCC a nd VPP volta g e s to two  
CardBus or PC Card host sockets. Key features include  
ultra-low-resistance switches, small packaging, soft-  
switching action, and compliance with PCMCIA specifi-  
cations for 3V/5V switching. 3.3V-only power switching  
for fast, 32-bit CardBus applications is supported in two  
ways: stiff, low-resistance 3.3V switches allow high 3.3V  
load currents (up to 1A); and completely independent  
internal charge pumps let the 3.3V switch operate nor-  
mally, even if the +5V and +12V supplies are discon-  
nected or turned off to conserve power. The internal  
charge pumps are regulating types that draw reduced  
input current when the VCC switches are static. Also,  
power consumption is automatically reduced to 10µA  
max when the switches are programmed to high-Z or  
GND states over the serial interface, unlike other solu-  
tions that may require a separate shutdown-control  
input.  
1A, 0.08Max VY VCC Switch (MAX1601 only)  
1A, 0.14Max VX VCC Switch  
Soft Switching for Low Inrush Surge Current  
Overcurrent Protection  
Overcurrent/Thermal-Fault Flag Output  
Thermal Shutdown at Tj = +150°C  
Independent Internal Charge Pumps  
Break-Before-Make Switching Action  
10µA Max Standby Supply Current  
5V and 12V Not Required for Low-R  
3.3V  
DS(ON)  
Switching  
Complies with PCMCIA 3V/5V Switching  
Specifications  
Super-Small, 28-Pin SSOP Package  
(0.2in. or 5mm wide)  
System Management Bus (SMBus) Serial  
Interface  
Other key features include guaranteed specifications for  
output current limit level, and guaranteed specifications  
for output rise/fall times (in compliance with PCMCIA  
specifications). Reliability is enhanced by thermal-over-  
load protection, accurate current limiting, an overcur-  
rent-fault flag output, undervoltage lockout, and extra  
ESD protection at the VCC/VPP outputs. The SMBus ser-  
ial interface is flexible, and can tolerate logic input levels  
in excess of the positive supply rail.  
_______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
28 SSOP  
MAX1601EAI  
MAX1604EAI  
28 SSOP  
__________S im p lifie d Blo c k Dia g ra m  
The MAX1604 a nd MAX1601 a re id e ntic a l, e xc e p t  
for the MAX1604s VY switch, which has roughly three-  
time s the on-re s is ta nc e (typ ic a lly 140m ).The  
MAX1601/MAX1604 fit two complete CardBus/PCMCIA  
switches into a space-saving, narrow (0.2in. or 5mm  
wide) SSOP package.  
VPPA  
12IN  
VY  
VCCA  
VCCA  
VY  
VX  
VX  
VL  
VCCA  
________________________Ap p lic a t io n s  
MAX1601/MAX1604  
Desktop Computers  
Data Loggers  
VDD  
OVERCURRENT  
AND  
THERMAL  
SHUTDOWN  
DECODE  
LOGIC  
SMBALERT  
SMBCLK  
SMBDATA  
SMBSUS  
Notebook Computers Digital Cameras  
ADDRESS  
SELECT  
Docking Stations  
Handy-Terminals  
Printers  
ADR  
GND  
VPPB  
PCMCIA Read/Write Drives  
12IN  
Pin Configuration appears on last page.  
VCCB  
VCCB  
VCCB  
VY  
VX  
SMBus is a trademark of Intel Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
Du a l-Ch a n n e l Ca rd Bu s a n d P CMCIA  
P o w e r S w it c h e s w it h S MBu s ™ S e ria l In t e rfa c e  
ABSOLUTE MAXIMUM RATINGS  
Inputs/Outputs to GND  
(VL, VX, VY, VCCA, VCCB) (Note 1)........................-0.3V, +6V  
VPP Inputs/Outputs to GND  
VCCA, VCCB Short Circuit to GND............................Continuous  
VPPA, VPPB Short Circuit to GND..............................Continuous  
Continuous Power Dissipation (T = +70°C)  
A
(12INA, 12INB, VPPA, VPPB) (Note 1) ..................-0.3V, +15V  
Inputs and Outputs to GND (SMBCLK, SMBDATA,  
SMBSUS, SMBALERT) (Note 1) ..............................-0.3V, +6V  
ADR Input to GND ...........................................-0.3V, (VL + 0.3V)  
VCCA, VCCB Output Current (Note 2).....................................4A  
VPPA, VPPB Output Current (Note 2) ...............................250mA  
SSOP (derate 9.52mW/°C above +70°C) ....................762mW  
Operating Temperature Range  
MAX1601EAI/MAX1604EAI .............................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Note 1: There are no parasitic diodes between any of these pins, so there are no power-up sequencing restrictions (for example,  
logic input signals can be applied even if all of the supply voltage inputs are grounded).  
