MAX16030TG [MAXIM]

Dual-/Triple-/Quad-Voltage, Capacitor-Adjustable, Sequencing/Supervisory Circuits; 双/三/四电压,电容调节,排序/监控电路
MAX16030TG
型号: MAX16030TG
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual-/Triple-/Quad-Voltage, Capacitor-Adjustable, Sequencing/Supervisory Circuits
双/三/四电压,电容调节,排序/监控电路

监控
文件: 总15页 (文件大小:280K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0525; Rev 3; 1/07  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
25–MAX1630  
General Description  
Features  
o 2.2V to 28V Operating Voltage Range  
The MAX16025–MAX16030 are dual-/triple-/quad-volt-  
age monitors and sequencers that are offered in a  
small TQFN package. These devices offer enormous  
design flexibility as they allow fixed and adjustable  
thresholds to be selected through logic inputs and pro-  
vide sequence timing through small external capaci-  
tors. These versatile devices are ideal for use in a wide  
variety of multivoltage applications.  
o Fixed Thresholds for 3.3V, 2.5V, 1.8V, 1.5V, and  
1.2V Systems  
o 1.5% Accurate Adjustable Threshold Monitors  
Voltages Down to 0.5V  
o 2.7% Accurate Fixed Thresholds Over  
Temperature  
o Fixed (140ms min)/Capacitor-Adjustable Delay  
As the voltage at each monitored input exceeds its  
respective threshold, its corresponding output goes  
high after a propagation delay or a capacitor-set time  
delay. When a voltage falls below its threshold, its  
respective output goes low after a propagation delay.  
Each detector circuit also includes its own enable input,  
allowing the power-good outputs to be shut off inde-  
pendently. The independent output for each detector is  
available with push-pull or open-drain configuration  
with the open-drain version capable of supporting volt-  
ages up to 28V, thereby allowing them to interface to  
shutdown and enable inputs of various DC-DC regula-  
tors. Each detector can operate independently as four  
separate supervisory circuits or can be daisy-chained  
to provide controlled power-supply sequencing.  
Timing  
o Independent Open-Drain/Push-Pull Outputs  
o Enable Inputs for Each Monitored Voltage  
o 9 Logic-Selectable Threshold Options  
o Manual Reset and Tolerance Select (5%/10%) Inputs  
o Small, 4mm x 4mm TQFN Package  
o Fully Specified from -40°C to +125°C  
Ordering Information  
PIN-  
PKG  
PART*  
TEMP RANGE  
PACKAGE  
CODE  
MAX16025TE+  
MAX16026TE+  
MAX16027TP+  
MAX16028TP+  
MAX16029TG+  
MAX16030TG+  
-40°C to +125°C 16 TQFN  
-40°C to +125°C 16 TQFN  
-40°C to +125°C 20 TQFN  
-40°C to +125°C 20 TQFN  
-40°C to +125°C 24 TQFN  
-40°C to +125°C 24 TQFN  
T1644-4  
T1644-4  
T2044-3  
T2044-3  
T2444-4  
T2444-4  
The MAX16025–MAX16030 also include a reset func-  
tion that deasserts only after all of the independently  
monitored voltages exceed their threshold. The reset  
timeout is internally fixed or can be adjusted externally.  
These devices are offered in a 4mm x 4mm TQFN  
package and are fully specified from -40°C to +125°C.  
+Denotes lead-free package.  
*For tape and reel, add a “T” after the “+.” All tape and reel  
orders are available in 2.5k increments.  
Applications  
Multivoltage Systems  
Pin Configurations  
DC-DC Supplies  
Servers/Workstations  
TOP VIEW  
Storage Systems  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
MR 19  
CRESET 20  
CDLY4 21  
CDLY3 22  
CDLY2 23  
TH1  
EN4  
EN3  
Networking/Telecommunication Equipment  
Selector Guide  
MAX16029  
MAX16030  
EN2  
EN1  
GND  
MONITORED INDEPENDENT  
RESET  
OUTPUT  
PART  
VOLTAGES  
OUTPUTS  
8
MAX16025  
MAX16026  
MAX16027  
MAX16028  
MAX16029  
MAX16030  
2
2
3
3
4
4
2 (Open-drain) Open-drain  
2 (Push-pull) Push-pull  
3 (Open-drain) Open-drain  
3 (Push-pull) Push-pull  
4 (Open-drain) Open-drain  
4 (Push-pull) Push-pull  
24  
7
CDLY1  
+
1
2
3
4
5
6
THIN QFN  
(4mm x 4mm)  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to GND.)  
