MAX17504ATP+ [MAXIM]

Switching Regulator, Current-mode, 5.85A, 2450kHz Switching Freq-Max, BICMOS, TQFN-20;
MAX17504ATP+
型号: MAX17504ATP+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switching Regulator, Current-mode, 5.85A, 2450kHz Switching Freq-Max, BICMOS, TQFN-20

信息通信管理 开关
文件: 总26页 (文件大小:1549K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
General Description  
Benefits and Features  
The MAX17504/MAX17504S high-efficiency, high-  
voltage, synchronously rectified step-down converter with  
dual integrated MOSFETs operates over a 4.5V to 60V  
EliminatesꢀExternalꢀComponentsꢀandꢀReducesꢀTotalꢀCost  
NoꢀSchottky-SynchronousꢀOperationꢀforꢀHighꢀ  
EfficiencyꢀandꢀReducedꢀCost  
input. It delivers up to 3.5A and 0.9V to 90% V output  
• Internal compensation for Stable Operation at Any  
Output Voltage  
• All Ceramic Capacitor Solution: Ultra-Compact  
Layout with as Few as Eight External Components  
ReduceꢀNumberꢀofꢀDC-DCꢀRegulatorsꢀtoꢀStock  
Wideꢀ4.5Vꢀtoꢀ60VꢀInputꢀVoltageꢀRange  
IN  
voltage. Built-in compensation across the output voltage  
range eliminates the need for external components. The  
feedback (FB) regulation accuracy over -40°C to +125°C  
is ±1.1%. The device is available in a compact (5mm x  
5mm) TQFN lead (Pb)-free package with an exposed pad.  
Simulation models are available.  
• 0.9V to 90% V Output Voltage  
IN  
• Delivers Up to 3.5A Over Temperature  
100kHzꢀtoꢀ2.2MHzꢀAdjustableꢀFrequencyꢀwithꢀ  
External Synchronization  
MAX17504SꢀAllowsꢀHigherꢀFrequencyꢀOfꢀOperation  
• Available in a 20-Pin, 5mm x 5mm TQFN Package  
ReduceꢀPowerꢀDissipation  
PeakꢀEfficiencyꢀ>ꢀ90%  
PFMꢀandꢀDCMꢀModesꢀforꢀHighꢀLight-LoadꢀEfficiency  
• Shutdown Current = 2.8FA (typ)  
The device features  
a peak-current-mode control  
architecture with a MODE feature that can be used to  
operate the device in pulse-width modulation (PWM),  
pulse-frequency modulation (PFM), or discontinuous  
mode (DCM) control schemes. PWM operation provides  
constant frequency operation at all loads, and is useful  
in applications sensitive to switching frequency. PFM  
operation disables negative inductor current and  
additionally skips pulses at light loads for high efficiency.  
DCM features constant frequency operation down to  
lighter loads than PFM mode, by not skipping pulses,  
but only disabling negative inductor current at light loads.  
DCM operation offers efficiency performance that lies  
between PWM and PFM modes. The MAX17504S offers  
a lower minimum on-time that allows for higher switching  
frequencies and a smaller solution size.  
OperateꢀReliablyꢀ  
Hiccup-ModeꢀCurrentꢀLimitꢀandꢀAutoretryꢀStartup  
• Built-In Output Voltage Monitoring—(Open-Drain  
RESET Pin)  
ResistorꢀProgrammableꢀEN/UVLOꢀThreshold  
AdjustableꢀSoft-StartꢀandꢀPre-BiasedꢀPower-Up  
HighꢀIndustrialꢀ-40°Cꢀtoꢀ+125°CꢀAmbientꢀOperatingꢀ  
TemperatureꢀRange/-40°Cꢀtoꢀ+150°CꢀJunctionꢀ  
TemperatureꢀRange  
A programmable soft-start feature allows users to reduce  
input inrush current. The device also incorporates an  
output enable/undervoltage lockout pin (EN/UVLO) that  
allows the user to turn on the part at the desired input-  
voltage level. An open-drain RESET pin provides a  
delayed power-good signal to the system upon achieving  
successful regulation of the output voltage.  
Ordering Information appears at end of data sheet.  
Applications  
●ꢀ IndustrialꢀPowerꢀSupplies  
●ꢀ DistributedꢀSupplyꢀRegulation  
●ꢀ BaseꢀStationꢀPowerꢀSupplies  
●ꢀ WallꢀTransformerꢀRegulation  
●ꢀ High-VoltageꢀSingle-BoardꢀSystems  
●ꢀ General-PurposeꢀPoint-of-Load  
19-6844; Rev 3; 5/17  
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
Absolute Maximum Ratings (Note 1)  
V
ꢀtoꢀPGND .........................................................-0.3V to +65V  
SGNDꢀtoꢀPGND....................................................-0.3V to +0.3V  
LXꢀTotalꢀRMSꢀCurrent ........................................................±5.6A  
Output Short-Circuit Duration....................................Continuous  
IN  
EN/UVLOꢀtoꢀSGND ...............................................-0.3V to +65V  
LXꢀtoꢀPGND................................................-0.3V to (V + 0.3V)  
IN  
BSTꢀtoꢀPGND........................................................-0.3V to +70V  
Continuous Power Dissipation (T = +70°C) (multilayer board)  
A
BST to LX.............................................................-0.3V to +6.5V  
TQFN (derate 33.3mW/°C above T = +70°C)......2666.7mW  
A
BST to V  
FB, CF, RESET, SS, MODE, SYNC,  
RTꢀtoꢀSGND .....................................................-0.3V to +6.5V  
...........................................................-0.3V to +65V  
JunctionꢀTemperature......................................................+150°C  
StorageꢀTemperatureꢀRange............................ -65NC to +160°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
CC  
V
ꢀtoꢀSGND.......................................................-0.3V to +6.5V  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
PACKAGE TYPE: 20 TQFN  
Package Code  
T2055+4  
21-0140  
90-0009  
Outline Number  
Land Pattern Number  
THERMAL RESISTANCE, FOUR-LAYER BOARD  
JunctionꢀtoꢀAmbientꢀ(θ  
)
30°C/W  
2°C/W  
JA  
JunctionꢀtoꢀCaseꢀ(θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”,ꢀorꢀ“-”ꢀinꢀtheꢀpackageꢀcodeꢀindicatesꢀRoHSꢀstatusꢀonly.ꢀPackageꢀdrawingsꢀmayꢀshowꢀaꢀdifferentꢀsuffixꢀcharacter,ꢀbutꢀtheꢀdrawingꢀ  
pertainsꢀtoꢀtheꢀpackageꢀregardlessꢀofꢀRoHSꢀstatus.  
PackageꢀthermalꢀresistancesꢀwereꢀobtainedꢀusingꢀtheꢀmethodꢀdescribedꢀinꢀJEDECꢀspecificationꢀJESD51-7,ꢀusingꢀaꢀfour-layerꢀboard.ꢀ  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Note 1: ꢀJunctionꢀtemperatureꢀgreaterꢀthanꢀ+125°Cꢀdegradesꢀoperatingꢀlifetimes.  
Electrical Characteristics  
(V = V  
ꢀ=ꢀ24V,ꢀR  
= 40.2kIꢀ(500kHz),ꢀC  
= 2.2µF, V  
= V  
= V  
= V  
= 0V, LX = SS = RESET =  
IN  
EN/UVLO  
RT  
VCC  
PGND  
SGND  
MODE  
SYNC  
open, V  
to V = 5V, V = 1V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are  
BST  
LX FB A A  
referencedꢀtoꢀSGND,ꢀunlessꢀotherwiseꢀnoted.)ꢀ(Noteꢀ2)  
PARAMETER  
INPUT SUPPLY (V  
SYMBOL  
CONDITIONS  
MIN  
TYP MAX UNITS  
)
IN  
InputꢀVoltageꢀRange  
V
4.5  
60  
V
IN  
Input Shutdown Current  
I
V
V
V
= 0V (shutdown mode)  
2.8  
118  
162  
1.16  
4.5  
IN-SH  
EN/UVLO  
= 1V, MODE = RT=ꢀopen  
µA  
FB  
FB  
I
Q_PFM  
= 1V, MODE = open  
Input Quiescent Current  
I
DCM mode, V = 0.1V  
LX  
1.8  
Q_DCM  
mA  
Normal switching mode, f  
=ꢀ500kHz,  
SW  
I
9.5  
Q_PWM  
V
= 0.8V  
FB  
www.maximintegrated.com  
Maxim Integrated 2  
 