Note 2: VCC and VPP outputs are internally current-limited to safe values. See the Electrical Characteristics table.  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
/MAX1604  
(VL = VY = 3.3V, VX = 5V, 12INA = 12INB = 12V, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER-SUPPLY SECTION  
VX, VY or VL  
12INA, 12INB  
3.0  
11  
2.4  
1.8  
5
5.5  
13  
Input Voltage Range  
V
VL falling edge  
2.5  
3.0  
8
2.8  
12IN falling edge  
12IN rising edge  
VX, VY falling edge  
Undervoltage Lockout Threshold  
V
10  
1.4  
2.5  
2.8  
VX or VY, all switches 0V or high-Z,  
control inputs = 0V or VL, T = +25°C  
A
Standby Supply Current  
1
µA  
µA  
µA  
µA  
µA  
µA  
Any combination of VY switches on,  
control inputs = 0V or VL, no VCC loads  
VY Quiescent Supply Current  
VX Quiescent Supply Current  
12IN_ Standby Supply Current  
12IN_ Quiescent Supply Current  
VL Standby Supply Current  
20  
20  
100  
100  
1
Any combination of VX switches on,  
control inputs = 0V or high-Z, no VCC loads  
12INA tied to 12INB, all switches 0V or high-Z,  
control inputs = 0V or VL, T = +25°C  
A
12INA tied to 12INB, VPPA and VPPB 12V switches on,  
control inputs = 0V or VL, no VPP loads  
15  
100  
10  
All switches 0V or high-Z, control inputs = 0V or VL,  
T = +25°C  
A
4
VL Quiescent Supply Current  
VL Fall Rate  
Any combination of switches on  
25  
150  
µA  
When using VL as shutdown pin (Note 3)  
0.05  
V/µs  
VCC SWITCHES  
Operating Output Current Range VCCA or VCCB, VX = VY = 3V to 5.5V  
0
1
A
12INA = 12INB = 0V to 13V,  
MAX1601  
MAX1604  
0.06  
0.14  
0.08  
On-Resistance, VY Switches  
On-Resistance, VX Switches  
VY = 3V, VX = 0V to 5.5V,  
= 1A, T = +25°C  
0.24  
0.14  
I
SWITCH  
A
12INA = 12INB = 0V to 13V, VX = 4.5V, VY = 0V to 5.5V,  
= 1A, T = +25°C  
0.10  
I
SWITCH  
A
2
_______________________________________________________________________________________  
Du a l-Ch a n n e l Ca rd Bu s a n d P CMCIA  
P o w e r S w it c h e s w it h S MBu s ™ S e ria l In t e rfa c e  
/MAX1604  
ELECTRICAL CHARACTERISTICS (continued)  
(VL = VY = 3.3V, VX = 5V, 12INA = 12INB = 12V, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
A
PARAMETER  
Output Current Limit  
CONDITIONS  
MIN  
1.2  
20  
TYP  
MAX  
4.0  
UNITS  
A
VCCA or VCCB  
Output Sink Current  
VCCA or VCCB < 0.4V, programmed to 0V state  
mA  
VCCA or VCCB forced to 0V, high-Z state,  
T = +25°C  
A
Output Leakage Current  
10  
10  
µA  
ms  
µs  
Output Propagation Delay  
Plus Rise Time  
VCCA or VCCB, 0V to VX or VY, C = 30µF,  
L
R = 25, 50% of input to 90% of output, T = +25°C  
L
2
A
VCCA or VCCB, 0V to VX or VY, C = 1µF,  
L
Output Rise Time  
100  
1200  
R = open circuit, 10% to 90% points, T = +25°C  
L
A
VCCA or VCCB, VX or VY to 0V, C = 30µF,  
L
Output Propagation Delay  
Plus Fall Time  
R = open circuit, 50% of input to 10% of output,  
60  
6
100  
ms  
ms  
L
T = +25°C  
A
VCCA or VCCB, VX or VY to 0V, C = 1µF,  
R = 25, 90% to 10% points  
L
L
Output Fall Time  
VPP SWITCHES  
Operating Output Current Range  
On-Resistance, 12V Switches  
VPPA or VPPB  
0
120  
1
mA  
12IN = 11.6V, I  
= 100mA, T = +25°C  
0.70  
1
SWITCH  
A
On-Resistance, VPP = VCC Switches Programmed to VX (5V) or VY (3.3V), T = +25°C  
3
A
Output Current Limit  
Output Sink Current  
VPPA or VPPB, programmed to 12V  
130  
10  
200  
260  
mA  
mA  
VPPA or VPPB < 0.4V, programmed to 0V state  
VPPA or VPPB forced to 0V, high-Z state,  
T = +25°C  
A
Output Leakage Current  
10  
30  
µA  
Output Propagation Delay  
Plus Rise Time  
VPPA or VPPB, 0V to 12IN_, C = 0.1µF,  
L
1.2  
800  
9
ms  
µs  
50% of input to 90% of output, T = +25°C  
A
VPPA or VPPB, 0V to 12IN_, C = 0.1µF,  
L
Output Rise Time  
100  
10% to 90% points, T = +25°C  
A
Output Propagation Delay  
Plus Fall Time  
VPPA or VPPB, 12IN_ to 0V, C = 0.1µF,  
L
60  
ms  
ms  
50% of input to 10% of output, T = +25°C  
A
VPPA or VPPB, 12IN_ to 0V, C = 0.1µF,  
L
90% to 10% points  
Output Fall Time  
1
INTERFACE AND LOGIC SECTION  
SMBALERT Signal Propagation  
Delay  
VCC_ or VPP_, load step to SMBALERT output,  
50% point to 50% point (Note 3)  
3
µs  
I
= 1mA, low state  
0.4  
0.1  
V
µA  
°C  
V
SMBALERT Output Low Voltage  
SINK  
V
= 5.5V, high state  
-0.1  
2.2  
SMBALERT Output Leakage Current  
Thermal Shutdown Threshold  
Logic Input Low Voltage  
SMBALERT  
Hysteresis = +20°C (Note 4)  
SMBSUS, SMBCLK, SMBDATA  
SMBSUS, SMBCLK, SMBDATA  
150  
0.8  
0.4  
Logic Input High Voltage  
Logic Output Low Voltage  
V
SMBDATA, I  
= 4mA  
V
SINK  
_______________________________________________________________________________________  
3
Du a l-Ch a n n e l Ca rd Bu s a n d P CMCIA  
P o w e r S w it c h e s w it h S MBu s ™ S e ria l In t e rfa c e  
ELECTRICAL CHARACTERISTICS (continued)  
(VL = VY = 3.3V, VX = 5V, 12INA = 12INB = 12V, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
A
PARAMETER  
SMB Input Capacitance  
SMBCLK Clock Frequency  
SMBCLK Clock Low Time  
SMBCLK Clock High Time  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
pF  
5
SMBSUS, SMBCLK, SMBDATA  
SMBus spec = 10kHz min  
DC  
4.7  
4
100  
kHz  
µs  
t
t
10% to 10% points  
90% to 90% points  
LOW  
HIGH  
µs  
SMB Repeated Start-Condition  
Setup Time  
t
90% to 90% points  
250  
ns  
SU:STA  
SMB Start-Condition Hold Time  
SMB Stop-Condition Setup Time  
t
t
t
10% of SMBDATA to 90% of SMBCLK  
90% of SMBCLK to 10% of SMBDATA  
10% or 90% of SMBDATA to  
4
4
µs  
µs  
HD:STA  
SU:STO  
SMB Data Valid to SMBCLK Rising-  
Edge Time  
SU:DAT  
500  
ns  
10% of SMBCLK  
SMB Data Hold Time  
Bus Free Time  
t
t
(Note 5)  
0
ns  
µs  
V
HD:DAT  
between start and stop conditions  
4.7  
BUF  
/MAX1604  
ADR Input Low Voltage  
ADR Input High Voltage  
Logic Input Bias Current  
0.6  
1.5  
-1  
V
1
µA  
ADR, SMBSUS, SMBCLK, SMBDATA  
SCL Fall to SDA Valid  
(Master Clocking-In Data)  
100  
1000  
ns  
µs  
Start-Condition Setup  
4.7  
Note 3: Not production tested.  
