MAX19996ETP+T [MAXIM]

Telecom Circuit, 1-Func, BICMOS, 5 X 5 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220, TQFN-20;
MAX19996ETP+T
型号: MAX19996ETP+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Telecom Circuit, 1-Func, BICMOS, 5 X 5 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220, TQFN-20

电信 信息通信管理 电信集成电路
文件: 总19页 (文件大小:395K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4177; Rev 0; 7/08  
SiGe High-Linearity, 2000MHz to 3000MHz  
Downconversion Mixer with LO Buffer  
MAX196  
General Description  
Features  
The MAX19996 single, high-linearity downconversion  
mixer provides 8.7dB conversion gain, +24.5dBm IIP3,  
and 9.6dB noise figure for 2000MHz to 3000MHz WCS,  
LTE, WiMAX™, and MMDS wireless infrastructure appli-  
cations. With an 1800MHz to 2550MHz LO frequency  
range, this particular mixer is ideal for low-side LO  
injection receiver architectures. High-side LO injection  
is supported by the MAX19996A, which is pin-for-pin  
and functionally compatible with the MAX19996.  
o 2000MHz to 3000MHz RF Frequency Range  
o 1800MHz to 2550MHz LO Frequency Range  
o 50MHz to 500MHz IF Frequency Range  
o 8.7dB Typical Conversion Gain  
o 9.6dB Typical Noise Figure  
o +24.5dBm Typical Input IP3  
o +11dBm Typical Input 1dB Compression Point  
o 69dBc Typical 2RF-2LO Spurious Rejection at  
In addition to offering excellent linearity and noise perfor-  
mance, the MAX19996 also yields a high level of compo-  
nent integration. This device includes a double-balanced  
passive mixer core, an IF amplifier, and an LO buffer.  
On-chip baluns are also integrated to allow for single-  
ended RF and LO inputs. The MAX19996 requires a  
nominal LO drive of 0dBm, and supply current is typical-  
P
RF  
= -10dBm  
o Integrated LO Buffer  
o Integrated RF and LO Baluns for Single-Ended  
Inputs  
ly 230mA at V = +5.0V or 149.5mA at V = +3.3V.  
CC  
CC  
o Low -3dBm to +3dBm LO Drive  
The MAX19996 is pin compatible with the MAX19996A  
2300MHz to 3900MHz mixer. The device is also pin sim-  
ilar with the MAX9984/MAX9986 400MHz to 1000MHz  
mixers and the MAX9993/MAX9994/MAX9996 1700MHz  
to 2200MHz mixers, making this entire family of down-  
converters ideal for applications where a common PCB  
layout is used for multiple frequency bands.  
o Pin Compatible with the MAX19996A 2300MHz to  
3900MHz Mixer  
o Pin Similar with the MAX9993/MAX9994/  
MAX9996 1700MHz to 2200MHz Mixers and  
MAX9984/MAX9986 400MHz to 1000MHz Mixers  
o Single +5.0V or +3.3V Supply  
The MAX19996 is available in a compact 5mm x 5mm,  
20-pin thin QFN lead-free package with an exposed  
pad. Electrical performance is guaranteed over the  
extended -40°C to +85°C temperature range.  
o External Current-Setting Resistors Provide Option  
for Operating Device in Reduced-Power/Reduced-  
Performance Mode  
Applications  
Ordering Information  
2.3GHz WCS Base Stations  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
20 Thin QFN-EP*  
20 Thin QFN-EP*  
2.5GHz WiMAX and LTE Base Stations  
2.7GHz MMDS Base Stations  
Fixed Broadband Wireless Access  
Wireless Local Loop  
MAX19996ETP+  
MAX19996ETP+T  
+Denotes a lead-free/RoHS-compliant package.  
*EP = Exposed pad.  
T = Tape and reel.  
Private Mobile Radios  
Military Systems  
WiMAX is a trademark of WiMAX Forum.  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
SiGe High-Linearity, 2000MHz to 3000MHz  
Downconversion Mixer with LO Buffer  
ABSOLUTE MAXIMUM RATINGS  
CC  
IF+, IF-, LOBIAS, LO, IFBIAS,  
LEXT to GND ..........................................-0.3V to (V  
V
to GND...........................................................-0.3V to +5.5V  
θ
θ
(Notes 2, 3)..............................................................+38°C/W  
(Notes 1, 3)................................................................13°C/W  
Operating Case Temperature  
JA  
JC  
+ 0.3V)  
CC  
RF, LO Input Power ........................................................+12dBm  
RF, LO Current  
(RF and LO is DC shorted to GND through a balun)......50mA  
Continuous Power Dissipation (Note 1) ..............................5.0W  
Range (Note 4)........................................T = -40°C to +85°C  
C
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Note 1: Based on junction temperature T = T + (θ x V  
x I ). This formula can be used when the temperature of the exposed  
CC  
J
C
JC  
CC  
MAX196  
pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction  
temperature must not exceed +150°C.  
Note 2: Junction temperature T = T + (θ x V  
x I ). This formula can be used when the ambient temperature of the PCB is  
known. The junction temperature must not exceed +150°C.  
J
A
JA  
CC  
CC  
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
Note 4: T is the temperature on the exposed pad of the package. T is the ambient temperature of the device and PCB.  
C
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
+5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, V  
= +4.75V to +5.25V, no input AC signals. T = -40°C to +85°C, unless otherwise noted. Typical val-  
CC  
C
ues are at V  
= +5.0V, T = +25°C, all parameters are production tested.) (Note 6)  
CC  
C
PARAMETER  
Supply Voltage  
Supply Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
5
MAX  
5.25  
245  
UNITS  
V
V
4.75  
CC  
CC  
I
230  
mA  
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, V  
= +3.0V to +3.6V, no input AC signals. T = -40°C to +85°C, unless otherwise noted. Typical values  
CC  
C
are at V  
= +3.3V, T = +25°C, parameters are guaranteed by design and not production tested, unless otherwise noted.)  
CC  
C
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
3.3  
MAX  
UNITS  
V
Supply Voltage  
Supply Current  
V
3.0  
3.6  
CC  
CC  
I
Total supply current, V  
= +3.3V  
149.5  
mA  
CC  
RECOMMENDED AC OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
2000  
1800  
TYP  
MAX  
3000  
2550  
UNITS  
MHz  
RF Frequency  
f
(Note 7)  
(Note 7)  
RF  
LO  
LO Frequency  
IF Frequency  
LO Drive Level  
f
MHz  
Using Mini-Circuits TC4-1W-17 4:1 transformer  
as defined in the Typical Application Circuit, IF  
matching components affect the IF frequency  
range (Note 7)  
100  
500  
f
MHz  
dBm  
IF  
Using alternative Mini-Circuits TC4-1W-7A  
4:1 transformer, IF matching components  
affect the IF frequency range (Note 7)  
50  
-3  
250  
+3  
P
LO  
2
_______________________________________________________________________________________  
SiGe High-Linearity, 2000MHz to 3000MHz  
Downconversion Mixer with LO Buffer  
MAX196  
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, V  
= +4.75V to +5.25V, RF and LO ports are driven from 50Ω sources, P  
= -3dBm to +3dBm,  
LO  
CC  
P
= -5dBm, f = 2300MHz to 2800MHz, f = 2000MHz to 2500MHz, f = 300MHz, f > f , T = -40°C to +85°C. Typical val-  
RF  
RF LO IF RF LO C  
ues are at V  
= +5.0V, P = -5dBm, P = 0dBm, f = 2500MHz, f = 2200MHz, f = 300MHz, T = +25°C, all parameters are  
RF LO RF LO IF C  
CC  
guaranteed by design and characterization, unless otherwise noted.) (Note 6)  
PARAMETER  
SYMBOL  
CONDITIONS  
= +25°C (Note 5)  
MIN  
TYP  
MAX  
UNITS  
Conversion Power Gain  
G
T
C
8.1  
8.7  
9.3  
dB  
C
Conversion Power Gain Variation  
vs. Frequency  
f
= 2300MHz to 2800MHz for any  
RF  
ΔG  
0.1  
dB  
C
100MHz band  
Conversion Power Gain  
Temperature Coefficient  
TC  
IP  
T
T
= -40°C to +85°C  
= +25°C (Note 8)  
-0.012  
dB/°C  
G
C
10  
11  
11  
dBm  
dBm  
C
Input 1dB Compression Point  
1dB  
f
RF  
= 2500MHz, T = +25°C (Note 8)  
10.4  
C
f
T
- f  
= 1MHz, P  
= P  
= -5dBm,  
RF2  
RF1 RF2  
RF1  
Third-Order Input Intercept Point  
IIP3  
22  
24.5  
dBm  
= +25°C (Note 5)  
C
f
f
T
= 2300MHz to 2800MHz, f = 300MHz,  
IF  
RF  
Third-Order Input Intercept Point  
Variation Over Temperature  
- f  
= 1MHz, P  
= P  
= -5dBm,  
RF2  
0.5  
dB  
RF1 RF2  
RF1  
= -40°C to +85°C  
C
f
RF  
= 2300MHz to 2700MHz, f = 300MHz,  
IF  
single sideband, no blockers present  
(Note 9)  
9.6  
9.6  
12  
Noise Figure  
NF  
dB  
SSB  
f
RF  
= 2500MHz, f = 300MHz, P = 0dBm,  
IF LO  
V
= +5.0V, T = +25°C, single sideband,  
10.5  
CC  
C
no blockers present (Note 9)  
f
= 2000MHz to 3000MHz, single  
RF  
Noise Figure Temperature  
Coefficient  
TC  
sideband, no blockers present,  
= -40°C to +85°C (Note 9)  
0.0183  
dB/°C  
dB  
NF  
T
C
+8dBm blocker tone applied to RF port, f  
RF  
Noise Figure Under Blocking  
Condition  
= 2300MHz, f = 2110MHz, f  
LO  
=
BLOCKER  
= +5.0V,  
CC  
NF  
20.8  
25  
B
2400MHz, P = -3dBm, V  
LO  
T
C
= +25°C (Note 9)  
f
= 2300MHz to  
RF  
P
P
= -10dBm  
= -5dBm  
60  
55  
70  
60  
69  
64  
78  
68  
RF  
RF  
2700MHz, f  
2000MHz to 2400MHz,  
f
=
LO  
2RF-2LO Spur Rejection  
3RF-3LO Spur Rejection  
2 x 2  
3 x 3  
dBc  
dBc  
(Note 5)  
= f + 150MHz  
LO  
SPUR  
f
= 2300MHz to  
RF  
P
= -10dBm  
RF  
2700MHz, f  
=
LO  
P
= -5dBm  
2000MHz to 2400MHz,  
= f + 100MHz  
RF  
(Note 5)  
f
SPUR  
LO  
LO on and IF terminated into a matched  
impedance  
RF Input Return Loss  
LO Input Return Loss  
18  
20  
dB  
dB  
RF and IF terminated into a matched  
impedance  
_______________________________________________________________________________________  
3
SiGe High-Linearity, 2000MHz to 3000MHz  
Downconversion Mixer with LO Buffer  
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)  
(Typical Application Circuit, V  
= +4.75V to +5.25V, RF and LO ports are driven from 50Ω sources, P  
= -3dBm to +3dBm,  
LO  
CC  
P
= -5dBm, f = 2300MHz to 2800MHz, f = 2000MHz to 2500MHz, f = 300MHz, f > f , T = -40°C to +85°C. Typical val-  
RF  
RF LO IF RF LO C  
ues are at V  
= +5.0V, P = -5dBm, P = 0dBm, f = 2500MHz, f = 2200MHz, f = 300MHz, T = +25°C, all parameters are  
RF LO RF LO IF C  
CC  
guaranteed by design and characterization, unless otherwise noted.) (Note 6)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Nominal differential impedance at the IC’s  
IF outputs  
IF Output Impedance  
Z
200  
Ω
IF  
MAX196  
RF terminated into 50Ω,  
f
= 450MHz,  
IF  
LO driven by 50Ω  
25  
25  
L1 = L2 = 120nH  
source, IF transformed  
to 50Ω using external  
components shown in  
the Typical Application  
Circuit. See the IF Port  
Return Loss vs. IF  
f
= 350MHz,  
IF  
IF Output Return Loss  
dB  
L1 = L2 = 270nH  
Frequency graph in the  
Typical Operating  
Characteristics for  
performance vs.  
inductor values  
f
= 300MHz,  
IF  
25  
34  
L1 = L2 = 470nH  
f
RF  
= 2300MHz to 2700MHz, P = +3dBm  
LO  
Minimum RF-to-IF Isolation  
dB  
(Note 5)  
Maximum LO Leakage at RF Port  
Maximum 2LO Leakage at RF Port  
f
f
f
= 1900MHz to 2500MHz, P = +3dBm  
-22.7  
-21  
dBm  
dBm  
LO  
LO  
LO  
LO  
= 1900MHz to 2500MHz, P = +3dBm  
LO  
= 1900MHz to 2500MHz, P = +3dBm  
LO  
Maximum LO Leakage at IF Port  
-27.5  
dBm  
(Note 5)  
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, RF and LO ports are driven from 50Ω sources, Typical values are at V  
= +3.3V, P = -5dBm,  
RF  
CC  
P
LO  
= 0dBm, f = 2500MHz, f = 2200MHz, f = 300MHz, T = +25°C, unless otherwise noted.) (Note 6)  
RF LO IF C  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Power Gain  
G
8.6  
dB  
C
Conversion Power Gain Variation  
vs. Frequency  
f
= 2300MHz to 2800MHz for any  
RF  
ΔG  
0.1  
dB  
C
100MHz band  
Gain Variation Over Temperature  
Input 1dB Compression Point  
TC  
IP  
T
= -40°C to +85°C  
-0.012  
7.5  
dB/°C  
dBm  
G
C
(Note 8)  
1dB  
f
= 2500MHz, f  
= 2501MHz, f  
= -5dBm  
RF2  
=
RF1  
RF2  
LO  
Third-Order Input Intercept Point  
IIP3  
19.8  
dBm  
2200MHz, P  
= P  
RF1  
Third-Order Input Intercept  
Variation Over Temperature  
f
= 2500MHz, f  
= 2501MHz, f  
= -5dBm, T = +25°C  
RF2 C  
=
RF1  
RF2  
LO  
0.5  
9.6  
dB  
dB  
2200MHz, P  
= P  
RF1  
Noise Figure  
NF  
Single sideband, no blockers present (Note 9)  
Single sideband, no blockers present,  
T
SSB  
Noise Figure Temperature  
Coefficient  
TC  
0.017  
dB/°C  
NF  
= -40°C to +85°C (Note 9)  
C
P
P
= -10dBm  
= -5dBm  
65.9  
60.9  
RF  
RF  
2RF-2LO Spur Rejection  
2 x 2  
dBc  
4
_______________________________________________________________________________________  
SiGe High-Linearity, 2000MHz to 3000MHz  
Downconversion Mixer with LO Buffer  
MAX196  
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)  
(Typical Application Circuit, RF and LO ports are driven from 50Ω sources, Typical values are at V  
= +3.3V, P = -5dBm,  
RF  
CC  
P
LO  
= 0dBm, f = 2500MHz, f = 2200MHz, f = 300MHz, T = +25°C, unless otherwise noted.) (Note 6)  
RF  
LO  
IF  
C
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
P
P
= -10dBm  
= -5dBm  
67.9  
57.9  
RF  
RF  
3RF-3LO Spur Rejection  
RF Input Return Loss  
LO Input Return Loss  
IF Output Impedance  
3 x 3  
dBc  
LO on and IF terminated into a matched  
impedance  
16  
dB  
dB  
Ω
RF and IF terminated into a matched  
impedance  
16.7  
200  
Nominal differential impedance at the IC’s  
IF outputs  
Z
IF  
RF terminated into 50Ω,  
f
= 450MHz,  
IF  
LO driven by 50Ω source,  
IF transformed to 50Ω  
using external  
23  
23  
23  
L1 = L2 = 120nH  
components shown in the  
Typical Application  
Circuit. See the IF Port  
Return Loss vs. IF  
Frequency graph in the  
Typical Operating  
Characteristics for  
performance vs. inductor  
values.  
f
= 350MHz,  
IF  
IF Output Return Loss  
dB  
L1 = L2 = 270nH  
f
= 300MHz,  
IF  
L1 = L2 = 470nH  
Minimum RF-to-IF Isolation  
f
f
f
f
= 2300MHz to 2700MHz, P = +3dBm  
33  
dB  
RF  
LO  
LO  
LO  
LO  
Maximum LO Leakage at RF Port  
Maximum 2LO Leakage at RF Port  
Maximum LO Leakage at IF Port  
= 1900MHz to 2500MHz, P = +3dBm  
-26.6  
-28.8  
-21.9  
dBm  
dBm  
dBm  
LO  
= 1900MHz to 2500MHz, P = +3dBm  
LO  
= 1900MHz to 2500MHz, P = +3dBm  
LO  
Note 5: 100% production tested for functional performance.  
Note 6: All limits reflect losses of external components, including a 0.8dB loss at f = 300MHz due to the 4:1 impedance trans-  
IF  
former. Output measurements were taken at IF outputs of the Typical Application Circuit.  
Note 7: Not production tested. Operation outside this range is possible, but with degraded performance of some parameters. See  
the Typical Operating Characteristics.  
Note 8: Maximum reliable continuous input power applied to the RF or IF port of this device is +12dBm from a 50Ω source.  
Note 9: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the  
effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications  
and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.  
_______________________________________________________________________________________  
5
SiGe High-Linearity, 2000MHz to 3000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics  
(Typical Application Circuit, V  
= +5.0V, P = 0dBm, P = -5dBm, LO is low-side injected for a 300MHz IF, T = +25°C, unless  
CC  
LO  
RF  
C
otherwise noted.)  
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
11  
10  
9
11  
10  
9
11  
10  
9
T
= -40°C  
C
T
= +25°C  
C
MAX196  
P
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
CC  
LO  
8
8
8
T
C
= +85°C  
7
7
7
6
6
6
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
28  
27  
26  
25  
24  
23  
22  
28  
27  
26  
25  
24  
23  
22  
28  
27  
26  
25  
24  
23  
22  
P
RF  
= -5dBm/TONE  
P
= -5dBm/TONE  
P
= -5dBm/TONE  
RF  
RF  
T
= +25°C  
V
= 4.75V, 5.0V, 5.25V  
CC  
C
P
LO  
= -3dBm, 0dBm, +3dBm  
T
= +85°C  
C
T
= -40°C  
C
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
12  
11  
10  
9
12  
11  
10  
9
12  
11  
10  
9
T
= +85°C  
C
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 4.75V, 5.0V, 5.25V  
CC  
T
= +25°C  
C
8
8
8
T
= -40°C  
C
7
7
7
1800 2000 2200 2400 2600 2800 3000  
RF FREQUENCY (MHz)  
1800 2000 2200 2400 2600 2800 3000  
RF FREQUENCY (MHz)  
1800 2000 2200 2400 2600 2800 3000  
RF FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
SiGe High-Linearity, 2000MHz to 3000MHz  
Downconversion Mixer with LO Buffer  
MAX196  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= +5.0V, P = 0dBm, P = -5dBm, LO is low-side injected for a 300MHz IF, T = +25°C, unless  
CC  
LO  
RF  
C
otherwise noted.)  
2RF-2LO RESPONSE vs. RF FREQUENCY  
2RF-2LO RESPONSE vs. RF FREQUENCY  
2RF-2LO RESPONSE vs. RF FREQUENCY  
85  
75  
65  
55  
45  
85  
75  
65  
55  
45  
85  
75  
65  
55  
45  
P
= -5dBm  
P
= -5dBm  
P
= -5dBm  
RF  
RF  
RF  
T
= +85°C  
P
= +3dBm  
C
LO  
T
C
= +25°C  
T
= -40°C  
C
P
= -3dBm  
2400  
P
= 0dBm  
LO  
LO  
V
= 4.75V, 5.0V, 5.25V  
CC  
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
3RF-3LO RESPONSE vs. RF FREQUENCY  
3RF-3LO RESPONSE vs. RF FREQUENCY  
3RF-3LO RESPONSE vs. RF FREQUENCY  
85  
80  
75  
70  
65  
60  
55  
85  
80  
75  
70  
65  
60  
55  
85  
80  
75  
70  
65  
60  
55  
P
= -5dBm  
P
= -5dBm  
P
= -5dBm  
RF  
RF  
RF  
T
= -40°C  
C
T
= +25°C  
C
V
= 4.75V, 5.0V, 5.25V  
CC  
T
= +85°C  
P
= -3dBm, 0dBm, +3dBm  
C
LO  
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT P  
vs. RF FREQUENCY  
INPUT P  
vs. RF FREQUENCY  
INPUT P  
vs. RF FREQUENCY  
1dB  
1dB  
1dB  
14  
13  
12  
11  
10  
9
14  
13  
12  
11  
10  
9
14  
13  
12  
11  
10  
9
T
= +85°C  
C
V
= 5.25V  
CC  
V
= 5.0V  
CC  
P
= -3dBm, 0dBm, +3dBm  
T
C
= +25°C  
LO  
V = 4.75V  
CC  
T
= -40°C  
C
8
8
8
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
_______________________________________________________________________________________  
7
SiGe High-Linearity, 2000MHz to 3000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= +5.0V, P = 0dBm, P = -5dBm, LO is low-side injected for a 300MHz IF, T = +25°C, unless  
CC  
LO  
RF  
C
otherwise noted.)  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
0
-10  
-20  
-30  
-40  
0
-10  
-20  
-30  
-40  
0
-10  
-20  
-30  
-40  
MAX196  
P
= -3dBm, 0dBm, +3dBm  
T
= -40°C  
LO  
C
V
= 4.75V, 5.0V, 5.25V  
CC  
T
= +25°C  
C
T
= +85°C  
C
1700  
1900  
2100  
2300  
2500  
2700  
1700  
1900  
2100  
2300  
2500  
2700  
1700  
1900  
2100  
2300  
2500  
2700  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
70  
60  
50  
40  
30  
20  
10  
70  
60  
50  
40  
30  
20  
10  
70  
60  
50  
40  
30  
20  
10  
V
= 5.0V  
CC  
V
= 5.25V  
CC  
T
= +85°C  
C
P
= -3dBm, 0dBm, +3dBm  
LO  
V = 4.75V  
CC  
T
= +25°C  
T
= -40°C  
C
C
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
V
= 5.0V, 5.25V  
CC  
T
= -40°C, +25°C, +85°C  
C
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 4.75V  
CC  
1600 1800 2000 2200 2400 2600 2800 3000  
LO FREQUENCY (MHz)  
1600 1800 2000 2200 2400 2600 2800 3000  
LO FREQUENCY (MHz)  
1600 1800 2000 2200 2400 2600 2800 3000  
LO FREQUENCY (MHz)  
8
_______________________________________________________________________________________  
SiGe High-Linearity, 2000MHz to 3000MHz  
Downconversion Mixer with LO Buffer  
MAX196  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= +5.0V, P = 0dBm, P = -5dBm, LO is low-side injected for a 300MHz IF, T = +25°C, unless  
CC  
LO  
RF  
C
otherwise noted.)  
RF PORT RETURN LOSS  
vs. RF FREQUENCY  
IF PORT RETURN LOSS  
vs. IF FREQUENCY  
LO SELECTED RETURN LOSS  
vs. LO FREQUENCY  
0
10  
20  
30  
40  
0
5
0
10  
20  
30  
40  
V
= 4.75V, 5.0V, 5.25V  
CC  
f
= 2400MHz  
LO  
P
= +3dBm  
LO  
L1, L2 = 120nH  
10  
15  
20  
25  
30  
P
= 0dBm  
LO  
P
= -3dBm, 0dBm, +3dBm  
LO  
L1, L2 = 270nH  
L1, L2 = 470nH  
P
= -3dBm  
LO  
2000  
2200  
2400  
2600  
2800  
3000  
50  
140  
230  
320  
410  
500  
1600 1800 2000 2200 2400 2600 2800 3000  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
SUPPLY CURRENT  
vs. TEMPERATURE (T )  
C
0
-10  
-20  
-30  
-40  
70  
60  
50  
40  
30  
20  
10  
250  
240  
230  
220  
210  
200  
V
= 5.25V  
CC  
L3 = 0Ω  
V
= 5.0V  
CC  
L3 = 4.7nH  
V
= 4.75V  
CC  
L3 = 4.7nH  
L3 = 0Ω  
1700  
1900  
2100  
2300  
2500  
2700  
2000  
2200  
2400  
2600  
2800  
3000  
-40  
-15  
10  
35  
60  
85  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
9
SiGe High-Linearity, 2000MHz to 3000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= +3.3V, P = 0dBm, P = -5dBm, LO is low-side injected for a 300MHz IF, T = +25°C, unless  
CC  
LO  
RF  
C
otherwise noted.)  
CONVERSION GAIN  
vs. RF FREQUENCY  
CONVERSION GAIN  
vs. RF FREQUENCY  
CONVERSION GAIN  
vs. RF FREQUENCY  
11  
10  
9
11  
10  
9
11  
10  
9
V
= 3.3V  
V
= 3.3V  
CC  
CC  
T
= -40°C  
C
T
= +25°C  
C
MAX196  
8
8
8
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 3.0V, 3.3V, 3.6V  
CC  
7
7
7
T
= +85°C  
C
6
6
6
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
22  
21  
20  
19  
18  
17  
16  
22  
21  
20  
19  
18  
17  
16  
22  
21  
20  
19  
18  
17  
16  
P
RF  
= -5dBm/TONE  
V
= 3.3V  
CC  
P
= -5dBm/TONE  
V
CC  
= 3.3V  
P
RF  
= -5dBm/TONE  
RF  
T
= +85°C  
C
P
= -3dBm, 0dBm, +3dBm  
LO  
T
= +25°C  
C
V
= 3.0V, 3.3V, 3.6V  
CC  
T
= -40°C  
C
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
12  
11  
10  
9
12  
11  
10  
9
12  
11  
10  
9
V
= 3.3V  
V
= 3.3V  
CC  
CC  
T
= +85°C  
C
P
= -3dBm, 0dBm, +3dBm  
V
= 3.0V, 3.3V, 3.6V  
CC  
LO  
T
= +25°C  
C
8
8
8
T
= -40°C  
C
7
7
7
1800 2000 2200 2400 2600 2800 3000  
RF FREQUENCY (MHz)  
1800 2000 2200 2400 2600 2800 3000  
RF FREQUENCY (MHz)  
1800 2000 2200 2400 2600 2800 3000  
RF FREQUENCY (MHz)  
10 ______________________________________________________________________________________  
SiGe High-Linearity, 2000MHz to 3000MHz  
Downconversion Mixer with LO Buffer  
MAX196  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= +3.3V, P = 0dBm, P = -5dBm, LO is low-side injected for a 300MHz IF, T = +25°C, unless  
CC  
LO  
RF  
C
otherwise noted.)  
2RF-2LO RESPONSE vs. RF FREQUENCY  
2RF-2LO RESPONSE vs. RF FREQUENCY  
2RF-2LO RESPONSE vs. RF FREQUENCY  
85  
75  
65  
55  
45  
85  
75  
65  
55  
45  
85  
75  
65  
55  
45  
P
= -5dBm  
= 3.3V  
RF  
P
= -5dBm  
P
V
= -5dBm  
= 3.3V  
RF  
RF  
V
CC  
CC  
T
= +85°C  
C
P
LO  
= +3dBm  
V
= 3.0V, 3.3V, 3.6V  
CC  
P
= -3dBm  
LO  
T
= +25°C  
C
T
C
= -40°C  
P
= 0dBm  
LO  
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
3RF-3LO RESPONSE vs. RF FREQUENCY  
3RF-3LO RESPONSE vs. RF FREQUENCY  
3RF-3LO RESPONSE vs. RF FREQUENCY  
70  
65  
60  
55  
50  
45  
40  
70  
65  
60  
55  
50  
45  
40  
70  
65  
60  
55  
50  
45  
40  
P
= -5dBm  
= 3.3V  
P
= -5dBm  
= 3.3V  
P
= -5dBm  
RF  
RF  
RF  
V
V
CC  
CC  
T
= +25°C  
C
T
= +85°C  
C
P
= -3dBm, 0dBm, +3dBm  
V
= 3.0V, 3.3V, 3.6V  
T
= -40°C  
LO  
CC  
C
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT P  
vs. RF FREQUENCY  
INPUT P  
vs. RF FREQUENCY  
1dB  
INPUT P  
vs. RF FREQUENCY  
1dB  
1dB  
10  
9
10  
9
10  
9
V = 3.3V  
CC  
V
= 3.3V  
CC  
T
C
= +85°C  
V
= 3.6V  
CC  
8
8
8
7
7
7
V
= 3.3V  
2800  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
= +25°C  
C
V
= 3.0V  
CC  
6
6
6
T
= -40°C  
C
5
5
5
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
______________________________________________________________________________________ 11  
SiGe High-Linearity, 2000MHz to 3000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= +3.3V, P = 0dBm, P = -5dBm, LO is low-side injected for a 300MHz IF, T = +25°C, unless  
CC  
LO  
RF  
C
otherwise noted.)  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
0
-10  
-20  
-30  
-40  
0
-10  
-20  
-30  
-40  
0
-10  
-20  
-30  
-40  
V = 3.3V  
CC  
V
= 3.3V  
CC  
MAX196  
T
= -40°C  
C
V
= 3.0V, 3.3V, 3.6V  
P
= -3dBm, 0dBm, +3dBm  
CC  
LO  
T
= +25°C  
C
T
= +85°C  
C
1700  
1900  
2100  
2300  
2500  
2700  
1700  
1900  
2100  
2300  
2500  
2700  
1700  
1900  
2100  
2300  
2500  
2700  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
60  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
T
= +85°C  
C
50  
40  
30  
20  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
= +25°C  
C
V
= 3.0V, 3.3V, 3.6V  
CC  
T
= -40°C  
C
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-20  
-25  
-30  
-35  
-40  
-20  
-25  
-30  
-35  
-40  
-20  
-25  
-30  
-35  
-40  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
V
= 3.6V  
CC  
V
= 3.3V  
CC  
T
= -40°C, +25°C, +85°C  
C
V
= 3.0V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
1600 1800 2000 2200 2400 2600 2800 3000  
LO FREQUENCY (MHz)  
1600 1800 2000 2200 2400 2600 2800 3000  
LO FREQUENCY (MHz)  
1600 1800 2000 2200 2400 2600 2800 3000  
LO FREQUENCY (MHz)  
12 ______________________________________________________________________________________  
SiGe High-Linearity, 2000MHz to 3000MHz  
Downconversion Mixer with LO Buffer  
MAX196  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= +3.3V, P = 0dBm, P = -5dBm, LO is low-side injected for a 300MHz IF, T = +25°C, unless  
CC  
LO  
RF  
C
otherwise noted.)  
RF PORT RETURN LOSS  
vs. RF FREQUENCY  
IF PORT RETURN LOSS  
vs. IF FREQUENCY  
LO RETURN LOSS  
vs. LO FREQUENCY  
0
5
0
10  
20  
30  
40  
0
5
V
= 3.3V  
V
= 3.3V  
CC  
V
= 3.0V, 3.3V, 3.6V  
CC  
CC  
f
= 2400MHz  
P
= +3dBm  
LO  
LO  
P
LO  
= 0dBm  
L1, L2 = 120nH  
10  
15  
20  
25  
30  
10  
15  
20  
25  
30  
P
= -3dBm  
LO  
P
= -3dBm, 0dBm, +3dBm  
LO  
L1, L2 = 270nH  
L1, L2 = 470nH  
230  
2000  
2200  
2400  
2600  
2800  
3000  
1600 1800 2000 2200 2400 2600 2800 3000  
LO FREQUENCY (MHz)  
50  
140  
320  
410  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
SUPPLY CURRENT  
vs. TEMPERATURE (T )  
INPUT IP3  
vs. RF FREQUENCY  
CONVERSION GAIN  
vs. RF FREQUENCY  
C
160  
155  
150  
145  
140  
135  
22  
21  
20  
19  
18  
17  
16  
11  
10  
9
P
= -5dBm/TONE  
V
= 3.3V  
CC  
V
= 3.3V  
RF  
CC  
V
= 3.3V  
CC  
V
= 3.6V  
CC  
8
L3 = 4.7nH  
L3 = 0Ω, 4.7nH  
7
V
= 3.0V  
60  
CC  
6
-40  
-15  
10  
35  
85  
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
TEMPERATURE (°C)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
______________________________________________________________________________________ 13  
SiGe High-Linearity, 2000MHz to 3000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= +3.3V, P = 0dBm, P = -5dBm, LO is low-side injected for a 300MHz IF, T = +25°C, unless  
LO RF C  
CC  
otherwise noted.)  
3RF-3LO RESPONSE  
vs. RF FREQUENCY  
2RF-2LO RESPONSE  
vs. RF FREQUENCY  
75  
70  
65  
60  
55  
50  
45  
75  
70  
65  
60  
55  
50  
45  
P
= -5dBm  
= 3.3V  
CC  
P
= -5dBm  
= 3.3V  
RF  
RF  
V
L3 = 0Ω  
V
CC  
MAX196  
L3 = 0Ω  
L3 = 4.7nH  
L3 = 4.7nH  
2000  
2200  
2400  
2600  
2800  
3000  
2000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
0
-10  
-20  
-30  
-40  
60  
50  
40  
30  
20  
10  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
L3 = 0Ω  
L3 = 4.7nH  
L3 = 0Ω  
L3 = 4.7nH  
1700  
1900  
2100  
2300  
2500  
2700  
2000  
2200  
2400  
2600  
2800  
3000  
LO FREQUENCY (MHz)  
RF FREQENCY (MHz)  
14 ______________________________________________________________________________________  
SiGe High-Linearity, 2000MHz to 3000MHz  
Downconversion Mixer with LO Buffer  
MAX196  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 6, 8, 14  
V
Power Supply. Bypass to GND with 0.01µF capacitors as close as possible to the pin.  
CC  
Single-Ended 50Ω RF Input. Internally matched and DC shorted to GND through a balun. Requires  
an input DC-blocking capacitor.  
2
RF  
3, 4, 5, 10,  
12, 13, 17  
Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad  
(EP) together.  
GND  
LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 604Ω 1% resistor  
(230mA bias condition) from LOBIAS to ground.  
7
LOBIAS  
N.C.  
9, 15  
11  
Not internally connected. Pins can be grounded.  
Local Oscillator Input. This input is internally matched to 50Ω. Requires an input DC-blocking  
capacitor.  
LO  
External Inductor Connection. Connect an inductor from this pin to ground to increase the RF-to-IF  
and LO-to-IF isolation (see the Typical Operating Characteristics for typical performance vs. inductor  
value).  
16  
LEXT  
Mixer Differential IF Output. Connect pullup inductors from each of these pins to V (see the  
CC  
Typical Application Circuit).  
18, 19  
20  
IF-, IF+  
IFBIAS  
EP  
IF Amplifier Bias Control. IF bias resistor connection for the IF amplifier. Connect a 698Ω 1% resistor  
(230mA bias condition) from IFBIAS to GND.  
Exposed Pad. Internally connected to GND. Connect to a large ground plane using multiple vias to  
maximize thermal and RF performance.  
______________________________________________________________________________________ 15  
SiGe High-Linearity, 2000MHz to 3000MHz  
Downconversion Mixer with LO Buffer  
Differential IF Output Amplifier  
Detailed Description  
The MAX19996 has an IF frequency range of 50MHz to  
500MHz, where the low-end frequency depends on the  
frequency response of the external IF components. The  
MAX19996 mixer is tuned for a 450MHz IF using 120nH  
external pullup bias inductors. Lower IFs of 350MHz  
and 300MHz require higher inductor values of 270nH  
and 470nH, respectively. The differential, open-collec-  
tor IF output ports require these inductors to be con-  
The MAX19996 high-linearity downconversion mixer  
provides 8.7dB of conversion gain and +24.5dBm of  
IIP3, with a typical 9.6dB noise figure. The integrated  
baluns and matching circuitry allow for 50Ω single-  
ended interfaces to the RF and the LO port. The inte-  
grated LO buffer provides a high drive level to the  
mixer core, reducing the LO drive required at the  
MAX19996’s input to a -3dBm to +3dBm range. The IF  
port incorporates a differential output, which is ideal for  
providing enhanced 2RF-2LO performance.  
nected to V  
.
CC  
MAX196  
Note that these differential ports are ideal for providing  
enhanced 2RF-2LO performance. Single-ended IF  
applications require a 4:1 (impedance ratio) balun to  
transform the 200Ω differential IF impedance to a 50Ω  
single-ended system. Use the TC4-1W-17 4:1 trans-  
former for IF frequencies above 200MHz and the  
TC4-1W-7A 4:1 transformer for frequencies below  
200MHz. The user can use a differential IF amplifier or  
SAW filter on the mixer IF port, but a DC block is  
required on both IF+/IF- ports to keep external DC from  
entering the IF ports of the mixer.  
Specifications are guaranteed over broad frequency  
ranges to allow for use in WCS, LTE, WiMAX, and  
MMDS base stations. The MAX19996 is specified to  
operate over an RF input range of 2000MHz to  
3000MHz, an LO range of 1800MHz to 2550MHz, and  
an IF range of 50MHz to 500MHz. The external IF com-  
ponents set the lower frequency range (see the Typical  
Operating Characteristics for details). Operation  
beyond these ranges is possible (see the Typical  
Operating Characteristics for additional information).  
Although this device is optimized for low-side LO injec-  
tion applications, it can operate in high-side LO injec-  
tion modes as well. However, performance degrades  
Applications Information  
Input and Output Matching  
The RF and LO ports are designed to operate in a  
50Ω system. Use DC blocks at the RF and LO inputs to  
isolate the ports from external DC while providing some  
reactive tuning. The IF output impedance is 200Ω (dif-  
ferential). For evaluation, an external low-loss 4:1  
(impedance-ratio) balun transforms this impedance  
down to a 50Ω single-ended output (see the Typical  
Application Circuit).  
as f  
continues to increase. For increased high-side  
LO performance, refer to the MAX19996A data sheet.  
LO  
RF Port and Balun  
The MAX19996 RF input provides a 50Ω match when  
combined with a series 8.2pF DC-blocking capacitor.  
This DC-blocking capacitor is required as the input is  
internally DC shorted to ground through the on-chip  
balun. The RF port input return loss is typically 15dB  
over the RF frequency range of 2300MHz to 2800MHz.  
Externally Adjustable Bias  
Bias currents for the LO buffer and the IF amplifier are  
optimized by fine-tuning resistors R1 and R2. The val-  
ues for R1 and R2, as listed in Table 1, represent the  
nominal values which yield the highest level of linearity  
performance. Larger value resistors can be used to  
reduce power dissipation at the expense of some per-  
formance loss. Contact the factory for details concern-  
ing recommended power reduction vs. performance  
tradeoffs. If 1% resistors are not readily available,  
5% resistors can be substituted.  
LO Inputs, Buffer, and Balun  
The MAX19996 is optimized for low-side LO injection  
applications with an 1800MHz to 2550MHz LO frequen-  
cy range. The LO input is internally matched to 50Ω,  
requiring only a 2pF DC-blocking capacitor. A two-  
stage internal LO buffer allows for a -3dBm to +3dBm  
LO input power range. The on-chip low-loss balun,  
along with an LO buffer, drives the double-balanced  
mixer. All interfacing and matching components from  
the LO inputs to the IF outputs are integrated on-chip.  
Significant reductions in power consumption can also be  
realized by operating the mixer with an optional supply  
voltage of +3.3V. Doing so reduces the overall power  
consumption by up to 57%. See the +3.3V Supply AC  
Electrical Characteristics table and the relevant +3.3V  
curves in the Typical Operating Characteristics section  
to evaluate the power vs. performance tradeoffs.  
High-Linearity Mixer  
The core of the MAX19996 is a double-balanced, high-  
performance passive mixer. Exceptional linearity is pro-  
vided by the large LO swing from the on-chip LO  
buffer. When combined with the integrated IF ampli-  
fiers, the performance of IIP3, 2RF-2LO rejection, and  
noise-figure is typically +24.5dBm, 69dBc, and 9.6dB,  
respectively.  
16 ______________________________________________________________________________________  
SiGe High-Linearity, 2000MHz to 3000MHz  
Downconversion Mixer with LO Buffer  
MAX196  
Table 1. Component Values  
DESIGNATION  
QTY  
DESCRIPTION  
COMPONENT SUPPLIER  
Murata Electronics North America, Inc.  
Murata Electronics North America, Inc.  
C1  
1
4
0
1
2
1
8.2pF microwave capacitor (0402)  
C2, C6, C8, C11  
C3, C9  
0.01µF microwave capacitors (0402)  
Not installed, capacitors  
C10  
2pF microwave capacitor (0402)  
1000pF microwave capacitors (0402)  
82pF microwave capacitor (0402)  
Murata Electronics North America, Inc.  
Murata Electronics North America, Inc.  
Murata Electronics North America, Inc.  
C13, C14  
C15  
120nH wire-wound high-Q inductors* (0805)  
(see the Typical Operating Characteristics)  
L1, L2  
L3  
2
1
1
Coilcraft, Inc.  
Coilcraft, Inc.  
Digi-Key Corp.  
4.7nH wire-wound high-Q inductor (0603)  
698Ω 1% resistor (0402). Use for V  
= +5.0V applications.  
= +3.3V applications.  
= +5.0V applications.  
= +3.3V applications.  
CC  
R1  
1.1kΩ 1% resistor (0402). Use for V  
CC  
CC  
CC  
604Ω 1% resistor (0402). Use for V  
845Ω 1% resistor (0402). Use for V  
0Ω resistor (1206)  
R2  
1
Digi-Key Corp.  
R3  
T1  
U1  
1
1
1
Digi-Key Corp.  
4:1 IF balun TC4-1W-17*  
Mini-Circuits  
MAX19996 IC (20 TQFN)  
Maxim Integrated Products, Inc.  
*Use 470nH inductors and TC4-1W-7A 4:1 balun for IF frequencies below 200MHz.  
to the lower-level ground planes. This method provides a  
good RF/thermal-conduction path for the device. Solder  
the exposed pad on the bottom of the device package to  
the PCB. The MAX19996 evaluation kit can be used as a  
reference for board layout. Gerber files are available  
upon request at www.maxim-ic.com.  
LEXT Inductor  
Short LEXT to ground using a 0Ω resistor. For applica-  
tions requiring improved RF-to-IF and LO-to-IF isolation,  
a 4.7nH low-ESR inductor can be connected from LEXT  
to GND. However, the load impedance presented to the  
mixer must be such that any capacitances from IF- and  
IF+ to ground do not exceed several picofarads to  
ensure stable operating conditions. Since approximate-  
ly 120mA flows through LEXT, it is important to use a  
low-DCR wire-wound inductor.  
Power-Supply Bypassing  
Proper voltage-supply bypassing is essential for high-  
frequency circuit stability. Bypass each V  
pin with  
CC  
the capacitors shown in the Typical Application Circuit  
and see Table 1.  
Layout Considerations  
A properly designed PCB is an essential part of any  
RF/microwave circuit. Keep RF signal lines as short as  
possible to reduce losses, radiation, and inductance.  
The load impedance presented to the mixer must be  
such that any capacitance from both IF- and IF+ to  
ground does not exceed several picofarads. For the best  
performance, route the ground pin traces directly to the  
exposed pad under the package. The PCB exposed pad  
MUST be connected to the ground plane of the PCB. It is  
suggested that multiple vias be used to connect this pad  
Exposed Pad RF/Thermal Considerations  
The exposed pad (EP) of the MAX19996’s 20-pin thin  
QFN package provides a low thermal-resistance path  
to the die. It is important that the PCB on which the  
MAX19996 is mounted be designed to conduct heat  
from the EP. In addition, provide the EP with a low-  
inductance path to electrical ground. The EP MUST be  
soldered to a ground plane on the PCB, either directly  
or through an array of plated via holes.  
______________________________________________________________________________________ 17  
SiGe High-Linearity, 2000MHz to 3000MHz  
Downconversion Mixer with LO Buffer  
Typical Application Circuit  
C15  
C13  
L1  
L2  
3
6
4
IF  
OUTPUT  
T1  
2
1
R3  
MAX196  
C14  
4:1  
R1  
L3  
+5.0V  
20  
19  
18  
17  
16  
C3  
C2  
V
CC  
N.C.  
15  
14  
13  
12  
11  
1
C1  
RF  
V
RF  
INPUT  
CC  
MAX19996  
+5.0V  
2
3
4
5
C11  
GND  
GND  
GND  
GND  
GND  
LO  
EP  
C10  
LO  
INPUT  
6
7
8
9
10  
+5.0V  
R2  
C6  
NOTE: PINS 3, 4, 5, 10, 12, 13, AND 17 ARE ALL INTERNALLY  
CONNECTED TO THE EXPOSED GROUND PAD. CONNECT  
THESE PINS TO GROUND TO IMPROVE ISOLATION.  
C8  
C9  
+5.0V  
PINS 9 AND 15 HAVE NO INTERNAL CONNECTION BUT CAN BE  
EXTERNALLY GROUNDED TO IMPROVE ISOLATION.  
18 ______________________________________________________________________________________  
SiGe High-Linearity, 2000MHz to 3000MHz  
Downconversion Mixer with LO Buffer  
MAX196  
Pin Configuration  
Chip Information  
PROCESS: SiGe BiCMOS  
TOP VIEW  
20  
19  
18  
17  
16  
Package Information  
For the latest package outline information and land patterns, go  
V
15 N.C.  
1
2
3
4
5
CC  
to www.maxim-ic.com/packages.  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
MAX19996  
V
14  
RF  
GND  
GND  
GND  
CC  
20 Thin QFN-EP  
T2055+3  
21-0140  
13 GND  
12 GND  
EP  
11  
LO  
6
7
8
9
10  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 19  
© 2008 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX19996ETPT

SiGe High-Linearity, 2000MHz to 3000MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19997A

Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19997AETX+

Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19997AETX+T

Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19997AETX+TD

RF/Microwave Up/Down Converter, BICMOS
MAXIM

MAX19997A_11

Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19997A_1108

Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19998

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19998ETP+

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19998ETP+T

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19999

Dual, SiGe High-Linearity, 3000MHz to 4000MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19999ETX+

Dual, SiGe High-Linearity, 3000MHz to 4000MHz Downconversion Mixer with LO Buffer
MAXIM