CRESET......................................................-0.3V to (V  
+ 0.3V)  
CC  
V
.........................................................................-0.3V to +30V  
Input/Output Current (all pins).......................................... 20mA  
CC  
EN1–EN4 ....................................................-0.3V to (V  
OUT1–OUT4 (push-pull).............................-0.3V to (V  
OUT1–OUT4 (open-drain)......................................-0.3V to +30V  
RESET (push-pull) ......................................-0.3V to (V + 0.3V)  
RESET (open-drain)..................................................-0.3V to 30V  
IN1–IN4.......................................................-0.3V to (V  
+ 0.3V)  
+ 0.3V)  
Continuous Power Dissipation (T = +70°C)  
CC  
CC  
A
16-Pin TQFN (derate 25mW/°C above +70°C) ...........2000mW  
20-Pin TQFN (derate 25.6mW/°C above +70°C) ........2051mW  
24-Pin TQFN (derate 27.8mW/°C above +70°C) ........2222mW  
Operating Temperature Range .........................-40°C to +125°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
+ 0.3V)  
+ 0.3V)  
CC  
CC  
MR, TOL, TH1, TH0 ....................................-0.3V to (V  
CDLY1–CDLY4.........................................................-0.3V to +6V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 2.2V to 28V, T = -40°C to +125°C, unless otherwise specified. Typical values are at V  
= 3.3V and T = +25°C.) (Note 1)  
CC A  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
Operating Voltage Range  
Undervoltage Lockout  
V
(Note 2)  
(Note 2)  
2.2  
1.8  
28.0  
2.0  
V
V
CC  
25–MAX1630  
UVLO  
1.9  
50  
Undervoltage-Lockout Hysteresis UVLO  
V
falling  
CC  
mV  
HYST  
V
V
V
= 3.3V  
= 12V  
= 28V  
40  
47  
52  
75  
75  
80  
CC  
CC  
CC  
All OUT_ and RESET at  
logic-high (IN_ current  
excluded)  
V
Supply Current  
I
CC  
µA  
CC  
INPUTS (IN_)  
3.3V threshold, TOL = GND  
3.3V threshold, TOL = V  
2.970  
2.805  
2.250  
2.125  
1.620  
1.530  
1.350  
1.275  
1.080  
1.020  
0.492  
0.463  
3.052  
2.888  
2.313  
2.187  
1.665  
1.575  
1.387  
1.312  
1.110  
1.050  
0.5  
3.135  
2.970  
2.375  
2.250  
1.710  
1.620  
1.425  
1.350  
1.140  
1.080  
0.508  
0.481  
CC  
2.5V threshold, TOL = GND  
2.5V threshold, TOL = V  
CC  
1.8V threshold, TOL = GND  
1.8V threshold, TOL = V  
IN_ Thresholds (IN_ Falling)  
V
V
V
V
TH  
CC  
1.5V threshold, TOL = GND  
1.5V threshold, TOL = V  
CC  
1.2V threshold, TOL = GND  
1.2V threshold, TOL = V  
TOL = GND  
CC  
Adjustable Threshold (IN_  
Falling)  
TH  
TOL = V  
0.472  
0.5  
CC  
IN_ Hysteresis (IN_ Rising)  
IN_ Input Resistance  
IN_ Input Current  
V
%
HYST  
Fixed threshold  
Adjustable threshold only (V  
500  
918  
kΩ  
nA  
I
= 1V)  
IN_  
-100  
+100  
L
2
_______________________________________________________________________________________  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
25–MAX1630  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 2.2V to 28V, T = -40°C to +125°C, unless otherwise specified. Typical values are at V  
= 3.3V and T = +25°C.) (Note 1)  
CC A  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CRESET AND CDLY_  
CRESET Threshold  
V
CRESET rising, V  
= 3.3V  
0.465  
380  
0.5  
500  
1
0.535  
620  
V
TH-RESET  
CC  
CRESET Charge Current  
CDLY_ Threshold  
I
V
= 3.3V  
nA  
V
CH-RESET  
CC  
V
CDLY_ rising, V  
= 3.3V  
CC  
0.95  
200  
1.05  
300  
TH-CDLY  
CDLY_ Charge Current  
I
V
= 3.3V  
250  
nA  
CH-CDLY  
CC  
DIGITAL LOGIC INPUTS (EN_, MR, TOL, TH1, TH0)  
Input Low Voltage  
V
0.4  
V
V
V
IL  
Input High Voltage  
V
1.4  
-1  
IH  
TH1, TH0 Logic-Input Floating  
0.6  
TOL, TH1, TH0 Logic-Input  
Current  
V
, V  
, V  
= GND or V  
+1  
µA  
TOL TH1 TH0  
CC  
EN_ Input Leakage Current  
MR Internal Pullup Current  
OUTPUTS (OUT_, RESET)  
V
V
= V  
or GND  
CC  
