MAX16042TP [MAXIM]

Dual-/Triple-/Quad-Voltage, Capacitor-Adjustable, Sequencing/Supervisory Circuits; 双/三/四电压,电容调节,排序/监控电路
MAX16042TP
型号: MAX16042TP
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual-/Triple-/Quad-Voltage, Capacitor-Adjustable, Sequencing/Supervisory Circuits
双/三/四电压,电容调节,排序/监控电路

监控
文件: 总15页 (文件大小:270K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0622; Rev 0; 8/06  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
2/MAX16043  
General Description  
Features  
o 2.2V to 28V Operating Voltage Range  
The MAX16041/MAX16042/MAX16043 are dual-/triple-/  
quad-voltage monitors and sequencers that are offered  
in a small thin QFN package. These devices offer enor-  
mous design flexibility as they allow fixed and  
adjustable thresholds to be selected through logic  
inputs and provide sequence timing through small  
external capacitors. These versatile devices are ideal  
for use in a wide variety of multivoltage applications.  
o Fixed Thresholds for 3.3V, 2.5V, 1.8V, 1.5V, and  
1.2V Systems  
o 1.5% Accurate Adjustable Threshold Monitors  
Voltages Down to 0.5V  
o 2.7% Accurate Fixed Thresholds Over  
Temperature  
o Fixed (140ms min)/Capacitor-Adjustable Delay  
As the voltage at each monitored input exceeds its  
respective threshold, its corresponding output goes  
high after a propagation delay or a capacitor-set time  
delay. When a voltage falls below its threshold, its  
respective output goes low after a propagation delay.  
Each detector circuit also includes its own enable input,  
allowing the power-good outputs to be shut off inde-  
pendently. The independent output for each detector  
has an open-drain configuration capable of supporting  
voltages up to 28V, thereby allowing them to interface  
to shutdown and enable inputs of various DC-DC regu-  
lators. Each detector can operate independently as four  
separate supervisory circuits or can be daisy-chained  
to provide controlled power-supply sequencing.  
Timing  
o Independent Open-Drain Outputs/Push-Pull  
RESET Output  
o Enable Inputs for Each Monitored Voltage  
o 9 Logic-Selectable Threshold Options  
o Manual Reset and Tolerance Select (5%/10%) Inputs  
o Small, 4mm x 4mm TQFN Package  
o Fully Specified from -40°C to +125°C  
Ordering Information  
PIN-  
PKG  
PART*  
TEMP RANGE  
PACKAGE  
CODE  
The MAX16041/MAX16042/MAX16043 also include a  
push-pull reset function that deasserts only after all of  
the independently monitored voltages exceed their  
threshold. The reset timeout is internally fixed or can be  
adjusted externally. These devices are offered in a  
4mm x 4mm TQFN package and are fully specified  
from -40°C to +125°C.  
MAX16041TE+  
MAX16042TP+  
MAX16043TG+  
-40°C to +125°C 16 TQFN  
-40°C to +125°C 20 TQFN  
-40°C to +125°C 24 TQFN  
T1644-4  
T2044-3  
T2444-4  
+Denotes lead-free package.  
*For tape and reel, add a “T” after the “+.” All tape and reel  
orders are available in 2.5k increments.  
Pin Configurations  
Applications  
Multivoltage Systems  
TOP VIEW  
DC-DC Supplies  
18  
17  
16  
15  
14  
13  
Servers/Workstations  
12  
11  
10  
9
MR 19  
CRESET 20  
CDLY4 21  
CDLY3 22  
TH1  
EN4  
EN3  
Storage Systems  
Networking/Telecommunication Equipment  
MAX16043  
Selector Guide  
EN2  
EN1  
GND  
MONITORED INDEPENDENT  
VOLTAGES  
RESET  
CDLY2  
CDLY1  
23  
8
PART  
OUTPUTS  
OUTPUT  
24  
7
MAX16041  
MAX16042  
MAX16043  
2
3
4
2 (Open-drain)  
3 (Open-drain)  
4 (Open-drain)  
Push-pull  
Push-pull  
Push-pull  
+
1
2
3
4
5
6
TQFN  
(4mm x 4mm)  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to GND.)  
Continuous Power Dissipation (T = +70°C)  
A
V
.........................................................................-0.3V to +30V  
16-Pin TQFN (derate 25mW/°C above +70°C) ...........2000mW  
20-Pin TQFN (derate 25.6mW/°C above +70°C) ........2051mW  
24-Pin TQFN (derate 27.8mW/°C above +70°C) ........2222mW  
Operating Temperature Range .........................-40°C to +125°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
EN1–EN4 ....................................................-0.3V to (V  
