MAX17502HAUD+ [MAXIM]

Switching Regulator, Current-mode, 1.9A, 640kHz Switching Freq-Max, BICMOS, PDSO14, 5 X 4.40 MM, ROHS COMPLIANT, TSSOP-14;
MAX17502HAUD+
型号: MAX17502HAUD+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switching Regulator, Current-mode, 1.9A, 640kHz Switching Freq-Max, BICMOS, PDSO14, 5 X 4.40 MM, ROHS COMPLIANT, TSSOP-14

信息通信管理 开关 光电二极管
文件: 总21页 (文件大小:2463K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
General Description  
Benefits and Features  
●ꢀ EliminatesꢀExternalꢀComponentsꢀandꢀReducesꢀTotalꢀ  
Cost  
The MAX17502 high-efficiency, high-voltage, synchronous  
step-down DC-DC converter with integrated MOSFETs  
operates over a 4.5V to 60V input voltage range. This  
device is offered in a fixed 3.3V , 5V or adjustable output  
NoꢀSchottky-SynchronousꢀOperationꢀforꢀHighꢀ  
EfficiencyꢀandꢀReducedꢀCost  
• Internal Compensation and Feedback Divider for  
3.3V and 5V Fixed Outputs  
• All-Ceramic Capacitors, Ultra-Compact Layout  
voltage (0.9V to 92%V ) while delivering up to 1A of  
IN  
current. The output voltage is accurate to within ±1.7%  
over -40°C to +125°C. The MAX17502 is available in  
compact TDFN and TSSOP packages. Simulation models  
are available.  
●ꢀ ReducesꢀNumberꢀofꢀDC-DCꢀRegulatorsꢀtoꢀStock  
Wideꢀ4.5Vꢀtoꢀ60VꢀInputꢀVoltageꢀRange  
The device features peak-current-mode control with  
pulse-width modulation (PWM) and operates with fixed  
switching frequency at any load. The low-resistance,  
on-chip MOSFETs ensure high efficiency at full load and  
simplify the layout.  
• 0.9V to 92%V Adjustable Output Voltage  
• Delivers up to 1A  
600kHzꢀandꢀ300kHzꢀSwitchingꢀFrequencyꢀOptions  
• Available in a 10-Pin, 3mm x 2mm TDFN and  
14-Pin, 5mm x 4.4mm TSSOP Packages  
IN  
A programmable soft-start feature allows users to reduce  
input inrush current. The device also incorporates an  
output enable/undervoltage lockout pin (EN/UVLO) that  
allows the user to turn on the part at the desired input-  
voltage level. An open-drain RESET pin provides a  
delayed power-good signal to the system upon achieving  
successful regulation of the output voltage.  
ReducesꢀPowerꢀDissipation  
• Peak Efficiency > 90%  
ShutdownꢀCurrentꢀ=ꢀ0.9μAꢀ(typ)  
●ꢀ OperatesꢀReliablyꢀinꢀAdverseꢀIndustrialꢀEnvironmentsꢀ  
Hiccup-ModeꢀCurrentꢀLimit,ꢀSinkꢀCurrentꢀLimit,ꢀ  
and Autoretry Startup  
Built-InꢀOutput-VoltageꢀMonitoringꢀ(Open-Drainꢀ  
RESET Pin)  
Resistor-ProgrammableꢀEN/UVLOꢀThreshold  
• Adjustable Soft-Start and Prebiased Power-Up  
•ꢀ HighꢀIndustrialꢀ-40°Cꢀtoꢀ+125°CꢀAmbientꢀOperatingꢀ  
TemperatureꢀRange/-40°Cꢀtoꢀ+150°CꢀJunctionꢀ  
TemperatureꢀRange  
Applications  
●ꢀ IndustrialꢀProcessꢀControlꢀ  
●ꢀ HVACꢀandꢀBuildingꢀControlꢀ  
●ꢀ BaseꢀStation,ꢀVOIP,Telecomꢀ  
●ꢀ HomeꢀTheatreꢀꢀ  
●ꢀ Battery-PoweredꢀEquipment  
●ꢀ General-PurposeꢀPoint-of-Load  
Ordering Information/Selector Guide appears at end of data  
sheet.  
19-6245 Rev 5; 6/16  
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Absolute Maximum Ratings  
V
ꢀtoꢀGND.............................................................-0.3Vꢀtoꢀ+70Vꢀ  
Output Short-Circuit Duration.....................................Continuous  
JunctionꢀTemperature......................................................+150°Cꢀ  
StorageꢀTemperatureꢀRange.............................ꢀ-65°Cꢀtoꢀ+160°Cꢀ  
Lead Temperature (soldering, 10s).................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
IN  
EN/UVLOꢀtoꢀGND.......................................-0.3V to (V + 0.3V)  
LXꢀtoꢀPGND................................................-0.3V to (V + 0.3V)  
IN  
IN  
FB,ꢀRESET,ꢀCOMP,ꢀSSꢀtoꢀGND .............................-0.3V to +6V  
V
ꢀtoꢀGND..............................................................-0.3Vꢀtoꢀ+6Vꢀ  
CC  
GNDꢀtoꢀPGND.......................................................-0.3Vꢀtoꢀ+0.3Vꢀ  
LXꢀTotalꢀRMSꢀCurrent.........................................................ꢀ±1.6Aꢀ  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability. Junction temperature greater than +125°C degrades operating lifetimes.  
(Note 1)  
Package Thermal Characteristics  
10 TDFN  
14 TSSOP  
Continuous Power Dissipation (T = +70°C)  
Continuous Power Dissipation (T = +70°C)  
A
A
(derate 14.9mW/°C above +70°C) (multilayer board).1188.7mW  
(derate 25.6mw/°C above +70°C) ..........................2051.3mW  
Junction-to-AmbientꢀThermalꢀResistanceꢀ(θ ) ...........67.3°C/W  
Junction-to-AmbientꢀThermalꢀResistanceꢀ(θ ) ..............39°C/W  
JA  
JA  
Junction-to-CaseꢀThermalꢀResistanceꢀ(θ )................18.2°C/W  
Junction-to-CaseꢀThermalꢀResistanceꢀ(θ ).....................3°C/W  
JC  
JC  
Note 1:ꢀ PackageꢀthermalꢀresistancesꢀwereꢀobtainedꢀusingꢀtheꢀmethodꢀdescribedꢀinꢀJEDECꢀspecificationꢀJESD51-7,ꢀusingꢀaꢀfour-layerꢀ  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V = 24V, V  
= V  
= 0V, C ꢀ=ꢀ2.2μF,ꢀC  
ꢀ=ꢀ1μF,ꢀV  
= 1.5V, C  
= 3300pF, V = 0.98 x V  
, LX = unconnected,  
IN  
GND  
PGND  
VIN  
VCC  
EN  
SS  
FB  
OUT  
RESET = unconnected. T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
A
A
toꢀGND,ꢀunlessꢀotherwiseꢀnoted.)ꢀ(Noteꢀ2)  
PARAMETER  
INPUT SUPPLY (V  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
)
IN  
InputꢀVoltageꢀRange  
V
4.5  
60  
V
IN  
I
V
= 0V, shutdown mode  
0.9  
4.75  
2.5  
3.5  
µA  
IN-SH  
EN  
Normal  
switching mode,  
no load  
MAX17502E/F/G  
MAX17502H  
6.75  
3.6  
Input Supply Current  
I
mA  
IN-SW  
ENABLE/UVLO (EN/UVLO)  
V
V
V
V
V
rising  
falling  
1.194  
1.114  
1.218  
1.135  
0.7  
1.236  
1.156  
ENR  
EN  
EN  
EN  
EN  
EN Threshold  
V
V
ENF  
V
falling, true shutdown  
= V = 60V, T = +25°C  
EN-TRUESD  
EN Input Leakage Current  
I
8
200  
nA  
EN  
IN  
A
LDO  
6V < V < 12V, 0mA < I  
< 10mA,  
IN  
VCC  
V
ꢀOutputꢀVoltageꢀRange  
V
4.65  
5
5.35  
80  
V
CC  
CC  
12V < V < 60V, 0mA < I  
< 2mA  
IN  
VCC  
V
V
Current Limit  
Dropout  
I
V
V
V
V
= 4.3V, V = 12V  
15  
40  
mA  
V
CC  
VCC-MAX  
CC  
IN  
V
= 4.5V, I = 5mA  
VCC  
4.1  
CC  
CC-DO  
IN  
V
rising  
falling  
3.85  
3.55  
4
4.15  
3.85  
CC-UVR  
CC  
CC  
V
UVLO  
V
CC  
V
3.7  