-100  
250  
+100  
820  
nA  
nA  
EN_  
CC  
= 3.3V  
535  
V
V
V
V
V
1.2V, I  
= 90µA  
SINK  
0.3  
0.3  
CC  
CC  
CC  
CC  
CC  
Output Low Voltage (Open-Drain  
or Push-Pull)  
V
V
2.25V, I  
= 0.5mA  
OL  
SINK  
4.5V, I  
= 1mA  
0.35  
SINK  
3V, I  
= 500µA  
0.8 x V  
0.8 x V  
SOURCE  
CC  
CC  
Output High Voltage (Push-Pull)  
V
V
OH  
4.5V, I  
= 800µA  
SOURCE  
Output Leakage Current (Open-  
Drain)  
I
Output not asserted low, V  
= 28V  
OUT  
1
µA  
ms  
LKG  
CRESET = V , V  
= 3.3V  
140  
190  
260  
CC CC  
Reset Timeout Period  
t
RP  
CRESET open  
0.030  
TIMING  
t
IN_ rising, CDLY_ open  
IN_ falling, CDLY_ open  
IN_ falling  
35  
20  
35  
DELAY+  
IN_ to OUT_ Propagation Delay  
IN_ to RESET Propagation Delay  
MR Minimum Input Pulse Width  
EN_ or MR Glitch Rejection  
µs  
µs  
µs  
ns  
t
DELAY-  
t
RST-DELAY  
(Note 3)  
2
280  
3
t
From device enabled to device disabled  
OFF  
EN_ to OUT_ Delay  
µs  
From device disabled to device enabled  
(CDLY_ open)  
t
30  
3
ON  
MR to RESET Delay  
MR falling  
µs  
Note 1: Devices are production tested at T = +25°C. Limits over temperature are guaranteed by design.  
A
Note 2: Operating below the UVLO causes all outputs to go low. The outputs are guaranteed to be in the correct state for V  
down  
CC  
to 1.2V.  
Note 3: In order to guarantee an assertion, the minimum input pulse width must be greater than 2µs.  
_______________________________________________________________________________________  
3
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
Typical Operating Characteristics  
(V  
= 3.3V, T = +25°C, unless otherwise noted.)  
A
CC  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. TEMPERATURE  
NORMALIZED ADJUSTABLE THRESHOLD  
vs. TEMPERATURE  
60  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.995  
0.994  
0.993  
0.992  
0.991  
0.990  
60  
MAX16026  
V
= 28V  
CC  
MAX16026  
TOL = V  
CC  
55  
50  
45  
40  
35  
30  
55  
50  
45  
40  
35  
30  
TOL = GND  
V
= 12V  
CC  
V
= 3.3V  
CC  
ADJUSTABLE THRESHOLD  
2
6
10  
14  
18  
22  
26  
30  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
RESET TIMEOUT PERIOD  
NORMALIZED ADJUSTABLE THRESHOLD  
vs. TEMPERATURE  
25–MAX1630  
vs. C  
OUT_ DELAY vs. C  
CRESET  
CDLY_  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.995  
0.994  
0.993  
0.992  
0.991  
0.990  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
TOL = V  
CC  
TOL = GND  
3.3V THRESHOLD  
0
0
100 200 300 400 500 600 700 800 900 1000  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0
100 200 300 400 500 600 700 800 900 1000  
(nF)  
C
(nF)  
TEMPERATURE (°C)  
C
CDLY_  
CRESET  
OUT_ LOW VOLTAGE  
vs. SINK CURRENT  
OUT_ HIGH VOLTAGE  
vs. SOURCE CURRENT  
FIXED RESET TIMEOUT PERIOD  
vs. TEMPERATURE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
195  
194  
193  
192  
191  
190  
189  
188  
187  
186  
185  
CRESET = V  
CC  
PUSH-PULL VERSIONS  
0
1
2
3
4
6
7
5
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
SOURCE CURRENT (mA)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
SINK CURRENT (mA)  
4
_______________________________________________________________________________________  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
25–MAX1630  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, T = +25°C, unless otherwise noted.)  
A
CC  
RESET OUTPUT LOW VOLTAGE  
RESET OUTPUT HIGH VOLTAGE  
vs. SOURCE CURRENT  
vs. SINK CURRENT  
ENABLE TURN-OFF  
MAX16025 toc12  
1.0  
3.5  
CRESET = V  
CDLY_ = OPEN  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
CC  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
EN_  
OUT_  
RESET  
PUSH-PULL VERSIONS  
0
1
2
3
4
5
6
7
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
SOURCE CURRENT (mA)  
4μs/div  
SINK CURRENT (mA)  
RESET TIMEOUT DELAY  
ENABLE TURN-ON  
MR FALLING vs. RESET  
MAX16025 toc15  