Note 4: Thermal limit not active in standby state (all switches programmed to GND or high-Z state).  
Note 5: A transition must internally provide at least a hold time in order to bridge the undefined region (300ns max) of the falling  
edge of SMBCLK.  
4
_______________________________________________________________________________________  
Du a l-Ch a n n e l Ca rd Bu s a n d P CMCIA  
P o w e r S w it c h e s w it h S MBu s ™ S e ria l In t e rfa c e  
/MAX1604  
ELECTRICAL CHARACTERISTICS  
(VL = VY = 3.3V, VX = 5V, 12INA = 12INB = 12V, T = -40°C to +85°C, unless otherwise noted.)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER-SUPPLY SECTION  
VX, VY or VL  
12INA, 12INB  
3.0  
11  
2.3  
1.8  
5
5.5  
13  
Input Voltage Range  
V
VL falling edge, hysteresis = 1%  
12IN falling edge  
2.9  
Undervoltage Lockout Threshold  
V
12IN rising edge  
10  
VX, VY falling edge  
1.4  
2.9  
VX or VY, all switches 0V or high-Z,  
control inputs = 0V or VL  
Standby Supply Current  
15  
100  
100  
15  
µA  
µA  
µA  
µA  
µA  
Any combination of VY switches on,  
control inputs = 0V or VL, no VCC loads  
VY Quiescent Supply Current  
VX Quiescent Supply Current  
12IN_ Standby Supply Current  
12IN_ Quiescent Supply Current  
Any combination of VX switches on,  
control inputs = 0V or high-Z, no VCC loads  
12INA tied to 12INB, all switches 0V or high-Z,  
control inputs = 0V or VL  
12INA tied to 12INB, VPPA and VPPB 12V switches on,  
control inputs = 0V or VL, no VPP loads  
100  
VL Standby Supply Current  
VL Quiescent Supply Current  
All switches 0V or high-Z, control inputs = 0V or VL  
Any combination of switches on  
15  
µA  
µA  
150  
INTERFACE AND LOGIC SECTION  
I
= 1mA, low state  
0.4  
0.8  
V
V
SMBALERT Output Low Voltage  
Logic Input Low Voltage  
Logic Input High Voltage  
Logic Output Low Voltage  
ADR Input Low Voltage  
SINK  
SMBCLK, SMBDATA, SMBSUS  
SMBCLK, SMBDATA, SMBSUS  
2.2  
1.5  
V
V
V
V
SMBDATA, I  
= 4mA  
0.4  
0.6  
SINK  
ADR Input High Voltage  
_______________________________________________________________________________________  
5
Du a l-Ch a n n e l Ca rd Bu s a n d P CMCIA  
P o w e r S w it c h e s w it h S MBu s ™ S e ria l In t e rfa c e  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(VL = VY = 3.3V, VX = 5V, 12IN, T = +25°C, unless otherwise noted.)  
A
VCC_ SWITCHING (RISE)  
VCC_ SWITCHING (RISE)  
3
2
1
0
6
4
VCC_  
(V)  
VCC_  
(V)  
2
0
5
0
5
CONTROL  
INPUT  
(V)  
CONTROL  
INPUT  
(V)  
0
500µs/div  
200µs/div  
/MAX1604  
C = 1µF, R =  
L
L
C = 30µF, R = 25Ω  
L
L
VCC_ SWITCHING (FALL)  
VCC_ SWITCHING (FALL)  
6
4
2
0
6
4
2
0
VCC_  
(V)  
VCC_  
(V)  
5
0
5
0
CONTROL  
INPUT  
(V)  
CONTROL  
INPUT  
(V)  
10ms/div  
10ms/div  
C = 33µF, R = ∞  
C = 1µF, R = 25Ω  
L
L
L
L
VPP_ SWITCHING (RISE)  
VPP_ SWITCHING (FALL)  
15  
15  
10  
5
10  
5
VPP_  
(V)  
VPP_  
(V)  
0
0
5
0
5
0
CONTROL  
INPUT  
(V)  
CONTROL  
INPUT  
(V)  
200µs/div  
2ms/div  
C = 0.1µF, R = ∞  
C = 0.1µF, R = ∞  
L
L
L
L
6
_______________________________________________________________________________________  
Du a l-Ch a n n e l Ca rd Bu s a n d P CMCIA  
P o w e r S w it c h e s w it h S MBu s ™ S e ria l In t e rfa c e  
/MAX1604  
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(VL = VY = 3.3V, VX = 5V, 12IN, T = +25°C, unless otherwise noted.)  
