MAX1953EUB [MAXIM]

Low-Cost, High-Frequency, Current-Mode PWM Buck Controller; 低成本,高频率,电流模式PWM降压控制器
MAX1953EUB
型号: MAX1953EUB
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Cost, High-Frequency, Current-Mode PWM Buck Controller
低成本,高频率,电流模式PWM降压控制器

控制器
文件: 总22页 (文件大小:642K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2373; Rev 0; 4/02  
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
General Description  
Features  
The MAX1953/MAX1954/MAX1957 is a family of versa-  
tile, economical, synchronous current-mode, pulse-width  
modulation (PWM) buck controllers. These step-down  
controllers are targeted for applications where cost and  
size are critical.  
o Low-Cost Current-Mode Controllers  
o Fixed-Frequency PWM  
o MAX1953  
1MHz Switching Frequency  
Small Component Size, Low Cost  
Adjustable Current Limit  
The MAX1953 operates at a fixed 1MHz switching fre-  
quency, thus significantly reducing external component  
size and cost. Additionally, excellent transient response  
is obtained using less output capacitance. The MAX1953  
operates from low 3V to 5.5V input voltage and can sup-  
ply up to 10A of output current. Selectable current limit is  
provided to tailor to the external MOSFETs’ on-resistance  
for optimum cost and performance. The output voltage is  
o MAX1954  
3V to 13.2V Input Voltage  
25A Output Current Capability  
93% Efficiency  
300kHz Switching Frequency  
adjustable from 0.8V to 0.86V .  
IN  
o MAX1957  
With the MAX1954, the drain-voltage range on the high-  
side FET is 3V to 13.2V and is independent of the supply  
voltage. It operates at a fixed 300kHz switching frequen-  
cy and can be used to provide up to 25A of output cur-  
rent with high efficiency. The output voltage is adjustable  
Tracking 0.4V to 0.86V Output Voltage Range  
IN  
Sinking and Sourcing Capability of 3A  
o Shutdown Feature  
o All N-Channel MOSFET Design for Low Cost  
o No Current-Sense Resistor Needed  
from 0.8V to 0.86V  
.
HSD  
The MAX1957 features a tracking output voltage range of  
0.4V to 0.86V and is capable of sourcing or sinking  
IN  
o Internal Digital Soft-Start  
current for applications such as DDR bus termination  
and PowerPC™/ASIC/DSP core supplies. The MAX1957  
operates from a 3V to 5.5V input voltage and at a fixed  
300kHz switching frequency.  
o Thermal Overload Protection  
o Small 10-Pin µMAX Package  
Ordering Information  
The MAX1953/MAX1954/MAX1957 provide a COMP pin  
that can be pulled low to shut down the converter in  
addition to providing compensation to the error amplifier.  
An input undervoltage lockout (ULVO) is provided to  
ensure proper operation under power-sag conditions to  
prevent the external power MOSFETs from overheating.  
Internal digital soft-start is included to reduce inrush cur-  
rent. The MAX1953/MAX1954/MAX1957 are available in  
tiny 10-pin µMAX packages.  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
10 µMAX  
MAX1953EUB  
MAX1954EUB  
MAX1957EUB  
10 µMAX  
10 µMAX  
Pin Configurations  
TOP VIEW  
Applications  
Printers and Scanners  
ILIM  
1
2
3
4
5
10 BST  
Graphic Cards and Video Cards  
PCs and Servers  
COMP  
FB  
9
8
7
6
LX  
MAX1953EUB  
DH  
Microprocessor Core Supply  
Low-Voltage Distributed Power  
Telecommunications and Networking  
GND  
IN  
PGND  
DL  
µMAX  
Patent Pending  
PowerPC is a trademark of Motorola, Inc.  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
ABSOLUTE MAXIMUM RATINGS  
IN, FB to GND...........................................................-0.3V to +6V  
LX to BST..................................................................-6V to +0.3V  
BST to GND............................................................-0.3V to +20V  
DH to LX....................................................-0.3V to (V  
DL, COMP to GND.......................................-0.3V to (V + 0.3V)  
Continuous Power Dissipation (T = +70°C)  
A
(derate 5.6ꢀW/°C above +70°C)..................................444ꢀW  
Operating Teꢀperature Range ...........................-40°C to +85°C  
Junction Teꢀperature......................................................+150°C  
Storage Teꢀperature Range.............................-65°C to +150°C  
Lead Teꢀperature (soldering, 10s) .................................+300°C  
+ 0.3V)  
BST  
IN  
HSD, ILIM, REFIN to GND ........................................-0.3V to 14V  
PGND to GND .......................................................-0.3V to +0.3V  
I , I ................................................................ 100ꢀA (RMS)  
DH DL  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 5V, V  
IN  
- V = 5V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
LX A A  
BST  
PARAMETER  
CONDITIONS  
MIN  
3.0  
TYP  
MAX  
5.5  
UNITS  
V
Operating Input Voltage Range  
HSD Voltage Range  
MAX1954 only (Note 2)  
3.0  
13.2  
2
V
Quiescent Supply Current  
V
V
V
= 1.5V, no switching  
1
ꢀA  
µA  
FB  
IN  
IN  
Standby Supply Current (MAX1953/ MAX1957)  
= V  
= 5.5V, COMP = GND  
220  
350  
BST  
= V  
= 5.5V, V  
= 13.2V,  
BST  
HSD  
Standby Supply Current (MAX1954)  
Undervoltage Lockout Trip Level  
220  
350  
µA  
V
COMP = GND  
Rising and falling V , 3% hysteresis  
2.50  
0.8  
2.78  
2.95  
IN  
0.86 x  
Output Voltage Adjust Range (V  
)
V
OUT  
V
IN  
ERROR AMPLIFIER  
T
T
= 0°C to +85°C (MAX1953/MAX1954)  
= -40°C to +85°C (MAX1953/MAX1954)  
0.788  
0.776  
0.8  
0.8  
0.812  
0.812  
A
A
FB Regulation Voltage  
V
V
V
REFIN  
+ 8ꢀV  
REFIN  
- 8ꢀV  
MAX1957 only  
V
REFIN  
Transconductance  
70  
110  
5
160  
500  
500  
1.5  
µS  
nA  
nA  
V
FB Input Leakage Current  
REFIN Input Bias Current  
FB Input Coꢀꢀon-Mode Range  
V
V
= 0.9V  
FB  
= 0.8V, MAX1957 only  
5
REFIN  
-0.1  
-0.1  
5.67  
REFIN Input Coꢀꢀon-Mode Range  
MAX1957 only  
1.5  
V
Current-Sense Aꢀplifier Voltage Gain Low  
ILIM = GND (MAX1953 only)  
6.3  
3.5  
6.93  
V/V  
V
= V or ILIM = open (MAX1953 only)  
IN  
ILIM  
Current-Sense Aꢀplifier Voltage Gain  
3.15  
3.85  
V/V  
MAX1954/MAX1957  
2
_______________________________________________________________________________________  
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 5V, V  
IN  
- V = 5V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
LX A A  
BST  
PARAMETER  
CONDITIONS  
MIN  
50  
TYP  
125  
105  
210  
320  
210  
MAX  
200  
125  
235  
350  
235  
UNITS  
ILIM Input Iꢀpedance  
Current-Liꢀit Threshold  
MAX1953 only  
kΩ  
V
V
V
V
- V , ILIM = GND (MAX1953 only)  
85  
PGND  
PGND  
PGND  
PGND  
LX  
- V , ILIM = open (MAX1953 only)  
190  
290  
190  
LX  
ꢀV  
- V , ILIM = IN (MAX1953 only)  
LX  
V (MAX1954/MAX1957 only)  
LX  
OSCILLATOR  
MAX1953  
0.8  
240  
86  
1
1.2  
360  
96  
MHz  
kHz  
%
Switching Frequency  
Maxiꢀuꢀ Duty Cycle  
Miniꢀuꢀ Duty Cycle  
SOFT-START  
MAX1954/MAX1957  
300  
89  
Measured at DH  
MAX1953, ꢀeasured at DH  
MAX1954/MAX1957, ꢀeasured at DH  
15  
18  
%
4.5  
5.5  
MAX1953  
4
Soft-Start Period  
ꢀs  
MAX1954/MAX1957  
3.4  
FET DRIVERS  
DH On-Resistance, High State  
DH On-Resistance, Low State  
DL On-Resistance, High State  
DL On-Resistance, Low State  
2
3
3
3
2
1.5  
2
0.8  
V
= 10.5V, V = V = 5.5V,  
LX IN  
BST  
LX, BST Leakage Current  
20  
30  
µA  
µA  
MAX1953/MAX1957  
V
V
= 18.7V, V = 13.2V, V = 5.5V  
LX IN  
= 13.2V (MAX1954 only)  
BST  
LX, BST, HSD Leakage Current  
HSD  
THERMAL PROTECTION  
Therꢀal Shutdown  
Rising teꢀperature  
160  
15  
°C  
°C  
Therꢀal Shutdown Hysteresis  
SHUTDOWN CONTROL  
COMP Logic Level Low  
COMP Logic Level High  
COMP Pullup Current  
3V < V < 5.5V  
0.25  
100  
V
V
IN  
3V < V < 5.5V  
0.8  
IN  
µA  
Note 1: Specifications to -40°C are guaranteed by design and not production tested.  
Note 2: HSD and IN are externally connected for applications where V < 5.5V.  
HSD  
_______________________________________________________________________________________  
3
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
MAX1954  
EFFICIENCY vs. LOAD CURRENT  
MAX1957  
EFFICIENCY vs. LOAD CURRENT  
MAX1953  
EFFICIENCY vs. LOAD CURRENT  
100  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
V
= 3.3V  
IN  
V
= 2.5V  
OUT  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 1.7V  
OUT  
V
= 1.25V  
OUT  
V
= 5V  
IN  
V
= 5V  
V
= 2.5V  
V = 5V  
IN  
CIRCUIT OF FIGURE 3  
IN  
OUT  
CIRCUIT OF FIGURE 2  
CIRCUIT OF FIGURE 1  
0.1  
1
10  
0.1  
1
LOAD CURRENT (A)  
10  
0.1  
1
LOAD CURRENT (A)  
10  
LOAD CURRENT (A)  
MAX1953  
OUTPUT VOLTAGE vs. LOAD CURRENT  
MAX1954  
EFFICIENCY vs. LOAD CURRENT  
2.60  
2.55  
2.50  
2.45  
2.40  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 1.8V  
OUT  
V
= 5V  
IN  
V
= 3.3V  
IN  
V
= 12V  
IN  
CIRCUIT OF FIGURE 1  
1.5 2.0 2.5 3.0  
CIRCUIT OF FIGURE 4  
0
0.5  
1.0  
0
5
10  
15 20 25  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
MAX1954  
OUTPUT VOLTAGE vs. LOAD CURRENT  
MAX1954  
OUTPUT VOLTAGE vs. LOAD CURRENT  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
V
= V = 5V  
IN  
V
= V = 5V  
IN  
HSD  
HSD  
CIRCUIT OF FIGURE 2  
CIRCUIT OF FIGURE 2  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4
_______________________________________________________________________________________  
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
MAX1953  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
MAX1954  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
MAX1957  
OUTPUT VOLTAGE vs. LOAD CURRENT  
1.35  
2.60  
2.55  
2.50  
2.45  
2.40  
1.76  
1.74  
1.72  
1.70  
1.68  
1.66  
1.64  
1.30  
1.25  
I
= 3A  
LOAD  
I
= 0  
LOAD  
I
= 0  
LOAD  
V
= 5V  
I
= 5A  
4.0  
IN  
LOAD  
1.20  
1.15  
CIRCUIT OF FIGURE 2  
4.5 5.0 5.5  
CIRCUIT OF FIGURE 1  
4.5 5.0  
INPUT VOLTAGE (V)  
CIRCUIT OF FIGURE 3  
3.0  
3.5  
4.0  
5.5  
3.0  
3.5  
-3  
-2  
-1  
0
1
2
3
INPUT VOLTAGE (V)  
LOAD CURRENT (A)  
MAX1954  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
MAX1957  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
1.29  
1.27  
1.25  
1.23  
1.21  
1.19  
I
= 0  
LOAD  
I
= 0  
LOAD  
I
= 5A  
LOAD  
I
= 3A  
LOAD  
CIRCUIT OF FIGURE 3  
4.5 5.0 5.5  
CIRCUIT OF FIGURE 2  
4.5 5.0  
3.0  
3.5  
4.0  
5.5  
3.0  
3.5  
4.0  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
MAX1953  
FREQUENCY vs. INPUT VOLTAGE  
MAX1954/MAX1957  
FREQUENCY vs. INPUT VOLTAGE  
320  
315  
310  
305  
300  
295  
290  
285  
280  
275  
270  
V
= 1.25V  
OUT  
V
= 2.5V  
OUT  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
T
= -40°C  
A
T
= -40°C  
A
T
= +25°C  
A
T
= +85°C  
A
T
= +85°C  
A
T
= +25°C  
A
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
_______________________________________________________________________________________  
5
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
MAX1954  
LOAD TRANSIENT  
MAX1953  
LOAD TRANSIENT  
MAX1953 toc16  
MAX1953 toc15  
V
OUT  
AC-COUPLED  
100mV/div  
V
OUT  
AC-COUPLED  
100mV/div  
3A  
5A  
2.5A  
I
I
1.5A  
LOAD  
LOAD  
CIRCUIT OF FIGURE 1  
400µs/div  
400µs/div  
MAX1953  
NO-LOAD SWITCHING WAVEFORMS  
MAX1957  
LOAD TRANSIENT  
MAX1953 toc18  
MAX1953 toc17  
I
2A/div  
LX  
V
OUT  
AC-COUPLED  
50mV/div  
3A  
LX  
DL  
DH  
5V/div  
5V/div  
5V/div  
I
LOAD  
-3A  
2µs/div  
400µs/div  
6
_______________________________________________________________________________________  
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
MAX1953  
MAX1954/MAX1957  
NO-LOAD SWITCHING WAVEFORMS  
MAX1953  
FULL-LOAD SWITCHING WAVEFORMS  
SHORT-CIRCUIT SWITCHING WAVEFORMS  
MAX1953 toc20  
MAX1953 toc21  
MAX1953 toc19  
I
5A/div  
5V/div  
I
2A/div  
LX  
LX  
I
2A/div  
LX  
LX  
DL  
LX  
DL  
5V/div  
5V/div  
LX  
DL  
10V/div  
5V/div  
5V/div  
5V/div  
DH  
DH  
5V/div  
DH  
10V/div  
2µs/div  
4µs/div  
2µs/div  
MAX1954/MAX1957  
FULL-LOAD SWITCHING WAVEFORMS  
MAX1954/MAX1957  
SHORT-CIRCUIT SWITCHING WAVEFORMS  
MAX1953 toc22  
MAX1953 toc23  
I
2A/div  
LX  
I
5A/div  
LX  
LX  
DL  
DH  
10V/div  
LX  
DL  
DH  
10V/div  
5V/div  
5V/div  
10V/div  
10V/div  
4µs/div  
4µs/div  
_______________________________________________________________________________________  
7
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX1953  
MAX1954  
MAX1957  
ILIM Sets the Current-Liꢀit Threshold for the Low-Side N-Channel  
MOSFET, as well as the Current-Sense Aꢀplifier Gain. Connect to IN  
for 320ꢀV, leave floating for 210ꢀV, or connect to GND for 105ꢀV  
current-liꢀit threshold.  
1
ILIM  
HSD Senses the Voltage at the Drain of the High-Side N-Channel  
MOSFET. Connect to the high-side MOSFET drain using a Kelvin  
connection.  
1
HSD  
REFIN Sets the FB Regulation Voltage. Drive REFIN with the desired  
FB regulation voltage using an external resistor-divider. Bypass to  
GND with a 0.1µF capacitor.  
1
2
REFIN  
COMP  
Coꢀpensation and Shutdown Control Pin. Connect an RC network to  
coꢀpensate control loop. Drive to GND to shut down the IC.  
2
2
Feedback Input. Regulates at V = 0.8V (MAX1953/MAX1954) or  
FB  
REFIN (MAX1957). Connect FB to a resistor-divider to set the output  
voltage (MAX1953/MAX1954). Connect to output through a decoupling  
resistor (MAX1957).  
3
4
3
4
3
4
FB  
GND  
Ground  
Input Voltage (3V to 5.5V). Provides power for the IC. For the  
MAX1953/MAX1957, IN serves as the current-sense input for the high-  
side MOSFET. Connect to the drain of the high-side MOSFET  
(MAX1953/MAX1957). Bypass IN to GND close to the IC with a  
0.22µF (MAX1954) capacitor. Bypass IN to GND close to the IC with  
10µF and 4.7µF in parallel (MAX1953/MAX1957) capacitors. Use  
ceraꢀic capacitors.  
5
5
5
IN  
Low-Side Gate-Drive Output. Drives the synchronous-rectifier MOSFET.  
6
7
8
6
7
8
6
7
8
DL  
PGND  
DH  
Swings froꢀ PGND to V .  
IN  
Power Ground. Connect to source of the synchronous rectifier close to  
the IC.  
High-Side Gate-Drive Output. Drives the high-side MOSFET. DH is a  
floating driver output that swings froꢀ V to V  
.
LX  
BST  
Master Controller Current-Sense Input. Connect LX to the junction of  
the MOSFETs and inductor. LX is the reference point for the current  
liꢀit.  
9
9
9
LX  
Boost Capacitor Connection for High-Side Gate Driver. Connect a  
0.1µF ceraꢀic capacitor froꢀ BST to LX and a Schottky diode to IN.  
10  
10  
10  
BST  
8
_______________________________________________________________________________________  
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
Functional Diagram  
IN  
MAX1953  
MAX1954  
MAX1957  
THERMAL  
LIMIT  
UVLO  
HSD  
(MAX1954  
ONLY)  
SLOPE  
COMPENSATION  
SHUTDOWN  
COMPARATOR  
0.5V  
BST  
DH  
COMP  
FB  
ERROR  
AMPLIFIER  
PWM  
CONTROL  
CIRCUITRY  
CURRENT-  
SENSE  
CIRCUITRY  
GND  
LX  
DL  
IN  
REFERENCE  
AND  
SOFT-START  
DAC  
REFIN  
(MAX1957  
ONLY)  
PGND  
CURRENT-LIMIT  
COMPARATOR  
SHORT-CIRCUIT  
CURRENT-LIMIT  
CIRCUITRY  
ILIM  
(MAX1953  
ONLY)  
CLOCK  
Typical Operating Circuit  
INPUT  
3V TO 5.5V  
IN  
ILIM  
BST  
DH  
OUTPUT  
0.8V TO 0.86V  
IN  
LX  
DL  
MAX1953  
COMP  
PGND  
GND  
FB  
_______________________________________________________________________________________  
9
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
DC-DC Converter Control Architecture  
Detailed Description  
The MAX1953/MAX1954/MAX1957 step-down convert-  
The MAX1953/MAX1954/MAX1957 are single-output,  
ers use a PWM, current-ꢀode control scheꢀe. An inter-  
fixed-frequency, current-ꢀode, step-down, PWM, DC-  
nal transconductance aꢀplifier establishes an integrated  
DC converter controllers. The MAX1953 switches at  
error voltage. The heart of the PWM controller is an open-  
1MHz, allowing the use of sꢀall external coꢀponents for  
loop coꢀparator that coꢀpares the integrated voltage-  
sꢀall applications. Table 1 lists suggested coꢀponents.  
feedback signal against the aꢀplified current-sense  
The MAX1954 switches at 300kHz for higher efficiency  
and operates froꢀ a wider range of input voltages.  
Figure 1 is the MAX1953 typical application circuit. The  
MAX1953/MAX1954/MAX1957 are designed to drive a  
pair of external N-channel power MOSFETs in a syn-  
chronous buck topology to iꢀprove efficiency and cost  
coꢀpared with a P-channel power MOSFET topology.  
signal plus the slope coꢀpensation raꢀp, which are  
suꢀꢀed into the ꢀain PWM coꢀparator to preserve  
inner-loop stability and eliꢀinate inductor staircasing. At  
each rising edge of the internal clock, the high-side  
MOSFET turns on until the PWM coꢀparator trips or the  
ꢀaxiꢀuꢀ duty cycle is reached. During this on-tiꢀe, cur-  
rent raꢀps up through the inductor, storing energy in a  
ꢀagnetic field and sourcing current to the output. The  
current-ꢀode feedback systeꢀ regulates the peak  
inductor current as a function of the output voltage error  
signal. The circuit acts as a switch-ꢀode transconduc-  
tance aꢀplifier and pushes the output LC filter pole nor-  
ꢀally found in a voltage-ꢀode PWM to a higher  
frequency.  
The on-resistance of the low-side MOSFET is used for  
short-circuit current-liꢀit sensing, while the high-side  
MOSFET on-resistance is used for current-ꢀode feed-  
back and current-liꢀit sensing, thus eliꢀinating the  
need for current-sense resistors. The MAX1953 has  
three selectable short-circuit current-liꢀit thresholds:  
105ꢀV, 210ꢀV, and 320ꢀV. The MAX1954 and  
MAX1957 have 210ꢀV fixed short-circuit current-liꢀit  
thresholds. The MAX1953/MAX1954/MAX1957 accept  
input voltages froꢀ 3V to 5.5V. The MAX1954 is config-  
ured with a high-side drain input (HSD) allowing an  
extended input voltage range of 3V to 13.2V that is  
independent of the input supply (Figure 2). The  
MAX1957 is tailored for tracking output voltage applica-  
tions such as DDR bus terꢀination supplies, referred to  
During the second half of the cycle, the high-side MOS-  
FET turns off and the low-side MOSFET turns on. The  
inductor releases the stored energy as the current raꢀps  
down, providing current to the output. The output capaci-  
tor stores charge when the inductor current exceeds the  
required load current and discharges when the inductor  
current is lower, sꢀoothing the voltage across the load.  
Under overload conditions, when the inductor current  
exceeds the selected current-liꢀit (see the Current Limit  
Circuit section), the high-side MOSFET is not turned on  
at the rising clock edge and the low-side MOSFET  
reꢀains on to let the inductor current raꢀp down.  
as V . It utilizes a resistor-divider network connected  
TT  
to REFIN to keep the 1/2 ratio tracking between V  
TT  
and V  
(Figure 3). The MAX1957 can source and  
DDQ  
sink up to 3A. Figure 4 shows the MAX1954 20A circuit.  
The MAX1953/MAX1954/MAX1957 operate in a forced-  
PWM ꢀode. As a result, the controller ꢀaintains a con-  
stant switching frequency, regardless of load, to allow for  
easier postfiltering of the switching noise.  
Table 1. Suggested Components  
DESIGNATION  
MAX1953  
MAX1954  
MAX1957  
20A CIRCUIT  
10µF, 6.3V X5R CER  
Taiyo Yuden  
0.22µF, 10V X7R CER  
Keꢀet  
3 x 22µF, 6.3V X5R CER  
Taiyo Yuden  
0.22µF, 10V X7R CER  
Keꢀet  
C1  
JMK212BJ106MG  
C0603C224M8RAC  
JMK316BJ226ML  
C0603C224M8RAC  
0.1µF, 50V X7R CER  
Taiyo Yuden  
UMK107BJ104KA  
10µF, 6.3V X5R CER  
Taiyo Yuden  
JMK212BJ106MG  
0.1µF, 50V X7R CER  
Taiyo Yuden  
UMK107BJ104KA  
10µF, 6.3V X5R CER  
Taiyo Yuden  
JMK212BJ106MG  
C2  
C3  
10µF, 6.3V X5R CER  
Taiyo Yuden  
0.1µF, 50V X7R CER  
Taiyo Yuden  
270µF, 2V SP Polyꢀer  
Panasonic  
10µF, 6.3V X5R CER  
Taiyo Yuden  
JMK212BJ106MG  
UMK107BJ104KA  
EEFUEOD271R  
JMK212BJ106MG  
10 ______________________________________________________________________________________  
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
Table 1. Suggested Components (continued)  
DESIGNATION  
MAX1953  
MAX1954  
MAX1957  
20A CIRCUIT  
10µF, 6.3V X5R CER  
Taiyo Yuden  
180µF, 4V SP Polyꢀer  
Panasonic  
270µF, 2V SP Polyꢀer  
Panasonic  
10µF, 6.3V X5R CER  
Taiyo Yuden  
C4  
JMK212BJ106MG  
EEFUEOG181R  
EEFUEOD271R  
JMK212BJ106MG  
4.7µF, 6.3V X5R CER  
Taiyo Yuden  
JMK212BJ475MG  
270µF, 2V SP Polyꢀer  
Panasonic  
EEFUEOD271R  
10µF, 6.3V X5R CER  
Taiyo Yuden  
JMK212BJ106MG  
C5  
C6  
10µF, 6.3V X5R CER  
Taiyo Yuden  
JMK212BJ106MG  
10µF, 6.3V X5R CER  
Taiyo Yuden  
JMK212BJ106MG  
10µF, 6.3V X5R CER  
Taiyo Yuden  
JMK212BJ106MG  
4.7µF, 6.3V X5R CER  
Taiyo Yuden  
JMK212BJ475MG  
0.1µF, 50V X7R CER  
Taiyo Yuden  
UMK107BJ104KA  
C7  
0.1µF, 50V X7R CER  
Taiyo Yuden  
UMK107BJ104KA  
270µF, 2V SP polyꢀer  
Panasonic  
EEFUEOD271R  
C8  
270µF, 2V SP polyꢀer  
Panasonic  
EEFUEOD271R  
C9-C13  
C14  
1500pF, 50V X7R CER  
Murata  
GRM39X7R152K50  
270pF, 10V X7R CER  
Keꢀet  
1000pF, 10V X7R CER  
Keꢀet  
470pF, 50V X7R CER  
Murata  
560pF, 10V X7R CER  
Keꢀet  
C
C
C0402C271M8RAC  
C0402C102M8RAC  
GRM39X7R471K50  
C0402C561M8RAC  
47pF, 10V C0G CER  
Keꢀet  
68pF, 50V COG CER  
Murata  
15pF, 10V C0G CER  
Keꢀet  
C
f
C0402C470K8GAC  
GRM39COG680J50  
C0402C150K8GAC  
Schottky diode  
Central Seꢀiconductor  
CMPSH1-4  
Schottky diode  
Central Seꢀiconductor  
CMPSH1-4  
Schottky diode  
Central Seꢀiconductor  
CMPSH1-4  
Schottky diode  
Central Seꢀiconductor  
CMPSH1-4  
D1  
L1  
2.7µH 6.6A  
Coilcraft  
DO3316-272HC  
2.7µH 6.6A  
Coilcraft  
DO3316-272HC  
0.8µH 27.5A  
Suꢀida  
CEP125U-0R8  
1µH 3.6A  
Toko 817FY-1R0M  
Dual MOSFET 20V 5A  
Fairchild  
FDS6898A  
Dual MOSFET 20V  
Fairchild  
FDS6890A  
Dual MOSFET 20V  
Fairchild  
FDS6898A  
N-channel 30V  
International Rectifier  
IRF7811W  
N1-N2  
N3-N4  
N-channel 30V  
Siliconix Si4842DY  
R1  
R2  
R3  
16.9k1%  
8.06k1%  
9.09k1%  
8.06k1%  
2k1%  
10k1%  
2k1%  
8.06k1%  
10k5%  
51.1k5%  
R
33k5%  
62k5%  
270k5%  
C
______________________________________________________________________________________ 11  
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
V
IN  
3V TO 5.5V  
C6  
10µF  
C1  
10µF  
C5  
4.7µF  
D1  
IN  
N1  
ILIM  
BST  
DH  
L1  
1µH  
C2  
0.1µF  
V
OUT  
2.5V AT 3A  
R
C
LX  
MAX1953  
33kΩ  
COMP  
C3  
10µF  
C4  
10µF  
C
R1  
16.9kΩ  
C
DL  
270pF  
PGND  
R2  
8.06Ω  
GND  
FB  
Figure 1. Typical Application Circuit for the MAX1953  
V
IN  
C2  
10µF  
3V TO 5.5V  
C1  
0.22µF  
D1  
IN  
BST  
DH  
N1  
V
HSD  
5.5V TO 13.2V  
HSD  
L1  
2.7µH  
C3  
V
OUT  
1.7V AT 3A  
0.1µF  
R
C
LX  
MAX1954  
62kΩ  
COMP  
C4  
180µF  
R1  
9.09kΩ  
DL  
C
C
1000pF  
C
f
47pF  
PGND  
R2  
8.06kΩ  
GND  
FB  
Figure 2. Typical Application Circuit for the MAX1954  
12 ______________________________________________________________________________________  
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
V
IN  
3V TO 5.5V  
C6  
10µF  
C1  
3 22µF  
C7  
4.7µF  
D1  
R
C
51.1kΩ  
IN  
N1  
COMP  
BST  
DH  
V
DDQ  
C
C
f
68pF  
C
470pF  
L1  
C2  
0.1µF  
R1  
2.7µH  
V
= 1/2 V  
DDQ  
TT  
2kΩ  
LX  
MAX1957  
C14  
1500pF  
REFIN  
C3  
270µF  
C4  
270µF  
C5  
270µF  
R3  
10kΩ  
DL  
C8  
0.1µF  
R2  
2kΩ  
PGND  
GND  
FB  
Figure 3. Typical Application Circuit for the MAX1957  
V
HSD  
10.8V TO 13.2V  
V
IN  
3V TO 5.5V  
C2  
10µF  
C3  
10µF  
C4  
10µF  
C5  
10µF  
C6  
10µF  
D1  
HSD  
BST  
DH  
C1  
0.22µF  
N1  
N3  
N2  
N4  
IN  
L1  
0.8µH  
C7  
0.1µF  
V
OUT  
1.8V AT 20A  
R
C
LX  
MAX1954  
270kΩ  
COMP  
C8  
270µF  
C9  
270µF  
C10  
270µF  
C11  
270µF  
C12  
C13  
270µF  
R1  
10kΩ  
DL  
270µF  
C
C
560pF  
C
f
15pF  
PGND  
R2  
8.06kΩ  
GND  
FB  
Figure 4. 20A Circuit  
______________________________________________________________________________________ 13  
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
Current-Sense Amplifier  
Synchronous Rectifier Driver (DL)  
Synchronous rectification reduces conduction losses in  
the rectifier by replacing the norꢀal Schottky catch  
diode with a low-resistance MOSFET switch. The  
MAX1953/MAX1954/MAX1957 use the synchronous  
rectifier to ensure proper startup of the boost gate-  
driver circuit and to provide the current-liꢀit signal. The  
DL low-side waveforꢀ is always the coꢀpleꢀent of the  
DH high-side drive waveforꢀ. A dead-tiꢀe circuit ꢀoni-  
tors the DL output and prevents the high-side MOSFET  
froꢀ turning on until DL is fully off, thus preventing  
cross-conduction or shoot-through. In order for the  
dead-tiꢀe circuit to work properly, there ꢀust be a low-  
resistance, low-inductance path froꢀ the DL driver to  
the MOSFET gate. Otherwise, the sense circuitry in the  
MAX1953/MAX1954/MAX1957 can interpret the MOS-  
FET gate as OFF when gate charge actually reꢀains.  
The dead tiꢀe at the other edge (DH turning off) is  
deterꢀined through gate sensing as well.  
The MAX1953/MAX1954/MAX1957scurrent-sense cir-  
cuit aꢀplifies (A = 3.5 typ) the current-sense voltage  
V
(the high-side MOSFETs on-resistance (R  
) ꢀulti-  
DS(ON)  
plied by the inductor current). This aꢀplified current-  
sense signal and the internal-slope coꢀpensation  
signal are suꢀꢀed (V  
) together and fed into the  
SUM  
PWM coꢀparators inverting input. The PWM coꢀpara-  
tor shuts off the high-side MOSFET when V  
SUM  
exceeds the integrated feedback voltage (V  
).  
COMP  
Current-Limit Circuit  
The current-liꢀit circuit eꢀploys a lossless current-liꢀit-  
ing algorithꢀ that uses the low-side and high-side  
MOSFETson-resistances as the sensing eleꢀents. The  
voltage across the high-side MOSFET is ꢀonitored for  
current-ꢀode feedback, as well as current liꢀit. This  
signal is aꢀplified by the current-sense aꢀplifier and is  
coꢀpared with a current-sense voltage. If the current-  
sense signal is larger than the set current-liꢀit voltage,  
the high-side MOSFET turns off. Once the high-side  
MOSFET turns off, the low-side MOSFET is ꢀonitored  
for current liꢀit. If the voltage across the low-side MOS-  
High-Side Gate-Drive Supply (BST)  
Gate-drive voltage for the high-side switch is generated  
by a flying capacitor boost circuit (Figure 5). The  
capacitor between BST and LX is charged froꢀ the V  
IN  
supply up to V , ꢀinus the diode drop while the low-  
IN  
side MOSFET is on. When the low-side MOSFET is  
switched off, the stored voltage of the capacitor is  
stacked above LX to provide the necessary turn-on  
voltage (V ) for the high-side MOSFET. The controller  
GS  
then closes an internal switch between BST and DH to  
turn the high-side MOSFET on.  
FET (R  
I
) does not exceed the short-  
DS(ON)  
INDUCTOR  
circuit current liꢀit, the high-side MOSFET turns on  
norꢀally. In this condition, the output drops sꢀoothly  
out of regulation. If the voltage across the low-side  
MOSFET exceeds the short-circuit current-liꢀit thresh-  
old at the beginning of each new oscillator cycle, the  
MAX1953/MAX1954/MAX1957 do not turn on the high-  
side MOSFET.  
In the case where the output is shorted, the low-side  
MOSFET is ꢀonitored for current liꢀit. The low-side  
MOSFET is held on to let the current in the inductor  
raꢀp down. Once the voltage across the low-side  
MOSFET drops below the short-circuit current-liꢀit  
threshold, the high-side MOSFET is pulsed. Under this  
condition, the frequency of the MAX1953/MAX1954/  
MAX1957 appears to decrease because the on-tiꢀe of  
the low-side MOSFET extends beyond a clock cycle.  
Undervoltage Lockout  
If the supply voltage at IN drops below 2.75V, the  
MAX1953/MAX1954/MAX1957 assuꢀe that the supply  
voltage is too low to ꢀake valid decisions, so the UVLO  
circuitry inhibits switching and forces the DL and DH  
gate drivers low. After the voltage at IN rises above  
2.8V, the controller goes into the startup sequence and  
resuꢀes norꢀal operation.  
Startup  
The MAX1953/MAX1954/MAX1957 start switching when  
the voltage at IN rises above the UVLO threshold.  
However, the controller is not enabled unless all four of  
the following conditions are ꢀet:  
The actual peak output current is greater than the  
short-circuit current-liꢀit threshold by an aꢀount equal  
to the inductor ripple current. Therefore, the exact cur-  
rent-liꢀit characteristic and ꢀaxiꢀuꢀ load capability  
are a function of the low-side MOSFET on-resistance,  
inductor value, input voltage, and output voltage.  
V exceeds the 2.8V UVLO threshold.  
IN  
The short-circuit current-liꢀit threshold is preset for the  
MAX1954/MAX1957 at 210ꢀV. The MAX1953, however,  
has three options for the current-liꢀit threshold: con-  
nect ILIM to IN for a 320ꢀV threshold, connect ILIM to  
GND for 105ꢀV, or leave floating for 210ꢀV.  
The internal reference voltage exceeds 92% of its  
noꢀinal value (V  
> 1 V).  
REF  
The internal bias circuitry powers up.  
The therꢀal overload liꢀit is not exceeded.  
14 ______________________________________________________________________________________  
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
Design Procedures  
Setting the Output Voltage  
To set the output voltage for the MAX1953/MAX1954,  
IN  
connect FB to the center of an external resistor-divider  
BST  
connected between the output to GND (Figures 1 and  
DH  
LX  
DL  
2). Select R2 between 8kand 24k, and then calcu-  
late R1 by:  
MAX1953  
MAX1954  
MAX1957  
V
V
OUT  
R1 = R2 ×  
1  
FB  
where V  
= 0.8V. R1 and R2 should be placed as  
FB  
close to the IC as possible.  
For the MAX1957, connect FB directly to the output  
through a decoupling resistor of 10kto 21k(Figure  
3). The output voltage is then equal to the voltage at  
REFIN. Again, this resistor should be placed as close to  
the IC as possible.  
Figure 5. DH Boost Circuit  
Once these conditions are ꢀet, the step-down controller  
enables soft-start and starts switching. The soft-start cir-  
cuitry gradually raꢀps up to the feedback-regulation  
voltage in order to control the rate-of-rise of the output  
voltage and reduce input surge currents during startup.  
The soft-start period is 1024 clock cycles (1024/f ,  
MAX1954/MAX1957) or 4096 clock cycles (4096/f ,  
MAX1953) and the internal soft-start DAC raꢀps the  
voltage up in 64 steps. The output reaches regulation  
when soft-start is coꢀpleted, regardless of output  
capacitance and load.  
Determining the Inductor Value  
There are several paraꢀeters that ꢀust be exaꢀined  
when deterꢀining which inductor is to be used. Input  
voltage, output voltage, load current, switching frequen-  
cy, and LIR. LIR is the ratio of inductor current ripple to  
DC load current. A higher LIR value allows for a sꢀaller  
inductor, but results in higher losses and higher output  
ripple. A good coꢀproꢀise between size, efficiency,  
and cost is an LIR of 30%. Once all of the paraꢀeters  
are chosen, the inductor value is deterꢀined as follows:  
S
S
Shutdown  
The MAX1953/MAX1954/MAX1957 feature a low-power  
shutdown ꢀode. Use an open-collector transistor to  
pull COMP low to shut down the IC. During shutdown,  
the output is high iꢀpedance. Shutdown reduces the  
V
× V V  
OUT  
(
IN  
OUT  
)
L =  
V
× f × I  
× LIR  
IN  
S
LOAD MAX  
(
)
quiescent current (I ) to approxiꢀately 220µA.  
Q
where f is the switching frequency. Choose a standard  
S
Thermal Overload Protection  
Therꢀal overload protection liꢀits total power dissipation  
in the MAX1953/MAX1954/MAX1957. When the junction  
value close to the calculated value. The exact inductor  
value is not critical and can be adjusted in order to  
ꢀake trade-offs aꢀong size, cost, and efficiency. Lower  
inductor values ꢀiniꢀize size and cost, but they also  
increase the output ripple and reduce the efficiency due  
to higher peak currents. By contrast, higher inductor val-  
ues increase efficiency, but eventually resistive losses  
due to extra turns of wire exceed the benefit gained  
froꢀ lower AC current levels.  
teꢀperature exceeds T = +160°C, an internal therꢀal  
J
sensor shuts down the device, allowing the IC to cool.  
The therꢀal sensor turns the IC on again after the junc-  
tion teꢀperature cools by 15°C, resulting in a pulsed out-  
put during continuous therꢀal overload conditions.  
For any area-restricted applications, find a low-core  
loss inductor having the lowest possible DC resistance.  
Ferrite cores are often the best choice, although pow-  
dered iron is inexpensive and can work well at 300kHz.  
______________________________________________________________________________________ 15  
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
The chosen inductors saturation current rating ꢀust  
exceed the expected peak inductor current (IPEAK).  
Deterꢀine IPEAK as:  
FET. A good general rule is to allow 0.5% additional  
resistance for each °C of MOSFET junction teꢀperature  
rise. The calculated V  
ꢀust be less than V  
.
CS  
VALLEY  
For the MAX1953, connect ILIM to GND for a short-  
circuit current-liꢀit voltage of 105ꢀV, to V for 320ꢀV  
IN  
LIR  
2
I
= I  
+
× I  
LOAD MAX  
PEAK LOAD MAX  
(
)
(
)
or leave ILIM floating for 210ꢀV.  
MOSFET Selection  
The MAX1953/MAX1954/MAX1957 drive two external,  
logic-level, N-channel MOSFETs as the circuit switch  
eleꢀents. The key selection paraꢀeters are:  
Setting the Current Limit  
The MAX1953/MAX1954/MAX1957 use a lossless cur-  
rent-sense ꢀethod for current liꢀiting. The voltage  
drops across the MOSFETs created by their on-resis-  
tances are used to sense the inductor current.  
Calculate the current-liꢀit threshold as follows:  
On-Resistance (R  
): The lower, the better.  
DS(ON)  
Maximum Drain-to-Source Voltage (V  
): Should  
DSS  
be at least 20% higher than the input supply rail at  
0.8V  
the high side MOSFETs drain.  
V
=
CS  
A
Gate Charges (Q , Q , Q ): The lower, the better.  
CS  
g
gd  
gs  
For a 3.3V input application, choose a MOSFET with a  
rated R at V = 2.5V. For a 5V input application,  
where A  
CS  
is the gain of the current-sense aꢀplifier.  
CS  
DS(ON)  
GS  
A
is 6.3 for the MAX1953 when ILIM is connected to  
choose the MOSFETs with rated R  
at V  
4.5V.  
DS(ON)  
GS  
GND and 3.5 for the MAX1954/MAX1957, and for the  
MAX1953 when ILIM is connected to IN or floating. The  
0.8V is the usable dynaꢀic range of COMP (V  
For a good coꢀproꢀise between efficiency and cost,  
choose the high-side MOSFET (N1) that has conduction  
losses equal to switching loss at the noꢀinal input volt-  
age and output current. The selected low-side and high-  
side MOSFETs (N2 and N1, respectively) ꢀust have  
).  
COMP  
Initially, the high-side MOSFET is ꢀonitored. Once the  
voltage drop across the high-side MOSFET exceeds V  
,
CS  
the high-side MOSFET is turned off and the low-side  
MOSFET is turned on. The voltage across the low-side  
MOSFET is then ꢀonitored. If the voltage across the low-  
side MOSFET exceeds the short-circuit current liꢀit, a  
short-circuit condition is deterꢀined and the low-side  
MOSFET is held on. Once the ꢀonitored voltage falls  
below the short-circuit current-liꢀit threshold, the  
MAX1953/MAX1954/MAX1957 switch norꢀally. The short-  
circuit current-liꢀit threshold is fixed at 210ꢀV for the  
MAX1954/ MAX1957 and is selectable for the MAX1953.  
R
that satisfies the current-liꢀit setting condition  
DS(ON)  
above. For N2, ꢀake sure that it does not spuriously turn  
on due to dV/dt caused by N1 turning on, as this would  
result in shoot-through current degrading the efficiency.  
MOSFETs with a lower Q /Q ratio have higher iꢀꢀu-  
gd gs  
nity to dV/dt.  
For proper therꢀal ꢀanageꢀent design, the power dis-  
sipation ꢀust be calculated at the desired ꢀaxiꢀuꢀ  
operating junction teꢀperature, T  
. N1 and N2  
J(MAX)  
have different loss coꢀponents due to the circuit oper-  
ation. N2 operates as a zero-voltage switch; therefore,  
When selecting the high-side MOSFET, use the follow-  
ing ꢀethod to verify that the MOSFETs R  
is suffi-  
DS(ON)  
ꢀajor losses are the channel conduction loss (P  
)
N2CC  
ciently low at the operating junction teꢀperature (T ):  
J
and the body diode conduction loss (P  
):  
N2DC  
0.8V  
× I  
PEAK  
USER  
AT T  
J(MAX)  
R
DS(ON)  
DS(ON)N1  
A
CS  
V
2
OUT  
P
= (1−  
) × I  
× R  
LOAD  
N2CC  
DS(ON)  
The voltage drop across the low-side MOSFET at the  
V
IN  
valley point and at I  
is:  
LOAD(MAX)  
P
= 2 × I  
× V × t  
× f  
DT S  
N2DC  
LOAD  
F
LIR  
2
where V is the body diode forward-voltage drop, t is  
F
dt  
V
=R  
× (I  
× I  
)
VALLEY  
DS(ON)  
LOAD(MAX)  
LOAD MAX  
(
)
the dead tiꢀe between N1 and N2 switching transi-  
tions, and f is the switching frequency.  
S
where R  
is the ꢀaxiꢀuꢀ value at the desired  
ꢀaxiꢀuꢀ operating junction teꢀperature of the MOS-  
DS(ON)  
16 ______________________________________________________________________________________  
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
N1 operates as a duty-cycle control switch and has the  
following ꢀajor losses: the channel conduction loss  
ꢀended due to their low ESR and ESL at high frequency,  
with relatively low cost. Choose a capacitor that exhibits  
less than 10°C teꢀperature rise at the ꢀaxiꢀuꢀ operat-  
ing RMS current for optiꢀuꢀ long-terꢀ reliability.  
(P  
), the voltage and current overlapping switching  
N1CC  
loss (P  
), and the drive loss (P  
).  
N1SW  
N1DR  
Output Capacitor  
The key selection paraꢀeters for the output capacitor  
are the actual capacitance value, the equivalent series  
resistance (ESR), the equivalent series inductance  
(ESL), and the voltage-rating requireꢀents. These para-  
ꢀeters affect the overall stability, output voltage ripple,  
and transient response. The output ripple has three  
coꢀponents: variations in the charge stored in the out-  
put capacitor, the voltage drop across the capacitors  
ESR, and the voltage drop across the ESL caused by  
the current into and out of the capacitor:  
V
2
OUT  
P
=
× I  
× R  
USE R  
AT T  
DS(ON) J(MAX)  
LOAD  
N1CC  
DS(ON)  
(
)
V
IN  
Q
+ Q  
GD  
GS  
I
P
= V × I  
IN LOAD  
×
× f  
S
N2SW  
GATE  
where I  
is the average DH driver output current  
GATE  
capability deterꢀined by:  
1
2
V
IN  
I
×
GATE  
R
+ R  
DH GATE  
V
= V  
+ V  
+ V  
RIPPLE  
RIPPLE  
(ESR)  
RIPPLE(C) RIPPLE(ESL)  
where R  
is the high-side MOSFET drivers on-resis-  
DH  
tance (3ꢀax) and R  
is the internal gate resis-  
GATE  
The output voltage ripple as a consequence of the ESR,  
ESL, and output capacitance is:  
tance of the MOSFET (~ 2):  
V
= I  
× ESR  
RIPPLE  
(ESR)  
PP  
R
GATE  
P
= Q × V × f  
×
N1DR  
G
GS  
S
I
PP  
R
+ R  
DH  
GATE  
V
RIPPLE(C)  
8×C  
× f  
OUT  
S
where V  
~ V . In addition to the losses above, allow  
IN  
GS  
V
about 20% ꢀore for additional losses due to MOSFET  
output capacitances and N2 body diode reverse recov-  
ery charge dissipated in N1 that exists, but is not well  
defined in the MOSFET data sheet. Refer to the MOS-  
FET data sheet for the therꢀal-resistance specification  
to calculate the PC board area needed to ꢀaintain the  
desired ꢀaxiꢀuꢀ operating junction teꢀperature with  
the above calculated power dissipations.  
IN  
V
ESL  
RIPPLE(ESL) =   
L
V
V  
OUT  
V
IN  
OUT  
I
=
×
PP  
f
× L  
V
IN  
S
where I  
is the peak-to-peak inductor current (see the  
P-P  
Determining the Inductor Value section). These equa-  
tions are suitable for initial capacitor selection, but final  
values should be chosen based on a prototype or eval-  
uation circuit.  
The ꢀiniꢀuꢀ load current ꢀust exceed the high-side  
MOSFETs ꢀaxiꢀuꢀ leakage current over teꢀperature  
if fault conditions are expected.  
As a general rule, a sꢀaller current ripple results in less  
output voltage ripple. Since the inductor ripple current  
is a factor of the inductor value and input voltage, the  
output voltage ripple decreases with larger inductance,  
and increases with higher input voltages. Ceraꢀic  
capacitors are recoꢀꢀended for the MAX1953 due to  
its 1MHz switching frequency. For the MAX1954/  
MAX1957, using polyꢀer, tantaluꢀ, or aluꢀinuꢀ elec-  
trolytic capacitors is recoꢀꢀended. The aluꢀinuꢀ  
electrolytic capacitor is the least expensive; however, it  
has higher ESR. To coꢀpensate for this, use a ceraꢀic  
capacitor in parallel to reduce the switching ripple and  
noise. For reliable and safe operation, ensure that the  
capacitors voltage and ripple-current ratings exceed  
the calculated values.  
Input Capacitor  
The input filter capacitor reduces peak currents drawn  
froꢀ the power source and reduces noise and voltage  
ripple on the input caused by the circuits switching.  
The input capacitor ꢀust ꢀeet the ripple current  
requireꢀent (I  
) iꢀposed by the switching currents  
RMS  
defined by the following equation:  
I
×
V
× V V  
(
)
LOAD  
OUT  
IN  
OUT  
I
=
RMS  
V
IN  
I
has a ꢀaxiꢀuꢀ value when the input voltage  
RMS  
equals twice the output voltage (V = 2 x V  
), where  
IN  
OUT  
I
= I  
/2. Ceraꢀic capacitors are recoꢀ-  
RMS(MAX)  
LOAD  
______________________________________________________________________________________ 17  
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
The MAX1953/MAX1954/MAX1957sresponse to a load  
transient depends on the selected output capacitors. In  
general, ꢀore low-ESR output capacitance results in  
better transient response. After a load transient, the  
Below are equations that define the power ꢀodulator:  
R
R
× (f × L)  
LOAD  
S
G
= g  
×
ꢀc  
MOD  
+ f × L  
LOAD  
(
)
S
output voltage instantly changes by ESR I  
.
LOAD  
Before the controller can respond, the output voltage  
deviates further, depending on the inductor and output  
capacitor values. After a short period of tiꢀe (see the  
Typical Operating Characteristics), the controller  
responds by regulating the output voltage back to its  
noꢀinal state. The controller response tiꢀe depends on  
its closed-loop bandwidth. With a higher bandwidth,  
the response tiꢀe is faster, preventing the output volt-  
age froꢀ further deviation froꢀ its regulating value.  
where R  
DS(ON)  
= V  
/I  
, and g  
= 1/(A  
LOAD  
), where A  
aꢀplifier and R  
OUT OUT(MAX)  
ꢀc  
CS  
R
is the gain of the current-sense  
is the on-resistance of the high-  
side power MOSFET. A is 6.3 for the MAX1953 when  
CS  
DS(ON)  
CS  
ILIM is connected to GND, and 3.5 for the MAX1954/  
MAX1957 and for the MAX1953 when ILIM is connect-  
ed to V or floating. The frequencies at which the pole  
IN  
and zero due to the power ꢀodulator occur are deter-  
ꢀined as follows:  
1
Compensation Design  
The MAX1953/MAX1954/MAX1957 use an internal  
transconductance error aꢀplifier whose output coꢀ-  
pensates the control loop. The external inductor, high-  
side MOSFET, output capacitor, coꢀpensation resistor,  
and coꢀpensation capacitors deterꢀine the loop sta-  
bility. The inductor and output capacitors are chosen  
based on perforꢀance, size, and cost. Additionally, the  
coꢀpensation resistor and capacitors are selected to  
optiꢀize control-loop stability. The coꢀponent values  
shown in the Typical Application Circuits (Figures 1  
through 4) yield stable operation over the given range  
of input-to-output voltages and load currents.  
f
=
=
pMOD  
R
× f × L + R  
LOAD  
R
(
)
ESR  
S
2π × C  
×
OUT  
+ f × L  
LOAD  
(
)
S
1
f
zMOD  
2π × C  
× R  
OUT  
ESR  
The feedback voltage-divider used has a gain of G  
=
FB  
V
/V  
, where V  
is equal to 0.8V. The transcon-  
FB OUT  
FB  
ductance error aꢀplifier has DC gain, G  
= gꢀ ✕  
EA(DC)  
R . R is typically 10M. A doꢀinant pole is set by the  
O
O
coꢀpensation capacitor (C ), the aꢀplifier output  
C
resistance (R ), and the coꢀpensation resistor (R ). A  
O
C
The controller uses a current-ꢀode control scheꢀe that  
regulates the output voltage by forcing the required  
current through the external inductor. The MAX1953/  
MAX1954/MAX1957 use the voltage across the high-  
zero is set by the coꢀpensation resistor (R ) and the  
C
coꢀpensation capacitor (C ).  
C
There is an optional pole set by C and R to cancel the  
output capacitor ESR zero if it occurs before crossover  
f
C
side MOSFETs on-resistance (R  
) to sense the  
DS(ON)  
frequency (f ):  
C
inductor current. Current-ꢀode control eliꢀinates the  
double pole in the feedback loop caused by the induc-  
tor and output capacitor, resulting in a sꢀaller phase  
shift and requiring less elaborate error-aꢀplifier coꢀ-  
1
f
=
pdEA  
2π × C × (R + R )  
C
O
C
pensation. A siꢀple single-series R and C is all that  
1
C
C
fzEA =  
fpEA =  
is needed to have a stable high bandwidth loop in  
applications where ceraꢀic capacitors are used for  
output filtering. For other types of capacitors, due to the  
higher capacitance and ESR, the frequency of the zero  
created by the capacitance and ESR is lower than the  
desired close loop crossover frequency. Another coꢀ-  
pensation capacitor should be added to cancel this  
ESR zero.  
2π × C × R  
C
1
C
2π × C × R  
f
C
The crossover frequency (f ) should be ꢀuch higher  
than the power ꢀodulator pole f  
crossover frequency should be less than 1/5 the  
switching frequency:  
C
. Also, the  
pMOD  
The basic regulator loop ꢀay be thought of as a power  
ꢀodulator, output feedback divider, and an error aꢀpli-  
f
S
f
<< f <  
C
pMOD  
fier. The power ꢀodulator has DC gain set by g  
x
ꢀc  
, the out-  
), and its equivalent series resis-  
5
R
, with a pole and zero pair set by R  
LOAD  
put capacitor (C  
LOAD  
OUT  
tance (R  
).  
ESR  
18 ______________________________________________________________________________________  
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
Table 2. Suggested Manufacturers  
MANUFACTURER  
Central Seꢀiconductor  
Coilcraft  
COMPONENT  
Diode  
PHONE  
WEBSITE  
www.centralseꢀi.coꢀ  
www.coilcraft.coꢀ  
www.fairchildseꢀi.coꢀ  
www.keꢀet.coꢀ  
631-435-1110  
800-322-2645  
800-341-0392  
864-963-6300  
714-373-7366  
408-573-4150  
800-745-8656  
Inductors  
MOSFETs  
Capacitors  
Capacitors  
Capacitors  
Inductors  
Fairchild  
Keꢀet  
Panasonic  
www.panasonic.coꢀ  
www.t-yuden.coꢀ  
www.toko.coꢀ  
Taiyo Yuden  
Toko  
so the loop-gain equation at the crossover frequency is:  
Applications Information  
See Table 2 for suggested ꢀanufacturers of the coꢀ-  
ponents used with the MAX1953/MAX1954/MAX1957.  
V
FB  
G
× G  
×
= 1  
EA(fC )  
MOD(fC )  
V
OUT  
PC Board Layout Guidelines  
Careful PC board layout is critical to achieve low  
switching losses and clean, stable operation. The  
switching power stage requires particular attention.  
Follow these guidelines for good PC board layout:  
For the case where f  
G
is greater than f :  
c
zESR  
= g  
× R  
C
EA(fC )  
ꢀEA  
and  
1) Place decoupling capacitors as close to IC pins as  
possible. Keep separate power ground plane (con-  
nected to pin 7) and signal ground plane (connect-  
ed to pin 4).  
f
R
× (f × L)  
pMOD  
LOAD  
s
G
= g  
×
ꢀc  
×
MOD(fC )  
R
+ (f × L)  
f
C
LOAD  
s
then R is calculated as:  
C
2) Input and output capacitors are connected to the  
power ground plane; all other capacitors are con-  
nected to the signal ground plane.  
V
OUT  
R
=
C
g
× V  
× G  
ꢀEA  
FB MOD(fC )  
3) Keep the high current paths as short as possible.  
where g  
= 110µS.  
ꢀEA  
4) Connect the drain leads of the power MOSFET to a  
large copper area to help cool the device. Refer to  
the power MOSFET data sheet for recoꢀꢀended  
copper area.  
The error aꢀplifier coꢀpensation zero forꢀed by R  
C
.
and C should be set at the ꢀodulator pole f  
C
pMOD  
C
is calculated by:  
C
V
OUT  
× (f × L)  
5) Ensure all feedback connections are short and  
direct. Place the feedback resistors as close to the  
IC as possible.  
S
I
C
OUT(MAX)  
OUT  
C
=
×
C
V
R
C
OUT  
+ (f × L)  
S
6) Route high-speed switching nodes away froꢀ sensi-  
tive analog areas (FB, COMP).  
I
OUT(MAX)  
As the load current decreases, the ꢀodulator pole also  
decreases. However, the ꢀodulator gain increases  
accordingly, and the crossover frequency reꢀains the  
7) Place the high-side MOSFET as close as possible to  
the controller and connect IN (MAX1953/MAX1957)  
or HSD (MAX1954) and LX to the MOSFET.  
saꢀe. For the case where f  
is less than f , add  
zESR  
C
8) Use very short, wide traces (50ꢀils to 100ꢀils wide  
if the MOSFET is 1in froꢀ the device).  
another coꢀpensation capacitor C froꢀ COMP to GND  
f
to cancel the ESR zero at f  
. C is calculated by:  
zESR  
f
Chip Information  
TRANSISTOR COUNT: 2930  
1
C =  
f
2π × R × f  
C
zESR  
PROCESS: BiCMOS  
Figure 6 illustrates a nuꢀerical exaꢀple that calculates  
and C values for the typical application circuit of  
R
C
C
Figure 1 (MAX1953).  
______________________________________________________________________________________ 19  
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
V
= 2.5V  
OUT  
I
= 3A  
OUT(MAX)  
C
= 20µF  
OUT  
L=1µH  
R
= 0.0025Ω  
=110µS  
= 6.3A  
ESR  
g
ꢀEA  
A
VCS  
R
= 0.013Ω  
DS(ON)  
1
g
=
=12.21S  
ꢀc  
A
× R  
DS(ON)  
VCS  
f =1MHz  
S
V
2.5V  
OUT  
R
=
=
= 0.833Ω  
LOAD  
I
3A  
OUT(MAX)  
1
1
f
=
=
=17.42kHz  
pMOD  
R
× f × L  
LOAD  
(
)
S
0.833Ω × 1MHz × 1µH  
0.833Ω + 1MHz × 1µH  
2π × C  
×
+R  
)
2π × 20µF ×  
+ 0.0025Ω  
OUT  
1
ESR  
R
f
× L  
LOAD  
(
)
(
)
S
1
f
=
=
= 3.2MHz  
zESR  
2π × C  
× R  
2π× 20µF × .0025Ω  
OUT  
ESR  
Pick the crossover frequency (f ) at <1/5 the switching frequency (f ). We choose100kHz < f  
,so C  
F
C
S
zESR  
is not needed. The power ꢀodulator gain at f is:  
C
f
R
× (f × L)  
0.833Ω × (1MHz × 1µH)  
0.833+(1MHz × 1µH)  
17.42kHz  
100kHz  
pMOD  
LOAD  
S
G
= g  
×
×
=12.21S ×  
×
= 0.967  
MOD(f )  
ꢀc  
C
R
(f × L)  
f
C
LOAD S  
then:  
V
2.5V  
OUT  
R
=
=
33kΩ  
C
g
× V × G  
110µS × 0.8V × .937  
ꢀEA  
FB  
MOD(f )  
C
And:  
V
OUT  
2.5V  
× (f × L)  
S
× (1MHz × 1µH)  
I
C
20µF  
33kΩ  
OUT(MAX)  
OUT  
3A  
2.5V  
C
=
×
=
×
270pF  
C
V
R
OUT  
C
+(f × L)  
+(1MHz × 1µH)  
S
I
3A  
OUT(MAX)  
Figure 6. Numerical Example to Calculate R and C Values of the Typical Operating Circuit of Figure 1 (MAX1953)  
C
C
20 ______________________________________________________________________________________  
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
Pin Configurations (continued)  
TOP VIEW  
HSD  
COMP  
FB  
1
2
3
4
5
10 BST  
REFIN  
COMP  
FB  
1
2
3
4
5
10 BST  
9
8
7
6
LX  
9
8
7
6
LX  
MAX1954EUB  
MAX1957EUB  
DH  
DH  
GND  
IN  
PGND  
DL  
GND  
IN  
PGND  
DL  
µMAX  
µMAX  
______________________________________________________________________________________ 21  
Low-Cost, High-Frequency, Current-Mode PWM  
Buck Controller  
Package Information  
(The package drawing(s) in this data sheet ꢀay not reflect the ꢀost current specifications. For the latest package outline inforꢀation,  
go to www.maxim-ic.com/packages.)  
e
4X S  
10  
10  
INCHES  
MAX  
MILLIMETERS  
MAX  
1.10  
0.15  
0.95  
3.05  
3.00  
3.05  
3.00  
5.05  
0.70  
DIM MIN  
MIN  
-
A
-
0.043  
0.006  
0.037  
0.120  
0.118  
0.120  
0.118  
0.199  
A1  
A2  
D1  
D2  
E1  
E2  
H
0.002  
0.030  
0.116  
0.114  
0.116  
0.114  
0.187  
0.05  
0.75  
2.95  
2.89  
2.95  
2.89  
4.75  
0.40  
H
ÿ 0.50±0.1  
0.6±0.1  
L
0.0157 0.0275  
0.037 REF  
L1  
b
0.940 REF  
0.007  
0.0106  
0.177  
0.270  
0.200  
1
1
e
0.0197 BSC  
0.500 BSC  
0.6±0.1  
c
0.0035 0.0078  
0.0196 REF  
0.090  
BOTTOM VIEW  
0.498 REF  
S
α
TOP VIEW  
0  
6∞  
0∞  
6∞  
D2  
E2  
GAGE PLANE  
A2  
c
A
E1  
b
L
α
A1  
D1  
L1  
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 10L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0061  
I
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxiꢀ Integrated Products  
Printed USA  
is a registered tradeꢀark of Maxiꢀ Integrated Products.  

相关型号:

MAX1953EUB+

暂无描述
MAXIM

MAX1953EVKIT

Evaluation Kit for the MAX1953/MAX1954/MAX1957
MAXIM

MAX1954

Low-Cost, High-Frequency, Current-Mode PWM Buck Controller
MAXIM

MAX19541

12-Bit, 125Msps ADC with CMOS Outputs for Wideband Applications
MAXIM

MAX19541EGK

12-Bit, 125Msps ADC with CMOS Outputs for Wideband Applications
MAXIM

MAX19541EGK+TD

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, 10 X 10 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, QFN-68
MAXIM

MAX19541EGK-D

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, 10 X 10 MM, 0.90 MM HEIGHT, MO-220, QFN-68
MAXIM

MAX19541EGK-TD

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, 10 X 10 MM, 0.90 MM HEIGHT, MO-220, QFN-68
MAXIM

MAX19541EVKIT

Low-Voltage and Low-Power Operation
MAXIM

MAX19541EVKIT+

Low-Voltage and Low-Power Operation
MAXIM

MAX19542

12-Bit, 170Msps ADC with CMOS Outputs for Wideband Applications
MAXIM

MAX19542EGK

12-Bit, 170Msps ADC with CMOS Outputs for Wideband Applications
MAXIM