OUT1–OUT4...........................................................-0.3V to +30V  
RESET.........................................................-0.3V to (V  
IN1–IN4.......................................................-0.3V to (V  
MR, TOL, TH1, TH0 ....................................-0.3V to (V  
CDLY1–CDLY4.........................................................-0.3V to +6V  
CRESET......................................................-0.3V to (V + 0.3V)  
+ 0.3V)  
CC  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
CC  
CC  
CC  
CC  
Input/Output Current (all pins).......................................... 20mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 2.2V to 28V, T = -40°C to +125°C, unless otherwise specified. Typical values are at V  
= 3.3V and T = +25°C.) (Note 1)  
CC A  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
Operating Voltage Range  
Undervoltage Lockout  
V
(Note 2)  
(Note 2)  
2.2  
1.8  
28.0  
2.0  
V
V
CC  
UVLO  
1.9  
50  
Undervoltage-Lockout Hysteresis UVLO  
V
falling  
CC  
mV  
HYST  
V
V
V
= 3.3V  
= 12V  
= 28V  
40  
47  
52  
75  
75  
80  
CC  
CC  
CC  
All OUT_ and RESET at  
logic-high (IN_ current  
excluded)  
V
Supply Current  
I
CC  
µA  
CC  
INPUTS (IN_)  
3.3V threshold, TOL = GND  
3.3V threshold, TOL = V  
2.970  
2.805  
2.250  
2.125  
1.620  
1.530  
1.350  
1.275  
1.080  
1.020  
0.492  
0.463  
3.052  
2.888  
2.313  
2.187  
1.665  
1.575  
1.387  
1.312  
1.110  
1.050  
0.5  
3.135  
2.970  
2.375  
2.250  
1.710  
1.620  
1.425  
1.350  
1.140  
1.080  
0.508  
0.481  
2/MAX16043  
CC  
2.5V threshold, TOL = GND  
2.5V threshold, TOL = V  
CC  
1.8V threshold, TOL = GND  
1.8V threshold, TOL = V  
IN_ Thresholds (IN_ Falling)  
V
V
V
V
TH  
CC  
1.5V threshold, TOL = GND  
1.5V threshold, TOL = V  
CC  
1.2V threshold, TOL = GND  
1.2V threshold, TOL = V  
TOL = GND  
CC  
Adjustable Threshold  
(IN_ Falling)  
TH  
TOL = V  
0.472  
0.5  
CC  
IN_ Hysteresis (IN_ Rising)  
IN_ Input Resistance  
IN_ Input Current  
V
%
HYST  
Fixed threshold  
Adjustable threshold only (V  
500  
918  
k  
nA  
I
= 1V)  
IN_  
-100  
+100  
L
2
_______________________________________________________________________________________  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
2/MAX16043  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 2.2V to 28V, T = -40°C to +125°C, unless otherwise specified. Typical values are at V  
= 3.3V and T = +25°C.) (Note 1)  
CC A  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CRESET AND CDLY_  
CRESET Threshold  
V
CRESET rising, V  
= 3.3V  
0.465  
380  
0.5  
500  
1
0.535  
620  
V
TH-RESET  
CC  
CRESET Charge Current  
CDLY_ Threshold  
I
V
= 3.3V  
nA  
V
CH-RESET  
CC  
V
CDLY_ rising, V  
= 3.3V  
CC  
0.95  
200  
1.05  
300  
TH-CDLY  
CDLY_ Charge Current  
I
V
= 3.3V  
250  
nA  
CH-CDLY  
CC  
DIGITAL LOGIC INPUTS (EN_, MR, TOL, TH1, TH0)  
Input Low Voltage  
V
0.4  
V
V
V
IL  
Input High Voltage  
V
1.4  
-1  
IH  
TH1, TH0 Logic-Input Floating  
0.6  
TOL, TH1, TH0 Logic-Input  
Current  
V
, V  
, V  
= GND or V  
+1  
µA  
TOL TH1 TH0  
CC  
EN_ Input Leakage Current  
MR Internal Pullup Current  
OUTPUTS (OUT_, RESET)  
V
V
= V  
or GND  
CC  
-100  
250  
+100  
820  
nA  
nA  
EN_  
CC  
= 3.3V  
535  
V
V
V
V
V
1.2V, I  
= 90µA  
SINK  
0.3  
0.3  
CC  
CC  
CC  
CC  
CC  
Output Low Voltage  
(Open-Drain or Push-Pull)  
V
V
2.25V, I  
= 0.5mA  
OL  
SINK  
4.5V, I  
= 1mA  
0.35  
SINK  
3V, I  
= 500µA  
0.8 x V  
0.8 x V  
SOURCE  
CC  
CC  
Output High Voltage (Push-Pull)  
V
V
OH  
4.5V, I  
= 800µA  
SOURCE  
Output Leakage Current  
(Open-Drain)  
I
Output not asserted low, V  
= 28V  
OUT  
1
µA  
ms  
LKG  
CRESET = V , V  
= 3.3V  
140  
190  
260  
CC CC  
Reset Timeout Period  
TIMING  
t
RP  
CRESET open  
0.030  
t
IN_ rising, CDLY_ open  
IN_ falling, CDLY_ open  
CRESET open, IN_ falling  
(Note 3)  
35  
20  
35  
DELAY+  
IN_ to OUT_ Propagation Delay  
µs  
t
DELAY-  
IN_ to RESET Propagation Delay  
MR Minimum Input Pulse Width  
EN_ or MR Glitch Rejection  
t
µs  
µs  
ns  
RST-DELAY  
2
280  
3
t
From device enabled to device disabled  
OFF  
EN_ to OUT_ Delay  
µs  
From device disabled to device enabled  
(CDLY_ open)  
t
30  
3
ON  
MR to RESET Delay  
MR falling  
µs  
Note 1: Devices are production tested at T = +25°C. Limits over temperature are guaranteed by design.  
A
Note 2: Operating below the UVLO causes all outputs to go low. The outputs are guaranteed to be in the correct state for V  
down  
CC  
to 1.2V.  
Note 3: To guarantee an assertion, the minimum input pulse width must be greater than 2µs.  
_______________________________________________________________________________________  
3
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
Typical Operating Characteristics  
(V  
= 3.3V, T = +25°C, unless otherwise noted.)  
A
CC  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. TEMPERATURE  
NORMALIZED ADJUSTABLE THRESHOLD  
vs. TEMPERATURE  
60  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.995  
0.994  
0.993  
0.992  
0.991  
0.990  
60  
55  
50  
45  
40  
35  
30  
MAX16041  
V
= 28V  
CC  
MAX16041  
TOL = V  
CC  
55  
50  
45  
40  
35  
30  
TOL = GND  
V
= 12V  
CC  
V
= 3.3V  
CC  
ADJUSTABLE THRESHOLD  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2
6
10  
14  
18  
22  
26  
30  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
RESET TIMEOUT PERIOD  
NORMALIZED ADJUSTABLE THRESHOLD  
vs. TEMPERATURE  
vs. C  
OUT_ DELAY vs. C  
CRESET  
CDLY_  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.995  
0.994  
0.993  
0.992  
0.991  
0.990  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
TOL = V  
CC  
TOL = GND  
2/MAX16043  
3.3V THRESHOLD  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0
100 200 300 400 500 600 700 800 900 1000  
0
100 200 300 400 500 600 700 800 900 1000  
(nF)  
TEMPERATURE (°C)  
C
(nF)  
C
CRESET  
CDLY_  
RESET OUTPUT LOW VOLTAGE  
vs. SINK CURRENT  
OUT_ LOW VOLTAGE  
vs. SINK CURRENT  
FIXED RESET TIMEOUT PERIOD  
vs. TEMPERATURE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
190  
189  
188  
187  
186  
185  
184  
183  
182  
181  
180  
CRESET = V  
CC  
0
1
2
3
4
6
7
0
1
2
3
4
5
6
7
5
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
SINK CURRENT (mA)  
SINK CURRENT (mA)  
4
_______________________________________________________________________________________  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
2/MAX16043  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, T = +25°C, unless otherwise noted.)  
A
CC  
RESET OUTPUT HIGH VOLTAGE  
vs. SOURCE CURRENT  
ENABLE TURN-ON  
ENABLE TURN-OFF  
MAX16041 toc12  
MAX16041 toc11  
3.5  
CRESET = V  
CDLY_ = OPEN  
CC  
CRESET = V  
CDLY_ = OPEN  
CC  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
EN_  
5V/div  
EN_  
5V/div  
OUT_  
5V/div  
OUT_  
5V/div  
RESET  
5V/div  
RESET  
5V/div  
40ms/div  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
SOURCE CURRENT (mA)  
4µs/div  
RESET TIMEOUT DELAY  
MR FALLING vs. RESET  
MAX16041 toc14  
MAX16041 toc13  
CRESET = V  
CRESET = V  
CC  
CC  
CDLY_ = OPEN  
CDLY_ = OPEN  
IN_  
5V/div  
MR  
5V/div  
OUT_  
5V/div  
RESET  
5V/div  
RESET  
5V/div  
100ms/div  
4µs/div  
MAXIMUM TRANSIENT DURATION  
vs. THRESHOLD OVERDRIVE  
MR RISING vs. RESET  
MAX16041 toc15  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
OUTPUT ASSERTED ABOVE THIS LINE  
CRESET = V  
CDLY_ = OPEN  
CC  
MR  
5V/div  
RESET  
5V/div  
1
10  
100  
1000  
40ms/div  
THRESHOLD OVERDRIVE (mV)  
_______________________________________________________________________________________  
5
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX16041 MAX16042 MAX16043  
Supply Voltage Input. Connect a 2.2V to 28V supply voltage to power the  
1
2
1
2
1
2
3
4
5
V
device. All outputs are low when V  
is below the UVLO. For noisy systems,  
CC  
CC  
bypass V  
to GND with a 0.1µF capacitor.  
CC  
Monitored Input 1. When the voltage at IN1 exceeds its threshold, OUT1 goes  
high after the capacitor-adjustable delay period. When the voltage at IN1 falls  
below its threshold, OUT1 goes low after a propagation delay.  
IN1  
IN2  
IN3  
IN4  
Monitored Input 2. When the voltage at IN2 exceeds its threshold, OUT2 goes  
high after the capacitor-adjustable delay period. When the voltage at IN2 falls  
below its threshold, OUT2 goes low after a propagation delay.  
3
3
Monitored Input 3. When the voltage at IN3 exceeds its threshold, OUT3 goes  
high after the capacitor-adjustable delay period. When the voltage at IN3 falls  
below its threshold, OUT3 goes low after a propagation delay.  
4
Monitored Input 4. When the voltage at IN4 exceeds its threshold, OUT4 goes  
high after the capacitor-adjustable delay period. When the voltage at IN4 falls  
below its threshold, OUT4 goes low after a propagation delay.  
Threshold Tolerance Input. Connect TOL to GND to select thresholds 5%  
4
5
5
6
6
7
TOL  
below nominal. Connect TOL to V  
to select thresholds 10% below nominal.  
CC  
GND  
Ground  
Active-High Logic-Enable Input 1. Driving EN1 low causes OUT1 to go low  
regardless of the input voltage. Drive EN1 high to enable the monitoring  
comparator.  
6
7
7
8
8
9
EN1  
EN2  
EN3  
EN4  
Active-High Logic-Enable Input 2. Driving EN2 low causes OUT2 to go low  
regardless of the input voltage. Drive EN2 high to enable the monitoring  
comparator.  
2/MAX16043  
Active-High Logic-Enable Input 3. Driving EN3 low causes OUT3 to go low  
regardless of the input voltage. Drive EN3 high to enable the monitoring  
comparator.  
9
10  
11  
Active-High Logic-Enable Input 4. Driving EN4 low causes OUT4 to go low  
regardless of the input voltage. Drive EN4 high to enable the monitoring  
comparator.  
Threshold Select Input 1. Connect TH1 to V  
select the input-voltage threshold option in conjunction with TH0 (see Table 2).  
or GND, or leave it open to  
CC  
8
9
10  
11  
12  
13  
12  
13  
14  
15  
16  
TH1  
TH0  
Threshold Select Input 0. Connect TH0 to V or GND, or leave it open to  
select the input-voltage threshold option in conjunction with TH1 (see Table 2).  
CC  
Output 4. When the voltage at IN4 is below its threshold or EN4 goes low,  
OUT4 goes low.  
10  
OUT4  
OUT3  
OUT2  
Output 3. When the voltage at IN3 is below its threshold or EN3 goes low,  
OUT3 goes low.  
Output 2. When the voltage at IN2 is below its threshold or EN2 goes low,  
OUT2 goes low.  
6
_______________________________________________________________________________________  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
2/MAX16043  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX16041 MAX16042 MAX16043  
Output 1. When the voltage at IN1 is below its threshold or EN1 goes low,  
OUT1 goes low.  
11  
14  
15  
17  
OUT1  
Active-Low Reset Output. RESET asserts low when any of the monitored  
voltages (IN_) falls below its respective threshold, any EN_ goes low, or MR is  
RESET asserted. RESET remains asserted for the reset timeout period after all of the  
monitored voltages exceed their respective threshold, all EN_ are high, all  
OUT_ are high, and MR is deasserted.  
12  
18  
Active-Low Manual Reset Input. Pull MR low to assert RESET low. RESET  
13  
14  
16  
17  
19  
20  
MR  
remains low for the reset timeout period after MR is deasserted (as long as all  
OUT_ are high).  
Capacitor-Adjustable Reset Delay Input. Connect an external capacitor from  
CRESET to GND to set the reset timeout period or connect to V  
for the  
CC  
CRESET  
default 140ms minimum reset timeout period. Leave CRESET open for internal  
propagation delay.  
Capacitor-Adjustable Delay Input 4. Connect an external capacitor from  
15  
18  
19  
21  
22  
23  
CDLY4 CDLY4 to GND to set the IN4 to OUT4 (and EN4 to OUT4) delay period.  
Leave CDLY4 open for internal propagation delay.  
Capacitor-Adjustable Delay Input 3. Connect an external capacitor from  
CDLY3 CDLY3 to GND to set the IN3 to OUT3 (and EN3 to OUT3) delay period.  
Leave CDLY3 open for internal propagation delay.  
Capacitor-Adjustable Delay Input 2. Connect an external capacitor from  
CDLY2  
CDLY2 to GND to set the IN2 to OUT2 (and EN2 to OUT2) delay period.  
Leave CDLY2 open for internal propagation delay.  
Capacitor-Adjustable Delay Input 1. Connect an external capacitor from  
CDLY1 to GND to set the IN1 to OUT1 (and EN1 to OUT1) delay period.  
Leave CDLY1 open for internal propagation delay.  
16  
20  
24  
CDLY1  
EP  
Exposed Pad. EP is internally connected to GND. Connect EP to the  
ground plane.  
voltages exceed their respective thresholds, an inde-  
pendent reset output deasserts to allow the system  
processor to operate.  
Detailed Description  
The MAX16041/MAX16042/MAX16043 are low-voltage,  
accurate, dual-/triple-/quad-voltage microprocessor  
(µP) supervisors in a small TQFN package. These  
devices provide supervisory and sequencing functions  
for complex multivoltage systems. The MAX16041 mon-  
itors two voltages, the MAX16042 monitors three volt-  
ages, and the MAX16043 monitors four voltages.  
These devices offer enormous flexibility as there are  
nine threshold options that are selected through two  
threshold-select logic inputs. Each monitor circuit also  
offers an independent enable input to allow both digital  
and analog control of each monitor output. A tolerance  
select input allows these devices to be used in systems  
requiring 5% or 10% power-supply tolerances. In addi-  
tion, the time delays and reset timeout can be adjusted  
using small capacitors. There is also a fixed 140ms  
minimum reset timeout feature.  
The MAX16041/MAX16042/MAX16043 offer indepen-  
dent outputs and enable functions for each monitored  
voltage. This configuration allows the device to operate as  
four separate supervisory circuits or be daisy-chained  
together to allow controlled sequencing of power supplies  
during power-up initialization. When all of the monitored  
_______________________________________________________________________________________  
7
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
TH0  
TH1  
EN4 EN3 EN2 EN1  
DELAY  
THRESHOLD  
SELECT  
LOGIC  
IN1  
IN2  
IN3  
250nA  
OUT1  
LOGIC  
DRIVER  
1V  
MAX16043  
OUT2  
DELAY  
DRIVER  
DELAY  
OUT3  
DRIVER  
2/MAX16043  
IN4  
OUT4  
DELAY  
DRIVER  
DRIVER  
GND  
TOL  
RESET  
DELAY  
LOGIC  
RESET  
REFERENCE  
V
CDLY1  
CDLY2  
CDLY3  
CDLY4  
CRESET  
MR  
CC  
Figure 1. MAX16043 Simplified Functional Diagram  
8
_______________________________________________________________________________________  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
2/MAX16043  
V
CC  
V
UVLO  
IN_  
V
TH  
V
TH  
t < t  
ON  
EN_  
OUT_  
t
DELAY-  
t
t
ON  
ON  
t
DELAY+  
t
OFF  
t
RST_DELAY  
t
t
RP  
t
RP  
RP  
RESET  
Figure 2. Timing Diagram (CDLY_ Open)  
shown in Figure 3 and use the following equation to cal-  
culate the threshold voltage:  
Applications Information  
Tolerance  
The MAX16041/MAX16042/MAX16043 feature a pin-  
selectable threshold tolerance. Connect TOL to GND to  
select the thresholds 5% below the nominal value.  
R1  
R2  
V
= V × 1+  
TH  
INTH  
Connect TOL to V  
to select the threshold tolerance  
CC  
Choosing the proper external resistors is a balance  
between accuracy and power use. The input to the volt-  
age monitor is a high-impedance input with a small  
100nA leakage current. This leakage current contributes  
to the overall error of the threshold voltage where the out-  
put is asserted. This induced error is proportional to the  
value of the resistors used to set the threshold. With lower  
value resistors, this error is reduced, but the amount of  
power consumed in the resistors increases.  
10% below the nominal voltage. Do not leave TOL uncon-  
nected.  
Adjustable Input  
These devices offer several monitoring options with both  
fixed and/or adjustable reset thresholds (see Table 2).  
For the adjustable threshold inputs, the threshold voltage  
(V ) at each adjustable IN_ input is typically 0.5V (TOL  
TH  
= GND) or 0.472V (TOL = V ). To monitor a voltage  
CC  
V
, connect a resistive divider network to the circuit as  
INTH  
_______________________________________________________________________________________  
9
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
OUT_ Output  
V
INTH  
The MAX16041/MAX16042/MAX16043 feature open-drain  
outputs. An OUT_ goes low when its respective IN_ input  
voltage drops below its specified threshold or when its  
EN_ goes low (see Table 1). OUT_ goes high when EN_  
R1  
R2  
MAX16041  
MAX16042  
MAX16043  
IN_  
is high and V  
is above its threshold after a time delay.  
Open-drain outputs require an external pullup resistor to  
any voltage from 0 to 28V.  
IN_  
Table 1. Output State*  
EN_  
Low  
High  
Low  
High  
IN_  
< V  
OUT_  
V
TH  
V
V
V
V
Low  
Low  
Low  
IN_  
IN_  
IN_  
IN_  
TH  
TH  
TH  
TH  
V
V
INTH  
< V  
> V  
> V  
-1  
)
R1 = R2 x  
(
TH  
OUT_ = high impedance  
*When V  
falls below the UVLO, all outputs go low regardless  
CC  
Figure 3. Setting the Adjustable Input  
of the state of EN_ and V . The outputs are guaranteed to be  
IN_  
in the correct state for V  
down to 1.2V.  
CC  
The following equation is provided to help estimate the  
value of the resistors based on the amount of acceptable  
error:  
Table 2. Input-Voltage Threshold Selector  
e
× V  
INTH  
IN1 (ALL  
IN2 (ALL  
IN3  
IN4  
A
R1=  
TH1/TH0  
LOGIC  
VERSIONS) VERSIONS) (MAX16042) (MAX16043)  
I
L
(V)  
(V)  
(V)  
(V)  
where e is the fraction of the maximum acceptable  
A
Low/Low  
3.3  
3.3  
3.3  
3.3  
2.5  
3.3  
3.3  
2.5  
Adj  
2.5  
1.8  
1.5  
1.2  
1.8  
Adj  
Adj  
Adj  
Adj  
1.8  
Adj  
Adj  
1.8  
Adj  
2.5  
Adj  
Adj  
Adj  
1.5  
Adj  
Adj  
2.5  
Adj  
Adj  
Adj  
Adj  
Adj  
absolute resistive divider error attributable to the input  
Low/High  
Low/Open  
High/Low  
High/High  
High/Open  
Open/Low  
Open/High  
Open/Open  
leakage current (use 0.01 for 1%), V  
is the voltage  
INTH  
at which the output (OUT_) should assert, and I is the  
L
worst-case IN_ leakage current (see the Electrical  
Characteristics). Calculate R2 as follows:  
2/MAX16043  
V
×R1  
V  
TH  
TH  
R2 =  
V
INTH  
Unused Inputs  
Connect any unused IN_ and EN_ inputs to V  
RESET Output  
.
CC  
RESET asserts low when any of the monitored voltages  
(IN_) falls below its respective threshold, any EN_ goes  
low, or MR is asserted. RESET remains asserted for the  
reset timeout period after all of the monitored voltages  
exceed their respective thresholds, all EN_ are high, all  
OUT_ are high, and MR is deasserted. All devices have  
a push-pull, active-low reset output.  
10 ______________________________________________________________________________________  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
2/MAX16043  
Adjustable Reset Timeout Period  
(CRESET)  
Connect a normally open momentary switch from MR to  
GND to create a manual-reset function. External  
debounce circuitry is not required. If MR is driven from  
long cables or if the device is used in a noisy environ-  
ment, connect a 0.1µF capacitor from MR to GND to  
provide additional noise immunity.  
All of these parts offer an internally fixed reset timeout  
(140ms min) by connecting CRESET to V . The reset  
CC  
timeout can also be adjusted by connecting a capaci-  
tor from CRESET to GND. When the voltage at CRESET  
reaches 0.5V, RESET goes high. When RESET goes  
high, CRESET is immediately held low.  
Pullup Resistor Values  
The exact value of the pullup resistors for the open-  
drain outputs is not critical, but some consideration  
should be made to ensure the proper logic levels  
when the device is sinking current. For example, if  
Calculate the reset timeout period as follows:  
V
V
= 2.25V and the pullup voltage is 28V, keep the  
+ 30 ×106  
CC  
THRESET  
t
=
× C  
CRESET  
RP  
sink current less than 0.5mA as shown in the Electrical  
Characteristics. As a result, the pullup resistor should  
be greater than 56k. For a 12V pullup, the resistor  
should be larger than 24k. Note that the ability to sink  
I
CHRESET  
where V  
is 0.5V, I  
CRESET  
is 0.5µA, t  
is in  
TH-RESET  
seconds, and C  
CH-RESET  
is in Farads. To ensure timing  
RP  
current is dependent on the V  
supply voltage.  
CC  
accuracy and proper operation, minimize leakage at  
C
.
CRESET  
Power-Supply Bypassing  
The device operates with a V supply voltage from  
CC  
Adjustable Delay (CDLY_)  
When V rises above V with EN_ high, the internal  
2.2V to 28V. When V  
falls below the UVLO threshold,  
CC  
IN  
TH  
all the outputs go low and stay low until V  