MAX16025 toc14  
MAX16025 toc13  
CRESET = V  
CC  
CDLY_ = OPEN  
CRESET = V  
CDLY_ = OPEN  
CRESET = V  
CDLY_ = OPEN  
CC  
CC  
IN_  
EN_  
MR  
OUT_  
OUT_  
RESET  
RESET  
RESET  
100ms/div  
40ms/div  
4μs/div  
MAXIMUM TRANSIENT DURATION  
vs. THRESHOLD OVERDRIVE  
MR RISING vs. RESET  
MAX16025 toc16  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
OUTPUT ASSERTED ABOVE THIS LINE  
CRESET = V  
CDLY_ = OPEN  
CC  
MR  
RESET  
1
10  
100  
1000  
40ms/div  
THRESHOLD OVERDRIVE (mV)  
_______________________________________________________________________________________  
5
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX16025/ MAX16027/ MAX16029/  
MAX16026 MAX16028 MAX16030  
Supply Voltage Input. Connect a 2.2V to 28V supply voltage to power the  
1
2
1
2
1
2
3
4
5
V
device. All outputs are low when V  
is below the UVLO. For noisy systems,  
CC  
CC  
bypass V  
to GND with a 0.1µF capacitor.  
CC  
Monitored Input 1. When the voltage at IN1 exceeds its threshold, OUT1 goes  
high after the capacitor-adjustable delay period. When the voltage at IN1 falls  
below its threshold, OUT1 goes low after a propagation delay.  
IN1  
IN2  
IN3  
IN4  
Monitored Input 2. When the voltage at IN2 exceeds its threshold, OUT2 goes  
high after the capacitor-adjustable delay period. When the voltage at IN2 falls  
below its threshold, OUT2 goes low after a propagation delay.  
3
3
Monitored Input 3. When the voltage at IN3 exceeds its threshold, OUT3 goes  
high after the capacitor-adjustable delay period. When the voltage at IN3 falls  
below its threshold, OUT3 goes low after a propagation delay.  
4
Monitored Input 4. When the voltage at IN4 exceeds its threshold, OUT4 goes  
high after the capacitor-adjustable delay period. When the voltage at IN4 falls  
below its threshold, OUT4 goes low after a propagation delay.  
25–MAX1630  
Threshold Tolerance Input. Connect TOL to GND to select thresholds 5%  
4
5
5
6
6
7
TOL  
below nominal. Connect TOL to V  
to select thresholds 10% below nominal.  
CC  
GND  
Ground  
Active-High Logic-Enable Input 1. Driving EN1 low causes OUT1 to go low  
regardless of the input voltage. Drive EN1 high to enable the monitoring  
comparator.  
6
7
7
8
8
9
EN1  
EN2  
EN3  
EN4  
Active-High Logic-Enable Input 2. Driving EN2 low causes OUT2 to go low  
regardless of the input voltage. Drive EN2 high to enable the monitoring  
comparator.  
Active-High Logic-Enable Input 3. Driving EN3 low causes OUT3 to go low  
regardless of the input voltage. Drive EN3 high to enable the monitoring  
comparator.  
9
10  
11  
Active-High Logic-Enable Input 4. Driving EN4 low causes OUT4 to go low  
regardless of the input voltage. Drive EN4 high to enable the monitoring  
comparator.  
Threshold Select Input 1. Connect TH1 to V  
select the input-voltage threshold option in conjunction with TH0 (see Table 2).  
or GND, or leave it open to  
CC  
8
9
10  
11  
12  
13  
12  
13  
14  
15  
16  
TH1  
TH0  
Threshold Select Input 0. Connect TH0 to V or GND, or leave it open to  
select the input-voltage threshold option in conjunction with TH1 (see Table 2).  
CC  
Output 4. When the voltage at IN4 is below its threshold or EN4 goes low,  
OUT4 goes low.  
10  
OUT4  
OUT3  
OUT2  
Output 3. When the voltage at IN3 is below its threshold or EN3 goes low,  
OUT3 goes low.  
Output 2. When the voltage at IN2 is below its threshold or EN2 goes low,  
OUT2 goes low.  
6
_______________________________________________________________________________________  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
25–MAX1630  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX16025/ MAX16027/ MAX16029/  
MAX16026 MAX16028 MAX16030  
Output 1. When the voltage at IN1 is below its threshold or EN1 goes low,  
OUT1 goes low.  
11  
14  
17  
OUT1  
Active-Low Reset Output. RESET asserts low when any of the monitored  