A
INPUT CURRENT (VCC OUTPUT SHORTED)  
VCC_ CURRENT LIMITING  
2.0  
1.5  
1.0  
0.5  
0
4
I
(A)  
VY  
2
0
VCC_  
(V)  
1ms/div  
2ms/div  
C = 1µF, RESISTIVE OVERLOAD, R = 1Ω  
L
L
VPP_ CURRENT LIMITING  
INPUT CURRENT (VPP OUTPUT SHORTED)  
10  
10  
5
5
0
VPP_  
(V)  
VPP_  
(V)  
0
300  
200  
I
12IN_  
(mA)  
100  
0
2ms/div  
100µs/div  
C = 1µF, R = 50Ω  
L
L
R = 0.1Ω  
L
VCC_ SHUTDOWN RESPONSE  
4
2
0
VL  
(V)  
4
2
0
VCC_  
(V)  
100µs/div  
CIRCUIT OF FIGURE 2  
_______________________________________________________________________________________  
7
Du a l-Ch a n n e l Ca rd Bu s a n d P CMCIA  
P o w e r S w it c h e s w it h S MBu s ™ S e ria l In t e rfa c e  
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(VL = VY = 3.3V, VX = 5V, 12IN, T = +25°C, unless otherwise noted.)  
A
MAX1601  
VY ON-RESISTANCE vs. CURRENT  
VX ON-RESISTANCE  
vs. VCC_ LOAD CURRENT  
MAX1604  
VY ON-RESISTANCE vs. CURRENT  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
165  
160  
155  
150  
145  
140  
135  
130  
125  
120  
115  
110  
105  
100  
95  
T = +85°C  
A
T = +85°C  
A
T = +85°C  
A
90  
T = +25°C  
A
85  
T = +25°C  
A
T = +25°C  
A
80  
75  
T = -40°C  
A
70  
65  
T = -40°C  
A
T = -40°C  
A
60  
0
200  
400  
600  
800  
1000  
200  
/MAX1604  
0
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
CURRENT (mA)  
VCC_ LOAD CURRENT (mA)  
CURRENT (mA)  
12IN_ ON-RESISTANCE vs. TEMPERATURE  
12IN_ ON-RESISTANCE vs. CURRENT  
950  
900  
850  
800  
750  
700  
650  
600  
725  
720  
715  
710  
705  
700  
695  
690  
VPPA  
VPPB  
685  
550  
-40 -20  
0
20  
40  
60  
80 100  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
CURRENT (mA)  
VL SUPPLY CURRENT  
vs. VL INPUT VOLTAGE  
VX, VY SUPPLY CURRENT  
vs. INPUT VOLTAGE  
12IN SUPPLY CURRENT  
vs. INPUT VOLTAGE  
70  
60  
50  
0.9  
7
6
5
VX = VY = 0V  
12IN  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VX  
VY  
NORMAL  
OPERATION  
40  
30  
20  
4
3
2
10  
0
1
0
SHUTDOWN  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
2
4
6
8
10  
12  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
8
_______________________________________________________________________________________  
Du a l-Ch a n n e l Ca rd Bu s a n d P CMCIA  
P o w e r S w it c h e s w it h S MBu s ™ S e ria l In t e rfa c e  
/MAX1604  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
1, 25  
GND  
Ground  
2, 3,  
26, 27  
N.C.  
No internal connection  
4
5
12INA  
VPPA  
+12V Supply Voltage Input, internally connects to channel A VPP switch. Tie to VPPA if not used.  
Channel A VPP Output  
VX Supply-Voltage Inputs. VX pins must be connected together. Input range is 3V to 5.5V. VX is  
normally connected to 5V.  
6, 8, 10  
VX  
7, 22, 24  
9, 18, 20  
11  
VCCA  
VCCB  
VPPB  
12INB  
ADR  
Channel A VCC Outputs  
Channel B VCC Outputs  
Channel B VPP Output  
12  
+12V Supply Voltage Input, internally connects to channel B VPP switch. Tie to VPPB if not used.  
Address Input, sets SMBus address location. See Table 1 for address selection.  
13  
SMBus Suspend-Mode Control Input. The device will execute commands previously stored in  
the normal-mode register if SMBSUS is high, or will execute commands previously stored in the  
suspend-mode register if SMBSUS is low.  
14  
SMBSUS  
15  
16  
SMBCLK  
SMBus Clock Input  
SMBDATA  
SMBus Data Input/Output, open drain  
Fault-Detection Interrupt Output. SMBALERT goes low if either channel VCC or VPP switch is  
current limiting or undervoltage lockout, or if the thermal protection circuit is activated.  
SMBALERT is an open-drain output that requires an external pull-up resistor.  
17  
SMBALERT  
VY Supply-Voltage Inputs. VY pins must be connected together. Input range is 3V to 5.5V. VY is  
normally connected to 3V.  
19, 21, 23  
VY  
Logic Supply-Voltage Inputs. Connect to the +3.3V or +5V host system supply. VL can be sup-  
plied via the output of a CMOS-logic gate to produce an overriding shutdown. When used as a  
shutdown input, VL should have a 1kseries resistor with a 0.1µF capacitor to ground (Figure 2).  
Note that VL must be greater than undervoltage lockout for any switches to be turned on.  
