MAX17521ATG+ [MAXIM]

Dual Switching Controller, Current-mode, 1.85A, 600kHz Switching Freq-Max, BICMOS, TQFN-24;
MAX17521ATG+
型号: MAX17521ATG+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual Switching Controller, Current-mode, 1.85A, 600kHz Switching Freq-Max, BICMOS, TQFN-24

信息通信管理 开关
文件: 总22页 (文件大小:542K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
General Description  
Benefits and Features  
Reduces External Components and Total Cost  
• No Schottky—Synchronous Operation  
• All-Ceramic Capacitors, Compact Layout  
The MAX17521 dual-output, high-efficiency, high-voltage,  
synchronous step-down DC-DC converter with integrated  
MOSFETs operates over a 4.5V to 60V input. The converter  
can deliver up to 1A at each output. Each output is  
programmable from 0.9V to 92%V . The feedback voltage  
regulation accuracy over -40°C to +125°C is ±1.7%.  
Reduces Number of DC-DC Regulators to Stock  
IN  
• Wide 4.5V to 60V Input  
• Each Output Adjustable From 0.9V to 92%V  
IN  
• Pin-Selectable 560kHz or 300kHz Switching  
The MAX17521 uses peak-current-mode control. Each  
output can be operated in the pulse-width modulation  
(PWM) or pulse-frequency modulation (PFM) control  
schemes.  
Frequency  
• Independent Input Voltage Pin for Each Output  
Reduces Power Dissipation  
Peak Efficiency > 90%  
PFM Mode Enables Enhanced Light-Load Effi-  
ciency  
The MAX17521 is available in a 24-pin (4mm x 5mm)  
TQFN package. Simulation models are available.  
1μA Shutdown Current  
Applications  
Industrial Control Power Supplies  
CPU, DSP, or FPGA Power  
Operates Reliably in Adverse Industrial Environments  
• Hiccup Mode Overload Protection  
Distributed Supply Regulation  
General-Purpose Point of Load  
• Adjustable Soft-Start Pin for Each Output  
• Built-In Output Voltage Monitoring with RESET for  
Each Output  
• Adjustable EN/UVLO Threshold for Each Output  
• Monotonic Startup Into Prebiased Load  
• Overtemperature Protection  
Ordering Information appears at end of data sheet.  
• High Industrial -40°C to +125°C Ambient Operat-  
ing Temperature Range/-40°C to +150°C Junction  
Temperature Range  
Typical Application Circuit  
V
IN  
7.5V–60V  
C1  
C2  
2.2μF  
2.2μF  
EN/UVLO1  
V
PGND1  
PGND2  
V
EN/UVLO2  
IN2  
IN1  
MODE1  
MODE2  
C16  
V
V
CC2  
CC1  
C6  
1μF  
1μF  
SGND2  
SGND1  
RESET1  
LX1  
MAX17521  
RESET2  
L1  
22μH  
L2  
15μH  
V
V
OUT1  
OUT2  
5V, 1A  
3.3V, 1A  
LX2  
C4  
22μF  
C3  
10μF  
R9  
54.9kΩ  
R1  
82.5kΩ  
SS1  
COMP1 FSEL SYNC COMP2  
SS2  
FB2  
FB1  
C8  
3300pF  
C7  
3300pF  
R10  
20.5kΩ  
R5  
14kΩ  
R8  
19.1kΩ  
R2  
18.2kΩ  
C12  
22pF  
C10  
33pF  
C9  
C11  
2700pF  
2700pF  
L1 = XAL5050-223, 5.3 x 5.5mm  
L2 = XAL4040-153, 4 x 4mm  
f
= 560kHz  
SW  
19-7479; Rev 2; 6/17  
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Absolute Maximum Ratings  
V
to PGND_......................................................-0.3V to +65V  
Output Short-Circuit Duration....................................Continuous  
IN_  
EN/UVLO_ to SGND_............................. -0.3V to (V  
LX_ to PGND_......................................... -0.3V to (V  
FB_, RESET_, FSEL, MODE_,  
+ 0.3V)  
+ 0.3V)  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +160°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
IN_  
IN_  
COMP_, V  
, SYNC, SS_ to SGND_ ..............-0.3V to +6V  
CC_  
SGND_ to PGND_................................................-0.3V to +0.3V  
LX Total RMS Current ........................................................±1.6A  
Continuous Power Dissipation (T = +70°C)  
A
(derate 28.6mW/°C above +70°C)  
(multilayer board)....................................................2285.7mW  
Note 1: Junction temperature greater than +125°C degrades operating lifetimes.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
PACKAGE TYPE: 24-PIN TQFN  
Package Code  
T2445+1C  
21-0201  
90-0083  
Outline Number  
Land Pattern Number  
THERMAL RESISTANCE, FOUR-LAYER BOARD  
Junction to Ambient (θ  
)
35°C/W  
1.8°C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V  
= +24V, V  
= V  
= V  
= 0V, C  
= 2.2μF, C  
= 1μF, V  
= 1.5V, C  
= 0.01μF, FB_ = 0.98 x V  
,
IN_  
SGND_  
PGND_  
FSEL  
IN_  
VCC_  
EN/UVLO_  
SS_  
FB-REG  
COMP_ = unconnected, LX_ = unconnected, RESET_ = unconnected. T = -40°C to +125°C, unless otherwise noted. Typical values  
A
are at T = +25°C. All voltages are referenced to SGND_, unless otherwise noted.) (Note 2)  
A
PARAMETER  
INPUT SUPPLY (V  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
)
IN  
Input Voltage Range  
V
4.5  
60  
3.5  
260  
V
IN_  
Input Shutdown Current  
I
V
V
= 0V, shutdown mode  
1
µA  
µA  
IN-SH  
EN_  
I
> 2V  
135  
5
Q_PFM_  
MODE_  
Input Switching Current  
V
V
> 2V  
V
V
< 0.8V,  
= 0.8V  
FSEL  
MODE_  
COMP_  
I
mA  
Q_PWM_  
< 0.8V  
3.7  
FSEL  
Maxim Integrated  
2  
www.maximintegrated.com  
 
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Electrical Characteristics (continued)  
(V  
= +24V, V  
= V  
= V  
= 0V, C  
= 2.2μF, C  
= 1μF, V  
= 1.5V, C  
= 0.01μF, FB_ = 0.98 x V  
,
IN_  
SGND_  
PGND_  
FSEL  
IN_  
VCC_  
EN/UVLO_  
SS_  
FB-REG  
COMP_ = unconnected, LX_ = unconnected, RESET_ = unconnected. T = -40°C to +125°C, unless otherwise noted. Typical values  
A
are at T = +25°C. All voltages are referenced to SGND_, unless otherwise noted.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ENABLE/UVLO (EN_)  
V
V
V
rising  
falling  
1.19  
1.11  
1.215  
1.135  
1.24  
1.16  
EN_R  
EN_  
EN_  
V
EN_F  
EN_ Threshold  
V
V
EN_-  
TRUESD  
V
V
falling, true shutdown  
0.75  
EN_  
EN_  
EN_ Input Leakage Current  
I
= V = 60V, T = +25°C  
300  
0.8  
nA  
EN_  
IN  
A
FREQUENCY SELECTOR (FSEL)  
V
V
V
V
low level  
FSELR  
FSEL  
FSEL  
FSEL  
FSEL Threshold  
V
V
high level  
2
FSELF  
FSEL Input Leakage Current  
I
= V , T = +25°C  
-2.5  
+2.5  
1.9  
µA  
FSEL  
CC  
A
MODE SELECTOR (MODE_)  
V
V
V
V
low level  
V
MODE_ R  
MODE_  
MODE_  
MODE_ Threshold  
V
high level  
2.5  
MODE_ F  
MODE_ Input Leakage Current  
I
= V , T = +25°C  
300  
nA  
MODE_  
MODE  
CC  
A
LDO (V  
)
CC_  
6V < V  
12V < V  
< 12V, 0mA < I  
< 10mA  
IN_  
VCC_  
V
Output Voltage Range  
V
4.65  
5
5.35  
80  
V
CC_  
VCC_  
< 60V, 0mA < I  
< 2mA  
IN_  
VCC_  
V
V
Current Limit  
Dropout  
I
V
V
V
V
= 4.3V, V  
= 12V  
17  
40  
mA  
CC_  
CC_  
VCC_ -MAX  
CC_  
IN_  
V
= 4.5V, I  
= 5mA  
4.1  
V
V
CC_-DO  
IN_  
VCC_  
V
rising  
falling  
3.85  
3.55  
4
4.15  
3.85  
VCC_-UVR  
CC_  
CC_  
V
UVLO  
CC_  
V
3.7  
CC_ -UVF  
POWER MOSFETs  
T
T
T
T
= +25°C  
0.6  
0.2  
0.8  
1.2  
A
A
A
A
High-Side_ pMOS  
On-Resistance  
I
= 0.5A  
LX_  
R
Ω
DS_ -ONH  
(sourcing)  
= T = +125°C (Note 3)  
J
= +25°C  
0.35  
0.45  
Low-Side_ nMOS  
On-Resistance  
I
LX_  
(sinking)  
= 0.5A  
R
Ω
DS_ -ONL  
= T = +125°C (Note 3)  
J
V
(V  
= 0V, T = +25°C, V  
=
EN_  
A
LX_  
LX_ Leakage Current  
I
3
μA  
LX_LKG  
+ 1V) to (V  
– 1V)  
PGND_  
IN_  
SOFT-START (SS_)  
Charging Current_  
FEEDBACK (FB)  
I
V
= 0.5V  
4.7  
5
5.3  
0.915  
100  
μA  
SS_  
SS_  
MODE_ = SGND_  
MODE_ = unconnected  
= 0.9V  
0.885  
0.9  
0.915  
15  
FB Regulation Voltage  
FB Input Bias Current  
V
V
FB_REG  
I
V
nA  
FB  
FB  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Electrical Characteristics (continued)  
(V  
= +24V, V  
= V  
= V  
= 0V, C  
= 2.2μF, C  
= 1μF, V  
= 1.5V, C  
= 0.01μF, FB_ = 0.98 x V  
,
IN_  
SGND_  
PGND_  
FSEL  
IN_  
VCC_  
EN/UVLO_  
SS_  
FB-REG  
COMP_ = unconnected, LX_ = unconnected, RESET_ = unconnected. T = -40°C to +125°C, unless otherwise noted. Typical values  
A
are at T = +25°C. All voltages are referenced to SGND_, unless otherwise noted.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OUTPUT VOLTAGE (V  
)
OUT  
0.92 x  
V
V
> 2V; no load (Note 3)  
< 0.8V; no load (Note 3)  
0.92  
0.92  
FSEL  
FSEL  
V
IN  
Output Voltage Range  
V
V
OUT  
0.96 x  
V
IN  
TRANSCONDUCTANCE AMPLIFIER (COMP)  
Transconductance  
GM_  
I
= ±2.5μA  
510  
19  
590  
33  
650  
55  
μS  
μA  
COMP_  
COMP_ Source Current  
I
COMP_ _SRC  
I
COMP_  
_SINK  
COMP_ Sink Current  
19  
33  
55  
μA  
Ω
Current Sense Transresistance  
R
0.455  
0.5  
0.545  
CS_  
CURRENT LIMIT  
Peak Current Limit Threshold  
I
1.35  
1.45  
1.6  
1.85  
2.05  
A
A
PEAK_-LIMIT  
Runaway Current Limit  
Threshold  
I
RUNAWAY  
_-LIMIT  
1.85  
V
V
V
< 0.8V  
> 2V  
0.65  
0
A
A
A
MODE_  
MODE_  
MODE_  
Sink Current Limit Threshold  
I
SINK-LIMIT  
PFM Peak Current  
I
> 2V  
0.2  
0.3  
0.4  
PFM_  
TIMINGS  
V
V
V
> 2V  
510  
280  
280  
560  
300  
300  
600  
320  
320  
FSEL  
FSEL  
FSEL  
V
> V  
FB_  
OUT_-HICF  
<V  
OUT_-HICF  
< 0.8V  
> 2V  
Switching Frequency  
f
kHz  
%
SW_  
V
V
FB_  
SS_  
V
Under Voltage Trip Level  
FB_  
V
> 0.95V (soft-start is done)  
68.5  
70  
72.5  
OUT_-HICF  
to Cause HICCUP  
HICCUP Timeout  
Minimum On-Time  
4096  
85  
94  
97  
5
Cycles  
ns  
t
120  
96  
ON_ _MIN  
V
V
> 2V  
92  
96  
FSEL  
FSEL  
Maximum Duty Cycle  
LX_ Dead Time  
D
V
= 0.98 x V  
FB_ -REG  
%
MAX_  
FB_  
< 0.8V  
98  
ns  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Electrical Characteristics (continued)  
(V  
= +24V, V  
= V  
= V  
= 0V, C  
= 2.2μF, C  
= 1μF, V  
= 1.5V, C  
= 0.01μF, FB_ = 0.98 x V  
,
IN_  
SGND_  
PGND_  
FSEL  
IN_  
VCC_  
EN/UVLO_  
SS_  
FB-REG  
COMP_ = unconnected, LX_ = unconnected, RESET_ = unconnected. T = -40°C to +125°C, unless otherwise noted. Typical values  
A
are at T = +25°C. All voltages are referenced to SGND_, unless otherwise noted.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
FREQUENCY SYNCHRONIZATIONS (SYNC)  
V
0.8  
SYNC_R  
SYNC Threshold  
V
V
2
SYNC_F  
SYNC Input Leakage Current  
SYNC Pulse Duration  
I
V
= 5V ; T = +25°C  
300  
nA  
ns  
SYNC  
SYNC  
A
T
50  
SYNC  
1.1x  
1.4x  
SYNC Frequency  
f
f
= 300kHz or 560kHz  
kHz  
SYNC  
SW  
f
f
SW  
SW  
RESET_  
RESET_ Output Level Low  
I
= 1mA  
0.02  
0.5  
V
RESET_  
RESET_ Output Leakage  
Current High  
V
V
V
= 1.01 x V  
, T = 25°C  
μA  
FB_  
FB_  
FB_  
FB_-REG  
A
V
Threshold for RESET  
Threshold for RESET_  
OUT_  
V
-OKF  
falling  
rising  
90.5  
93.5  
92.5  
95.5  
1024  
94.5  
97.5  
%
%
OUT_  
Falling  
V
OUT_  
V
OUT_-OKR  
Rising  
RESET _ Delay After FB_  
Reaches 95% Regulation  
Cycles  
THERMAL SHUTDOWN  
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
Temperature rising  
165  
10  
°C  
°C  
Note 2: Limits are 100% tested at T = +25°C. Limits over the operating temperature range and relevant supply voltage range are  
A
guaranteed by design and characterization.  
Note 3: Guaranteed by design, not production tested.  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics  
All data measured on the Typical Application Circuit.  
OVERALL EFFICIENCY  
vs. INPUT VOLTAGE  
3.3V OUTPUT,  
EFFICIENCY vs. LOAD CURRENT  
5V OUTPUT,  
EFFICIENCY vs. LOAD CURRENT TOC02  
TOC01  
TOC03  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
94  
92  
90  
88  
86  
84  
82  
80  
PFM MODE  
IOUT1 = IOUT2 = 750mA  
IOUT1 = IOUT2 = 500mA  
PFM MODE  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PWM MODE  
PWM MODE  
IOUT1 = IOUT2 = 1A  
FSEL = OPEN  
38 48  
VIN = 24V, FSEL = OPEN  
VIN = 24V, FSEL = OPEN  
100 1000  
1
10  
100  
1000  
1
10  
8
18  
28  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
5V OUTPUT, LOAD REGULATION  
VIN = 24V, FSEL = OPEN  
3.3V OUTPUT, LOAD REGULATION  
TOC05  
TOC04  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
3.45  
3.43  
3.41  
3.39  
3.37  
3.35  
3.33  
3.31  
3.29  
3.27  
3.25  
VIN = 24V, FSEL = OPEN  
PFM MODE  
PFM MODE  
PWM MODE  
200  
PWM MODE  
200  
0
400  
600  
800  
1000  
0
400  
600  
800  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3.3V OUTPUT, LINE REGULATION  
5V OUTPUT, LINE REGULATION TOC06  
TOC07  
4.990  
4.988  
4.986  
4.984  
4.982  
4.980  
4.978  
4.976  
4.974  
4.972  
4.970  
3.315  
3.314  
3.313  
3.312  
3.311  
3.310  
3.309  
3.308  
3.307  
3.306  
3.305  
IOUT1 = 1A  
IOUT1 = 750mA  
IOUT2 = 1A  
IOUT2 = 750mA  
IOUT1 = 500mA  
IOUT1 = 250mA  
IOUT2 = 500mA  
IOUT2 = 250mA  
FSEL = OPEN  
38 48  
FSEL = OPEN  
8
18  
28  
38  
48  
8
18  
28  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Maxim Integrated  
6  
www.maximintegrated.com  
 
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics (continued)  
All data measured on the Typical Application Circuit.  
STARTUP FROM VIN,  
5V OUTPUT, 1A LOAD CURRENT  
STARTUP FROM EN/UVLO,  
5V OUTPUT, 1A LOAD CURRENT TOC08  
STARTUP FROM EN/UVLO,  
3.3V OUTPUT, 1A LOAD CURRENT  
TOC10  
TOC09  
10V/div  
VEN/UVLO1  
VEN/UVLO2  
5V/div  
5V/div  
2V/div  
2V/div  
VIN  
500mA/div  
VOUT2  
VOUT1  
VOUT1  
2V/div  
IOUT2  
IOUT1  
IOUT1  
500mA/div  
500mA/div  
5V/div  
5V/div  
VRESET1  
VRESET1  
5V/div  
VRESET2  
400μs/div  
1ms/div  
1ms/div  
STARTUP WITH 2.5V PREBIAS,  
5V OUTPUT, NO LOAD  
STARTUP FROM VIN,  
3.3V OUTPUT, 1A LOAD CURRENT  
TOC12  
TOC11  
10V/div  
5V/div  
2V/div  
VEN/UVLO1  
VOUT1  
2V/div  
VIN  
VOUT2  
500mA/div  
IOUT1  
500mA/div  
5V/div  
IOUT2  
5V/div  
VRESET2  
VRESET1  
400µs/div  
400µs/div  
STARTUP WITH 2V PREBIAS,  
3.3V OUTPUT, NO LOAD  
STARTUP IN RATIOMETRIC TRACKING MODE,  
1A LOAD ON BOTH OUTPUTS  
TOC13  
TOC14  
10V/div  
1V/div  
5V/div  
2V/div  
VEN/UVLO2  
VOUT2  
VIN  
1V/div  
IOUT2  
500mA/div  
5V/div  
VOUT1  
VOUT2  
VRESET2  
400μs/div  
400µs/div  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics (continued)  
All data measured on the Typical Application Circuit.  
5V OUTPUT,PWM MODE,  
(LOAD CURRENT STEPPED FROM 0.5A—1A)  
STARTUP IN SEQUENTIAL TRACKING MODE,  
STARTUP IN COINCIDENT TRACKING MODE,  
1A LOAD ON BOTH OUTPUTS  
1A LOAD ON BOTH OUTPUTS  
TOC16  
TOC17  
TOC15  
2V/div  
10V/div  
1V/div  
VOUT1  
(AC)  
100mV/div  
500mA/div  
VOUT1  
5V/div  
2V/div  
5V/div  
VIN  
1V/div  
VOUT2  
IOUT  
VOUT1  
VOUT2  
1ms/div  
400μs/div  
100μs/div  
5V OUTPUT, PWM MODE,  
(LOAD CURRENT STEPPED  
FROM 0 TO 0.5A)  
5V OUTPUT, PFM MODE,  
(LOAD CURRENT STEPPED FROM 5mA—500mA)  
TOC19  
TOC18  
VOUT1  
(AC)  
VOUT1  
(AC)  
200mV/div  
100mV/div  
200mA/div  
200mA/div  
IOUT1  
IOUT1  
100μs/div  
10ms/div  
3.3V OUTPUT, PWM MODE,  
3.3V OUTPUT,PWM MODE,  
(LOAD CURRENT STEPPED FROM 0—0.5A)  
(LOAD CURRENT STEPPED FROM 0.5A—1A)  
TOC20  
TOC21  
VOUT2  
(AC)  
VOUT2  
(AC)  
100mV/div  
50mV/div  
500mA/div  
200mA/div  
IOUT2  
IOUT2  
100μs/div  
100μs/div  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics (continued)  
All data measured on the Typical Application Circuit.  
3.3V OUTPUT, PFM MODE,  
(LOAD CURRENT STEPPED FROM 5mA—0.5A)  
STEADY-STATE SWITCHING WAVEFORMS,  
5V OUTPUT, NO LOAD, PWM MODE  
TOC24  
STEADY-STATE SWITCHING WAVEFORMS,  
5V OUTPUT, 1A LOAD  
TOC22  
TOC23  
VIN = 24V, FSEL = OPEN  
VOUT1  
(AC)  
VOUT1  
(AC)  
20mV/div  
20mV/div  
VOUT2  
(AC)  
100mV/div  
10V/div  
1A/div  
10V/div  
VLX1  
VLX1  
IOUT2  
200mA/div  
ILX1  
ILX1  
500mA/div  
VIN = 24V, FSEL = OPEN  
1µs/div  
1µs/div  
1ms/div  
STEADY-STATE SWITCHING WAVEFORMS,  
STEADY-STATE SWITCHING WAVEFORMS,  
5V OUTPUT, 5mA LOAD, PFM MODE  
3.3V OUTPUT, 1A LOAD  
TOC25  
TOC26  
100mV/div  
VOUT2  
(AC)  
VOUT1  
(AC)  
10mV/div  
10V/div  
VLX2  
10V/div  
1A/div  
VLX1  
ILX2  
200mA/div  
ILX1  
VIN = 24V, FSEL = OPEN  
1µs/div  
VIN = 24V, FSEL = OPEN  
40µs/div  
STEADY-STATE SWITCHING WAVEFORMS,  
STEADY-STATE SWITCHING WAVEFORMS,  
3.3V OUTPUT, NO LOAD, PWM MODE  
3.3V OUTPUT, 5mA LOAD, PFM MODE  
TOC27  
TOC28  
VIN = 24V, FSEL = OPEN  
VOUT2  
(AC)  
10mV/div  
VOUT2  
(AC)  
100mV/div  
VLX2  
VLX2  
10V/div  
10V/div  
200mA/div  
ILX2  
ILX2  
500mA/div  
VIN = 24V, FSEL = OPEN  
40µs/div  
1µs/div  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics (continued)  
All data measured on the Typical Application Circuit.  
OUTPUT SHORT-CIRCUIT PROTECTION,  
OUTPUT SHORT-CIRCUIT PROTECTION,  
3.3V OUTPUT  
5V OUTPUT  
TOC29  
TOC30  
VOUT1  
VOUT2  
500mV/div  
500mV/div  
IOUT1  
500mA/div  
IOUT2  
500mA/div  
2ms/div  
2ms/div  
5V OUTPUT, 1A LOAD, BODE PLOT  
TOC31  
TOC32  
3.3V OUTPUT, 1A LOAD, BODE PLOT  
PHASE  
PHASE  
GAIN  
GAIN  
VOUT = 3.3V  
VOUT = 5V  
FCR = 51kHz,  
Phase Margin = 62.3°  
FCR = 51K,  
Phase Margin = 62.3°  
FREQUENCY(Hz)  
FREQUENCY(Hz)  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Pin Configuration  
TOP VIEW  
24  
23  
22  
21  
20  
+
PGND1  
VIN1  
1
2
3
4
5
6
7
19 PGND2  
18 VIN2  
EN/UVLO1  
VCC1  
17 EN/UVLO2  
16 VCC2  
15 FB2  
MAX17521  
FB1  
SS1  
14 SS2  
SGND1  
13 SGND2  
EP  
8
9
10  
11  
12  
TQFN  
(4mm × 5mm)  
Pin Description  
PIN  
NAME  
FUNCTION  
Power Ground Connection of Converter 1. Connect PGND1 externally to the power ground plane.  
Connect SGND and PGND pins together at the ground return path of the V bypass capacitors.  
1
PGND1  
CC  
Power-Supply Input of Converter 1. The input supply range is from 4.5V to 60V. Decouple to PGND1  
with a 2.2μF capacitor; place the capacitor close to the V and PGND1 pins.  
2
3
VIN1  
IN1  
Enable/Undervoltage Lockout Input for Converter 1. Drive EN/UVLO1 high to enable converter 1.  
Connect to the center of the resistive divider between V and SGND1 to set the input voltage at which  
EN/UVLO1  
IN1  
the converter 1 turns on. Pull up to V  
for always-on operation.  
IN1  
4
5
VCC1  
FB1  
5V LDO Output for Converter 1. Bypass V  
with 1μF ceramic capacitance to SGND1.  
CC1  
Feedback Input for Converter 1. Connect FB1 to the center of the resistive divider between V  
SGND1. See the Adjusting Output Voltage section for more details.  
and  
OUT1  
Soft-start Input for Converter 1. Connect a capacitor from SS1 to SGND1 to set the soft-start time for  
converter 1.  
6
7
8
SS1  
SGND1  
COMP1  
Analog Ground Connection for Converter 1.  
Loop Compensation Pin for Converter 1. Connect an RC network from COMP1 to SGND1. See the  
Loop Compensation section for more details.  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Open-Drain RESET1 Output. The RESET1 output is driven low if FB1 drops below 92.5% of its set  
value. RESET1 goes high 1024 clock cycles after FB1 rises above 95.5% of its set value. RESET1 is  
9
RESET1  
valid when the device is enabled and V is above 4.5V.  
IN  
Configures the Switching Frequency of the MAX17521. Leaving FSEL unconnected sets the switching  
frequency of both the converters at 560kHz. Connecting FSEL pin to SGND_ sets the switching  
frequency of both the converters at 300kHz.  
10  
11  
FSEL  
Open-Drain RESET2 Output. The RESET2 output is driven low if FB2 drops below 92.5% of its set  
value. RESET2 goes high 1024 clock cycles after FB2 rises above 95.5% of its set value. RESET2 is  
RESET2  
valid when the device is enabled and V is above 4.5V.  
IN  
Loop Compensation Pin for Converter 2. Connect an RC network from COMP2 to SGND2. See the  
Loop Compensation section for more details.  
12  
13  
14  
COMP2  
SGND2  
SS2  
Analog Ground Connection for Converter 2.  
Soft-Start Input for Converter 2. Connect a capacitor from SS2 to SGND2 to set the soft-start time for  
converter 2.  
Feedback Input for Converter 2. Connect FB2 to the center of the resistive divider between V  
SGND2. See the Adjusting Output Voltage section for more details.  
and  
OUT2  
15  
16  
FB2  
VCC2  
5V LDO Output for converter 2. Bypass V  
with 1μF ceramic capacitance to SGND2.  
CC2  
Enable/Undervoltage Lockout Input for Converter 2. Drive EN/UVLO2 high to enable converter 2.  
Connect to the center of the resistive divider between V and SGND2 to set the input voltage at which  
17  
18  
EN/UVLO2  
VIN2  
IN2  
the converter 2 turns on. Pull up to V  
for always on operation.  
IN2  
Power-Supply Input of Converter 2. The input supply range is from 4.5V to 60V. Decouple to PGND2  
with a 2.2μF capacitor; place the capacitor close to the V and PGND2 pins.  
IN2  
Power Ground Connection of Converter 2. Connect PGND2 externally to the power ground plane.  
Connect SGND and PGND pins together at the ground return path of the V bypass capacitors.  
19  
20  
PGND2  
LX2  
CC  
Switching Node of Converter 2. Connect LX2 to the switching side of the inductor.  
Configures Converter 2 to Operate in PWM or PFM Modes of Operation. Leave MODE2 unconnected  
for PFM operation (pulse skipping at light loads). Connect MODE2 to SGND2 for constant frequency  
PWM operation at all loads. See the MODE Setting section for more details.  
21  
22  
23  
MODE2  
SYNC  
Synchronizes Device to an External Clock. See the External Frequency Synchronization section for  
more details.  
Configures Converter 1 to Operate in PWM or PFM Modes of Operation. Leave MODE1 unconnected  
for PFM operation (pulse skipping at light loads). Connect MODE1 to SGND1 for constant frequency  
PWM operation at all loads. See the MODE Setting section for more details.  
MODE1  
24  
LX1  
EP  
Switching Node of Converter 1. Connect LX1 to the switching-side of the inductor.  
Exposed Pad. Connect to the SGND pins. Connect to a large copper plane below the IC to improve  
heat dissipation capability.  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Block Diagram  
MAX17521  
V
CC  
LDO  
SLOPE  
COMPENSATION  
V
IN  
HICCUP  
P DRIVER  
CURRENT SENSE  
+
CURRENT SENSE  
LX  
PWM,PFM  
LOGIC  
PWM  
COMPARATOR  
COMP  
N DRIVER  
PGND  
FSEL  
CLK  
OSCILLATOR  
RESET  
SYNC  
5μA  
SS  
V
CC  
PWM/PFM  
MODE  
MODE  
SELECTOR  
HICCUP  
START  
EN/UVLO  
FB  
RESET  
LOGIC  
REFERENCE  
SWITCHOVER  
LOGIC  
900mV  
COMP  
GM  
SGND  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
all loads, and is useful in applications sensitive to switching  
frequency. However, the PWM mode of operation gives  
lower efficiency at light loads compared to the PFM mode  
of operation.  
Detailed Description  
The MAX17521 dual step-down regulator operates from  
4.5V to 60V and delivers up to 1A load current on each  
output. Feedback voltage regulation accuracy meets  
±1.7% over load, line and temperature.  
PFM Mode Operation  
The device uses a peak-current-mode control scheme.  
For each output, an internal transconductance error  
amplifier generates an integrated error voltage. The error  
voltage sets the duty cycle using a PWM comparator, a  
high-side current-sense amplifier, and a slope-compensation  
generator. At each rising edge of the clock, the high-side  
pMOSFET turns on and remains on until either the appro-  
priate or maximum duty cycle is reached, or the peak  
current limit is detected.  
PFM mode of operation disables negative inductor  
current and additionally skips pulses at light loads for high  
efficiency. In PFM mode, the inductor current is forced to  
a fixed peak of 300mA every clock cycle until the output  
rises to 103% of the nominal voltage. Once the output  
reaches 103% of the nominal voltage, both the high-side  
and low-side FETs are turned off and the device enters  
hibernate operation until the load discharges the output to  
101% of the nominal voltage. Most of the internal blocks  
are turned off in hibernate operation to save quiescent  
current. After the output falls below 101% of the nominal  
voltage, the device comes out of hibernate operation,  
turns on all internal blocks and again commences the  
process of delivering pulses of energy to the output until it  
reaches 103% of the nominal output voltage.  
During the high-side MOSFET’s on-time, the inductor  
current ramps up. During the second half of the switching  
cycle, the high-side MOSFET turns off and the low-side  
nMOSFET turns on and remains on until either the next  
rising edge of the clock arrives or sink current limit is  
detected. The inductor releases the stored energy as its  
current ramps down, and provides current to the output  
The advantage of the PFM mode is higher efficiency at  
light loads because of lower quiescent current drawn  
from supply. The disadvantage is that the output-voltage  
ripple is higher compared to PWM mode of operation and  
switching frequency is not constant at light loads.  
(the internal low R  
pMOS/nMOS switches ensure  
DSON  
high efficiency at full load).  
This device also integrates switching frequency selector pin  
and individual mode of operation selector pins, enable/  
undervoltage lockout (EN/UVLO) pins, programmable  
soft-start pins, and open-drain RESET signals for each  
output.  
Linear Regulator (V  
)
CC  
Two internal linear regulators (V  
, V  
) provide 5V  
CC1  
CC2  
nominal supplies to power the internal blocks and the  
low-side MOSFET drivers. The output of the V linear  
Mode of Operation Selection  
CC  
regulators should be bypassed with 1μF ceramic capacitors  
to SGND. The device employs two undervoltage-lockout  
circuits that disable the internal linear regulators when  
The logic state of the MODE pins are latched when V  
CC  
and EN/UVLO voltages exceed the respective UVLO  
rising thresholds and all internal voltages are ready to  
allow LX switching. If the MODE pin is open at power-  
up, the corresponding output operates in PFM mode at  
light loads. If the MODE pin is grounded at power-up, the  
corresponding output operates in constant-frequency  
PWM mode at all loads. State changes on the MODE pins  
are ignored during normal operation.  
V
falls below 3.7V (typ). Each of the V  
regulators  
CC  
CC  
can source up to 40mA (typ) to supply the device and to  
power the low-side gate drivers.  
Switching Frequency Selection  
The FSEL pin programs the switching frequency of both  
the converters. If the FSEL pin is open at power-up, both  
the outputs operate at 560 kHz switching frequency. If the  
FSEL pin is grounded at power-up, both the outputs operate  
at 300kHz switching frequency.  
PWM Mode Operation  
In PWM mode, the inductor current is allowed to go negative.  
PWM operation provides constant frequency operation at  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
current that built up during the on period of the step-down  
converter. One occurrence of the runaway current limit  
triggers a hiccup mode. In addition, if due to a fault  
condition, output voltage drops to 70% (typ) of its nominal  
value any time after soft-start is complete, hiccup mode  
is triggered.  
Operating Input Voltage Range  
The minimum and maximum operating input voltages for  
a given output voltage should be calculated as follows:  
V
+ (I  
×(R  
+ R  
))  
OUT  
OUT(MAX)  
D
DCR  
DSONLS  
V
=
IN(MIN)  
MAX  
In hiccup mode, the converter is protected by suspending  
switching for a hiccup timeout period of 4096 clock cycles.  
Once the hiccup timeout period expires, soft-start is  
attempted again. This operation results in minimal power  
dissipation under overload fault conditions.  
+(I  
×R  
R  
DSONHS  
)
OUT(MAX)  
DSONLS  
ON(MIN)  
V
OUT  
V
=
IN(MAX)  
f
× t  
SW(MAX)  
RESET Output  
where V  
is the steady-state output voltage, I  
OUT  
OUT  
The device includes two RESET comparators to moni-  
tor the output voltages. The open-drain RESET outputs  
require an external pull-up resistor. RESET can sink 2mA  
of current while low. RESET goes high (high impedance)  
1024 switching cycles after the corresponding output voltage  
increases above 95.5% of the nominal regulated voltage.  
RESET goes low when the output voltage drops to below  
92.5% of the nominal regulated voltage. RESET also  
goes low during thermal shutdown. RESET is valid when  
is the maximum load current, R  
is the DC resis-  
(MAX)  
DCR  
tance of the inductor, D  
is the maximum allowable  
MAX  
duty ratio, f  
is the maximum switching frequency  
SW(MAX)  
and t  
is the worst-case minimum switch on-time  
ON-MIN  
(120ns). The following table lists the f  
values to be used for calculation for different switching  
frequency selection  
and D  
SW(MAX)  
MAX  
FSEL  
OPEN  
SGND  
f
(kHz)  
D
MAX  
SW(MAX)  
600  
0.92  
0.96  
the device is enabled and V is above 4.5V.  
IN  
320  
Coincident/Ratiometric Tracking and  
Output Voltage Sequencing  
External Frequency Synchronization (SYNC)  
The soft-start pins (SS_) can be used to track the output  
voltages to that of another power supply at startup. This  
requires connecting the SS_ pins to an external resistor  
divider from the supply which needs to be tracked. The  
following figures (Figure 1 to Figure 3) show the possible  
ways of configuring the MAX17521 in various tracking  
modes.  
The internal oscillator of the device can be synchronized  
to an external clock signal on the SYNC pin. The external  
synchronization clock frequency must be between 1.1 x f  
SW  
and 1.4 x f , where f  
is the frequency selected by the  
SW  
SW  
FSEL pin. The minimum external clock pulse-width high  
should be greater than 50ns. See the SYNC section in the  
Electrical Characteristics table for details.  
Overcurrent Protection/HICCUP Mode  
SS1  
The device is provided with a robust overcurrent-pro-  
tection scheme that protects the device under overload  
and output short-circuit conditions. A cycle-by-cycle peak  
current limit turns off the high-side MOSFET whenever  
the high-side switch current exceeds an internal limit  
of 1.6A (typ). A runaway current limit on the high-side  
switch current at 1.85A (typ) protects the device under  
high input voltage, short-circuit conditions when there is  
insufficient output voltage available to restore the inductor  
MAX17521  
SS2  
TIME  
INDEPENDENT SOFT-START  
Figure 1. Independent Soft-Start of Each Output  
Maxim Integrated  
15  
www.maximintegrated.com  
 
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
VOUT1  
LX1  
R1  
R2  
SS1  
VOUT1  
VOUT2  
FB1  
VOUT1  
R5  
MAX17521  
SS2  
VOUT2  
LX2  
TIME  
COINCIDENT TRACKING  
R6  
R3 = R5  
R4 = R6  
R3  
R4  
FB2  
Figure 2. Coincident Tracking of the Outputs  
VOUT1  
LX1  
R1  
R2  
SS1  
VOUT1  
VOUT2  
FB1  
MAX17521  
FB1  
SS2  
VOUT2  
LX2  
TIME  
RATIOMETRIC TRACKING  
R3  
R4  
FB2  
Figure 3. Ratiometric Tracking of the Outputs  
Maxim Integrated  
16  
www.maximintegrated.com  
 
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
EN/UVLO1  
VOUT1  
LX1  
R1  
R2  
EN/UVLO1  
VOUT1  
RESET2  
FB1  
MAX17521  
RESET1 = EN/UVLO2  
RESET1  
EN/UVLO2  
VOUT2  
LX2  
VOUT2  
R3  
R4  
RESET2  
FB2  
OUTPUT VOLTAGE SEQUENCING  
Figure 4. Output Voltage Sequencing  
During power-off, the output voltages discharge to ground  
at a rate which depends on the respective output capacitor  
and load.  
thermal shutdown. Carefully evaluate the total power  
dissipation (see the Power Dissipation section) to avoid  
unwanted triggering of the thermal-overload protection in  
normal operation.  
The RESET_ pins and EN/UVLO_ pins can be daisy-  
chained to generate power sequencing, as shown in  
Figure 4.  
Applications Information  
Input Capacitor Selection  
Prebiased Output  
The input filter capacitor reduces peak currents drawn  
from the power source and reduces noise and voltage  
ripple on the input caused by the circuit’s switching. The  
input capacitor RMS current requirement (I  
single output is defined by the following equation:  
When the device starts into a prebiased output, both  
the high-side and low-side switches of the corresponding  
channel are turned off so that the converter does not  
sink current from the output. High-side and low-side  
switches do not start switching until the PWM comparator  
commands the first PWM pulse, at which point switching  
commences first with the high-side switch. The output  
voltage is then smoothly ramped up to the target value in  
alignment with the internal reference.  
) for a  
RMS  
V
×(V V  
)
OUT  
OUT  
IN  
I
= I  
×
OUT(MAX)  
RMS  
V
IN  
where, I  
is the maximum load current. I  
has  
OUT(MAX)  
RMS  
Thermal-Overload Protection  
a maximum value when the input voltage equals twice  
the output voltage (V = 2 x V ), so I  
=
RMS(MAX)  
Thermal-overload protection limits total power dissipa-  
tion in the device. When the junction temperature of the  
device exceeds +165°C, an on-chip thermal sensor shuts  
down the device, allowing the device to cool. The ther-  
mal sensor turns the device on again after the junction  
temperature cools by 10°C. Soft-start resets during  
IN  
OUT  
I
/2 when only one converter is enabled. When  
OUT(MAX)  
both the converters are enabled and are operating out-  
of-phase, the RMS current is shared by both the input  
capacitors and therefore the maximum RMS current  
carried by each of the input capacitors is I  
/4.  
OUT(MAX)  
Maxim Integrated  
17  
www.maximintegrated.com  
 
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Choose an input capacitor that exhibits less than +10°C  
temperature rise at the RMS input current for optimal long-  
term reliability. Use low-ESR ceramic capacitors with high-  
ripple-current capability at the input. X7R capacitors are  
recommended in industrial applications for their temperature  
stability. When both the converters are enabled, calculate  
the input capacitance using the following equation:  
of the output voltage change. The output capacitance  
may be calculated as follows:  
I
× t  
RESPONSE  
1
2
STEP  
C
=
×
OUT  
V  
OUT  
0.33  
1
t
(  
+
)
RESPONSE  
f
f
sw  
C
0.5 ×I  
×D ×(1D)  
OUT(MAX)  
C
=
Where I  
is the load current step, t  
is the  
is the allowable  
STEP  
RESPONSE  
IN  
η× f  
× ∆V  
IN  
SW  
response time of the controller, ΔV  
OUT  
output voltage deviation, f is the target closed-loop  
C
where D = V  
/V is the duty ratio of the controller,  
OUT IN  
crossover frequency and f  
is the switching frequency.  
th  
SW  
f
is the switching frequency, ΔV is the allowable input  
SW  
IN  
f
is generally chosen to be 1/9 of f  
.
C
SW  
voltage ripple, and η is the efficiency.  
Soft-Start capacitor selection  
In applications where the source is located distant from  
the device input, an electrolytic capacitor should be added  
in parallel to the ceramic capacitor to provide necessary  
damping for potential oscillations caused by the induc-  
tance of the longer input power path and input ceramic  
capacitor.  
The device implements adjustable soft-start operation  
to reduce inrush current. A capacitor connected from  
the SS pin to SGND programs the soft-start time for the  
corresponding output voltage. The selected output  
capacitance (C ) and the output voltage (V  
SEL  
) determine  
OUT  
the minimum required soft-start capacitor as follows:  
Inductor Selection  
Three key inductor parameters must be specified for  
operation with the device: inductance value (L), inductor  
6  
C
56×10 × C  
× V  
SEL OUT  
SS  
saturation current (I  
switching frequency and output voltage determine the  
inductor value as follows:  
) and DC resistance (R  
). The  
SAT  
DCR  
The soft-start time (t ) is related to the capacitor  
SS  
connected at SS (C ) by the following equation:  
SS  
C
SS  
t
SS  
2.2× V  
6  
OUT  
SW  
5.55×10  
L =  
f
For example, to program a 1ms soft-start time, a 5.6nF  
capacitor should be connected from the SS pin to SGND.  
where V  
and f  
are nominal values. Select an  
OUT  
SW  
inductor whose value is nearest to the value calculated by  
the previous formula.  
Adjusting Output Voltage  
Set the output voltages with resistive voltage-dividers  
connected from the positive terminal of the output capacitor  
Select a low-loss inductor closest to the calculated value  
with acceptable dimensions and having the lowest pos-  
(V  
to SGND (see Figure 5). Connect the centre node  
OUT)  
sible DC resistance. The saturation current rating (I  
)
SAT  
of the divider to the FB pin. To optimize efficiency and  
output accuracy, use the following calculations to choose  
the resistive divider values:  
of the inductor must be high enough to ensure that satu-  
ration can occur only above the peak current-limit value  
of 1.85A.  
15× V  
OUT  
R4 =  
Output Capacitor Selection  
0.9  
R4× 0.9  
0.9)  
X7R Ceramic Output capacitors are preferred due to their  
stability over temperature in Industrial applications. The  
output capacitor is usually sized to support a step load  
of 50% of the maximum output current in the application,  
such that the output voltage deviation is contained to 3%  
R5 =  
(V  
OUT  
where R4 and R5 are in kΩ.  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
control loop. The basic regulator loop is modeled as a  
power modulator, an output feedback divider, and an error  
Setting the Undervoltage-Lockout Level  
The device offers an adjustable input undervoltage-  
lockout level for each output. Set the voltage at which  
each converter turns on with a resistive voltage-divider  
connected from VIN to SGND (see Figure 6). Connect the  
center node of the divider to EN/UVLO pin.  
amplifier. The power modulator has DC gain G  
,
MOD(dc)  
with a pole and zero pair. The following equation defines  
the power modulator DC gain:  
2
G
=
Choose R1 to be 3.3MΩ, and then calculate R2 as:  
MOD(dc)  
1
0.4  
(0.5 D)  
f ×L  
SW  
+
+
R
V
LOAD  
IN  
SEL  
R1×1.218  
R2 =  
(V  
1.218)  
INU  
Where R  
= V  
/I  
, f  
is the switching  
LOAD  
OUT OUT(MAX) SW  
frequency, L  
the duty ratio, D = V  
is the selected output inductance, D is  
SEL  
where V  
converter is required to turn on.  
is the input voltage at which a particular  
INU  
/V .  
OUT IN  
The compensation network is shown in Figure 7.  
R can be calculated as:  
Loop Compensation for Adjustable  
Output Version  
Z
The MAX17521 uses peak current-mode control scheme  
and needs only simple RC networks connected from the  
COMP pins to SGND to have a stable, high-bandwidth  
R
= 6000× f × C  
× V  
SEL  
Z
C
OUT  
th  
where R is in Ω. Choose f to be 1/9 of the switching  
Z
C
frequency.  
C can be calculated as follows:  
Z
VOUT  
C
× G  
MOD(dc)  
R4  
SEL  
C
=
Z
2×R  
Z
FB  
C can be calculated as follows:  
P
R5  
1
SGND  
C
=
P
π ×R × f  
Z
SW  
Figure 5. Adjusting Output Voltage  
VIN  
TO COMP PIN  
R1  
R
Z
EN/UVLO  
R2  
C
C
P
Z
SGND  
Figure 6. Setting the Undervoltage Lockout Level  
Figure 7. Loop Compensation for Adjustable Output Version  
Maxim Integrated  
19  
www.maximintegrated.com  
 
 
 
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Power Dissipation  
PCB Layout Guidelines  
The exposed pad of the IC should be properly soldered to  
the PCB to ensure good thermal contact.  
Careful PCB layout is critical to achieve low switching loss-  
es and stable operation. For a sample layout that ensures  
first-pass success, refer to the MAX17521 evaluation kit  
layouts available at www.maximintegrated.com. Follow  
these guidelines for good PCB layout:  
At a particular operating condition, the power losses that  
lead to temperature rise of the device are estimated as  
follows:  
All connections carrying pulsed currents must be very  
short and as wide as possible. The loop area of these  
connections must be made very small to reduce stray  
inductance and radiated EMI.  
1
2
P
= (P  
×( 1)) I  
×R  
OUT DCR  
)
LOSS  
(
OUT  
η
P
= V  
×I  
OUT  
OUT OUT  
A ceramic input filter capacitor should be placed close  
to the VIN pins of the device. The bypass capaci-  
tor for the VCC pins should also be placed close to  
the VCC pins. External compensation components  
should be placed close to the IC and far from the  
inductor. The feedback trace should be routed as far  
as possible from the inductor.  
where P  
is the output power, η is the efficiency of the  
OUT  
device and R  
is the DC resistance of the output inductor  
DCR  
(refer to the Typical Operating Characteristics for more  
information on efficiency at typical operating conditions).  
For a typical multilayer board, the thermal performance  
metrics for the package are given as:  
The analog small-signal ground and the power  
ground for switching currents must be kept separate.  
They should be connected together at a point where  
switching activity is at minimum, typically the return  
terminal of the VCC bypass capacitors. The ground  
plane should be kept continuous as much as pos-  
sible.  
θ
θ
= 35°C/ W  
= 1.8°C/ W  
JA  
JC  
The junction temperature of the device can be estimated  
at any given maximum ambient temperature (T  
from the following equation:  
)
A_MAX  
T
= T  
+ θ ×P  
A_MAX JA LOSS  
(
)
A number of thermal vias that connect to a large  
ground plane should be provided under the exposed  
pad of the device, for efficient heat dissipation.  
J_MAX  
If the application has a thermal-management system that  
ensures that the exposed pad of the device is maintained  
at a given temperature (T  
) by using proper heat  
EP_MAX  
sinks, then the junction temperature of the device can be  
estimated at any given maximum ambient temperature as:  
T
= T  
+ θ ×P  
(
)
J_MAX  
EP_MAX JC LOSS  
Junction temperatures greater than +125°C degrades  
operating lifetimes.  
Maxim Integrated  
20  
www.maximintegrated.com  
 
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Ordering Information  
PART  
PIN-PACKAGE  
PACKAGE-SIZE  
MAX17521ATG+  
*EP = Exposed pad.  
24 TQFN-EP*  
4mm X 5mm  
Chip Information  
PROCESS: BiCMOS  
Maxim Integrated  
21  
www.maximintegrated.com  
 
MAX17521  
60V, 1A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
1
3/15  
Initial release  
2/17  
Updated operating and junction temperature values  
1–10, 12, 20  
Updated the Typical Application Circuit on first page and replaced the Block  
Diagram. Updated Typical Operating Characteristics conditions and Operating  
Input Voltage Range section.  
1, 6–10,  
13, 15  
2
6/17  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2017 Maxim Integrated Products, Inc.  
22  

相关型号:

MAX17523

4.5V to 36V Operating Voltage Range
MAXIM

MAX17523EVKIT

4.5V to 36V Operating Voltage Range
MAXIM

MAX17524

4.5V to 60V, 3A, Dual-Output, High-Efficiency,Synchronous Step-Down DC-DC Converter
MAXIM

MAX17524ATJ+

4.5V to 60V, 3A, Dual-Output, High-Efficiency,Synchronous Step-Down DC-DC Converter
MAXIM

MAX17525

Robust, High-Power Protection Reduces System
MAXIM

MAX17525ATP+

Power Supply Support Circuit, Adjustable, 5 Channel, BICMOS, TQFN-20
MAXIM

MAX17525ATP+T

Robust, High-Power Protection Reduces System
MAXIM

MAX17526A

5.5V to 60V, 6A Current-Limiter with OV, UV, Reverse Protection, and Power Limit
MAXIM

MAX17526AATP+T

5.5V to 60V, 6A Current-Limiter with OV, UV, Reverse Protection, and Power Limit
MAXIM

MAX17526C

5.5V to 60V, 6A Current-Limiter with OV, UV, Reverse Protection, and Power Limit
MAXIM

MAX17528

1-Phase Quick-PWM Intel IMVP-6.5/GMCH Controllers
MAXIM

MAX17528GTJ+

1-Phase Quick-PWM Intel IMVP-6.5/GMCH Controllers
MAXIM