CC-UVF  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Electrical Characteristics (continued)  
(V = 24V, V  
= V  
= 0V, C ꢀ=ꢀ2.2μF,ꢀC  
ꢀ=ꢀ1μF,ꢀV  
= 1.5V, C  
= 3300pF, V = 0.98 x V  
, LX = unconnected,  
IN  
GND  
PGND  
VIN  
VCC  
EN  
SS  
FB  
OUT  
RESET = unconnected. T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
A
A
toꢀGND,ꢀunlessꢀotherwiseꢀnoted.)ꢀ(Noteꢀ2)  
PARAMETER  
POWER MOSFETs  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
T
T
= +25°C  
0.55  
0.85  
1.2  
A
I
= 0.5A  
LX  
High-SideꢀpMOSꢀOn-Resistance  
R
Ω
= T = +125°C  
DS-ONH  
A
J
(sourcing)  
(Note 3)  
T
T
= +25°C  
0.2  
0.35  
0.47  
A
I
= 0.5A  
LX  
Low-SideꢀnMOSꢀOn-Resistance  
R
Ω
= T = +125°C  
DS-ONL  
A
J
(sinking)  
(Note 3)  
V
V
= 0V, T = +25°C,  
EN  
LX  
A
LX Leakage Current  
I
1
µA  
LX_LKG  
= (V  
+ 1V) to (V - 1V)  
IN  
PGND  
SOFT-START (SS)  
Charging Current  
I
V
= 0.5V  
4.7  
5
5.3  
µA  
V
SS  
SS  
FEEDBACK (FB/VO)  
FBꢀRegulationꢀVoltage  
V
MAX17501G/H  
0.884  
6.8  
0.9  
12  
0.916  
17  
FB_REG  
MAX17502E, V  
3.3V  
=
FB  
µA  
nA  
MAX17502F, V  
= 5V  
FB  
FBꢀInputꢀBiasꢀCurrent  
I
T
= +25NC  
6.8  
12  
17  
FB  
A
MAX17502G/H,ꢀV  
= 0.9V  
FB  
100  
OUTPUT VOLTAGE (V  
)
OUT  
MAX17502E  
MAX17502F  
3.248  
4.922  
3.3  
5
3.352  
5.08  
0.92 x  
OutputꢀVoltageꢀRange  
V
V
MAX17502G  
MAX17502H  
0.9  
0.9  
OUT  
V
IN  
0.965  
x V  
IN  
TRANSCONDUCTANCE AMPLIFIER (COMP)  
Transconductance  
G
I
= ±2.5µA,ꢀMAX17502G/H  
COMP  
510  
19  
590  
32  
650  
55  
µS  
µA  
M
COMP Source Current  
COMP Sink Current  
I
MAX17502G/H  
MAX17502G/H  
MAX17502G/H  
COMP_SRC  
I
19  
32  
55  
µA  
COMP_SINK  
Current-Sense Transresistance  
R
0.45  
0.5  
0.55  
V/A  
CS  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Electrical Characteristics (continued)  
(V = 24V, V  
= V  
= 0V, C ꢀ=ꢀ2.2μF,ꢀC  
ꢀ=ꢀ1μF,ꢀV  
= 1.5V, C  
= 3300pF, V = 0.98 x V  
, LX = unconnected,  
IN  
GND  
PGND  
VIN  
VCC  
EN  
SS  
FB  
OUT  
RESET = unconnected. T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
A
A
toꢀGND,ꢀunlessꢀotherwiseꢀnoted.)ꢀ(Noteꢀ2)  
PARAMETER  
CURRENT LIMIT  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Peak Current-Limit Threshold  
I
1.4  
1.65  
1.7  
1.9  
2
A
A
PEAK-LIMIT  
I
RUNAWAY-  
RunawayꢀCurrent-LimitꢀThreshold  
1.45  
LIMIT  
Sink Current-Limit Threshold  
I
MAX17502E/F/G/H  
0.56  
0.65  
0.74  
A
SINK-LIMIT  
TIMINGS  
MAX17502E/F/G  
MAX17502H  
560  
280  
280  
600  
300  
300  
640  
320  
320  
V
> V  
< V  
FB  
HICF  
OUT-  
Switching Frequency  
f
kHz  
SW  
V
FB  
OUT-HICF  
EventsꢀtoꢀHiccupꢀafterꢀCrossingꢀ  
RunawayꢀCurrentꢀLimit  
1
Event  
%
V
Undervoltage Trip Level to  
OUT  
V
V
> 0.95V (soft-start is done)  
69.14  
71.14  
73.14  
OUT-HICF  
SS  
CauseꢀHiccup  
HICCUPꢀTimeout  
Minimum On-Time  
32,768  
75  
Cycles  
ns  
t
120  
96  
ON_MIN  
MAX17502E/F/G  
MAX17502H  
92  
94  
V
V
= 0.98 x  
FB  
Maximum Duty Cycle  
D
%
MAX  
96.5  
97.5  
5
98.5  
FB-REG  
LX Dead Time  
ns  
RESET  
0.02  
0.45  
V
I
= 1mA  
RESET Output Level Low  
RESET  
RESET Output Leakage  
CurrentꢀHigh  
V
= 1.01 x V  
, T = +25°C  
µA  
FB  
FB-REG  
A
V
V
V
V
falling  
rising  
90.5  
93.5  
92.5  
95.5  
94.5  
97.5  
%
%
V
V
Threshold for RESET Falling  
OUT-OKF  
FB  
OUT  
Threshold for RESETꢀRising  
OUT-OKR  
FB  
OUT  
RESETꢀDelayꢀAfterꢀFBꢀReachesꢀ  
95%ꢀRegulation  
V
rising  
1024  
Cycles  
FB  
THERMAL SHUTDOWN  
Thermal-Shutdown Threshold  
Thermal-ShutdownꢀHysteresis  
Temperature rising  
165  
10  
°C  
°C  
Note 2: All limits are 100% tested at +25°C. Limits over the operating temperature range and relevant supply voltage range are  
guaranteedꢀbyꢀdesignꢀandꢀcharacterization.ꢀ  
Note 3:ꢀ Guaranteedꢀbyꢀdesign,ꢀnotꢀproductionꢀtested.ꢀ  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics  
(V = 24V, V  
= V  
= 0V, C ꢀ=ꢀ2.2μF,ꢀC  
ꢀ=ꢀ1μF,ꢀV  
= 1.5V, C  
= 3300pF, V = 0.98 x V  
, LX = unconnected,  
IN  
GND  
PGND  
VIN  
VCC  
EN  
SS  
FB  
OUT  
RESET = unconnected, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
A
A
toꢀGND,ꢀunlessꢀotherwiseꢀnoted.)  
MAX17502E  
MAX17502E  
MAX17502F  
LOAD AND LINE REGULATION,  
3.3V OUTPUT, FIGURE 7 CIRCUIT  
EFFICIENCY vs. LOAD CURRENT,  
EFFICIENCY vs. LOAD CURRENT,  
5V OUTPUT, FIGURE 8 CIRCUIT  
3.3V OUTPUT, FIGURE 7 CIRCUIT  
100  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
100  
90  
80  
70  
60  
50  
90  
80  
V
IN  
= 12V  
V = 36V  
IN  
V
IN  
= 24V  
V
= 36V  
IN  
V
IN  
= 12V  
V
IN  
= 36V  
V
IN  
= 24V  
V
IN  
= 12V  
70  
60  
V
IN  
= 24V  
V = 48V  
IN  
100 200 300 400 500 600 700 800 900 1000  
LOAD CURRENT (mA)  
0
100 200 300 400 500 600 700 800 900 1000  
LOAD CURRENT (mA)  
100 200 300 400 500 600 700 800 900 1000  
LOAD CURRENT (mA)  
MAX17502F  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
NO-LOAD SWITCHING CURRENT  
vs. TEMPERATURE  
LOAD AND LINE REGULATION,  
5V OUTPUT, FIGURE 8 CIRCUIT  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
5.00  
4.95  
4.90  
4.85  
4.80  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
V
IN  
= 12V  
V = 36V  
IN  
V
= 24V  
V = 48V  
IN  
IN  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
0
100 200 300 400 500 600 700 800 900 1000  
LOAD CURRENT (mA)  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
EN/UVLO THRESHOLD  
vs. TEMPERATURE  
vs. TEMPERATURE (MAX17502F),  
5V OUTPUT, FIGURE 8 CIRCUIT  
vs. TEMPERATURE (MAX17502E),  
3.3V OUTPUT, FIGURE 7 CIRCUIT  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
1.15  
1.14  
1.13  
1.12  
5.050  
5.025  
5.000  
4.975  
4.950  
3.350  
3.325  
3.300  
3.275  
3.250  
RISING  
THRESHOLD  
FALLING  
THRESHOLD  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= V  
= 0V, C ꢀ=ꢀ2.2μF,ꢀC  
ꢀ=ꢀ1μF,ꢀV  
= 1.5V, C  
= 3300pF, V = 0.98 x V  
, LX = unconnected,  
IN  
GND  
PGND  
VIN  
VCC  
EN  
SS  
FB  
OUT  
RESET = unconnected, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
A
A
toꢀGND,ꢀunlessꢀotherwiseꢀnoted.)  
FEEDBACK VOLTAGE  
vs. TEMPERATURE  
PEAK AND RUNAWAY CURRENT LIMIT  
vs. TEMPERATURE  
SWITCHING FREQUENCY  
vs. TEMPERATURE  
0.92  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
700  
600  
500  
400  
300  
200  
0.91  
0.90  
0.89  
0.88  
RUNAWAY  
PEAK  
CURRENT  
CURRENT  
LIMIT  
LIMIT  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
SOFT-START/SHUTDOWN FROM EN/UVLO  
SOFT-START/SHUTDOWN FROM EN/UVLO  
(MAX17502E), 3.3V OUTPUT, FIGURE 7 CIRCUIT  
(MAX17502F), 5V OUTPUT, FIGURE 8 CIRCUIT  
MAX17502 toc14  
MAX17502 toc13  
EN/UVLO  
2V/div  
EN/UVLO  
2V/div  
V
OUT  
2V/div  
V
OUT  
1V/div  
I
OUT  
I
OUT  
500mA/div  
500mA/div  
RESET  
5V/div  
RESET  
2V/div  
1ms/div  
1ms/div  
FULL-LOAD SOFT-START FROM VIN  
FULL-LOAD SOFT-START FROM V  
IN  
(MAX17502E), 3.3V OUTPUT, FIGURE 7 CIRCUIT  
(MAX17502F), 5V OUTPUT, FIGURE 8 CIRCUIT  
MAX17502 toc15  
MAX17502 toc16  
V
V
IN  
20V/div  
IN  
20V/div  
I
OUT  
I
OUT  
500mA/div  
500mA/div  
V
V
OUT  
OUT  
1V/div  
2V/div  
RESET  
5V/div  
RESET  
2V/div  
400µs/div  
400µs/div  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= V  
= 0V, C ꢀ=ꢀ2.2μF,ꢀC  
ꢀ=ꢀ1μF,ꢀV  
= 1.5V, C  
= 3300pF, V = 0.98 x V  
, LX = unconnected,  
IN  
GND  
PGND  
VIN  
VCC  
EN  
SS  
FB  
OUT  
RESET = unconnected, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
A
A
toꢀGND,ꢀunlessꢀotherwiseꢀnoted.)  
SOFT-START WITH 2V PREBIAS  
(MAX17502E), 3.3V OUTPUT, FIGURE 7 CIRCUIT  
SOFT-START WITH 2.5V PREBIAS  
(MAX17502F), 5V OUTPUT, FIGURE 8 CIRCUIT  
MAX17502 toc17  
MAX17502 toc18  
EN/UVLO  
2V/div  
EN/UVLO  
2V/div  
V
OUT  
V
OUT  
1V/div  
1V/div  
RESET  
2V/div  
RESET  
5V/div  
400µs/div  
400µs/div  
LOAD TRANSIENT RESPONSE OF MAX17502F  
LOAD TRANSIENT RESPONSE OF MAX17502E  
(LOAD CURRENT STEPPED FROM NO-LOAD TO 500mA),  
(LOAD CURRENT STEPPED FROM NO-LOAD TO 500mA),  
5V OUTPUT, FIGURE 8 CIRCUIT  
3.3V OUTPUT, FIGURE 7 CIRCUIT  
MAX17502 toc19  
MAX17502 toc20  
V
(AC)  
OUT  
V
OUT  
100mV/div  
50mV/div  
I
I
OUT  
200mA/div  
OUT  
200mA/div  
40µs/div  
20µs/div  
LOAD TRANSIENT RESPONSE OF MAX17502E  
(LOAD CURRENT STEPPED FROM 500mA TO 1A),  
LOAD TRANSIENT RESPONSE OF MAX17502F  
(LOAD CURRENT STEPPED FROM 500mA TO 1A),  
3.3V OUTPUT, FIGURE 7 CIRCUIT  
5V OUTPUT, FIGURE 8 CIRCUIT  
MAX17502 toc21  
MAX17502 toc22  
V
(AC)  
V
OUT  
100mV/div  
OUT  
50mV/div  
I
OUT  
I
OUT  
500mA/div  
500mA/div  
20µs/div  
20µs/div  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= V  
= 0V, C ꢀ=ꢀ2.2μF,ꢀC  
ꢀ=ꢀ1μF,ꢀV  
= 1.5V, C  
= 3300pF, V = 0.98 x V  
, LX = unconnected,  
IN  
GND  
PGND  
VIN  
VCC  
EN  
SS  
FB  
OUT  
RESET = unconnected, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
A
A
toꢀGND,ꢀunlessꢀotherwiseꢀnoted.)  
SWITCHING WAVEFORMS OF MAX17502F  
AT 1A LOAD, 5V OUTPUT, FIGURE 8 CIRCUIT  
OUTPUT OVERLOAD PROTECTION  
OF MAX17502F, 5V OUTPUT, FIGURE 8 CIRCUIT  
MAX17502 toc23  
MAX17502 toc24  
V
(AC)  
OUT  
50mV/div  
I
V
LX  
OUT  
500mA/div  
500mV/div  
LX  
20V/div  
I
OUT  
500mA/div  
20ms/div  
2µs/div  
BODE PLOT OF MAX17502F  
BODE PLOT OF MAX17502E  
AT 1A LOAD, 5V OUTPUT, FIGURE 8 CIRCUIT  
AT 1A LOAD, 3.3V OUTPUT, FIGURE 7 CIRCUIT  
MAX17502 toc26  
MAX17502 toc25  
f
= 60.5kHz  
CR  
PM = 58°  
f
= 55.2kHz  
CR  
PM = 53°  
4
5
6
7 8 9 1  
2
4
5
6
7 8 9 1  
2
5V OUTPUT, 1A LOAD CURRENT,  
FIGURE 8 CIRCUIT, CONDUCTED EMI CURVE  
70  
60  
50  
40  
30  
20  
10  
QUASI-PEAK LIMIT  
AVERAGE LIMIT  
PEAK  
EMISSIONS  
AVERAGE  
EMISSIONS  
30  
1
10  
0.15  
FREQUENCY(MHz)  
MEASUREDꢀON THEꢀMAX17502FTEVKITꢀWITHꢀINPUT FILTER—C = 2.2µF, L ꢀ=ꢀ10µH  
IN IN  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Pin Configurations  
TOP VIEW  
TOP VIEW  
MAX17502  
+
PGND  
N.C.  
1
2
3
4
5
6
7
+
14 LX  
PGND  
1
2
10 LX  
13 LX  
V
IN  
9
GND  
V
IN  
12 N.C.  
11 GND  
10 RESET  
EN/UVLO  
N.C.  
MAX17502  
EN/UVLO  
3
4
5
8
7
6
RESET  
N.C./COMP  
SS  
V
CC  
V
CC  
9
8
N.C./COMP  
SS  
EP*  
FB/VO  
EP*  
FB/VO  
TDFN  
TSSOP  
(5mm x 4.4mm)  
(3mm x 2mm)  
*EP = EXPOSED PAD. CONNECT TO GND  
Pin Description  
PIN  
TSSOP  
NAME  
FUNCTION  
TDFN  
PowerꢀGround.ꢀConnectꢀPGNDꢀexternallyꢀtoꢀtheꢀpowerꢀgroundꢀplane.ꢀConnectꢀGNDꢀandꢀPGNDꢀ  
pins together at the ground return path of the V bypass capacitor.  
1
2
1
3
PGND  
CC  
V
Power-Supply Input. The input supply range is from 4.5V to 60V.  
IN  
Enable/Undervoltage Lockout Input. Drive EN/UVLO high to enable the output voltage. Connect  
3
4
5
6
4
6
7
8
EN/UVLO  
to the center of the resistive divider between V ꢀandꢀGNDꢀtoꢀsetꢀtheꢀinputꢀvoltageꢀ(undervoltageꢀ  
IN  
threshold) at which the device turns on. Pull up to V for always on.  
IN  
V
5VꢀLDOꢀOutput.ꢀBypassꢀV ꢀwithꢀ1µFꢀceramicꢀcapacitanceꢀtoꢀGND.ꢀ  
CC  
CC  
FeedbackInput.Forxedoutputvoltagedevices,directlyconnectFB/VOtotheoutput.Forꢀ  
adjustableꢀoutputꢀvoltageꢀdevices,ꢀconnectꢀFB/VOꢀtoꢀtheꢀcenterꢀofꢀtheꢀresistiveꢀdividerꢀbetweenꢀ  
FB/VO  
V
ꢀandꢀGND.  
OUT  
SS  
Soft-StartꢀInput.ꢀConnectꢀaꢀcapacitorꢀfromꢀSSꢀtoꢀGNDꢀtoꢀsetꢀtheꢀsoft-startꢀtime.ꢀ  
ExternalꢀLoopꢀCompensation.ꢀForꢀadjustableꢀoutputꢀvoltageꢀ(MAX17502G/H),ꢀconnectꢀtoꢀanꢀRCꢀ  
networkꢀfromꢀCOMPꢀtoꢀGND.ꢀSeeꢀExternal Loop Compensation for Adjustable Output Versions  
sectionꢀforꢀmoreꢀdetails.ꢀForꢀfixedꢀoutputꢀvoltageꢀ(MAX17502E/F),ꢀthisꢀpinꢀisꢀaꢀnoꢀconnectꢀ(N.C.)ꢀ  
and should be left unconnected.  
7
9
N.C./COMP  
Open-Drain RESET Output. The RESETꢀoutputꢀisꢀdrivenꢀlowꢀifꢀFBꢀdropsꢀbelowꢀ92.5%ꢀofꢀitsꢀsetꢀ  
value. RESETꢀgoesꢀhighꢀ1024ꢀclockꢀcyclesꢀafterꢀFBꢀrisesꢀaboveꢀ95.5%ꢀofꢀitsꢀsetꢀvalue.ꢀRESET  
8
10  
RESET  
is valid when the device is enabled and V is above 4.5V.  
IN  
9
11  
GND  
AnalogꢀGround  
Switching Node. Connect LX to the switching side of the inductor. LX is high impedance when  
the device is in shutdown mode.  
10  
13, 14  
LX  
2, 5, 12  
N.C.  
EP  
No Connection. Not internally connected.  
ExposedꢀPad.ꢀConnectꢀtoꢀtheꢀGNDꢀpinꢀofꢀtheꢀIC.ꢀConnectꢀtoꢀaꢀlargeꢀcopperꢀplaneꢀbelowꢀtheꢀICꢀ  
to improve heat dissipation capability.  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Block Diagram  
V
CC  
PGND  
N DRIVER  
5µA  
SS  
SS  
LX  
MAX17502  
HICCUP  
P DRIVER  
V
IN  
CURRENT  
SENSE  
V
CC  
PWM  
CLK  
PWM  
LOGIC  
LDO  
OSC  
COMPARATOR  