28  
VL  
_______________________________________________________________________________________  
9
Du a l-Ch a n n e l Ca rd Bu s a n d P CMCIA  
P o w e r S w it c h e s w it h S MBu s ™ S e ria l In t e rfa c e  
VB12  
1/2 MAX1601/MAX1604  
12IN  
VPPA  
CHARGE  
PUMP  
3Ω  
CURRENT  
LIMIT  
40Ω  
VB3  
VY  
VY  
0.08*  
/MAX1604  
VCCA  
VCCA  
VCCA  
CURRENT  
LIMIT  
CHARGE  
PUMP  
VX  
VX  
VB5 0.14Ω  
20Ω  
CURRENT  
LIMIT  
CHARGE  
PUMP  
SMBALERT  
GND  
SMBCLK  
SMBDATA  
SMBSUS  
ADR  
SHDN  
SMB  
THERMAL  
SHUTDOWN  
VDD  
VL  
*0.24FOR THE MAX1604  
Figure 1. Functional Diagram (one channel of two)  
10 ______________________________________________________________________________________  
Du a l-Ch a n n e l Ca rd Bu s a n d P CMCIA  
P o w e r S w it c h e s w it h S MBu s ™ S e ria l In t e rfa c e  
/MAX1604  
_______________De t a ile d De s c rip t io n  
The MAX1601/MAX1604 power-switching ICs contain a  
network of low-resistance MOSFET switches that deliver  
3.3V  
selectable VCC and VPP voltages to two Cardbus or  
PC Card host sockets. The MAX1601/MAX1604 differ  
only in the VY switch on-resistance. Figure 1 is the  
detailed block diagram.  
VY  
VPPA  
VCCA  
1k  
MASTER  
SHUTDOWN  
VL  
TO  
SOCKETS  
A AND B  
MAX1601  
MAX1604  
0.1µF  
74HC04  
The power-input pins (VY, VX, 12IN_) are completely  
independent. Low inrush current is guaranteed by con-  
trolled switch rise times. VCCs 100µs minimum output  
rise time is 100% tested with a 1µF capacitive load, and  
VPPs 1ms minimum rise time is guaranteed with a 0.1µF  
load. These respective capacitive loads are chosen as  
wors t-c a s e c a rd -ins e rtion p a ra me te rs . The inte rna l  
switching control allows VCC and VPP rise times to be  
controlled, and makes them nearly independent of resis-  
tive and capacitive loads (see rise-time photos in the  
Typical Operating Characteristics). Fall times are a  
function of loading, and are compensated by internal  
circuitry.  
VPPB  
VCCB  
Figure 2. Master Shutdown Circuit  
low. A continuous short-circuit condition results in a  
p uls e d outp ut c urre nt until the rma l s hutd own is  
reached. SMBALERT is open-drain and requires an  
external pull-up resistor.  
Power savings is automatic: internal charge pumps draw  
very low current when the VCC switches are static.  
Standby mode reduces switch supply current to 1µA.  
Driving the VL pin low with an external logic gate (master  
shutdown) reduces total supply current to1µA (Figure 2).  
Th e rm a l S h u t d o w n  
If the IC junction temperature rises above +150°C, the  
thermal shutdown circuitry opens all switches, including  
the GND switches, and SMBALERT is pulled low. When  
the temperature falls below +130°C, the switches turn  
on again at the controlled rise rate. If the overcurrent  
condition remains, the part cycles between thermal  
shutdown and overcurrent.  
Op e ra t in g Mo d e s  
The MAX1601/MAX1604 have three operating modes:  
normal, standby, and shutdown. Normal mode supplies  
the selected outputs with their appropriate supply volt-  
ages. Standby mode places all switches at ground, high  
impedance, or a combination of the two. Shutdown mode  
turns all switches off, and puts the VCC and VPP outputs  
into a high-impedance state. Pull VL low to enter shutdown  
mode. To ensure a 0.05V/µs fall rate on VL, use a 1kΩ  
series resistor and a 0.1µF capacitor to ground (Figure 2).  
Un d e rvo lt a g e Lo c k o u t  
If the VX or VY switch input voltage drops below 1.5V,  
the associated switch turns off and SMBALERT goes  
low. For example, if VY is 3.3V and VX is 0V, and if the  
interface controller selects VY, the VCCA output will be  
3.3V. If VX is selected, VCCA changes to a high-imped-  
ance output and SMBALERT goes low.  
Ove rc u rre n t P ro t e c t io n  
Peak detecting circuitry protects both the VCC and  
VPP switches against overcurrent conditions. When  
current through any switch exceeds the internal current  
limit (4A for VCC switches and 200mA for VPP switch-  
es), the switch turns off briefly, then turns on again at  
the controlled rise rate. If the overcurrent condition  
lasts more than 2µs, the SMBALERT output latches  
When a voltage is initially applied to 12IN_, it must be  
g re a te r tha n 8V to a llow the s witc h to op e ra te .  
Operation continues until the voltage falls below 2V (the  
VPP output is high impedance).  
Whe n VL d rop s to le s s tha n 2.3V, a ll s witc he s a re  
turne d off a nd the VCC a nd VPP outp uts a re hig h  
impedance.  
______________________________________________________________________________________ 11  
Du a l-Ch a n n e l Ca rd Bu s a n d P CMCIA  
P o w e r S w it c h e s w it h S MBu s ™ S e ria l In t e rfa c e  
responding to either the A channel address (which will  
provide data about faults for both A and B channels) or  
to the interrupt pointer address (discussed later).  