falls below  
CC  
250nA current source begins charging an external  
capacitor connected from CDLY_ to GND. When the  
voltage at CDLY_ reaches 1V, OUT_ goes high. When  
OUT_ goes high, CDLY_ is immediately held low.  
1.2V. For noisy systems or fast rising transients on V  
,
CC  
connect a 0.1µF ceramic capacitor from V  
to GND  
CC  
as close to the device as possible to provide better  
noise and transient immunity.  
Adjust the delay (t  
) from when V rises above  
IN  
DELAY  
V
TH  
(with EN_ high) to OUT_ going high according to  
the equation:  
Ensuring Valid Reset Output  
with V  
Down to 0V  
CC  
V
THCDLY  
t
=
× C  
+ 35 ×106  
CDLY  
When V  
falls below 1.2V, the ability for the output to  
CC  
DELAY  
I
CHCDLY  
sink current decreases. To ensure a valid output as  
V
CC  
falls to 0V, connect a 100kresistor from RESET  
where V  
is 1V, I  
DELAY  
is 0.25µA, C  
is in  
TH-CDLY  
Farads, and t  
CH-CDLY  
is in seconds. To ensure timing  
CDLY  
to GND.  
accuracy and proper operation, minimize leakage  
at CDLY.  
Typical Application Circuits  
Figures 4 and 5 show typical applications for the  
MAX16041/MAX16042/MAX16043. In high-power appli-  
cations, using an n-channel device reduces the loss  
across the MOSFETs as it offers a lower drain-to-source  
on-resistance. However, an n-channel MOSFET  
Manual-Reset Input (MR)  
Many µP-based products require manual-reset capabil-  
ity, allowing the operator, a test technician, or external  
logic circuitry to initiate a reset. A logic-low on MR  
asserts RESET low. RESET remains asserted while MR  
is low and during the reset timeout period (140ms fixed  
or capacitor adjustable) after MR returns high. The MR  
input has a 500nA internal pullup, so it can be left  
unconnected, if not used. MR can be driven with TTL or  
CMOS logic levels, or with open-drain/collector outputs.  
requires a sufficient V  
voltage to fully enhance it for a  
GS  
low R  
. The application in Figure 4 shows the  
DS_ON  
MAX16042 configured in a multiple-output sequencing  
application. Figure 5 shows the MAX16043 in a power-  
supply sequencing application using n-channel  
MOSFETs.  
______________________________________________________________________________________ 11  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
3.3V  
+1.8V  
+1.5V  
+2.5V  
IN  
DC-DC OUT  
EN  
IN  
DC-DC OUT  
EN  
IN  
DC-DC OUT  
EN  
EN1  
IN1  
IN2  
IN3  
OUT3  
OUT1 EN2  
OUT2 EN3  
V
CC  
TH0  
TH1  
MAX16042  
MR  
SYSTEM  
RESET  
RESET  
CDLY1  
CDLY3  
CRESET  
GND  
TOL  
CDLY2  
Figure 4. Sequencing Multiple-Voltage System  
12V  
BUS  
1.5V  
1.8V  
2.5V  
2/MAX16043  
TO  
LOADS  
3.3V  
IN4  
IN1  
IN3  
OUT3  
OUT1  
IN2  
OUT2  
V
CC  
OUT4  
EN1  
EN2  
EN3  
EN4  
MAX16043  
SYSTEM  
RESET  
RESET  
MR  
CRESET  
GND  
TOL  
TH0  
TH1  
CDLY1  
CDLY3  
CDLY4  
CDLY2  
Figure 5. Multiple-Voltage Sequencing Using n-Channel FETs  
12 ______________________________________________________________________________________  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
2/MAX16043  
Pin Configurations (continued)  
TOP VIEW  
12  
11  
10  
9
15  
14  
13  
12  
11  
TH1  
EN3  
10  
9
MR 16  
CRESET 17  
CDLY3 18  
TH1  
8
7
6
5
MR 13  
CRESET 14  
EN2  
EN1  
GND  
8
EN2  
EN1  
GND  
MAX16041  
MAX16042  
CDLY2  
CDLY1  
15  
16  
CDLY2  
CDLY1  
7
19  
20  
6
+
+
1
2
3
4
1
2
3
4
5
TQFN  
(4mm x 4mm)  
TQFN  
(4mm x 4mm)  
Chip Information  
PROCESS: BICMOS  
______________________________________________________________________________________ 13  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
2/MAX16043  
PACKAGE OUTLINE,  
12, 16, 20, 24, 28L THIN QFN, 4x4x0.8mm  
1
E
21-0139  
2
14 ______________________________________________________________________________________  
Dual-/Triple-/Quad-Voltage, Capacitor-  
Adjustable, Sequencing/Supervisory Circuits  
2/MAX16043  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE,  
12, 16, 20, 24, 28L THIN QFN, 4x4x0.8mm  
2
E
21-0139  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 15  
© 2006 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX16042TP+

Power Supply Support Circuit, Adjustable, 3 Channel, BICMOS, 4 X 4 MM, 0.80 MM, HIEGHT, LEAD FREE, MO-220WGGC-1, TQFN-20
MAXIM

MAX16042TP+T

Power Supply Support Circuit, Adjustable, 3 Channel, BICMOS, 4 X 4 MM, 0.80 MM, HIEGHT, LEAD FREE, MO-220WGGC-1, TQFN-20
MAXIM

MAX16043

Dual-/Triple-/Quad-Voltage, Capacitor-Adjustable, Sequencing/Supervisory Circuits
MAXIM

MAX16043TG

Dual-/Triple-/Quad-Voltage, Capacitor-Adjustable, Sequencing/Supervisory Circuits
MAXIM

MAX16046

12-Channel/8-Channel EEPROM-Programmable System Managers with Nonvolatile Fault Registers
MAXIM

MAX16046A

12-Channel/8-Channel EEPROM-Programmable System Managers with Nonvolatile Fault Registers
MAXIM

MAX16046ACB+

12-Channel/8-Channel EEPROM-Programmable System Managers with Nonvolatile Fault Registers
MAXIM

MAX16046ACB+T

Power Management Circuit, BICMOS, PQFP64,
MAXIM

MAX16046ATN+

12-Channel/8-Channel EEPROM-Programmable System Managers with Nonvolatile Fault Registers
MAXIM

MAX16046ECB+

12-Channel/8-Channel EEPROM-Programmable System Managers with Nonvolatile Fault Registers
MAXIM

MAX16046ECB+T

Power Supply Management Circuit, Adjustable, 12 Channel, BICMOS, PQFP64, TQFP-64
MAXIM

MAX16046ETN+

12-Channel/8-Channel EEPROM-Programmable System Managers with Nonvolatile Fault Registers
MAXIM