COMP  
HICCUP  
SLOPE  
COMPENSATION  
START  
EN  
FB  
RESET  
RESET  
LOGIC  
SS  
900mV  
REFERENCE  
SWITCHOVER  
LOGIC  
COMP  
N.C./COMP  
G
M
INTERNAL  
COMPENSATION  
(FOR E, F VERSIONS)  
GND  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Detailed Description  
V
OUT  
× t  
ON(MIN)  
V
=
IN(MAX)  
The MAX17502 synchronous step-down regulator oper-  
ates from 4.5V to 60V and delivers up to 1A load current.  
Output voltage regulation accuracy meets ±1.7% over  
temperature.  
f
SW (MAX)  
where V  
is the steady-state output voltage, I  
OUT(MAX)  
OUT  
isꢀtheꢀmaximumꢀloadꢀcurrent,ꢀR  
is the DC resistance  
DCR  
of the inductor, f  
is the switching frequency (max-  
is the worst-case minimum switch  
SW(MAX)  
The device uses a peak-current-mode control scheme.  
An internal transconductance error amplifier generates an  
integrated error voltage. The error voltage sets the duty  
cycle using a PWM comparator, a high-side current-sense  
amplifier, and a slope-compensation generator. At each  
rising edge of the clock, the high-side p-channel MOSFET  
turns on and remains on until either the appropriate or  
maximum duty cycle is reached, or the peak current limit  
is detected.  
imum) and t  
ON(MIN)  
on-time (120ns). The following table lists the f  
SW(MAX)  
and D  
values to be used for calculation for different  
MAX  
versions of the MAX17502:  
PART VERSION  
MAX17502E/F/G  
MAX17502H  
f
(kHz)  
D
MAX  
SW (MAX)  
640  
0.92  
320  
0.965  
During the high-side MOSFET’s on-time, the inductor  
current ramps up. During the second half of the switching  
cycle, the high-side MOSFET turns off and the low-side  
n-channel MOSFET turns on and remains on until either  
the next rising edge of the clock arrives or sink current  
limit is detected. The inductor releases the stored energy  
as its current ramps down, and provides current to the  
Overcurrent Protection/HICCUP Mode  
The device is provided with a robust overcurrent-protec-  
tion scheme that protects the device under overload and  
output short-circuit conditions. A cycle-by-cycle peak cur-  
rent limit turns off the high-side MOSFET whenever the  
high-side switch current exceeds an internal limit of 1.65A  
(typ). A runaway current limit on the high-side switch cur-  
rent at 1.7A (typ) protects the device under high input volt-  
age, short-circuit conditions when there is insufficient out-  
put voltage available to restore the inductor current that  
built up during the on period of the step-down converter.  
One occurrence of the runaway current limit triggers a  
hiccup mode. In addition, if due to a fault condition, output  
voltage drops to 71.14% (typ) of its nominal value any  
time after soft-start is complete, hiccup mode is triggered.  
outputꢀ (theꢀ internalꢀ lowꢀ R  
pMOS/nMOS switches  
DSON  
ensure high efficiency at full load).  
This device also integrates enable/undervoltage lockout  
(EN/UVLO), adjustable soft-start time (SS), and open-  
drain reset output (RESET) functionality.  
Linear Regulator (V  
)
CC  
An internal linear regulator (V ) provides a 5V nominal  
CC  
supply to power the internal blocks and the low-side  
MOSFET driver. The output of the V  
linear regulator  
CC  
shouldꢀ beꢀ bypassedꢀ withꢀ aꢀ 1μFꢀ ceramicꢀ capacitorꢀ toꢀ  
GND.ꢀTheꢀdeviceꢀemploysꢀanꢀundervoltage-lockoutꢀcircuitꢀ  
In hiccup mode, the converter is protected by suspend-  
ing switching for a hiccup timeout period of 32,768 clock  
cycles. Once the hiccup timeout period expires, soft-start  
is attempted again. This operation results in minimal  
power dissipation under overload fault conditions.  
that disables the internal linear regulator when V  
falls  
CC  
below 3.7V (typical). The internal V  
linear regulator can  
CC  
source up to 40mA (typical) to supply the device and to  
power the low-side gate driver.  
RESET Output  
Operating Input Voltage Range  
The device includes a RESET comparator to monitor the  
output voltage. The open-drain RESET output requires  
an external pullup resistor. RESET can sink 2mA of cur-  
rent while low. RESET goes high (high impedance) 1024  
switching cycles after the regulator output increases  
above 95.5% of the designated nominal regulated volt-  
age. RESET goes low when the regulator output voltage  
drops to below 92.5% of the nominal regulated voltage.  
RESET also goes low during thermal shutdown. RESET  
The maximum operating input voltage is determined by  
the minimum controllable on-time and the minimum oper-  
ating input voltage is determined by the maximum duty  
cycle and circuit voltage drops. The minimum and maxi-  
mum operating input voltages for a given output voltage  
should be calculated as:  
V
+ (I  
×(R  
+ 0.47))  
DCR  
OUT  
OUT(MAX)  
V
=
IN(MIN)  
D
MAX  
is valid when the device is enabled and V is above 4.5V.  
IN  
+ (I  
× 0.73)  
OUT(MAX)  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Select a low-loss inductor closest to the calculated value  
with acceptable dimensions and having the lowest pos-  
Prebiased Output  
When the device starts into a prebiased output, both the  
high-side and low-side switches are turned off so the  
converterꢀ doesꢀ notꢀ sinkꢀ currentꢀ fromꢀ theꢀ output.ꢀ High-  
side and low-side switches do not start switching until  
the PWM comparator commands the first PWM pulse, at  
which point switching commences first with the high-side  
switch. The output voltage is then smoothly ramped up to  
the target value in alignment with the internal reference.  
sible DC resistance. The saturation current rating (I  
)
SAT  
of the inductor must be high enough to ensure that satu-  
ration can occur only above the peak current-limit value  
(I  
(typ) = 1.65A for the device).  
PEAK-LIMIT  
Output Capacitor Selection  
X7Rꢀceramicꢀoutputꢀcapacitorsꢀareꢀpreferredꢀdueꢀtoꢀtheirꢀ  
stability over temperature in industrial applications. The  
outputꢀ capacitorꢀ isꢀ usuallyꢀ sizedꢀ toꢀ supportꢀ aꢀ stepꢀ loadꢀ  
of 50% of the maximum output current in the application,  
so the output-voltage deviation is contained to ±3% of the  
output-voltage change.  
Thermal-Overload Protection  
Thermal-overload protection limits total power dissipation  
in the device. When the junction temperature of the device  
exceeds +165°C, an on-chip thermal sensor shuts down  
the device, allowing the device to cool. The thermal sensor  
turns the device on again after the junction temperature  
cools by 10°C. Soft-start resets during thermal shutdown.  
Carefully evaluate the total power dissipation (see the  
Power Dissipation section) to avoid unwanted triggering of  
the thermal-overload protection in normal operation.  
For fixed 3.3V output voltage versions, connect a mini-  
mumꢀ ofꢀ 22μFꢀ (1210)ꢀ capacitorꢀ atꢀ theꢀ output.ꢀ Forꢀ fixedꢀ  
5Vꢀoutputꢀvoltageꢀversions,ꢀconnectꢀaꢀminimumꢀofꢀ10μFꢀ  
(1210) capacitor at the output. For adjustable output volt-  
age versions, the output capacitance can be calculated  
as follows:  
I
× t  
RESPONSE  
1
2
STEP  
C
=
×
Applications Information  
OUT  
V  
OUT  
Input Capacitor Selection  
0.33  
1
The discontinuous input-current waveform of the buck  
converter causes large ripple currents in the input capaci-  
tor. The switching frequency, peak inductor current, and  
the allowable peak-to-peak voltage ripple that reflects  
back to the source dictate the capacitance requirement.  
The device’s high switching frequency allows the use of  
smallerꢀ valueꢀ inputꢀ capacitors.ꢀ X7Rꢀ capacitorsꢀ areꢀ rec-  
ommended in industrial applications for their temperature  
stability.ꢀAꢀminimumꢀvalueꢀofꢀ2.2μFꢀshouldꢀbeꢀusedꢀforꢀtheꢀ  
inputcapacitor.Highervalueshelpreducetherippleonꢀ  
the input DC bus further. In applications where the source  
is located distant from the device input, an electrolytic  
capacitorꢀshouldꢀbeꢀaddedꢀinꢀparallelꢀtoꢀtheꢀ2.2μFꢀceramicꢀ  
capacitor to provide necessary damping for potential  
oscillations caused by the longer input power path and  
input ceramic capacitor.  
t
+
RESPONSE  
f
f
SW  
C
where I  
is the load current step, t  
responseꢀ timeꢀ ofꢀ theꢀ controller,ꢀ ΔV  
output-voltage deviation, f is the target closed-loop cross-  
is the switching frequency. Select  
f to be 1/12th of f . Consider DC bias and aging effects  
while selecting the output capacitor.  
is the  
STEP  
RESPONSE  
is the allowable  
OUT  
C
over frequency, and f  
SW  
SW  
C
Soft-Start Capacitor Selection  
The MAX17502 implements adjustable soft-start operation  
to reduce inrush current. A capacitor connected from the  
SSꢀpinꢀtoꢀGNDꢀprogramsꢀtheꢀsoft-startꢀperiod.  
The selected output capacitance (C  
) and the output  
SEL  
voltage (V  
) determine the minimum required soft-start  
OUT  
capacitor as follows:  
Inductor Selection  
-6  
Three key inductor parameters must be specified for  
operation with the device: inductance value (L), inductor  
C
SS  
x C  
x V  
SEL OUT  
The soft-start time (t ) is related to the capacitor connected  
at SS (C ) by the following equation:  
SS  
saturation current (I  
),ꢀandꢀDCꢀresistanceꢀ(R  
). The  
SAT  
DCR  
SS  
switching frequency, and output voltage determine the  
inductor value as follows:  
CSS  
tSS  
=
-6  
5.55 x 10  
2.4 x VOUT  
L =  
fSW  
where V  
and f  
are nominal values.  
OUT  
SW  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Adjusting Output Voltage  
External Loop Compensation for Adjustable  
Output Versions  
The MAX17502 uses peak current-mode control scheme  
andneedsonlyasimpleRCnetworktohaveastable,ꢀ  
high-bandwidth control loop for the adjustable output volt-  
age versions. The basic regulator loop is modeled as a  
power modulator, an output feedback divider, and an error  
The MAX17502E and MAX17502F have preset output  
voltagesof3.3Vand5.0V,respectively.ConnectFB/VOꢀ  
directly to the positive terminal of the output capacitor  
(see the Typical Applications Circuits).  
Theꢀ MAX17502G/Hꢀ offerꢀ anꢀ adjustableꢀ outputꢀ voltageꢀ  
from 0.9V to 92%V . Set the output voltage with a resis-  
IN  
amplifier.ThepowermodulatorhasDCgainG  
,
MOD(dc)  
tive voltage-divider connected from the positive terminal  
withꢀaꢀpoleꢀandꢀzeroꢀpair.ꢀTheꢀfollowingꢀequationꢀdefinesꢀ  
the power modulator DC gain:  
of the output capacitor (V )ꢀ toꢀ GNDꢀ (seeꢀ Figure 1).  
OUT  
Connectꢀ theꢀ centerꢀ nodeꢀ ofꢀ theꢀ dividerꢀ toꢀ FB/VO.ꢀ Toꢀ  
optimizeꢀefficiencyꢀandꢀoutputꢀaccuracy,ꢀuseꢀtheꢀfollowingꢀ  
procedureꢀtoꢀchooseꢀtheꢀvaluesꢀofꢀR4ꢀandꢀR5:  
2
G
=
MOD(dc)  
1
0.4  
0.5 -D  
f ×L  
SW  
+
+
R
V
LOAD  
IN  
SEL  
Forꢀ MAX17502G,ꢀ selectꢀ theꢀ parallelꢀ combinationꢀ ofꢀ R4ꢀ  
andR5,Rptobelessthan15kΩ.FortheMAX17502H,ꢀ  
selecttheparallelcombinationofR4andR5,Rptobeꢀ  
lessꢀthanꢀ30kΩ.ꢀOnceꢀRpꢀisꢀselected,ꢀcalculateꢀR4ꢀas:  
whereꢀ R  
= V  
/I  
, f  
is the switching  
LOAD  
OUT OUT(MAX) SW  
frequency, L  
is the selected output inductance, D is  
SEL  
the duty ratio, D = V V .  
OUT/ IN  
The compensation network is shown in Figure 3.  
Rp × V  
OUT  
R4 =  
R can be calculated as:  
Z
0.9  
CalculateꢀR5ꢀasꢀfollows:  
R
= 6000 × f × C  
× V  
SEL OUT  
Z
C
R4 × 0.9  
whereꢀR ꢀisꢀinꢀΩ.ꢀChooseꢀf to be 1/12th of the switching  
frequency.  
Z
C
R5 =  
(V  
- 0.9)  
OUT  
C can be calculated as follows:  
Z
C
×G  
MOD(dc)  
SEL  
Setting the Input Undervoltage Lockout Level  
C =  
Z
2ꢀxꢀR  
The device offers an adjustable input undervoltage-  
lockout level. Set the voltage at which the device turns  
Z
C can be calculated as follows:  
P
on with a resistive voltage-divider connected from V  
IN  
toꢀGNDꢀ(seeꢀFigure 2). Connect the center node of the  
1
C
=
P
divider to EN/UVLO.  
π×R × f  
Z
SW  
ChooseꢀR1ꢀtoꢀbeꢀ3.3MΩ,ꢀandꢀthenꢀcalculateꢀR2ꢀas:  
R1×1.218  
R2 =  
V
IN  
(V  
-1.218)  
INU  
R1  
where V  
is the voltage at which the device is required  
INU  
EN/UVLO  
to turn on. For adjustable output voltage devices, ensure  
that V  
is higher than 0.8 x V  
.
INU  
OUT  
R2  
GND  
V
OUT  
Figure 2. Adjustable EN/UVLO Network  
R4  
TO COMP PIN  
FB/VO  
R5  
R
Z
GND  
C
P
C
Z
Figure 1. Setting the Output Voltage  
Figure 3. External Compensation Network  
Maxim Integrated  
13  
www.maximintegrated.com  
 
 
 
 
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Power Dissipation  
PCB Layout Guidelines  
At a particular operating condition, the power losses that  
lead to temperature rise of the device are estimated as  
follows:  
CarefulꢀPCBꢀlayoutꢀisꢀcriticalꢀtoꢀachieveꢀlowꢀswitchingꢀloss-  
es and stable operation. For a sample layout that ensures  
first-pass success, refer to the MAX17502 evaluation kit  
layouts available at www.maximintegrated.com. Follow  
theseꢀguidelinesꢀforꢀgoodꢀPCBꢀlayout:  
1
2
P
= (P  
×( - 1)) - I  
×R  
OUT DCR  
)
LOSS  
(
OUT  
η
1) All connections carrying pulsed currents must be very  
short and as wide as possible. The loop area of these  
connections must be made very small to reduce stray  
inductance and radiated EMI.  
P
= V  
×I  
OUT  
OUT OUT  
where P  
ꢀisꢀtheꢀoutputꢀpower,ꢀηꢀisꢀisꢀtheꢀefficiencyꢀofꢀ  
OUT  
theꢀdevice,ꢀandꢀR  
is the DC resistance of the output  
2) A ceramic input filter capacitor should be placed close  
DCR  
inductor (refer to the Typical Operating Characteristics  
in the evaluation kit data sheets for more information on  
efficiency at typical operating conditions).  
to the V pin of the device. The bypass capacitor for  
IN  
the V  
pin should also be placed close to the V  
CC  
CC  
pin. External compensation components should be  
placed close to the IC and far from the inductor. The  
feedback trace should be routed as far as possible  
from the inductor.  
For a typical multilayer board, the thermal performance  
metrics for the 10-pin TDFN package are given as:  
θ
= 67.3°C W  
JA  
JC  
3) The analog small-signal ground and the power ground  
for switching currents must be kept separate. They  
should be connected together at a point where switch-  
ing activity is at minimum, typically the return terminal  
θ
= 18.2°C W  
For a typical multilayer board, the thermal performance  
metrics for the 14-pin TSSOP package are given as:  
of the V  
bypass capacitor. The ground plane should  
CC  
be kept continuous as much as possible.  
θ
= 39°C W  
JA  
4) A number of thermal throughputs that connect to a  
large ground plane should be provided under the  
exposed pad of the device, for efficient heat dissipation.  
θ
= 3°C W  
JC  
The junction temperature of the device can be estimated  
Figure 4, 5, and 6 show the recommended component  
placement for MAX17502 in TDFN and TSSOP packages.  
at any given maximum ambient temperature (T  
from the following equation:  
)
A_MAX  
T
= T  
+ θ ×P  
A_MAX JA LOSS  
(
)
J_MAX  
If the application has a thermal-management system that  
ensures that the exposed pad of the device is maintained  
at a given temperature (T ) by using proper heat  
EP_MAX  
sinks, then the junction temperature of the device can be  
estimated at any given maximum ambient temperature as:  
T
= T  
+ θ ×P  
(
)
J_MAX  
EP_MAX JC LOSS  
Junctionꢀ temperatureꢀ greaterꢀ thanꢀ +125°Cꢀ degradesꢀ  
operating lifetimes.  
Maxim Integrated  
14  
www.maximintegrated.com  
 
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
V
PLANE  
PGND PLANE  
OUT  
C4  
L1  
C1  
LX PLANE  
EP  
V
IN  
PLANE  
R1  
R2  
RESET  
C2  
R4  
C3  
GND PLANE  
VIAS TO BOTTOM SIDE PGND PLANE  
VIAS TO BOTTOM SIDE V TRACK  
OUT  
VIAS TO BOTTOM SIDE GND PLANE  
Figure 4. Recommended Component Placement for MAX17502E/F  
Maxim Integrated  
15  
www.maximintegrated.com  
 
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
V
PLANE  
PGND PLANE  
OUT  
C4  
L1  
C1  
LX PLANE  
RESET  
EP  
V
IN  
PLANE  
R1  
R2  
R3  
C2  
R4  
C3  
C9  
C5  
R5  
GND PLANE  
VIAS TO BOTTOM SIDE PGND PLANE  
VIAS TO BOTTOM SIDE V TRACK  
OUT  
VIAS TO BOTTOM SIDE GND PLANE  
Figure 5. Recommended Component Placement for MAX17502G  
Maxim Integrated  
16  
www.maximintegrated.com  
 
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
V
OUT  
PLANE  
PGND PLANE  
C4  
L1  
C1  
R1  
LX PLANE  
V
IN  
PLANE  
EP  
R2  
RESET  
R3  
C2  
R4  
C3  
C9  
C5  
R5  
GND PLANE  
VIAS TO BOTTOM SIDE PGND PLANE  
VIAS TO BOTTOM SIDE V TRACK  
OUT  
VIAS TO BOTTOM SIDE GND PLANE  
Figure 6. Recommended Component Placement for MAX17502H  
Maxim Integrated  
17  
www.maximintegrated.com  
 
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Applications Circuits  
L1  
15µH  
V
V
OUT  
IN  
V
LX  
IN  
3.3V, 1A  
24V  
C1  
C4  
R1  
2.2µF  
22µF  
3.32MΩ  
1210  
1210  
1
JU1 2  
3
PGND  
EN/UVLO  
R2  
866kΩ  
MAX17502E  
GND  
V
CC  
C2  
1µF  
FB/VO  
SS  
C3  
3300pF  
L1 = LPS6235-153  
RESET  
N.C.  
RESET  
Figure 7. MAX17502E Application Circuit (3.3V Output, 1A Maximum Load Current, 600kHz Switching Frequency)  
L1  
22µH  
V
V
OUT  
IN  
V
LX  
IN  
5V, 1A  
24V  
C1  
2.2µF  
1210  
C4  
10µF  
1210  
R1  
3.32MΩ  
1
JU1 2  
3
PGND  
EN/UVLO  
R2  
866kΩ  
MAX17502F  
GND  
V
CC  
C2  
1µF  
FB/VO  
SS  
C3  
3300pF  
L1 = LPS6235-223  
N.C.  
RESET  
RESET  
Figure 8. MAX17502F Application Circuit (5V Output, 1A Maximum Load Current, 600kHz Switching Frequency)  
Maxim Integrated  
18  
www.maximintegrated.com  
 
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
L1  
47µH  
V
V
OUT  
IN  
V
LX  
IN  
12V, 1A  
24V  
C1  
2.2µF  
1210  
C4  
R1  
10µF  
3.32MΩ  
1210  
1
JU1 2  
3
PGND  
EN/UVLO  
R2  
316kΩ  
R4  
174kΩ  
MAX17502G  
GND  
V
CC  
C2  
1µF  
FB/VO  
SS  
C3  
6800pF  
R5  
14kΩ  
COMP  
RESET  
RESET  
R3  
C9  
12pF  
20kΩ  
L1 = MSS1038-473  
C5  
2200pF  
Figure 9. MAX17502G Application Circuit (12V Output, 1A Maximum Load Current, 600kHz Switching Frequency)  
L1  
22µH  
V
V
OUT  
2.5V, 1A  
IN  
V
LX  
IN  
24V  
C1  
2.2µF  
1210  
C4  
47µF,  
1210  
R1  
3.32MΩ  
1
JU1 2  
3
PGND  
EN/UVLO  
R2  
1MΩ  
R4  
MAX17502H  
69.8kΩ  
GND  
V
CC  
C2  
1µF  
FB/VO  
SS  
C3  
6800pF  
R5  
39.2kΩ  
COMP  
RESET  
RESET  
R3  
C9  
47pF  
16.9kΩ  
L1 = LPS6235-223  
C5  
3300pF  
Figure 10. MAX17502H Application Circuit (2.5V Output, 1A Maximum Load Current, 300kHz Switching Frequency)  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Ordering Information/Selector Guide  
SWITCHING  
FREQUENCY (kHz)  
PART  
PIN-PACKAGE  
OUTPUT VOLTAGE (V)  
MODE  
MAX17502EATB+  
MAX17502FATB+  
MAX17502GATB+  
MAX17502HAUD+  
10 TDFN-EP*  
10 TDFN-EP*  
10 TDFN-EP*  
14 TSSOP-EP*  
3.3  
5
600  
600  
600  
300  
PWM  
PWM  
PWM  
PWM  
Adjustable  
Adjustable  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Chip Information  
PROCESS:ꢀBiCMOS  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
thatꢀaꢀ“+”,ꢀ“#”,ꢀorꢀ“-”ꢀinꢀtheꢀpackageꢀcodeꢀindicatesꢀRoHSꢀstatusꢀ  
only. Package drawings may show a different suffix character, but  
theꢀdrawingꢀpertainsꢀtoꢀtheꢀpackageꢀregardlessꢀofꢀRoHSꢀstatus.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE LAND PATTERN  
NO.  
NO.  
10 TDFN  
T1032N+1  
U14E+3  
21-0429  
21-0108  
90-0082  
90-0119  
14 TSSOP  
Maxim Integrated  
20  
www.maximintegrated.com  
 
MAX17502  
60V, 1A, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
5/12  
Initial release  
11/12  
AddedꢀMAX17502GꢀandꢀMAX17502Hꢀtoꢀdataꢀsheet  
1–17  
Added dotted line for exposed pad in Pin Configuration, and added  
explanation on detailed condition for RESET  
2
3
1/13  
8/14  
9, 11  
Updated General Description, Benefits and Features, Pin Description, and  
Adjusting Output Voltage sections.  
1, 9, 13  
4
5
6/15  
6/16  
Added output voltage to TOC captions  
8–12, 16–18, 22, 23  
1–8, 14, 19  
Updated operating and junction temperature values  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2016 Maxim Integrated Products, Inc.  
21  

相关型号:

MAX17502_13

60V, 1A, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converter
MAXIM

MAX17503SATP+

Switching Regulator, Current-mode, 2450kHz Switching Freq-Max, BICMOS, TQFN-20
MAXIM

MAX17504

4.5V–60V、3.5A、高效率、 同步降压DC-DC转换器,带内部补偿
MAXIM

MAX17504ATP+

Switching Regulator, Current-mode, 5.85A, 2450kHz Switching Freq-Max, BICMOS, TQFN-20
MAXIM

MAX17504ATP+T

Switching Regulator/Controller, Current-mode, 3.5A, 2450kHz Switching Freq-Max, BICMOS, PQCC20,
MAXIM

MAX17504SATP+

Switching Regulator, Current-mode, 5.85A, 2450kHz Switching Freq-Max, BICMOS, TQFN-20
MAXIM

MAX17505ATP+

Switching Regulator, Current-mode, 3.25A, 2450kHz Switching Freq-Max, BICMOS, TQFN-20
MAXIM

MAX17505ATP+T

IC REG BUCK ADJ 1.7A SYNC 20TQFN
MAXIM

MAX17509ATJ+

Dual Switching Controller, 2200kHz Switching Freq-Max, BICMOS, 5 X 5 MM, ROHS COMPLIANT, TQFN-32
MAXIM

MAX17509ATJ+T

IC REG BUCK ADJ 3A DL 32TQFN
MAXIM

MAX17510ATB+T

Terminator Support Circuit, BICMOS, PDSO10, 3 X 3 MM, ROHS COMPLIANT, TDFN-10
MAXIM

MAX17511

Dual-Output, 3-/2-/1-Phase 2-/1-Phase Quick-PWM Controllers for VR12/IMVP7
MAXIM