______S MBu s ™ In t e rfa c e Op e ra t io n  
The SMBus serial interface is a two-wire interface with  
multi-mastering capability, intended to control low-  
The normal start condition consists of a high-to-low  
transition on SMBDATA while SMBCLK is high. The  
7-bit address is followed by a bit that designates a read  
or write operation: high = read, low = write. If the 7-bit  
a d d re s s ma tc he s one of the s up p orte d func tion  
addresses, the IC issues an acknowledge pulse by  
pulling the SMBDATA line low. If the address is not  
valid, the IC stays off of the bus and ignores any data  
on the bus until a new start condition is detected. Once  
the IC receives a valid address that includes a write bit,  
it expects to receive one additional byte of data. If a  
stop condition or new start condition is detected before  
a complete byte of data is clocked in, the IC interprets  
this as an error and all of the data is rejected and lost.  
SMBDATA and SMBCLK are Schmitt triggered and can  
accommodate slower edges. However, rising edges  
should still be faster than 1µs, and falling edges should  
be faster than 300ns.  
speed peripheral devices in low-power portable equip-  
me nt a p p lic a tions . SMBus is s imila r to I2C™ a nd  
AccessBus, but has slightly different logic threshold  
voltage levels, different fixed addresses, and a sus-  
pend-mode register capability. To obtain a complete  
set of specifications on the SMBus interface, call Intel at  
(800) 253-3696 and ask for product code SBS5220.  
S MBu s Ad d re s s in g  
These dual-channel PC Card switch devices respond to  
two of four different addresses, depending on the state  
of the ADR address pin. Normal writing to the device is  
done by transmitting one of four addresses, followed by  
a single data byte, to program the channel selected.  
Write transmissions to the interrupt pointer address are  
not s up p orte d b y the s e d e vic e s . Re a d ing from the  
device is done by transmitting one of two addresses cor-  
/MAX1604  
Table 1. SMBus Addressing  
S MBu s Writ e Op e ra t io n s  
If the IC receives a valid address immediately followed  
by a write bit, the IC becomes a slave receiver. The  
s la ve IC g e ne ra te s a firs t a c knowle d g e a fte r the  
address and write bit, and a second acknowledge after  
the command byte. A stop condition following the com-  
mand (data) byte causes immediate execution of the  
command, unless the data included a low SUS/OP bit.  
If the data included a low SUS/OP bit, the command is  
stored in the suspend-mode register and is executed  
only when the SMBSUS pin is pulled low (Figure 3).  
SMB  
ADDRESS  
WRITE  
FUNCTION  
ADR PIN  
READ FUNCTION  
0001100  
1010000  
1010001  
1010010  
1010011  
Dont care  
Grounded  
Grounded  
Tied to VL  
Tied to VL  
N/A  
Interrupt Pointer  
Channel A  
Channel B  
Channel A  
Channel B  
Channel A/B faults  
Channel A/B faults  
Channel A/B faults  
Channel A/B faults  
Table 2. Command Format for Channel A Write Operations (address 1010000 or 1010010)  
BIT  
NAME  
POR STATE  
FUNCTION  
Operate/suspend bit. Selects which latch receives data: high = operation,  
low = suspend.  
7 (MSB)  
OP/SUS  
0
6
VCCAON  
VCCA3/5  
VCCAHIZ  
VPPAON  
VPPAPGM  
VPPAHIZ  
MASKFLT  
0
0
0
0
0
0
0
Turns on VCCA when high, pulls VCCA to GND when low.  
5
If VCCA is on, a high connects VY to VCCA, and a low connects VX to VCCA.  
Puts VCCA in a high-impedance state when high. Overrides VCCAON.  
Turns on VPPA when high, pulls VPPA to GND when low.  
4
3
2
1
If VPPA is on, a high connects VPPA to 12INA, and a low connects VPPA to VCCA.  
Puts VPPA in a high-impedance state when high. Overrides VPPAON.  
Masks fault interrupts from both channel A and channel B when high.  
0 (LSB)  
I2C is a trademark of Philips Corp.  
SMBus is a trademark of Intel Corp.  
12 ______________________________________________________________________________________  
Du a l-Ch a n n e l Ca rd Bu s a n d P CMCIA  
P o w e r S w it c h e s w it h S MBu s ™ S e ria l In t e rfa c e  
/MAX1604  
Table 3. Command Format for Channel B Write Operations (address 1010001 or 1010011)  
BIT  
NAME  
POR STATE  
FUNCTION  
Operate/suspend bit. Selects which latch receives data: high = operation,  
low = suspend.  
7 (MSB)  
OP/SUS  
0
6
VCCBON  
VCCB3/5  
VCCBHIZ  
VPPBON  
VPPBPGM  
VPPBHIZ  
RFU  
0
0
0
0
0
0
0
Turns on VCCB when high, pulls VCCB to GND when low.  
If VCCB is on, a high connects VY to VCCB, and a low connects VX to VCCB.  
Puts VCCB in a high-impedance state when high. Overrides VCCBON.  
Turns on VPPB when high, pulls VPPB to GND when low.  
5
4
3
2
1
If VPPB is on, a high connects VPPB to 12INB, and a low connects VPPB to VCCB.  
Puts VPPB in a high-impedance state when high. Overrides VPPBON.  
Reserved for future use.  
0 (LSB)  
Table 4. Read Format for Interrupt Pointer Address (0001100)  
BIT  
NAME  
ADD7  
ADD6  
ADD5  
ADD4  
ADD3  
ADD2  
ADD1  
ADD0  
POR STATE  
FUNCTION  
7 (MSB)  
0
0
0
0
0
0
0
0
6
ADD7 to ADD1 provide a return address for any interrupt query. For these devices, the  
return addresses are:  
5
1010000 = Channel A, ADD = low  
1010001 = Channel B, ADD = low  
1010010 = Channel A, ADD = high  
1010011 = Channel B, ADD = high  
4
3
2
1
0 (LSB)  
Table 5. Read Format for Power Switch Address (1010000 or 1010010)  
BIT  
NAME  
POR STATE LATCHED?  