voltages (IN_) falls below its respective threshold, any EN_ goes low, or MR is  
12  
15  
18  
RESET asserted. RESET remains asserted for the reset timeout period after all of the  
monitored voltages exceed their respective threshold, all EN_ are high, all  
OUT_ are high, and MR is deasserted.  
Active-Low Manual Reset Input. Pull MR low to assert RESET low. RESET  
13  
14  
16  
17  
19  
20  
MR  
remains low for the reset timeout period after MR is deasserted (as long as all  
OUT_ are high).  
Capacitor-Adjustable Reset Delay Input. Connect an external capacitor from  
CRESET to GND to set the reset timeout period or connect to V  
for the  
CC  
CRESET  
default 140ms minimum reset timeout period. Leave CRESET open for internal  
propagation delay.  
Capacitor-Adjustable Delay Input 4. Connect an external capacitor from  
15  
18  
19  
21  
22  
23  
CDLY4 CDLY4 to GND to set the IN4 to OUT4 (and EN4 to OUT4) delay period.  
Leave CDLY4 open for internal propagation delay.  
Capacitor-Adjustable Delay Input 3. Connect an external capacitor from  
CDLY3  
CDLY2  
CDLY3 to GND to set the IN3 to OUT3 (and EN3 to OUT3) delay period.  
Leave CDLY3 open for internal propagation delay.  
Capacitor-Adjustable Delay Input 2. Connect an external capacitor from  
CDLY2 to GND to set the IN2 to OUT2 (and EN2 to OUT2) delay period.  
Leave CDLY2 open for internal propagation delay.  
Capacitor-Adjustable Delay Input 1. Connect an external capacitor from  
16  
20  
24  
CDLY1 CDLY1 to GND to set the IN1 to OUT1 (and EN1 to OUT1) delay period.  
Leave CDLY1 open for internal propagation delay.  
Exposed Pad. EP is internally connected to GND. Connect EP to the  
EP  
ground plane.  
Table 1. Output State*  
Table 2. Input-Voltage Threshold Selector  
EN_  
Low  
High  
Low  
IN_  
OUT_  
IN3  
IN4  
IN1 (ALL  
VERSIONS) VERSIONS)  
IN2 (ALL  
TH1/TH0  
LOGIC  
(MAX16027/ (MAX16029/  
MAX16028) MAX16030)  
V
V
V
< V  
Low  
Low  
Low  
IN_  
IN_  
IN_  
TH  
TH  
TH  
(V)  
(V)  
< V  
> V  
(V)  
(V)  
Low/Low  
3.3  
3.3  
3.3  
3.3  
2.5  
3.3  
3.3  
2.5  
Adj  
2.5  
1.8  
1.5  
1.2  
1.8  
Adj  
Adj  
Adj  
Adj  
1.8  
Adj  
Adj  
1.8  
Adj  
2.5  
Adj  
Adj  
Adj  
1.5  
Adj  
Adj  
2.5  
Adj  
Adj  
Adj  
Adj  
Adj  
OUT_ = high  
(MAX16026/MAX16028/  
MAX16030)  
Low/High  
Low/Open  
High/Low  
High/High  
High/Open  
Open/Low  
Open/High  
Open/Open  
High  
V
> V  
IN_  
TH  
OUT_ = high impedance  
(MAX16025/MAX16027/  
MAX16029)  
*When V  
falls below the UVLO, all outputs go low regardless  
CC  
of the state of EN_ and V . The outputs are guaranteed to be  
IN_  
in the correct state for V  
down to 1.2V.  
CC  
_______________________________________________________________________________________  
7
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
TH0  
TH1  
EN4 EN3 EN2 EN1  
DELAY  
THRESHOLD  
SELECT  
LOGIC  
IN1  
IN2  
IN3  
250nA  
OUT1  
LOGIC  
DRIVER  
1V  
MAX16029  
MAX16030  
OUT2  
DELAY  
DRIVER  
25–MAX1630  
DELAY  
OUT3  
DRIVER  
IN4  
OUT4  
DELAY  
DRIVER  
DRIVER  
GND  
TOL  
RESET  
DELAY  
LOGIC  
RESET  
REFERENCE  
V
CDLY1  
CDLY2  
CDLY3  
CDLY4  
CRESET  
MR  
CC  
Figure 1. MAX16029/MAX16030 Simplified Functional Diagram  
8
_______________________________________________________________________________________  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
25–MAX1630  
V
CC  
V
UVLO  
IN_  
V
TH  
V
TH  
t < t  
ON  
EN_  
OUT_  
t
DELAY-  
t
t
ON  
ON  
t
DELAY+  
t
OFF  
t
RST_DELAY  
t
t
RP  
t
RP  
RP  
RESET  
Figure 2. Timing Diagram (CDLY_ Open)  
power-up initialization. When all of the monitored volt-  
ages exceed their respective thresholds, an indepen-  
dent reset output deasserts to allow the system  
processor to operate.  
Detailed Description  
The MAX16025–MAX16030 are low-voltage, accurate,  
dual-/triple-/quad-voltage microprocessor (µP) supervi-  
sors in a small TQFN package. These devices provide  
supervisory and sequencing functions for complex mul-  
tivoltage systems. The MAX16025/MAX16026 monitor  
two voltages, the MAX16027/MAX16028 monitor three  
voltages, and the MAX16029/MAX16030 monitor four  
voltages.  
These devices offer enormous flexibility as there are  
nine threshold options that are selected through two  
threshold-select logic inputs. Each monitor circuit also  
offers an independent enable input to allow both digital  
and analog control of each monitor output. A tolerance  
select input allows these devices to be used in systems  
requiring 5% or 10% power-supply tolerances. In addi-  
tion, the time delays and reset timeout can be adjusted  
using small capacitors. There is also a fixed 140ms  
minimum reset timeout feature.  
The MAX16025–MAX16030 offer independent outputs  
and enable functions for each monitored voltage. This  
configuration allows the device to operate as four sepa-  
rate supervisory circuits or be daisy-chained together to  
allow controlled sequencing of power supplies during  
_______________________________________________________________________________________  
9
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
The following equation is provided to help estimate the  
Applications Information  
value of the resistors based on the amount of accept-  
Tolerance  
The MAX16025–MAX16030 feature a pin-selectable  
threshold tolerance. Connect TOL to GND to select the  
thresholds 5% below the nominal value. Connect TOL to  
to select the threshold tolerance 10% below the  
nominal voltage. Do not leave TOL unconnected.  
able error:  
e
× V  
INTH  
A
R =  
1
I
L
V
where e is the fraction of the maximum acceptable  
A
absolute resistive divider error attributable to the input  
CC  
leakage current (use 0.01 for 1%), V  
is the volt-  
INTH  
Adjustable Input  
age at which the output (OUT_) should assert, and I is  
L
These devices offer several monitoring options with  
both fixed and/or adjustable reset thresholds (see  
Table 2). For the adjustable threshold inputs, the  
the worst-case IN_ leakage current (see the Electrical  
Characteristics). Calculate R2 as follows:  
threshold voltage (V ) at each adjustable IN_ input is  
TH  
V
×R1  
V  
TH  
TH  
R =  
typically 0.5V (TOL = GND) or 0.472V (TOL = V ). To  
CC  
2
V
INTH  
monitor a voltage V  
, connect a resistive divider net-  
INTH  
work to the circuit as shown in Figure 3 and use the fol-  
lowing equation to calculate the threshold voltage:  
Unused Inputs  
Connect any unused IN_ and EN_ inputs to V  
.
CC  
R1  
R2  
V
= V × 1+  
TH  
OUT_ Output  
An OUT_ goes low when its respective IN_ input voltage  
drops below its specified threshold or when its EN_ goes  
low (see Table 1). OUT_ goes high when EN_ is high and  
INTH  
25–MAX1630  
Choosing the proper external resistors is a balance  
between accuracy and power use. The input to the volt-  
age monitor is a high-impedance input with a small  
100nA leakage current. This leakage current con-  
tributes to the overall error of the threshold voltage  
where the output is asserted. This induced error is pro-  
portional to the value of the resistors used to set the  
threshold. With lower value resistors, this error is  
reduced, but the amount of power consumed in the  
resistors increases.  
V
is above its threshold after a time delay. The  
IN_  
MAX16025/MAX16027/MAX16029 feature open-drain,  
outputs while the MAX16026/MAX16028/MAX16030  
have push-pull outputs. Open-drain outputs require an  
external pullup resistor to any voltage from 0 to 28V.  
RESET Output  
RESET asserts low when any of the monitored voltages  
(IN_) falls below its respective threshold, any EN_ goes  
low, or MR is asserted. RESET remains asserted for the  
reset timeout period after all of the monitored voltages  
exceed their respective threshold, all EN_ are high, all  
OUT_ are high, and MR is deasserted. The MAX16025/  
MAX16027/MAX16029 have an open-drain, active-low  
reset output, while the MAX16026/MAX16028/  
MAX16030 have a push-pull, active-low reset output.  
Open-drain RESET requires an external pullup resistor to  
any voltage from 0 to 28V.  
V
INTH  
R1  
R2  
MAX16025–  
MAX16030  
IN_  
Adjustable Reset Timeout Period  
(CRESET)  
V
TH  
All of these parts offer an internally fixed reset timeout  
(140ms min) by connecting CRESET to V . The reset  
CC  
V
V
INTH  
-1  
)
timeout can also be adjusted by connecting a capaci-  
tor from CRESET to GND. When the voltage at CRESET  
reaches 0.5V, RESET goes high. When RESET goes  
high, CRESET is immediately held low.  
R1 = R2 x  
(
TH  
Figure 3. Setting the Adjustable Input  
10 ______________________________________________________________________________________  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
25–MAX1630  
Calculate the reset timeout period as follows:  
debounce circuitry is not required. If MR is driven from  
long cables or if the device is used in a noisy environ-  
ment, connect a 0.1µF capacitor from MR to GND to  
provide additional noise immunity.  
V
THRESET  
t
=
×C  
+ 35×106  
CRESET  
RP  
I
CHRESET  
Pullup Resistor Values  
The exact value of the pullup resistors for the open-  
drain outputs is not critical, but some consideration  
should be made to ensure the proper logic levels  
when the device is sinking current. For example, if  
where V  
is 0.5V, I  
CRESET  
is 0.5µA, t  
is in  
TH-RESET  
seconds, and C  
CH-RESET  
is in Farads. To ensure timing  
RP  
accuracy and proper operation, minimize leakage at  
C
.
CRESET  
V
= 2.25V and the pullup voltage is 28V, keep the  
CC  
sink current less than 0.5mA as shown in the Electrical  
Characteristics table. As a result, the pullup resistor  
should be greater than 56kΩ. For a 12V pullup, the  
resistor should be larger than 24kΩ. Note that the ability  
Adjustable Delay (CDLY_)  
When V rises above V with EN_ high, the internal  
250nA current source begins charging an external  
capacitor connected from CDLY_ to GND. When the  
voltage at CDLY_ reaches 1V, OUT_ goes high. When  
OUT_ goes high, CDLY_ is immediately held low.  
IN  
TH  
to sink current is dependent on the V  
supply voltage.  
CC  
Power-Supply Bypassing  
The device operates with a V supply voltage from  
Adjust the delay (t  
TH  
the equation:  
) from when V rises above  
IN  
DELAY  
CC  
V
(with EN_ high) to OUT_ going high according to  
2.2V to 28V. When V  
falls below the UVLO threshold,  
CC  
all the outputs go low and stay low until V  
falls below  
CC  
1.2V. For noisy systems or fast rising transients on V  
,
CC  
V
connect a 0.1µF ceramic capacitor from V  
to GND  
CC  
THCDLY  
t
=
× C  
+ 35 ×106  
CDLY  
DELAY  
as close to the device as possible to provide better  
noise and transient immunity.  
I
CHCDLY  
where V  
Farads, t  
is 1V, I  
is 0.25µA, C  
is in  
TH-CDLY  
CH-CDLY  
CDLY  
is the inter-  
Ensuring Valid Output with V  
Down to  
CC  
is in seconds, and t  
DELAY  
DELAY+  
0V (MAX16026/MAX16028/MAX16030 Only)  
nal propagation delay of the device. To ensure timing  
accuracy and proper operation, minimize leakage  
at CDLY.  
When V falls below 1.2V, the ability for the output to  
CC  
sink current decreases. In order to ensure a valid out-  
put as V falls to 0V, connect a 100kΩ resistor from  
CC  
OUT/RESET to GND.  
Manual-Reset Input (MR)  
Many µP-based products require manual-reset capabil-  
ity, allowing the operator, a test technician, or external  
logic circuitry to initiate a reset. A logic-low on MR  
asserts RESET low. RESET remains asserted while MR  
is low and during the reset timeout period (140ms fixed  
or capacitor adjustable) after MR returns high. The MR  