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
Electrical Characteristics (continued)  
(V = V  
ꢀ=ꢀ24V,ꢀR  
= 40.2kIꢀ(500kHz),ꢀC  
= 2.2µF, V  
= V  
= V  
= V  
= 0V, LX = SS = RESET =  
IN  
EN/UVLO  
RT  
VCC  
PGND  
SGND  
MODE  
SYNC  
open, V  
to V = 5V, V = 1V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are  
BST  
LX FB A A  
referencedꢀtoꢀSGND,ꢀunlessꢀotherwiseꢀnoted.)ꢀ(Noteꢀ2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP MAX UNITS  
ENABLE/UVLO (EN/UVLO)  
V
V
V
V
rising  
1.19 1.215 1.24  
1.068 1.09 1.111  
ENR  
EN/UVLO  
EN/UVLO  
EN/UVLO  
EN/UVLO Threshold  
V
V
falling  
= 0V, T = +25ºC  
ENF  
EN/UVLO Input Leakage Current  
I
-50  
0
+50  
nA  
EN  
A
LDO  
6V < V < 60V, I  
= 1mA  
IN  
VCC  
V
ꢀOutputꢀVoltageꢀRange  
V
4.75  
5
5.25  
100  
V
CC  
CC  
1mAꢀ≤ꢀI  
ꢀ≤ꢀ25mA  
VCC  
V
V
Current Limit  
Dropout  
I
V
V
V
V
= 4.3V, V = 6V  
26.5  
4.2  
54  
mA  
V
CC  
VCC-MAX  
CC  
IN  
V
= 4.5V, I  
= 20mA  
CC  
CC-DO  
IN  
VCC  
V
rising  
falling  
4.05  
3.65  
4.2  
3.8  
4.3  
3.9  
CC_UVR  
CC  
CC  
V
UVLO  
V
CC  
V
CC_UVF  
POWER MOSFET AND BST DRIVER  
High-SideꢀnMOSꢀOn-Resistance  
Low-SideꢀnMOSꢀOn-Resistance  
R
I
I
= 0.3A  
= 0.3A  
165  
80  
325  
150  
mΩ  
mΩ  
DS-ONH  
LX  
LX  
R
DS-ONL  
V
= V - 1V, V = V  
+ 1V,  
LX  
IN  
LX  
PGND  
LX Leakage Current  
I
-2  
+2  
µA  
LX_LKG  
T = +25ºC  
A
SOFT-START (SS)  
Charging Current  
FEEDBACK (FB)  
I
V
= 0.5V  
4.7  
5
5.3  
µA  
SS  
SS  
MODEꢀ=ꢀSGNDꢀorꢀMODEꢀ=ꢀV  
0.89  
0.9  
0.91  
CC  
FBꢀRegulationꢀVoltage  
V
V
FB_REG  
MODE = open  
0.89 0.915 0.936  
FB Input Bias Current  
I
0 < V < 1V, T = +25ºC  
-50  
+50  
nA  
FB  
FB  
A
MODE  
V
CC  
1.6  
-
V
MODE = V  
(DCM mode)  
M-DCM  
CC  
MODE Threshold  
V
V
MODE = open (PFM mode)  
V
/2  
M-PFM  
CC  
V
MODEꢀ=ꢀGNDꢀ(PWMꢀmode)  
1.4  
M-PWM  
CURRENT LIMIT  
Peak Current-Limit Threshold  
I
4.4  
4.9  
5.1  
5.7  
0
5.85  
6.7  
A
A
PEAK-LIMIT  
I
RUNAWAY-LIMIT  
RunawayꢀCurrent-LimitꢀThreshold  
MODE = open or MODE = V  
-0.16  
+0.16  
CC  
Valley Current-Limit Threshold  
I
A
A
SINK-LIMIT  
MODEꢀ=ꢀGND  
-1.8  
PFM Current-Limit Threshold  
I
MODE = open  
0.6  
0.75  
0.9  
PFM  
www.maximintegrated.com  
Maxim Integrated 3  
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
Electrical Characteristics (continued)  
(V = V  
ꢀ=ꢀ24V,ꢀR  
= 40.2kIꢀ(500kHz),ꢀC  
= 2.2µF, V  
= V  
= V  
= V  
= 0V, LX = SS = RESET =  
IN  
EN/UVLO  
RT  
VCC  
PGND  
SGND  
MODE  
SYNC  
open, V  
to V = 5V, V = 1V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are  
BST  
LX FB A A  
referencedꢀtoꢀSGND,ꢀunlessꢀotherwiseꢀnoted.)ꢀ(Noteꢀ2)  
PARAMETER  
RT AND SYNC  
SYMBOL  
CONDITIONS  
MIN  
TYP MAX UNITS  
R
R
R
R
R
ꢀ=ꢀ210kΩ  
ꢀ=ꢀ102kΩ  
ꢀ=ꢀ40.2kΩ  
ꢀ=ꢀ8.06kΩ  
= OPEN  
90  
100  
200  
500  
110  
220  
525  
RT  
RT  
RT  
RT  
RT  
180  
475  
Switching Frequency  
f
kHz  
SW  
1950 2200 2450  
460  
500  
540  
1.1 x  
1.4 x  
f
SW  
SYNCꢀFrequencyꢀCaptureꢀRange  
SYNC Pulse Width  
f
ꢀsetꢀbtꢀR  
kHz  
ns  
V
SW  
RT  
f
SW  
50  
V
2.1  
IH  
SYNC Threshold  
V
0.8  
0.6  
IL  
V
Undervoltage Trip Level to  
FB  
V
0.56  
0.58  
V
FB-HICF  
CauseꢀHiccup  
HICCUPꢀTimeout  
(Note 3)  
32768  
Cycles  
ns  
MAX17504  
135  
80  
Minimum On-Time  
t
ON-MIN  
MAX17504S  
55  
5
ns  
Minimum Off-Time  
LX Dead Time  
t
140  
160  
ns  
OFF-MIN  
ns  
RESET  
RESET Output Level Low  
I
= 1mA  
0.4  
V
RESET  
RESET Output Leakage Current  
T
= T = +25ºC, V = 5.5V  
RESET  
-0.1  
+0.1  
µA  
A
J
V
Threshold for RESET  
OUT  
V
V
V
falling  
rising  
90.5  
92  
95  
94  
%
%
FB-OKF  
FB  
FB  
Assertion  
V
Threshold for RESET  
OUT  
V
93.8  
97.2  
FB-OKR  
Deassertion  
RESET Deassertion Delay After FB  
Reachesꢀ95%ꢀRegulation  
1024  
Cycles  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
ThermalꢀShutdownꢀHysteresis  
Temperature rising  
165  
10  
ºC  
ºC  
Note 2: All limits are 100% tested at +25°C. Limits over temperature are guaranteed by design.  
Note 3: See the Overcurrent Protection/HICCUP Mode section for more details.  
www.maximintegrated.com  
Maxim Integrated 4  
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
Typical Operating Characteristics  
(V = V  
= 24V, V  
= V  
= 0V, C  
= 2 x 2.2µF, C  
= 2.2µF, C  
= 0.1µF, C ꢀ=ꢀ12,000pF,ꢀRTꢀ=ꢀMODEꢀ=ꢀopen,ꢀT = T  
IN  
EN/UVLO  
PGND  
SGND  
VIN  
VCC  
BST SS A J  
= -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀSGND,ꢀunlessꢀotherwiseꢀnoted.)  
A
MAX17504 3.3V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(PWM MODE, FIGURE 4 CIRCUIT)  
MAX17504 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(PWM MODE, FIGURE 3 CIRCUIT)  
MAX17504S 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(PWM MODE, FIGURE 5 CIRCUIT)  
toc01  
toc02  
toc01a  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
30  
VIN = 48V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 36V  
VIN = 24V  
VIN = 48V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 48V  
VIN = 12V  
MODE = SGND  
MODE = SGND  
MODE = SGND  
2.5 3.0 3.5  
0
500 1000 1500 2000 2500 3000 3500  
LOAD CURRENT (mA)  
0
500 1000 1500 2000 2500 3000 3500  
LOAD CURRENT (mA)  
0.0  
0.5  
1.0  
1.5  
2.0  
LOAD CURRENT (A)  
MAX17504 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(PFM MODE, FIGURE 3 CIRCUIT)  
MAX17504S 3.3V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(PWM MODE, FIGURE 6 CIRCUIT)  
100  
toc03  
toc02a  
100  
90  
80  
70  
60  
50  
40  
30  
90  
80  
70  
VIN = 48V  
VIN = 36V  
VIN = 48V  
60  
50  
40  
30  
20  
VIN = 24V VIN = 36V  
VIN = 12V  
VIN = 24V  
VIN = 12V  
MODE = OPEN  
MODE = SGND  
2.5 3.0 3.5  
3500  
1
10  
100  
1000  
0.0  
0.5  
1.0  
1.5  
2.0  
LOAD CURRENT (mA)  
LOAD CURRENT (A)  
MAX17504 3.3V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(PFM MODE, FIGURE 4 CIRCUIT)  
MAX17504S 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(PFM MODE, FIGURE 5 CIRCUIT)  
toc04  
toc03a  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
VIN = 48V  
VIN = 36V  
VIN = 48V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 24V  
VIN = 12V  
MODE = OPEN  
MODE = OPEN  
1.0  
1
10  
100  
1000  
3500  
3.5  
0.0  
0.1  
LOAD CURRENT (A)  
LOAD CURRENT (mA)  
www.maximintegrated.com  
Maxim Integrated 5  
 
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, C  
= 2 x 2.2µF, C  
= 2.2µF, C  
= 0.1µF, C ꢀ=ꢀ12,000pF,ꢀRTꢀ=ꢀMODEꢀ=ꢀopen,ꢀT = T  
IN  
EN/UVLO  
PGND  
SGND  
VIN  
VCC  
BST SS A J  
= -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀSGND,ꢀunlessꢀotherwiseꢀnoted.)  
A
MAX17504S 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(DCM MODE, FIGURE 5 CIRCUIT)  
MAX17504 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(DCM MODE, FIGURE 3 CIRCUIT)  
MAX17504S 3.3V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(PFM MODE, FIGURE 6 CIRCUIT)  
toc05  
toc05a  
toc04a  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
VIN = 48V  
VIN = 36V  
VIN = 48V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
V
IN = 24V  
VIN = 48V  
IN = 36V  
VIN = 12V  
V
VIN = 24V  
VIN = 12V  
MODE = VCC  
1000  
MODE = VCC  
1.0  
3.5  
MODE = OPEN  
1.0  
1
10  
100  
3500  
0.0  
0.1  
3.5  
0.0  
0.1  
LOAD CURRENT (A)  
LOAD CURRENT (mA)  
LOAD CURRENT (A)  
MAX17504S 3.3V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(DCM MODE, FIGURE 6 CIRCUIT)  
MAX17504 3.3V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(DCM MODE, FIGURE 4 CIRCUIT)  
toc06  
toc06a  
100  
90  
80  
70  
60  
50  
40  
30  
100  
VIN = 48V  
VIN = 36V  
VIN = 48V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VIN = 36V  
VIN = 24V  
VIN = 24V  
VIN = 12V  
VIN = 12V  
MODE = VCC  
MODE = VCC  
1.0  
3500  
1
10  
100  
1000  
0.0  
0.1  
LOAD CURRENT (mA)  
LOAD CURRENT (A)  
MAX17504S 5V OUTPUT  
LOAD AND LINE REGULATION  
(PWM MODE, FIGURE 5 CIRCUIT)  
MAX17504 5V OUTPUT  
LOAD AND LINE REGULATION  
(PWM MODE, FIGURE 3 CIRCUIT)  
toc07  
toc07a  
5.08  
5.07  
5.06  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
4.94  
4.93  
4.92  
4.91  
VIN = 48V  
VIN = 36V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 24V  
VIN = 12V  
VIN = 48V  
MODE = SGND  
MODE = SGND  
2.5 3.0 3.5  
0
500 1000 1500 2000 2500 3000 3500  
LOAD CURRENT (mA)  
0.0  
0.5  
1.0  
1.5  
2.0  
LOAD CURRENT (A)  
www.maximintegrated.com  
Maxim Integrated 6  
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, C  
= 2 x 2.2µF, C  
= 2.2µF, C  
= 0.1µF, C ꢀ=ꢀ12,000pF,ꢀRTꢀ=ꢀMODEꢀ=ꢀopen,ꢀT = T  
IN  
EN/UVLO  
PGND  
SGND  
VIN  
VCC  
BST SS A J  
= -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀSGND,ꢀunlessꢀotherwiseꢀnoted.)  
A
MAX17504S 3.3V OUTPUT  
LOAD AND LINE REGULATION  
(PWM MODE, FIGURE 6 CIRCUIT)  
MAX17504 3.3V OUTPUT  
LOAD AND LINE REGULATION  
(PWM MODE, FIGURE 4 CIRCUIT)  
MAX17504 5V OUTPUT  
LOAD AND LINE REGULATION  
(PFM MODE, FIGURE 3 CIRCUIT)  
toc08  
toc09  
toc08a  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
3.40  
3.39  
3.38  
3.37  
3.36  
3.35  
3.34  
3.33  
3.32  
VIN = 24V  
VIN = 48V  
VIN = 48V  
VIN = 24V  
VIN = 36V  
VIN = 12V  
VIN = 48V  
VIN = 12V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 36V  
MODE = SGND  
MODE = OPEN  
MODE = SGND  
2.5 3.0 3.5  
0
500 1000 1500 2000 2500 3000 3500  
LOAD CURRENT (mA)  
0
500 1000 1500 2000 2500 3000 3500  
LOAD CURRENT (mA)  
0.0  
0.5  
1.0  
1.5  
2.0  
LOAD CURRENT (A)  
MAX17504 3.3V OUTPUT  
LOAD AND LINE REGULATION  
(PFM MODE, FIGURE 4 CIRCUIT)  
MAX17504S 5V OUTPUT  
LOAD AND LINE REGULATION  
(PFM MODE, FIGURE 5 CIRCUIT)  
5.25  
toc10  
toc09a  
3.6  
5.20  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
VIN = 12V  
VIN = 48V  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
VIN = 12V  
VIN = 24V  
VIN = 48V  
VIN = 36V  
VIN = 24V  
VIN=36V  
MODE = OPEN  
MODE = OPEN  
2.5 3.0 3.5  
0
500 1000 1500 2000 2500 3000 3500  
LOAD CURRENT (mA)  
0.0  
0.5  
1.0  
1.5  
2.0  
LOAD CURRENT (A)  
MAX17504S 3.3V OUTPUT  
LOAD AND LINE REGULATION  
(PFM MODE, FIGURE 6 CIRCUIT)  
SWITCHING FREQUENCY  
vs. RT RESISTANCE  
toc11  
toc10a  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
3.60  
3.55  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
VIN = 48V  
VIN = 36V  
VIN = 24V  
600  
VIN = 12V  
400  
200  
MODE = OPEN  
2.5 3.0 3.5  
0
0
20  
40  
60  
80  
100  
0.0  
0.5  
1.0  
1.5  
2.0  
RRT (kΩ)  
LOAD CURRENT (A)  
www.maximintegrated.com  
Maxim Integrated 7  
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, C  
= 2 x 2.2µF, C  
= 2.2µF, C  
= 0.1µF, C ꢀ=ꢀ12,000pF,ꢀRTꢀ=ꢀMODEꢀ=ꢀopen,ꢀT = T  
IN  
EN/UVLO  
PGND  
SGND  
VIN  
VCC  
BST SS A J  
= -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀSGND,ꢀunlessꢀotherwiseꢀnoted.)  
A
MAX17504S 5V OUTPUT  
MAX17504 5V OUTPUT  
SOFT-START/SHUTDOWN FROM EN/UVLO  
SOFT-START/SHUTDOWN FROM EN/UVLO  
(3.5A LOAD CURRENT, FIGURE 5 CIRCUIT)  
(3.5A LOAD CURRENT, FIGURE 3 CIRCUIT)  
toc12a  
toc12  
VEN/UVLO  
5V/div  
2V/div  
VEN/UVLO  
2V/div  
VOUT  
VOUT  
2V/div  
IOUT  
2A/div  
5V/div  
IOUT  
VRESET  
2A/div  
5V/div  
MODE = SGND  
2ms/div  
MODE = SGND  
VRESET  
1ms/div  
MAX17504S 3.3V OUTPUT  
SOFT-START/SHUTDOWN FROM EN/UVLO  
(3.5A LOAD CURRENT, FIGURE 6 CIRCUIT)  
MAX17504 3.3V OUTPUT  
SOFT-START/SHUTDOWN FROM EN/UVLO,  
(3.5A LOAD CURRENT, FIGURE 4 CIRCUIT)  
toc13a  
toc13  
VEN/UVLO  
VEN/UVLO  
5V/div  
2V/div  
VOUT  
2V/div  
VOUT  
2V/div  
IOUT  
1A/div  
5V/div  
IOUT  
2A/div  
5V/div  
VRESET  
VRESET  
MODE = SGND  
MODE = SGND  
2mS/div  
1ms/div  
MAX17504S 5V OUTPUT  
SOFT-START/SHUTDOWN FROM EN/UVLO  
(PFM MODE, 5mA LOAD CURRENT, FIGURE 5 CIRCUIT)  
MAX17504 5V OUTPUT  
SOFT-START/SHUTDOWN FROM EN/UVLO  
(PFM MODE, 5mA LOAD CURRENT, FIGURE 3 CIRCUIT)  
toc14a  
toc14  
MODE = OPEN  
VEN/UVLO  
5V/div  
VEN/UVLO  
2V/div  
1V/div  
5V/div  
VOUT  
VOUT  
1V/div  
5V/div  
VRESET  
MODE = OPEN  
2mS/div  
2ms/div  
www.maximintegrated.com  
Maxim Integrated 8  
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, C  
= 2 x 2.2µF, C  
= 2.2µF, C  
= 0.1µF, C ꢀ=ꢀ12,000pF,ꢀRTꢀ=ꢀMODEꢀ=ꢀopen,ꢀT = T  
IN  
EN/UVLO  
PGND  
SGND  
VIN  
VCC  
BST SS A J  
= -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀSGND,ꢀunlessꢀotherwiseꢀnoted.)  
A
MAX17504 5V OUTPUT  
SOFT-START WITH 2.5V PREBIAS  
(PWM MODE, FIGURE 3 CIRCUIT)  
MAX17504S 3.3V OUTPUT  
SOFT-START/SHUTDOWN FROM EN/UVLO  
(PFM MODE, 5mA LOAD CURRENT, FIGURE 6 CIRCUIT)  
MAX17504 3.3V OUTPUT  
SOFT-START/SHUTDOWN FROM EN/UVLO  
(PFM MODE, 5mA LOAD CURRENT, FIGURE 4 CIRCUIT)  
toc16  
toc15a  
toc15  
VEN/UVLO  
2V/div  
VEN/UVLO  
VEN/UVLO  
2V/div  
5V/div  
2V/div  
5V/div  
VOUT  
1V/div  
5V/div  
1V/div  
5V/div  
VOUT  
VOUT  
VRESET  
VRESET  
MODE = SGND  
1ms/div  
MODE = OPEN  
MODE = OPEN  
2ms/div  
2ms/div  
MAX17504S 5V OUTPUT  
SOFT-START WITH 2.5V PREBIAS  
(PWM MODE, FIGURE 5 CIRCUIT)  
MAX17504 3.3V OUTPUT  
SOFT-START WITH 2.5V PREBIAS  
(PFM MODE, FIGURE 4 CIRCUIT)  
toc16a  
toc17  
5V/div  
1V/div  
VEN/UVLO  
VEN/UVLO  
2V/div  
1V/div  
VOUT  
VRESET  
5V/div  
VOUT  
MODE = OPEN  
MODE = SGND  
1ms/div  
VRESET  
5V/div  
1mS/div  
MAX17504 5V OUTPUT  
STEADY-STATE SWITCHING WAVEFORMS  
(3.5A LOAD CURRENT, FIGURE 3 CIRCUIT)  
MAX17504S 3.3V OUTPUT  
SOFT-START WITH 2.5V PREBIAS  
(PWM MODE, FIGURE 6 CIRCUIT)  
toc18  
toc17a  
VOUT  
(AC)  
20mV/div  
VEN/UVLO  
5V/div  
1V/div  
10V/div  
2A/div  
VLX  
ILX  
VOUT  
5V/div  
1μs/div  
MODE = SGND  
1mS/div  
VRESET  
www.maximintegrated.com  
Maxim Integrated 9  
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, C  
= 2 x 2.2µF, C  
= 2.2µF, C  
= 0.1µF, C ꢀ=ꢀ12,000pF,ꢀRTꢀ=ꢀMODEꢀ=ꢀopen,ꢀT = T  
IN  
EN/UVLO  
PGND  
SGND  
VIN  
VCC  
BST SS A J  
= -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀSGND,ꢀunlessꢀotherwiseꢀnoted.)  
A
MAX17504S 5V OUTPUT  
STEADY-STATE SWITCHING WAVEFORMS  
(3.5A LOAD CURRENT, FIGURE 5 CIRCUIT)  
MAX17504S 5V OUTPUT  
STEADY-STATE SWITCHING WAVEFORMS  
(NO LOAD CURRENT, FIGURE 5 CIRCUIT)  
MAX17504 5V OUTPUT  
STEADY-STATE SWITCHING WAVEFORMS  
(PWM MODE, NO LOAD, FIGURE 3 CIRCUIT)  
toc19a  
toc18a  
toc19  
MODE = SGND  
MODE = SGND  
VOUT  
(AC)  
20mV/div  
VOUT  
(AC)  
VOUT  
(AC)  
50mV/  
20mV/di  
10V/div  
VLX  
VLX  
10V/div  
2A/div  
10V/div  
1A/div  
VLX  
ILX  
500mA/d  
ILX  
1μs/div  
MODE = SGND  
ILX  
1µs/div  
1µS/div  
MAX17504 5V OUTPUT  
STEADY-STATE SWITCHING WAVEFORMS  
(PFM MODE, 25mA LOAD, FIGURE 3 CIRCUIT)  
MAX17504S 5V OUTPUT  
STEADY-STATE SWITCHING WAVEFORMS  
(PFM MODE, 25mA LOAD CURRENT, FIGURE 5 CIRCUIT)  
toc20  
toc20a  
MODE = OPEN  
VOUT  
(AC)  
100mV/div  
VOUT  
(AC)  
100mV/div  
10V/div  
VLX  
10V/div  
VLX  
ILX  
500mA/div  
MODE = OPEN  
500mA/div  
ILX  
10μs/div  
4μs/div  
MAX17504 5V OUTPUT  
STEADY-STATE SWITCHING WAVEFORMS  
(DCM MODE, 25mA LOAD, FIGURE 3 CIRCUIT)  
MAX17504S 5V OUTPUT  
STEADY-STATE SWITCHING WAVEFORMS  
(DCM MODE, 150mA LOAD CURRENT, FIGURE 5 CIRCUIT)  
toc21  
toc21a  
MODE = VCC  
MODE = VCC  
VOUT  
(AC)  
20mV/div  
VOUT  
(AC)  
20mV/div  
10V/div  
VLX  
VLX  
10V/div  
ILX  
200mA/div  
ILX  
500mA/div  
1μs/div  
1μs/div  
www.maximintegrated.com  
Maxim Integrated 10  
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, C  
= 2 x 2.2µF, C  
= 2.2µF, C  
= 0.1µF, C ꢀ=ꢀ12,000pF,ꢀRTꢀ=ꢀMODEꢀ=ꢀopen,ꢀT = T  
IN  
EN/UVLO  
PGND  
SGND  
VIN  
VCC  
BST SS A J  
= -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀSGND,ꢀunlessꢀotherwiseꢀnoted.)  
A
MAX17504 5V OUTPUT  
LOAD CURRENT STEPPED FROM 1.7`5A TO 3.5A  
MAX17504S 5V OUTPUT  
LOAD CURRENT STEPPED FROM 1.75A TO 3.5A  
(PWM MODE, FIGURE 3 CIRCUIT)  
(PWM MODE, FIGURE 5 CIRCUIT)  
toc22  
toc22a  
VOUT  
(AC)  
100mV/div  
VOUT  
AC  
100mV/div  
IOUT  
2A/div  
MODE = SGND  
ILX  
2A/div  
40μs/div  
MODE = SGND  
100μS/div  
MAX17504 3.3V OUTPUT  
LOAD CURRENT STEPPED FROM 1.75A TO 3.5A  
MAX17504S 3.3V OUTPUT  
LOAD CURRENT STEPPED FROM 1.75A TO 3.5A  
(PWM MODE, FIGURE 4 CIRCUIT)  
toc23  
(PWM MODE, FIGURE 6 CIRCUIT)  
toc23a  
VOUT  
(AC)  
100mV/div  
VOUT  
AC  
100mV/div  
2A/div  
IOUT  
MODE = SGND  
ILX  
2A/div  
100μs/div  
MODE = SGND  
100μS/div  
MAX17504S 5V OUTPUT  
LOAD CURRENT STEPPED FROM NO LOAD TO 1.75A  
MAX17504 5V OUTPUT  
LOAD CURRENT STEPPED FROM NO LOAD TO 1.75A  
(PWM MODE, FIGURE 3 CIRCUIT)  
(PWM MODE, FIGURE 5 CIRCUIT)  
toc24  
toc24a  
VOUT  
(AC)  
100mV/div  
VOUT  
AC  
100mV/div  
IOUT  
1A/div  
MODE = SGND  
ILX  
1A/div  
MODE = SGND  
40μs/div  
100μS/div  
www.maximintegrated.com  
Maxim Integrated 11  
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, C  
= 2 x 2.2µF, C  
= 2.2µF, C  
= 0.1µF, C ꢀ=ꢀ12,000pF,ꢀRTꢀ=ꢀMODEꢀ=ꢀopen,ꢀT = T  
IN  
EN/UVLO  
PGND  
SGND  
VIN  
VCC  
BST SS A J  
= -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀSGND,ꢀunlessꢀotherwiseꢀnoted.)  
A
MAX17504S 3.3V OUTPUT  
LOAD CURRENT STEPPED FROM NO LOAD TO 1.75A  
MAX17504 3.3V OUTPUT  
LOAD CURRENT STEPPED FROM NO LOAD TO 1.75A  
(PWM MODE, FIGURE 6 CIRCUIT)  
(PWM MODE, FIGURE 4 CIRCUIT)  
toc25a  
toc25  
VOUT  
(AC)  
100mV/div  
VOUT  
AC  
100mV/div  
1A/div  
IOUT  
MODE = SGND  
ILX  
1A/div  
MODE = SGND  
100μs/div  
100μS/div  
MAX17504 5V OUTPUT  
LOAD CURRENT STEPPED FROM 5mA TO 1.75A  
MAX17504S 5V OUTPUT  
LOAD CURRENT STEPPED FROM 5MA TO 1.75A  
(PFM MODE, FIGURE 3 CIRCUIT)  
(PFM MODE, FIGURE 5 CIRCUIT)  
toc26  
toc26a  
VOUT  
(AC)  
100mV/div  
VOUT  
AC  
100mV/div  
1A/div  
IOUT  
MODE = OPEN  
1A/div  
ILX  
2ms/div  
MODE = OPEN  
1mS/div  
MAX17504 3.3V OUTPUT  
LOAD CURRENT STEPPED FROM 5mA TO 1.75A  
MAX17504S 3.3V OUTPUT  
LOAD CURRENT STEPPED FROM 5MA TO 1.75A  
(PFM MODE, FIGURE 4 CIRCUIT)  
(PFM MODE, FIGURE 6 CIRCUIT)  
toc27  
toc27a  
VOUT  
(AC)  
100mV/div  
VOUT  
AC  
100mV/div  
IOUT  
1A/div  
MODE = OPEN  
ILX  
1A/div  
MODE = OPEN  
2ms/div  
2mS/div  
www.maximintegrated.com  
Maxim Integrated 12  
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, C  
= 2 x 2.2µF, C  
= 2.2µF, C  
= 0.1µF, C ꢀ=ꢀ12,000pF,ꢀRTꢀ=ꢀMODEꢀ=ꢀopen,ꢀT = T  
IN  
EN/UVLO  
PGND  
SGND  
VIN  
VCC  
BST SS A J  
= -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀSGND,ꢀunlessꢀotherwiseꢀnoted.)  
A
MAX17504 5V OUTPUT  
LOAD CURRENT STEPPED FROM 50mA TO 1.75A  
MAX17504S 5V OUTPUT  
LOAD CURRENT STEPPED FROM 50mA TO 1.75A  
(DCM MODE, FIGURE 3 CIRCUIT)  
(DCM MODE, FIGURE 5 CIRCUIT)  
toc28  
toc28a  
VOUT  
(AC)  
100mV/div  
VOUT (AC)  
100mV/div  
1A/div  
IOUT  
MODE = VCC  
IOUT  
1A/div  
200μs/div  
MODE = VCC  
200μs/div  
MAX17504 3.3V OUTPUT  
LOAD CURRENT STEPPED FROM 50mA TO 1.75A  
MAX17504S 3.3V OUTPUT  
LOAD CURRENT STEPPED FROM 50mA TO 1.75A  
(DCM MODE, FIGURE 4 CIRCUIT)  
(DCM MODE, FIGURE 6 CIRCUIT)  
toc29  
toc29a  
VOUT  
(AC)  
100mV/div  
VOUT (AC)  
100mV/div  
IOUT  
1A/div  
MODE = VCC  
IOUT  
1A/div  
200μs/div  
MODE = VCC  
200μs/div  
MAX17504S 5V OUTPUT  
OVERLOAD PROTECTION  
(FIGURE 5 CIRCUIT)  
MAX17504 5V OUTPUT  
OVERLOAD PROTECTION  
(FIGURE 3 CIRCUIT)  
toc30a  
toc30  
VOUT  
2V/div  
50mV/div  
VOUT  
1A/div  
IOUT  
IOUT  
1A/div  
20ms/div  
10ms/div  
www.maximintegrated.com  
Maxim Integrated 13  
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, C  
= 2 x 2.2µF, C  
= 2.2µF, C  
= 0.1µF, C ꢀ=ꢀ12,000pF,ꢀRTꢀ=ꢀMODEꢀ=ꢀopen,ꢀT = T  
IN  
EN/UVLO  
PGND  
SGND  
VIN  
VCC  
BST SS A J  
= -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀSGND,ꢀunlessꢀotherwiseꢀnoted.)  
A
MAX17504S 5V OUTPUT  
APPLICATION OF EXTERNAL CLOCK AT 1.2MHz,  
MAX17504 5V OUTPUT  
APPLICATION OF EXTERNAL CLOCK AT 700kHz  
(FIGURE 5 CIRCUIT)  
toc31a  
(FIGURE 3 CIRCUIT)  
toc31  
VLX  
10V/div  
VLX  
10V/div  
2V/div  
VSYNC  
2V/div  
MODE = SGND  
MODE = SGND  
2μs/div  
2μs/div  
MAX17504S 5V OUTPUT  
4 BODE PLOT  
(3.5A LOAD CURRENT, FIGURE 5 CIRCUIT)  
MAX17504 5V OUTPUT  
BODE PLOT  
(3.5A LOAD CURRENT, FIGURE 3 CIRCUIT)  
toc32a  
40  
30  
toc32140  
60  
50  
100  
50  
120  
100  
80  
PHASE  
40  
30  
20  
10  
PHASE  
20  
10  
0
60  
GAIN  
GAIN  
40  
20  
0
0
0
-10  
-20  
-10  
-20  
-20  
-40  
CROSSOVER FREQUENCY = 48.4kHz  
PHASE MARGIN = 62.3°  
CROSSOVER FREQUENCY = 86kHz  
PHASE MARGIN = 58.9°  
-50  
-30  
-40  
-30  
103  
-60  
105  
104  
FREQUENCY (Hz)  
100K  
10K  
1K  
FREQUENCY (Hz)  
MAX17504S 3.3V OUTPUT  
BODE PLOT  
(3.5A LOAD CURRENT, FIGURE 6 CIRCUIT)  
MAX17504 3.3V OUTPUT  
BODE PLOT  
(3.5A LOAD CURRENT, FIGURE 4 CIRCUIT)  
toc33a  
40  
20  
60  
toc33 140  
100  
120  
100  
80  
50  
40  
30  
PHASE  
PHASE  
50  
20  
10  
0
60  
GAIN  
0
-20  
-40  
GAIN  
40  
20  
0
0
-10  
-20  
-20  
-40  
CROSSOVER FREQUENCY = 82.3kHz  
PHASE MARGIN = 59.4°  
CROSSOVER FREQUENCY = 52.7KHz  
PHASE MARGIN = 62.4°  
-50  
-30  
-40  
-60  
104  
103  
105  
100K  
10K  
1K  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
www.maximintegrated.com  
Maxim Integrated 14  
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
Pin Configuration  
TOP VIEW  
15  
14  
13  
12  
11  
RT  
FB  
10  
9
PGND 16  
LX 17  
LX 18  
LX 19  
MAX17504/  
MAX17504S  
8
CF  
7
SS  
+
20  
6
SYNC  
BST  
1
2
3
4
5
TQFN  
5mm × 5mm  
ꢀ EXPOSED PAD (CONNECT TO SIGNAL GROUND).  
Pin Description  
PIN  
NAME  
FUNCTION  
Power-Supply Input. 4.5V to 60V input supply range. Connect the V ꢀpinsꢀtogether.ꢀDecoupleꢀtoꢀPGNDꢀ  
IN  
1, 2, 3  
V
with two 2.2µF capacitors; place the capacitors close to the V ꢀandꢀPGNDꢀpins.ꢀReferꢀtoꢀtheꢀMAX17504/  
IN  
IN  
MAX17504S EV kit data sheet for a layout example.  
Enable/Undervoltage Lockout. Drive EN/UVLO high to enable the output voltage. Connect to the  
4
5
EN/UVLO center of the resistor-divider between V ꢀandꢀSGNDꢀtoꢀsetꢀtheꢀinputꢀvoltageꢀatꢀwhichꢀtheꢀMAX17504/  
IN  
MAX17504S turns on. Pull up to V for always on operation.  
IN  
Open-Drain RESET Output. The RESET output is driven low if FB drops below 92% of its set value.  
RESET goes high 1024 clock cycles after FB rises above 95% of its set value.  
RESET  
The device can be synchronized to an external clock using this pin. See the External Frequency  
Synchronization section for more details.  
6
7
SYNC  
SS  
Soft-StartꢀInput.ꢀConnectꢀaꢀcapacitorꢀfromꢀSSꢀtoꢀSGNDꢀtoꢀsetꢀtheꢀsoft-startꢀtime.  
Atꢀswitchingꢀfrequenciesꢀlowerꢀthanꢀ500kHz,ꢀconnectꢀaꢀcapacitorꢀfromꢀCFꢀtoꢀFB.ꢀLeaveꢀCFꢀopenꢀifꢀtheꢀ  
switchingꢀfrequencyꢀisꢀequalꢀtoꢀorꢀmoreꢀthanꢀ500kHz.ꢀSeeꢀtheꢀLoop Compensation section for more  
details.  
8
CF  
FeedbackꢀInput.ꢀConnectꢀFBꢀtoꢀtheꢀcenterꢀtapꢀofꢀanꢀexternalꢀresistor-dividerꢀfromꢀtheꢀoutputꢀtoꢀSGNDꢀtoꢀ  
set the output voltage. See the Adjusting Output Voltage section for more details.  
9
FB  
ConnectꢀaꢀresistorꢀfromꢀRTꢀtoꢀSGNDꢀtoꢀsetꢀtheꢀregulator’sꢀswitchingꢀfrequency.ꢀLeaveꢀRTꢀopenꢀforꢀtheꢀ  
defaultꢀ500kHzꢀfrequency.ꢀSeeꢀtheꢀSetting the Switching Frequency (RT) section for more details.  
10  
RT  
MODEꢀconfiguresꢀtheꢀMAX17504/MAX17504SꢀtoꢀoperateꢀinꢀPWM,ꢀPFMꢀorꢀDCMꢀmodesꢀofꢀoperation.ꢀ  
LeaveꢀMODEꢀunconnectedꢀforꢀPFMꢀoperationꢀ(pulseꢀskippingꢀatꢀlightꢀloads).ꢀConnectꢀMODEꢀtoꢀSGNDꢀ  
11  
MODE  
for constant-frequency PWM operation at all loads. Connect MODE to V  
for DCM operation. See the  
CC  
MODE Setting section for more details.  
www.maximintegrated.com  
Maxim Integrated 15  
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
Pin Description (continued)  
PIN  
12  
NAME  
FUNCTION  
V
5V LDO Output. Bypass V ꢀwithꢀaꢀ2.2µFꢀceramicꢀcapacitanceꢀtoꢀSGND.  
CC  
CC  
13  
SGND  
AnalogꢀGround  
PowerꢀGround.ꢀConnectꢀtheꢀPGNDꢀpinsꢀexternallyꢀtoꢀtheꢀpowerꢀgroundꢀplane.ꢀConnectꢀtheꢀSGNDꢀandꢀ  
14, 15, 16  
PGND  
PGNDꢀpinsꢀtogetherꢀatꢀtheꢀgroundꢀreturnꢀpathꢀofꢀtheꢀV ꢀbypassꢀcapacitor.ꢀReferꢀtoꢀtheꢀMAX17504/  
CC  
MAX17504S EV kit data sheet for a layout example.  
17, 18, 19  
20  
LX  
Switching Node. Connect LX pins to the switching side of the inductor.  
Boost Flying Capacitor. Connect a 0.1µF ceramic capacitor between BST and LX.  
BST  
Exposedꢀpad.ꢀConnectꢀtoꢀtheꢀSGNDꢀpin.ꢀConnectꢀtoꢀaꢀlargeꢀcopperꢀplaneꢀbelowꢀtheꢀICꢀtoꢀimproveꢀheatꢀ  
dissipationꢀcapability.ꢀAddꢀthermalꢀviasꢀbelowꢀtheꢀexposedꢀpad.ꢀReferꢀtoꢀtheꢀMAX17504/MAX17504SꢀEVꢀ  
kit data sheet for a layout example.  
EP  
Block Diagram  
BST  
MAX17504/MAX17504S  
V
5V  
CC  
LDO  
V
IN  
SGND  
CURRENTꢀSENSE  
LOGIC  
LX  
PWM/  
PFM/  
EN/UVLO  
HICCUP  
LOGIC  
HICCUP  
1.215V  
RT  
PGND  
OSCILLATOR  
SYNC  
CF  
FB  
MODE  
SELECTION  
LOGIC  
ERROR AMPLIFIER/  
LOOP COMPENSATION  
MODE  
V
CC  
V
= 0.9V  
SWITCHOVER  
LOGIC  
BG  
SLOPE  
COMPENSATION  
RESET  
5µA  
SS  
FB  
RESET  
LOGIC  
EN/UVLO  
HICCUP  
www.maximintegrated.com  
Maxim Integrated 16  
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
PFM Mode Operation  
Detailed Description  
PFM mode of operation disables negative inductor current  
and additionally skips pulses at light loads for high  
efficiency. In PFM mode, the inductor current is forced to  
a fixed peak of 750mA every clock cycle until the output  
rises to 102.3% of the nominal voltage. Once the output  
reaches 102.3% of the nominal voltage, both the high-side  
and low-side FETs are turned off and the device enters  
hibernate operation until the load discharges the output to  
101.1% of the nominal voltage. Most of the internal blocks  
are turned off in hibernate operation to save quiescent  
current. After the output falls below 101.1% of the nominal  
voltage, the device comes out of hibernate operation,  
turns on all internal blocks, and again commences the  
process of delivering pulses of energy to the output until it  
reaches 102.3% of the nominal output voltage.  
The MAX17504/MAX17504S high-efficiency, high-voltage,  
synchronously rectified step-down converter with dual  
integrated MOSFETs operates over a 4.5V to 60V input.  
It delivers up to 3.5A and 0.9V to 90% V output voltage.  
IN  
Built-in compensation across the output voltage range  
eliminates the need for external components. The feedback  
(FB) regulation accuracy over -40°C to +125°C is ±1.1%.  
The device features a peak-current-mode control  
architecture. An internal transconductance error  
amplifier produces an integrated error voltage at an  
internal node that sets the duty cycle using a PWM  
comparator, a high-side current-sense amplifier, and a  
slope-compensation generator. At each rising edge of  
the clock, the high-side MOSFET turns on and remains  
on until either the appropriate or maximum duty cycle  
is reached, or the peak current limit is detected. During  
thehigh-sideMOSFET’son-time,theinductorcurrentꢀ  
ramps up. During the second half of the switching  
cycle, the high-side MOSFET turns off and the low-side  
MOSFET turns on. The inductor releases the stored  
energy as its current ramps down and provides current  
to the output.  
The advantage of the PFM mode is higher efficiency at  
light loads because of lower quiescent current drawn from  
supply. The disadvantage is that the output-voltage ripple  
is higher compared to PWM or DCM modes of operation  
and switching frequency is not constant at light loads.  
DCM Mode Operation  
DCM mode of operation features constant frequency  
operation down to lighter loads than PFM mode, by not  
skipping pulses but only disabling negative inductor  
current at light loads. DCM operation offers efficiency  
performance that lies between PWM and PFM modes.  
The device features a MODE pin that can be used to operate  
the device in PWM, PFM, or DCM control schemes. The  
deviceꢀ integratesꢀ adjustable-inputꢀ undervoltageꢀ lockout,ꢀ  
adjustableꢀsoft-start,ꢀopenꢀRESET, and external frequency  
synchronization features. The MAX17504S offers a  
lower minimum on-time that allows for higher switching  
frequencies and a smaller solution size.  
Linear Regulator (VCC  
)
An internal linear regulator (V ) provides a 5V nominal  
CC  
Mode Selection (MODE)  
supply to power the internal blocks and the low-side  
The logic state of the MODE pin is latched when V  
CC  
MOSFET driver. The output of the linear regulator (V  
)
CC  
and EN/UVLO voltages exceed the respective UVLO  
rising thresholds and all internal voltages are ready to  
allow LX switching. If the MODE pin is open at power-up,  
the device operates in PFM mode at light loads. If the  
MODE pin is grounded at power-up, the device operates  
in constant-frequency PWM mode at all loads. Finally,  
should be bypassed with a 2.2µF ceramic capacitor  
toꢀ SGND.ꢀ Theꢀ MAX17504/MAX17504Sꢀ employsꢀ anꢀ  
undervoltage lockout circuit that disables the internal  
linear regulator when V  
falls below 3.8V (typ).  
CC  
Setting the Switching Frequency (RT)  
if the MODE pin is connected to V  
at power-up, the  
The switching frequency of the MAX17504/MAX17504S  
canꢀ beꢀ programmedꢀ fromꢀ 100kHzꢀ toꢀ 2.2MHzꢀ byꢀ usingꢀ  
aꢀ resistorꢀ connectedꢀ fromꢀ RTꢀ toꢀ SGND.ꢀ Theꢀ switchingꢀ  
CC  
device operates in constant-frequency DCM mode at light  
loads. State changes on the MODE pin are ignored during  
normal operation.  
frequency (f ) is related to the resistor connected at the  
SW  
RTꢀpinꢀ(R ) by the following equation:  
RT  
PWM Mode Operation  
3
In PWM mode, the inductor current is allowed to go negative.  
PWM operation provides constant frequency operation at  
all loads, and is useful in applications sensitive to switching  
frequency.ꢀHowever,ꢀtheꢀPWMꢀmodeꢀofꢀoperationꢀgivesꢀlowerꢀ  
efficiency at light loads compared to PFM and DCM modes  
of operation.  
21×10  
R
1.7  
RT  
f
SW  
whereꢀR ꢀisꢀinꢀkΩꢀandꢀf ꢀisꢀinꢀkHz.ꢀLeavingꢀtheꢀRTꢀpinꢀ  
RT  
SW  
open causes the device to operate at the default switching  
frequencyꢀofꢀ500kHz.ꢀSeeꢀTable 1ꢀforꢀRTꢀresistorꢀvaluesꢀ  
for a few common switching frequencies.  
www.maximintegrated.com  
Maxim Integrated 17  
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
device under high input voltage, short-circuit conditions  
Table 1. Switching Frequency vs. RT Resistor  
when there is insufficient output voltage available to  
restore the inductor current that was built up during the  
ON period of the step-down converter. One occurrence  
of the runaway current limit triggers a hiccup mode. In  
addition, if due to a fault condition, feedback voltage  
drops to 0.58V (typ) anytime after soft-start is complete,  
hiccup mode is triggered. In hiccup mode, the converter  
is protected by suspending switching for a hiccup timeout  
period of 32,768 clock cycles. Once the hiccup timeout  
period expires, soft-start is attempted again. Note that  
when soft-start is attempted under an overload condition,  
if feedback voltage does not exceed 0.58V, the device  
switches at half the programmed switching frequency.  
Hiccupꢀmodeꢀofꢀoperationꢀensuresꢀlowꢀpowerꢀdissipationꢀ  
under output short-circuit conditions.  
SWITCHING FREQUENCY (kHz)  
RT RESISTOR (kΩ)  
500  
100  
OPEN  
210  
200  
102  
400  
49.9  
19.1  
8.06  
1000  
2200  
Operating Input Voltage Range  
The minimum and maximum operating input voltages for  
a given output voltage should be calculated as follows:  
V
+ (I  
× (R  
+ 0.15))  
OUT  
OUT(MAX)  
DCR  
)
OFF(MAX)  
V
=
IN(MIN)  
1- (f  
× t  
SW(MAX)  
RESET Output  
+ (I  
× 0.175)  
OUT(MAX)  
The MAX17504/MAX17504S includes  
a
RESET  
comparator to monitor the output voltage. The open-  
drain RESET output requires an external pullup resistor.  
RESET goes high (high-impedance) 1024 switching  
cycles after the regulator output increases above 95%  
of the designed nominal regulated voltage. RESET goes  
low when the regulator output voltage drops to below 92%  
of the nominal regulated voltage. RESET also goes low  
during thermal shutdown.  
V
OUT  
× t  
ON(MIN)  
V
=
IN(MAX)  
f
SW(MAX)  
where V  
is the steady-state output voltage, I  
OUT(MAX)  
OUT  
isꢀtheꢀmaximumꢀloadꢀcurrent,ꢀR  
is the DC resistance  
DCR  
of the inductor, f  
is the maximum switching  
is the worst-case minimum switch  
SW(MAX)  
frequency, t  
OFF(MAX)  
Prebiased Output  
off-time (160ns), and t  
is the worst-case minimum  
ON(MIN)  
When the MAX17504/MAX17504S starts into a prebiased  
output, both the high-side and the low-side switches are  
turned off so that the converter does not sink current from  
theoutput.High-sideandlow-sideswitchesdonotstartꢀ  
switching until the PWM comparator commands the first  
PWM pulse, at which point switching commences. The  
output voltage is then smoothly ramped up to the target  
value in alignment with the internal reference.  
switch on-time (135ns for the MAX17504, 80ns for the  
MAX17504S).  
External Frequency Synchronization (SYNC)  
The internal oscillator of the MAX17504/MAX17504S can  
be synchronized to an external clock signal on the SYNC  
pin. The external synchronization clock frequency must  
be between 1.1 x f  
and 1.4 x f , where f  
is the  
SW  
SW  
SW  
frequencyꢀprogrammedꢀbyꢀtheꢀRTꢀresistor.ꢀTheꢀminimumꢀ  
external clock pulse-width high should be greater than  
50ns.ꢀ Seeꢀ theꢀ RTꢀ andꢀ SYNCꢀ sectionꢀ inꢀ theꢀ Electrical  
Characteristics table for details.  
Thermal-Shutdown Protection  
Thermal-shutdown protection limits total power dissipation  
inꢀ theꢀ MAX17504/MAX17504S.ꢀ Whenꢀ theꢀ junctionꢀ  
temperature of the device exceeds +165°C, an on-chip  
thermal sensor shuts down the device, allowing the device  
to cool. The thermal sensor turns the device on again  
afterꢀ theꢀ junctionꢀ temperatureꢀ coolsꢀ byꢀ 10°C. Soft-start  
resets during thermal shutdown. Carefully evaluate the  
total power dissipation (see the Power Dissipation section)  
to avoid unwanted triggering of the thermal shutdown in  
normal operation.  
Overcurrent Protection/HICCUP Mode  
The MAX17504/MAX17504S is provided with a robust  
overcurrent protection scheme that protects the device  
under overload and output short-circuit conditions. A  
cycle-by-cycle peak current limit turns off the high-side  
MOSFET whenever the high-side switch current exceeds  
an internal limit of 5.1A (typ). A runaway current limit on  
the high-side switch current at 5.7A (typ) protects the  
www.maximintegrated.com  
Maxim Integrated 18  
 
 
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
Select a low-loss inductor closest to the calculated  
value with acceptable dimensions and having the lowest  
possible DC resistance. The saturation current rating  
Applications Information  
Input Capacitor Selection  
The input filter capacitor reduces peak currents drawn  
from the power source and reduces noise and voltage  
rippleꢀ onꢀ theꢀ inputꢀ causedꢀ byꢀ theꢀ circuit’sꢀ switching.ꢀ  
Theꢀ inputꢀ capacitorꢀ RMSꢀ currentꢀ requirementꢀ (I  
defined by the following equation:  
(I  
) of the inductor must be high enough to ensure that  
SAT  
saturation can occur only above the peak current-limit  
value of 5.1A.  
) is  
RMS  
Output Capacitor Selection  
X7Rꢀceramicꢀoutputꢀcapacitorsꢀareꢀpreferredꢀdueꢀtoꢀtheirꢀ  
stability over temperature in industrial applications. The  
output capacitors are usually sized to support a step load  
of 50% of the maximum output current in the application,  
so the output voltage deviation is contained to 3% of the  
output voltage change. The minimum required output  
capacitance can be calculated as follows:  
V
×(V - V  
OUT  
)
OUT  
IN  
I
= I  
×
OUT(MAX)  
RMS  
V
IN  
where, I  
is the maximum load current. I  
a maximum value when the input voltage equals twice  
the output voltage (V = 2 x V ), so I  
has  
RMS  
OUT(MAX)  
=
RMS(MAX)ꢀ  
IN  
OUT  
I
/2.  
OUT(MAX)  
I
× t  
RESPONSE  
1
2
STEP  
Choose an input capacitor that exhibits less than +10°C  
temperatureꢀ riseꢀ atꢀ theꢀ RMSꢀ inputꢀ currentꢀ forꢀ optimalꢀ  
long-termꢀreliability.ꢀUseꢀlow-ESRꢀceramicꢀcapacitorsꢀwithꢀ  
highꢀrippleꢀcurrentꢀcapabilityꢀatꢀtheꢀinput.ꢀX7Rꢀcapacitorsꢀ  
are recommended in industrial applications for their  
temperature stability. Calculate the input capacitance  
using the following equation:  
C
=
×
OUT  
V  
OUT  
0.33  
1
t
(  
+
)
RESPONSE  
f
f
sw  
C
where I  
is the load current step, t  
is the  
STEP  
RESPONSE  
response time of the controller, DV  
is the allowable  
OUT  
output voltage deviation, f is the target closed-loop  
C
I
×D ×(1- D)  
OUT(MAX)  
C
=
crossover frequency, and f  
is the switching frequency.  
SW  
IN  
η× f  
× ∆V  
IN  
SW  
For the MAX17504, select f to be 1/9th of f  
if the  
C
SW  
switchingꢀfrequencyꢀisꢀlessꢀthanꢀorꢀequalꢀtoꢀ500kHz.ꢀIfꢀtheꢀ  
switchingꢀfrequencyꢀisꢀmoreꢀthanꢀ500kHz,ꢀselectꢀf to be  
where D = V  
/V is the duty ratio of the controller,  
OUT IN  
C
f ꢀisꢀtheꢀswitchingꢀfrequency,ꢀΔV is the allowable input  
SW  
IN  
55kHz.ꢀForꢀtheꢀMAX17504S,ꢀselectꢀf to be 1/10th of f  
C
SW  
voltage ripple, and E is the efficiency.  
ifꢀtheꢀswitchingꢀfrequencyꢀisꢀlessꢀthanꢀorꢀequalꢀtoꢀ1MHz.ꢀ  
In applications where the source is located distant  
from the MAX17504/MAX17504S input, an electrolytic  
capacitor should be added in parallel to the ceramic  
capacitor to provide necessary damping for potential  
oscillations caused by the inductance of the longer input  
power path and input ceramic capacitor.  
Iftheswitchingfrequencyismorethan1MHz,selectf  
toꢀbeꢀ100kHz.  
C
Derating of ceramic capacitors with DC-voltage must be  
considered while selecting the output capacitor. Derating  
curvesꢀ areꢀ availableꢀ fromꢀ allꢀ majorꢀ ceramicꢀ capacitorꢀ  
vendors.  
Inductor Selection  
Three key inductor parameters must be specified for  
operation with the MAX17504/MAX17504S: inductance  
V
IN  
value (L), inductor saturation current (I  
), and DC  
SAT  
R1  
R2  
resistanceꢀ (R  
). The switching frequency and output  
DCR  
voltage determine the inductor value as follows:  
EN/UVLO  
V
f
OUT  
SW  
L =  
SGND  
where V  
and f  
are nominal values.  
OUT  
SW  
Figure 1. Setting the Input Undervoltage Lockout  
www.maximintegrated.com  
Maxim Integrated 19  
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
capacitor (V  
)toSGND(seeFigure 2). Connect the  
Soft-Start Capacitor Selection  
OUT  
center node of the divider to the FB pin. Use the following  
procedure to choose the resistive voltage-divider values:  
CalculateꢀresistorꢀR3ꢀfromꢀtheꢀoutputꢀtoꢀFBꢀasꢀfollows:  
TheꢀMAX17504/MAX17504Sꢀimplementsꢀadjustableꢀsoft-  
start operation to reduce inrush current. A capacitor  
connectedꢀ fromꢀ theꢀ SSꢀ pinꢀ toꢀ SGNDꢀ programsꢀ theꢀ  
soft-start time. The selected output capacitance (C  
)
SEL  
3
216×10  
and the output voltage (V  
) determine the minimum  
OUT  
R3 =  
required soft-start capacitor as follows:  
f
× C  
OUT  
C
-6  
C
ꢀ≥ꢀ28ꢀxꢀ10 x C  
x V  
SS  
SEL OUT  
whereꢀ R3ꢀ isꢀ inꢀ kI, crossover frequency f ꢀ isꢀ inꢀ kHz,ꢀ  
C
The soft-start time (t ) is related to the capacitor  
connected at SS (C ) by the following equation:  
SS  
and output capacitor C  
is in µF. For the MAX17504,  
OUT  
SS  
choose f to be 1/9th of the switching frequency, f , if  
C
SW  
-6  
theꢀswitchingꢀfrequencyꢀisꢀlessꢀthanꢀorꢀequalꢀtoꢀ500kHz.ꢀ  
t
= C /(5.55 x 10 )  
SS  
SS  
Ifꢀtheꢀswitchingꢀfrequencyꢀisꢀmoreꢀthanꢀ500kHz,ꢀselectꢀf  
C
For example, to program a 2ms soft-start time, a 12nF  
capacitorꢀshouldꢀbeꢀconnectedꢀfromꢀtheꢀSSꢀpinꢀtoꢀSGND.  
toꢀbeꢀ55kHz.ꢀForꢀtheꢀMAX17504S,ꢀselectꢀf to be 1/10th  
C
of f  
if the switching frequency is less than or equal  
SW  
to1MHz.Iftheswitchingfrequencyismorethan1MHz,ꢀ  
Setting the Input Undervoltage Lockout Level  
Theꢀ MAX17504/MAX17504Sꢀ offersꢀ anꢀ adjustableꢀ inputꢀ  
undervoltage lockout level. Set the voltage at which  
MAX17504/MAX17504S turns ON, with a resistive voltage-  
select f ꢀtoꢀbeꢀ100kHz.  
C
CalculateꢀresistorꢀR4ꢀfromꢀFBꢀtoꢀSGNDꢀasꢀfollows:  
divider connected from V toSGND.Connectthecenterꢀ  
node of the divider to EN/UVLO.  
ChooseꢀR1ꢀtoꢀbeꢀ3.3MIꢀandꢀthenꢀcalculateꢀR2ꢀasꢀfollows:  
IN  
R3 × 0.9  
R4 =  
(V  
- 0.9)  
OUT  
R1×1.215  
R2 =  
(V  
-1.215)  
Table 2. C6 Capacitor Value at Various  
Switching Frequencies  
INU  
where V  
is the voltage at which the MAX17504/  
INU  
MAX17504S is required to turn ON. Ensure that V  
is  
INU  
SWITCHING FREQUENCY RANGE (kHz)  
C6 (pF)  
2.2  
higher than 0.8 x V . If the EN/UVLO pin is driven from  
OUT  
200 to 300  
300 to 400  
400 to 500  
an external signal source, a series resistance of minimum  
1kΩꢀ isꢀ recommendedꢀ toꢀ beꢀ placedꢀ betweenꢀ theꢀ signalꢀ  
source output and the EN/UVLO pin, to reduce voltage  
ringing on the line.  
1.2  
0.75  
Loop Compensation  
V
OUT  
The MAX17504/MAX17504S is internally loop  
compensated.ꢀHowever,ꢀifꢀtheꢀswitchingꢀfrequencyꢀisꢀlessꢀ  
thanꢀ500kHz,ꢀconnectꢀaꢀ0402ꢀcapacitor,ꢀC6,ꢀbetweenꢀtheꢀ  
CF pin and the FB pin. Use Table 2 to select the value  
of C6.  
R3  
R4  
FB  
Adjusting Output Voltage  
Set the output voltage with a resistive voltage-divider  
connected from the positive terminal of the output  
SGND  
Figure 2. Setting the Output Voltage  
www.maximintegrated.com  
Maxim Integrated 20  
 
 
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
Power Dissipation  
PCB Layout Guidelines  
At a particular operating condition, the power losses that  
lead to temperature rise of the part are estimated as  
follows:  
All connections carrying pulsed currents must be very  
short and as wide as possible. The inductance of these  
connections must be kept to an absolute minimum due to  
the high di/dt of the currents. Since inductance of a current  
carrying loop is proportional to the area enclosed by the  
loop, if the loop area is made very small, inductance is  
reduced. Additionally, small current loop areas reduce  
radiated EMI.  
1
2
P
= (P  
×( - 1)) - I  
×R  
OUT DCR  
)
LOSS  
(
OUT  
η
P
= V  
×I  
OUT  
OUT OUT  
where P  
ofꢀ theꢀ converter,ꢀ andꢀ R  
inductor. (See the Typical Operating Characteristics for more  
information on efficiency at typical operating conditions).  
isꢀ theꢀ totalꢀ outputꢀ power,ꢀ ηꢀ isꢀ theꢀ efficiencyꢀ  
OUT  
A ceramic input filter capacitor should be placed close to the  
is the DC resistance of the  
DCR  
V
IN  
pins of the IC. This eliminates as much trace inductance  
effects as possible and give the IC a cleaner voltage supply.  
A bypass capacitor for the V pin also should be placed  
CC  
close to the pin to reduce effects of trace impedance.  
For a multilayer board, the thermal performance metrics  
for the package are given below:  
When routing the circuitry around the IC, the analog  
small-signal ground and the power ground for switching  
currents must be kept separate. They should be connected  
together at a point where switching activity is at a  
θ
= 30°C W  
JA  
θ
= 2°C W  
JC  
minimum, typically the return terminal of the V  
bypass  
CC  
TheꢀjunctionꢀtemperatureꢀofꢀtheꢀMAX17504/MAX17504Sꢀ  
can be estimated at any given maximum ambient  
capacitor. This helps keep the analog ground quiet.  
The ground plane should be kept continuous/unbroken  
as far as possible. No trace carrying high switching  
current should be placed directly over any ground plane  
discontinuity.  
temperature (T  
) from the equation below:  
A_MAX  
T
= T  
+ θ ×P  
(
JA LOSS  
)
J_MAX  
A_MAX  
If the application has a thermal management system  
that ensures that the exposed pad of the MAX17504/  
PCB layout also affects the thermal performance of the  
design. A number of thermal vias that connect to a large  
ground plane should be provided under the exposed pad  
of the part, for efficient heat dissipation.  
MAX17504S is maintained at a given temperature (T  
EP_  
)ꢀ byꢀ usingꢀ properꢀ heatꢀ sinks,ꢀ thenꢀ theꢀ junctionꢀ  
MAX  
temperature of the MAX17504/MAX17504S can be  
estimated at any given maximum ambient temperature  
from the equation below:  
For a sample layout that ensures first pass success,  
refer to the MAX17504 evaluation kit layout available at  
www.maximintegrated.com.  
T
= T  
+ θ ×P  
(
)
J_MAX  
EP_MAX JC LOSS  
Junctionꢀ temperatureꢀ greaterꢀ thanꢀ +125°Cꢀ degradesꢀ  
operating lifetimes.  
www.maximintegrated.com  
Maxim Integrated 21  
 
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
Recommended Component Placement for MAX17504/MAX17504S  
VOUT  
PLANE  
PGND PLANE  
L1  
LX PLANE  
C1  
C4  
C5  
LX PLANE  
PGND PLANE  
VIN PLANE  
MAX17504/  
MAX17504S  
SGND  
C2  
R1  
R2  
MODE  
R6  
C3  
C6  
R3  
R5  
SGND PLANE  
www.maximintegrated.com  
Maxim Integrated 22  
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
V
IN  
(7.5V TO 60V)  
C1  
2.2µF  
C8  
2.2µF  
EN/UVLO  
V
V
V
IN  
IN  
IN  
BST  
LX  
C5  
0.1µF  
RT  
V
OUT  
5V, 3.5A  
SYNC  
MODE  
L1  
10µH  
LX  
C4  
22µF  
C9  
22µF  
MAX17504  
R3  
100k  
LX  
V
CC  
C2  
FB  
2.2µF  
SGND  
R4  
22.1kΩ  
RESET  
CF SS  
PGND PGND PGND  
C3  
12000pF  
f
= 500kHz  
SW  
L1 = SLF12575T-100M5R4-H  
C4, C9 = 22µF (MURATA GRM32ER71A226K)  
Figure 3. MAX17504 Typical Application Circuit for 5V Output, 500kHz Switching Frequency  
V
IN  
(5.5V TO 60V)  
C1  
2.2µF  
C8  
2.2µF  
EN/UVLO  
V
V
V
IN  
IN  
IN  
BST  
LX  
C5  
0.1µF  
RT  
V
OUT  
3.3V, 3.5A  
SYNC  
MODE  
L1  
6.8µH  
LX  
C4  
22µF  
C9  
22µF  
MAX17504  
R3  
82.5k  
LX  
V
CC  
C2  
FB  
2.2µF  
SGND  
R4  
30.9kΩ  
RESET  
CF SS  
PGND PGND PGND  
C3  
12000pF  
f
= 500kHz  
SW  
L1 = MSS1048-682NL  
C4, C9 = 22µF (MURATA GRM32ER71A226K)  
Figure 4. MAX17504 Typical Application Circuit for 3.3V Output, 500kHz Switching Frequency  
www.maximintegrated.com  
Maxim Integrated 23  
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
V
IN  
C1  
2.2µF  
R5  
EN/UVLO  
V
V
IN  
IN  
V
IN  
RT  
BST  
C5  
19.1KΩ  
L1  
4.7µH  
V
OUT  
0.1µF  
5V,3.5A  
SYNC  
MODE  
LX  
LX  
C4  
22µF  
R3  
MAX17504S  
115KΩ  
LX  
FB  
V
CC  
C2  
2.2µF  
R4  
24.9KΩ  
SGND  
CF  
RESET  
PGND  
SS  
PGND  
PGND  
C3  
12nF  
f
= 1MHz  
SW  
L1 = 4.7µH (XAL6060, 6mm x 6mm)  
C4 = 22µF (MURATA GRM32ER71A226K)  
Figure 5. MAX17504S Typical Operating Circuit for 5V Output, 1MHz Switching Frequency  
V
IN  
C1  
2.2µF  
R5  
EN/UVLO  
V
V
IN  
IN  
V
IN  
RT  
BST  
C5  
19.1KΩ  
L1  
3.3µH  
V
OUT  
0.1µF  
3.3V,3.5A  
SYNC  
MODE  
LX  
LX  
C4  
47µF  
MAX17504S  
R3  
76.8KΩ  
LX  
FB  
V
CC  
C2  
2.2µF  
R4  
28.7KΩ  
SGND  
CF  
RESET  
PGND  
SS  
PGND  
PGND  
C3  
12nF  
f
=
1MHz  
L1 = 3.3µH (XAL6060, 6mm x 6mm)  
C4 = 47µF (MURATA GRM32ER71A476KE15)  
SW  
Figure 6. MAX17504S Typical Operating Circuit for 3.3V Output, 1MHz Switching Frequency  
www.maximintegrated.com  
Maxim Integrated 24  
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
Ordering Information  
PART  
PIN-PACKAGE  
MAX17504ATP+  
MAX17504SATP+  
20 TQFN-EP* 5mm x 5mm  
20 TQFN-EP* 5mm x 5mm  
Note: All devices operate over the temperature range of -40ºC  
to +125ºC, unless otherwise noted.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Chip Information  
PROCESS:ꢀBiCMOS  
www.maximintegrated.com  
Maxim Integrated 25  
 
MAX17504  
4.5V–60V, 3.5A, High-Efficiency, Synchronous  
Step-Down DC-DC Converter  
with Internal Compensation  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
11/13  
2/14  
0
1
2
Initial release  
UpdatedꢀTOC32,ꢀTOC33,ꢀandꢀTypicalꢀApplicationꢀCircuitꢀfigures  
9, 16, 17  
1-17  
10/16  
AddedꢀMAX17504Sꢀtoꢀdataꢀsheet,ꢀupdatedꢀjunctionꢀtemperature,ꢀandꢀaddedꢀTOCs  
Removedꢀ17504Sꢀfromꢀdataꢀsheet,ꢀcorrectedꢀpartꢀnumbersꢀinꢀGeneral Description,  
Benefits and Features, Detailed Description, Operating Input Voltage Range sections,  
updated TOCs 1a, 5, 5a, 6, 7a, 12, 12a, 13, 13a, 14a, 15a, 16a, 17a, 18a, 19a, 20a,  
21a, 22, 22a, 23, 23a, 24a, 25a, 26a, 27a, 30a, 32a, Figures 3, 4, 5, and 6, removed  
Recommended Component Placement for MAX17504/MAX17504S  
3
5/17  
1–26  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim  
reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Character-  
istics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2017 Maxim Integrated Products, Inc.  
26  

相关型号:

MAX17504ATP+T

Switching Regulator/Controller, Current-mode, 3.5A, 2450kHz Switching Freq-Max, BICMOS, PQCC20,
MAXIM

MAX17504SATP+

Switching Regulator, Current-mode, 5.85A, 2450kHz Switching Freq-Max, BICMOS, TQFN-20
MAXIM

MAX17505ATP+

Switching Regulator, Current-mode, 3.25A, 2450kHz Switching Freq-Max, BICMOS, TQFN-20
MAXIM

MAX17505ATP+T

IC REG BUCK ADJ 1.7A SYNC 20TQFN
MAXIM

MAX17509ATJ+

Dual Switching Controller, 2200kHz Switching Freq-Max, BICMOS, 5 X 5 MM, ROHS COMPLIANT, TQFN-32
MAXIM

MAX17509ATJ+T

IC REG BUCK ADJ 3A DL 32TQFN
MAXIM

MAX17510ATB+T

Terminator Support Circuit, BICMOS, PDSO10, 3 X 3 MM, ROHS COMPLIANT, TDFN-10
MAXIM

MAX17511

Dual-Output, 3-/2-/1-Phase 2-/1-Phase Quick-PWM Controllers for VR12/IMVP7
MAXIM

MAX17511C

Dual-Output, 3-/2-/1-Phase 2-/1-Phase Quick-PWM Controllers for VR12/IMVP7
MAXIM

MAX17511GTL+

Dual-Output, 3-/2-/1-Phase 2-/1-Phase Quick-PWM Controllers for VR12/IMVP7
MAXIM

MAX17511N

Dual-Output, 3-/2-/1-Phase 2-/1-Phase Quick-PWM Controllers for VR12/IMVP7
MAXIM

MAX17511T

Dual-Output, 3-/2-/1-Phase 2-/1-Phase Quick-PWM Controllers for VR12/IMVP7
MAXIM