FUNCTION  
7 (MSB) CATFAULT  
0
0
0
0
0
0
0
0
Y
Y
Y
Y
Y
N
N
N
Indicates catastrophic (thermal or undervoltage lockout) fault when high.  
Indicates VCCA overcurrent/undervoltage lockout when high.  
Indicates VPPA overcurrent/undervoltage lockout when high.  
Indicates VCCB overcurrent/undervoltage lockout when high.  
Indicates VPPB overcurrent/undervoltage lockout when high.  
Indicates dual part (single-channel devices would read 1).  
Reserved for future use.  
6
FAULT1  
FAULT2  
FAULT3  
FAULT4  
SIG/DUAL  
RFU  
5
4
3
2
1
0 (LSB)  
RFU  
Reserved for future use.  
______________________________________________________________________________________ 13  
Du a l-Ch a n n e l Ca rd Bu s a n d P CMCIA  
P o w e r S w it c h e s w it h S MBu s ™ S e ria l In t e rfa c e  
A
B
C
D
E
F
G
H
I
J
K
L
M
t
t
HIGH  
LOW  
SMBCLK  
SMBDATA  
t
t
t
t
HD:DAT  
HD:STA  
SU:STA  
SU:DAT  
t
t
SU:STO  
BUF  
A = START CONDITION  
J = ACKNOWLEDGE CLOCKED INTO MASTER  
K = ACKNOWLEDGE CLOCK PULSE  
L = STOP CONDITION, DATA EXECUTED BY SLAVE  
M = NEW START CONDITION  
F = ACKNOWLEDGE BIT CLOCKED INTO MASTER  
G = MSB OF DATA CLOCKED INTO SLAVE (OP/SUS BIT)  
H = LSB OF DATA CLOCKED INTO SLAVE  
B = MSB OF ADDRESS CLOCKED INTO SLAVE  
C = LSB OF ADDRESS CLOCKED INTO SLAVE  
D = R/W BIT CLOCKED INTO SLAVE  
I = SLAVE PULLS SMBDATA LINE LOW  
E = SLAVE PULLS SMBDATA LINE LOW  
/MAX1604  
Figure 3. SMBus Write Timing Diagram  
fault condition is to cycle the voltage on VL in order to  
g e ne ra te a p owe r-on re s e t (whic h c le a rs a ll of the  
SMBus registers). Note that the SMBus registers retain  
their data even if the main VX/VY supplies are turned  
off, provided that VL remains powered.  
S MBu s Re a d Op e ra t io n s  
If the IC receives a valid address that includes a read  
bit, the IC becomes a slave transmitter. After receiving  
the address data, the IC generates an acknowledge  
during the acknowledge clock pulse and drives the  
SMBDATA line in sync with SMBCLK. The SMB proto-  
col requires that the master end the read transmission  
by not acknowledging during the acknowledge bit of  
SMBCLK. These PC Card ICs support the repeated  
start-condition method for changing data-transfer direc-  
tion; that is, a write transmission followed by a repeated  
start instead of a stop condition prepares the IC for  
data reading (Figure 4).  
When a fault occurs, SMBALERT is immediately assert-  
ed and latched low. If the fault is momentary and disap-  
pears before the IC is serviced, the data is still latched  
in the interrupt pointer and SMBALERT remains assert-  
ed. Normally, the master (host system or PCMCIA digi-  
ta l c ontrolle r) now s e nd s out the inte rrup t p ointe r  
address (00011000) followed by a read bit. SMBALERT  
is cleared and the PC Card IC responds by putting out  
its address on the bus. If the fault persists, SMBALERT  
is re-asserted, but the data in the fault registers is not  
reloaded. The data in the fault latches only reflects the  
first time SMBALERT is asserted.  
S MBu s In t e rru p t s  
These PC Card power-switch ICs are slave devices  
only, a nd ne ve r initia te c ommunic a tions e xc e p t b y  
a s s e rting a n inte rrup t (b y p ulling SMBALERT low).  
Interrupts are generated only for reporting fault condi-  
tions, including overcurrent at VCCA, VCCB, VPPA, or  
VPPB, undervoltage lockout, and IC thermal overload. If  
an interrupt occurs, it can be an indication of impend-  
ing system failure. The host system can react by going  
into suspend mode or taking other action. It can come  
back later to interrogate the IC via the interrupt pointer  
to determine status or perform corrective action (such  
as disabling the appropriate power switch that might  
b e c onne c te d to a s horte d PC c a rd ). The fa s te s t  
method for turning off the switches in response to a  
When the part enters operating mode, a false interrupt  
flag may be issued. The user needs to send the inter-  
rupt address to clear the false interrupt.  
Normally, the master sends out the appropriate PC Card  
switch address on the bus, followed by a read bit. The  
data in the fault registers is then clocked out onto the  
bus (which also clears the fault registers). If the fault  
p e rs is ts , the fa ult b its a nd SMBALERT a re la tc he d  
again.  