input has a 500nA internal pullup, so it can be left  
unconnected, if not used. MR can be driven with TTL or  
CMOS logic levels, or with open-drain/collector outputs.  
Connect a normally open momentary switch from MR to  
GND to create a manual-reset function. External  
Typical Application Circuits  
Figures 4 and 5 show typical applications for the  
MAX16025–MAX16030. In high-power applications,  
using an n-channel device reduces the loss across the  
MOSFETs as it offers a lower drain-to-source on-resis-  
tance. However, an n-channel MOSFET requires a suffi-  
cient V  
voltage to fully enhance it for a low R  
.
GS  
DS_ON  
The application in Figure 4 shows the MAX16027 con-  
figured in a multiple-output sequencing application.  
Figure 5 shows the MAX16029 in a power-supply  
sequencing application using n-channel MOSFETs.  
______________________________________________________________________________________ 11  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
+12V BUS  
+2.5V  
+1.8V  
+3.3V  
IN  
DC-DC OUT  
EN  
IN  
DC-DC OUT  
EN  
IN  
DC-DC OUT  
EN  
EN1  
IN1  
IN2  
IN3  
OUT1 EN2  
OUT2 EN3  
+3.3V  
V
CC  
OUT3  
MAX16027  
MR  
SYSTEM  
RESET  
RESET  
GND  
TOL  
TH0  
TH1  
CDLY1  
CDLY3  
CRESET  
CDLY2  
25–MAX1630  
Figure 4. Sequencing Multiple-Voltage System  
12V  
BUS  
1.5V  
1.8V  
2.5V  
TO  
LOADS  
3.3V  
+3.3V  
IN4  
IN1  
IN3  
OUT3  
OUT1  
IN2  
OUT2  
V
CC  
OUT4  
EN1  
EN2  
EN3  
EN4  
MAX16029  
SYSTEM  
RESET  
RESET  
MR  
CRESET  
CDLY3  
CDLY4  
GND  
TOL  
TH0  
TH1  
CDLY1  
CDLY2  
Figure 5. Multiple-Voltage Sequencing Using n-Channel FETs  
12 ______________________________________________________________________________________  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
25–MAX1630  
Pin Configurations (continued)  
TOP VIEW  
12  
11  
10  
9
15  
14  
13  
12  
11  
TH1  
EN3  
10  
9
MR 16  
CRESET 17  
CDLY3 18  
TH1  
8
7
6
5
MR 13  
CRESET 14  
EN2  
EN1  
GND  
8
EN2  
EN1  
GND  
MAX16025  
MAX16026  
MAX16027  
MAX16028  
CDLY2  
CDLY1  
15  
16  
CDLY2  
CDLY1  
7
19  
20  
6
+
+
1
2
3
4
1
2
3
4
5
THIN QFN  
(4mm x 4mm)  
THIN QFN  
(4mm x 4mm)  
Chip Information  
PROCESS: BICMOS  
TRANSISTOR COUNT: 3642  
______________________________________________________________________________________ 13  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
25–MAX1630  
PACKAGE OUTLINE,  
12, 16, 20, 24, 28L THIN QFN, 4x4x0.8mm  
1
E
21-0139  
2
14 ______________________________________________________________________________________  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
25–MAX1630  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE,  
12, 16, 20, 24, 28L THIN QFN, 4x4x0.8mm  
2
E
21-0139  
2
Revision History  
Pages changed at Rev 1: 1, 3, 15  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 15  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX16030TG+

Power Supply Management Circuit, Adjustable, 4 Channel, +4VV, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, LEAD FREE, TQFN-24
MAXIM

MAX16030TG+T

Power Supply Management Circuit, Adjustable, 4 Channel, +4VV, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, LEAD FREE, TQFN-24
MAXIM

MAX16031

EEPROM-Based System Monitors with Nonvolatile Fault Memory
MAXIM

MAX16031ETM

EEPROM-Based System Monitors with Nonvolatile Fault Memory
MAXIM

MAX16031ETM+

EEPROM-Based System Monitors with Nonvolatile Fault Memory
MAXIM

MAX16031ETM+T

暂无描述
MAXIM

MAX16031EVKIT

LEDs Indicate Each Output is State
MAXIM

MAX16031EVKIT+

LEDs Indicate Each Output is State
MAXIM

MAX16031_10

EEPROM-Based System Monitors with Nonvolatile Fault Memory
MAXIM

MAX16032

EEPROM-Based System Monitors with Nonvolatile Fault Memory
MAXIM

MAX16032ETM

EEPROM-Based System Monitors with Nonvolatile Fault Memory
MAXIM

MAX16032ETM+

EEPROM-Based System Monitors with Nonvolatile Fault Memory
MAXIM