14 ______________________________________________________________________________________  
Du a l-Ch a n n e l Ca rd Bu s a n d P CMCIA  
P o w e r S w it c h e s w it h S MBu s ™ S e ria l In t e rfa c e  
/MAX1604  
A
B
C
D
E
F
G
H
I
J
K
t
t
HIGH  
LOW  
SMBCLK  
SMBDATA  
t
t
t
t
t
BUF  
SU:STA HD:STA  
SU:DAT  
SU:STO  
A = START CONDITION  
E = SLAVE PULLS SMBDATA LINE LOW  
I = ACKNOWLEDGE CLOCK PULSE  
J = STOP CONDITION  
K = NEW START CONDITION  
B = MSB OF ADDRESS CLOCKED INTO SLAVE  
C = LSB OF ADDRESS CLOCKED INTO SLAVE  
D = R/W BIT CLOCKED INTO SLAVE  
F = ACKNOWLEDGE BIT CLOCKED INTO MASTER  
G = MSB OF DATA CLOCKED INTO MASTER  
H = LSB OF DATA CLOCKED INTO MASTER  
Figure 4. SMBus Read Timing Diagram  
The interrupt pointer address provides quick fault iden-  
tification for simple slave devices that lack the complex,  
expensive logic needed to be a bus master. The host  
can read the interrupt pointer to determine which slave  
device generated an SMBALERT interrupt signal. The  
interrupt pointer address can activate several different  
Ch a n g in g S MBCLK a n d S MBDATA  
S im u lt a n e o u s ly  
When clocking data into the MAX1601/MAX1604, SMB-  
DATA must not fall before SMBCLK. Otherwise, the  
MAX1601/MAX1604 may interpret this as a start condi-  
tion. Even when SMBDATA and SMBCLK fall at the  
same instant, different fall times for the two signals may  
cause the erroneous generation of a start condition. To  
ensure that SMBDATA transitions after the falling edge of  
SMBCLK, add an RC network to SBMDATA (Figure 6).  
2
slave devices simultaneously, similar to an I C general  
c a ll. Any s la ve d e vic e tha t g e ne ra te d a n inte rrup t  
attempts to identify itself by putting its own address on  
the bus during the first read byte. If more than one slave  
attempts to respond, bus arbitration rules apply and the  
device with the lower address code wins. The losing  
device wont generate an acknowledge and will contin-  
ue to hold the SMBALERT line low until serviced, which  
imp lie s tha t the hos t inte rrup t inp ut mus t b e le ve l  
sensitive.  
1k  
VL  
0.1µF  
MAX1601  
MAX1604  
+5V  
VX  
VY  
__________Ap p lic a t io n s In fo rm a t io n  
S u p p ly Byp a s s in g  
Bypass the VY, VX, and 12IN_ inputs with ceramic 0.1µF  
capacitors. Bypass the VCC_ and VPP_ outputs with a  
0.1µF capacitor for noise reduction and ESD protection.  
Figure 5. Powering from Either VX or VY  
+5V  
P o w e r-Up  
Apply power to the VL input before any of the switch  
inputs. If VX, VY, or 12IN receive power before VL rises  
above 2.8V, the supply current may be artificially high  
(about 5mA). When the voltage on VL is greater than  
2.8V (operating mode), the part consumes its specified  
24µA. To avoid power sequencing, diode-OR VX and  
VY to VL through a 1kresistor (Figure 5). Take care  
not to allow VL to drop below the 2.8V maximum under-  
voltage lockout threshold.  
10k  
CIRRUS LOGIC  
PULL-UP  
CL-PD6730  
1.5k  
SMBDATA  
SMBDATA  
SMBCLK  
100pF  
MAX1601  
MAX1604  
SMBCLK  
Figure 6. Application with Cirrus Logic Interface  
______________________________________________________________________________________ 15  
Du a l-Ch a n n e l Ca rd Bu s a n d P CMCIA  
P o w e r S w it c h e s w it h S MBu s ™ S e ria l In t e rfa c e  
__________________P in Co n fig u ra t io n  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 4372  
TOP VIEW  
GND  
N.C.  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
2
3
4
5
6
7
VL  
N.C.  
N.C.  
N.C.  
GND  
VCCA  
VY  
12INA  
VPPA  
VX  
MAX1601  
MAX1604  
VCCA  
VCCA  
VY  
VX 8  
9
VCCB  
VCCB  
10  
11  
12  
13  
14  
VX  
VY  
VPPB  
VCCB  
/MAX1604  
12INB  
SMBALERT  
SMBDATA  
SMBCLK  
ADR  
SMBSUS  
SSOP  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.068  
MAX  
0.078  
0.008  
0.015  
0.008  
MIN  
1.73  
0.05  
0.25  
0.09  
MAX  
1.99  
0.21  
0.38  
0.20  
A
A1 0.002  
B
C
D
E
e
0.010  
0.004  
SEE VARIATIONS  
α
0.205  
0.209  
5.20  
5.38  
E
H
0.0256 BSC  
0.65 BSC  
H
L
0.301  
0.311  
0.037  
8˚  
7.65  
0.63  
0˚  
7.90  
0.95  
8˚  
0.025  
0˚  
C
α
L
INCHES  
MILLIMETERS  
DIM PINS  
MAX  
6.33  
MIN MAX MIN  
0.239 0.249 6.07  
0.239 0.249 6.07  
0.278 0.289 7.07  
0.317 0.328 8.07  
0.397 0.407 10.07  
e
D
D
D
D
D
14  
16  
20  
24  
28  
6.33  
SSOP  
7.33  
SHRINK  
A
8.33  
SMALL-OUTLINE  
PACKAGE  
10.33  
21-0056A  
B
A1  
D
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1996 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1601EAI-T

Power Supply Management Circuit, Fixed, 2 Channel, PDSO28, 0.200 INCH, SSOP-28
MAXIM

MAX1601EUR-T

Analog IC
MAXIM

MAX1602

Single-Channel CardBus and PCMCIA VCC/VPP Power-Switching Network
MAXIM

MAX16020

Low-Power uP Supervisory Circuits with Battery-Backup Circuit and Chip-Enable Gating
MAXIM

MAX16020LTBL+T

暂无描述
MAXIM

MAX16020LTBM+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTBR+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTBS+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTBT+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTBW+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTBY+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTBZ+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM