MAX19997AETX+TD [MAXIM]

RF/Microwave Up/Down Converter, BICMOS;
MAX19997AETX+TD
型号: MAX19997AETX+TD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

RF/Microwave Up/Down Converter, BICMOS

文件: 总35页 (文件大小:627K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4288; Rev 3; 8/11  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
MX197A  
General Description  
Features  
o 1800MHz to 2900MHz RF Frequency Range  
The MAX19997A dual downconversion mixer is a versa-  
tile, highly integrated diversity downconverter that pro-  
vides high linearity and low noise figure for a multitude of  
1800MHz to 2900MHz base-station applications. The  
MAX19997A fully supports both low- and high-side LO  
injection architectures for the 2300MHz to 2900MHz  
WiMAX™, LTE, WCS, and MMDS bands, providing  
8.7dB gain, +24dBm input IP3, and 10.3dB NF in the  
low-side configuration, and 8.7dB gain, +24dBm input  
IP3, and 10.4dB NF in the high-side configuration. High-  
side LO injection architectures can be further extended  
down to 1800MHz with the addition of one tuning ele-  
ment (a shunt inductor) on each RF port.  
o 1950MHz to 3400MHz LO Frequency Range  
o 50MHz to 550MHz IF Frequency Range  
o Supports Both Low-Side and High-Side LO  
Injection  
o 8.7dB Conversion Gain  
o +24dBm Input IP3  
o 10.3dB Noise Figure  
o +11.3dBm Input 1dB Compression Point  
o 70dBc Typical 2 x 2 Spurious Rejection at  
The device integrates baluns in the RF and LO ports,  
an LO buffer, two double-balanced mixers, and a pair  
of differential IF output amplifiers. The MAX19997A  
requires a typical LO drive of 0dBm and a supply cur-  
rent guaranteed below 420mA to achieve the targeted  
linearity performance.  
P
RF  
= -10dBm  
o Dual Channels Ideal for Diversity Receiver  
Applications  
o Integrated LO Buffer  
o Integrated LO and RF Baluns for Single-Ended  
The MAX19997A is available in a compact 6mm x 6mm,  
36-pin thin QFN lead-free package with an exposed  
pad. Electrical performance is guaranteed over the  
Inputs  
o Low -3dBm to +3dBm LO Drive  
extended temperature range, from T = -40°C to +85°C.  
C
o Pin Compatible with the MAX19999 3000MHz to  
Applications  
4000MHz Mixer  
2.3GHz WCS Base Stations  
o Pin Similar to the MAX9995/MAX9995A and  
MAX19995/MAX19995A 1700MHz to 2200MHz  
Mixers and the MAX9985/MAX9985A and  
MAX19985/MAX19985A 700MHz to 1000MHz  
Mixers  
2.5GHz WiMAX and LTE Base Stations  
2.7GHz MMDS Base Stations  
UMTS/WCDMA and cdma2000® 3G Base  
Stations  
o 42dB Channel-to-Channel Isolation  
o Single +5.0V or +3.3V Supply  
PCS1900 and EDGE Base Stations  
PHS/PAS Base Stations  
Fixed Broadband Wireless Access  
Wireless Local Loop  
o External Current-Setting Resistors Provide Option  
for Operating Device in Reduced-Power/Reduced-  
Performance Mode  
Private Mobile Radios  
Ordering Information  
Military Systems  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
36 Thin QFN-EP*  
36 Thin QFN-EP*  
MAX19997AETX+  
MAX19997AETX+T  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
T = Tape and reel.  
WiMAX is a trademark of WiMAX Forum.  
Pin Configuration/Functional Block Diagram appears at  
end of data sheet.  
cdma2000 is a registered trademark of Telecommunications  
Industry Association.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
ABSOLUTE MAXIMUM RATINGS  
CC  
V
to GND...........................................................-0.3V to +5.5V  
Operating Case Temperature Range  
RF_, LO to GND.....................................................-0.3V to +0.3V  
(Note 4) ...................................................T = -40°C to +85°C  
C
IFM_, IFD_, IFM_SET, IFD_SET, LO_ADJ_M,  
LO_ADJ_D to GND.................................-0.3V to (V  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
+ 0.3V)  
CC  
RF_, LO Input Power ......................................................+15dBm  
RF_, LO Current (RF_ and LO is DC  
shorted to GND through balun)................................... ...50mA  
Continuous Power Dissipation (Note 1) ..............................8.7W  
PACKAGE THERMAL CHARACTERISTICS  
Junction-to-Ambient Thermal Resistance (θ  
)
JA  
Junction-to-Case Thermal Resistance (θ  
)
JC  
MX197A  
(Notes 2, 3)...................................................................38°C/W  
(Notes 1, 3)..................................................................7.4°C/W  
Note 1: Based on junction temperature T = T + (θ x V x I ). This formula can be used when the temperature of the exposed  
J
C
JC  
CC  
CC  
pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction  
temperature must not exceed +150°C.  
Note 2: Junction temperature T = T + (θ x V  
x I ). This formula can be used when the ambient temperature of the PCB is  
known. The junction temperature must not exceed +150°C.  
J
A
JA  
CC  
CC  
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
Note 4: T is the temperature on the exposed pad of the package. T is the ambient temperature of the device and PCB.  
C
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
+5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit optimized for the standard RF band (see Table 1), no input RF or LO signals applied, V  
= +4.75V to  
CC  
+5.25V, T = -40°C to +85°C. Typical values are at V = +5.0V, T = +25°C, unless otherwise noted. R1, R4 = 750, R2, R5 = 698.)  
C
C
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
5.25  
420  
UNITS  
Supply Voltage  
V
4.75  
V
CC  
V
V
= 5.0V  
388  
CC  
CC  
Total Supply Current  
I
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
CC  
= 5.25V  
390.4  
V
(Pin 4) Supply Current  
(Main and Diversity Paths)  
CC  
V
V
V
V
V
V
= 5.25V  
= 5.25V  
= 5.25V  
= 5.25V  
= 5.25V  
= 5.25V  
2.5  
8.9  
CC  
CC  
CC  
CC  
CC  
CC  
V
(Pin 10) Supply Current  
(Diversity Path)  
CC  
V
(Pin 16) Supply Current  
(Diversity Path)  
CC  
109.3  
28.3  
109.3  
8.9  
V
(Pin 21) Supply Current  
(Main and Diversity Paths)  
CC  
V
(Pin 30) Supply Current  
(Main Path)  
CC  
V
(Pin 36) Supply Current  
(Main Path)  
CC  
IFM Bias Supply Current (Main  
Path)  
Total bias feeding IFM- and IFM+ through  
R3, L1 and L2; V = 5.25V  
61.6  
61.6  
CC  
IFD Bias Supply Current  
(Diversity Path)  
Total bias feeding IFD+ and IFD- through  
R6, L3 and L4; V = 5.25V  
CC  
2
_______________________________________________________________________________________  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
MX197A  
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit optimized for the standard RF band (see Table 1), no input RF or LO signals applied, V  
= +3.0V to  
CC  
+3.6V, T = -40°C to +85°C. Typical values are at V = +3.3V, T = +25°C, unless otherwise noted. R1, R4 = 1.1k, R2, R5 = 845.)  
C
CC  
C
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
3.3  
MAX  
3.6  
UNITS  
V
Supply Voltage  
Supply Current  
V
3.0  
CC  
CC  
I
Total supply current, V  
= +3.3V  
279  
310  
mA  
CC  
RECOMMENDED AC OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RF Frequency Without External  
Tuning  
f
RF  
(Note 5)  
2400  
2900  
MHz  
See Table 2 for an outline of tuning elements  
optimized for 1950MHz operation;  
RF Frequency with External  
Tuning  
optimization at other frequencies within the  
1800MHz to 2400MHz range can be  
achieved with different component values;  
contact the factory for details  
f
1800  
2400  
MHz  
MHz  
RF  
LO  
LO Frequency  
IF Frequency  
LO Drive Level  
f
(Notes 5, 6)  
1950  
100  
3400  
550  
Using Mini-Circuits TC4-1W-17 4:1  
transformer as defined in the Typical  
Application Circuit, IF matching  
components affect the IF frequency range  
(Notes 5, 6)  
f
MHz  
dBm  
IF  
Using alternative Mini-Circuits TC4-1W-7A  
4:1 transformer, IF matching components  
affect the IF frequency range (Notes 5, 6)  
50  
-3  
250  
+3  
P
LO  
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit optimized for the standard RF band (see Table 1), V  
= +4.75V to +5.25V, RF and LO ports are driven  
CC  
from 50sources, P = -3dBm to +3dBm, P = -5dBm, f = 2300MHz to 2900MHz, f = 2650MHz to 3250MHz, f = 350MHz,  
LO  
RF  
RF  
LO  
IF  
f
RF  
< f , T = -40°C to +85°C. Typical values are at V  
= +5.0V, P = -5dBm, P = 0dBm, f = 2600MHz, f = 2950MHz,  
CC RF LO RF LO  
LO  
C
f
IF  
= 350MHz, T = +25°C, unless otherwise noted.) (Note 7)  
C
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
8.1  
TYP  
MAX  
UNITS  
f
T
= 2400MHz to 2900MHz,  
= +25°C (Notes 8, 9, 10)  
RF  
Conversion Gain  
G
8.7  
9.3  
dB  
C
C
f
RF  
f
RF  
f
RF  
f
RF  
f
RF  
= 2305MHz to 2360MHz  
= 2500MHz to 2570MHz  
= 2570MHz to 2620MHz  
= 2500MHz to 2690MHz  
= 2700MHz to 2900MHz  
0.15  
0.15  
0.1  
Conversion Gain Flatness  
dB  
0.15  
0.15  
f
T
= 2300MHz to 2900MHz,  
= -40°C to +85°C  
RF  
Gain Variation Over Temperature  
TC  
-0.01  
dB/°C  
CG  
C
_______________________________________________________________________________________  
3
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS  
(continued)  
(Typical Application Circuit optimized for the standard RF band (see Table 1), V  
= +4.75V to +5.25V, RF and LO ports are driven  
CC  
from 50sources, P = -3dBm to +3dBm, P = -5dBm, f = 2300MHz to 2900MHz, f = 2650MHz to 3250MHz, f = 350MHz,  
LO  
RF  
RF  
LO  
IF  
f
RF  
< f , T = -40°C to +85°C. Typical values are at V  
= +5.0V, P = -5dBm, P = 0dBm, f = 2600MHz, f = 2950MHz,  
CC RF LO RF LO  
LO  
C
f
IF  
= 350MHz, T = +25°C, unless otherwise noted.) (Note 7)  
C
PARAMETER  
SYMBOL  
IP  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Compression Point  
(Notes 8, 9, 11)  
9.6  
11.3  
dBm  
1dB  
f
- f = 1MHz, P = -5dBm per tone  
RF1 RF2  
RF  
22.0  
24  
(Notes 8, 9)  
MX197A  
Third-Order Input Intercept Point  
IIP3  
dBm  
dBm  
dB  
f
P
= 2600MHz, f  
- f  
= 1MHz,  
RF  
RF1 RF2  
= -5dBm per tone, T = +25°C  
C
22.5  
24  
RF  
(Notes 8, 9)  
Third-Order Input Intercept Point  
Variation Over Temperature  
f
- f = 1MHz, T = -40°C to +85°C  
0.3  
RF1 RF2  
C
Single sideband, no blockers present  
= 2400MHz to 2900MHz (Notes 6, 8, 10)  
10.4  
12.5  
11.4  
f
RF  
Noise Figure  
NF  
SSB  
Single sideband, no blockers present,  
= 2400MHz to 2900MHz , T = +25°C  
f
RF  
10.4  
0.018  
22.5  
C
(Note 6, 8, 10)  
Noise Figure Temperature  
Coefficient  
Single sideband, no blockers present,  
T
TC  
dB/°C  
dB  
NF  
= -40°C to +85°C  
C
f
f
= 2412MHz, P  
= 8dBm,  
BLOCKER  
BLOCKER  
Noise Figure Under Blocking  
Conditions  
= 2600MHz, f = 2950MHz, P  
=
NF  
25  
RF  
LO  
LO  
B
0dBm, V = +5.0V, T = +25°C (Notes 8, 12)  
CC  
C
f
RF  
= 2600MHz, f = 2950MHz,  
LO  
P
= -10dBm, f  
= f - 175MHz  
62  
57  
73  
63  
69  
64  
84  
74  
RF  
SPUR  
LO  
(Note 8)  
2LO - 2RF Spur  
2 x 2  
dBc  
dBc  
f
RF  
= 2600MHz, f = 2950MHz,  
LO  
P
= -5dBm, f  
= f - 175MHz  
RF  
SPUR LO  
(Notes 8, 9)  
f
RF  
= 2600MHz, f = 2950MHz,  
LO  
P
= -10dBm, f  
= f - 116.67MHz,  
RF  
SPUR LO  
T
= +25°C (Note 8)  
C
3LO - 3RF Spur  
3 x 3  
f
RF  
= 2600MHz, f = 2950MHz,  
LO  
P
= -5dBm, f  
= f - 116.67MHz,  
RF  
SPUR LO  
T
C
= +25°C (Notes 8, 9)  
LO on and IF terminated into a matched  
impedance  
RF Input Return Loss  
LO Input Return Loss  
IF Output Impedance  
14  
13  
dB  
dB  
RF and IF terminated into a matched  
impedance  
Nominal differential impedance at the IC’s  
IF outputs  
Z
200  
IF  
4
_______________________________________________________________________________________  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
MX197A  
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS  
(continued)  
(Typical Application Circuit optimized for the standard RF band (see Table 1), V  
= +4.75V to +5.25V, RF and LO ports are driven  
CC  
from 50sources, P = -3dBm to +3dBm, P = -5dBm, f = 2300MHz to 2900MHz, f = 2650MHz to 3250MHz, f = 350MHz,  
LO  
RF  
RF  
LO  
IF  
f
RF  
< f , T = -40°C to +85°C. Typical values are at V  
= +5.0V, P = -5dBm, P = 0dBm, f = 2600MHz, f = 2950MHz,  
CC RF LO RF LO  
LO  
C
f
IF  
= 350MHz, T = +25°C, unless otherwise noted.) (Note 7)  
C
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RF terminated into 50, LO driven by 50Ω  
source, IF transformed to 50using  
external components shown in the Typical  
Application Circuit  
IF Output Return Loss  
21  
dB  
RF-to-IF Isolation  
25  
-28  
dB  
LO Leakage at RF Port  
2LO Leakage at RF Port  
LO Leakage at IF Port  
(Notes 8, 9)  
dBm  
dBm  
dBm  
-33  
-18.5  
RFMAIN (RFDIV) converted power  
measured at IFDIV (IFMAIN) relative to  
IFMAIN (IFDIV), all unused ports terminated  
to 50Ω  
Channel Isolation  
38.5  
43  
dB  
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit optimized for the standard RF band (see Table 1), V  
= +4.75V to +5.25V, RF and LO ports are driven  
CC  
from 50sources, P = -3dBm to +3dBm, P = -5dBm, f = 2300MHz to 2900MHz, f = 1950MHz to 2550MHz, f = 350MHz,  
LO  
RF  
RF  
LO  
IF  
f
f
> f , T = -40°C to +85°C. Typical values are at V  
= +5.0V, P = -5dBm, P = 0dBm, f = 2600MHz, f = 2250MHz,  
RF  
IF  
LO  
C
CC RF LO RF LO  
= 350MHz, T = +25°C, unless otherwise noted.) (Note 7)  
C
PARAMETER  
Conversion Gain  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
T
= 2400MHz to 2900MHz,  
= +25°C (Notes 8, 9, 10)  
RF  
G
8.1  
8.7  
9.3  
dB  
C
C
f
RF  
f
RF  
f
RF  
f
RF  
f
RF  
= 2305MHz to 2360MHz  
= 2500MHz to 2570MHz  
= 2570MHz to 2620MHz  
= 2500MHz to 2690MHz  
= 2700MHz to 2900MHz  
0.2  
0.15  
0.2  
Conversion Gain Flatness  
dB  
0.25  
0.25  
f
= 2300MHz to 2900MHz, T = -40°C to  
C
RF  
Gain Variation Over Temperature  
Input Compression Point  
TC  
-0.01  
11.3  
23  
dB/°C  
dBm  
dBm  
CG  
+85°C  
IP  
(Notes 6, 8, 11)  
9.6  
1dB  
f
- f  
= 1MHz, P = -5dBm per tone  
RF1 RF2 RF  
21.6  
(Notes 8, 9)  
Third-Order Input Intercept Point  
IIP3  
f
RF  
= 2600MHz, f  
- f  
= 1MHz,  
RF1 RF2  
P
= -5dBm per tone, T = +25°C  
C
22  
23.8  
0.3  
dBm  
dBm  
RF  
(Notes 8, 9)  
Third-Order Input Intercept Point  
Variation Over Temperature  
f
- f = 1MHz, T = -40°C to +85°C  
RF1 RF2  
C
_______________________________________________________________________________________  
5
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS  
(continued)  
(Typical Application Circuit optimized for the standard RF band (see Table 1), V  
= +4.75V to +5.25V, RF and LO ports are driven  
CC  
from 50sources, P = -3dBm to +3dBm, P = -5dBm, f = 2300MHz to 2900MHz, f = 1950MHz to 2550MHz, f = 350MHz,  
LO  
RF  
RF  
LO  
IF  
f
f
> f , T = -40°C to +85°C. Typical values are at V  
= +5.0V, P = -5dBm, P = 0dBm, f = 2600MHz, f = 2250MHz,  
RF  
IF  
LO  
C
CC RF LO RF LO  
= 350MHz, T = +25°C, unless otherwise noted.) (Note 7)  
C
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Single sideband, no blockers present  
= 2400MHz to 2900MHz (Notes 6, 8)  
10.3  
13.0  
f
RF  
Noise Figure  
NF  
dB  
SSB  
Single sideband, no blockers present,  
= 2400MHz to 2900MHz, T = +25°C  
MX197A  
f
RF  
10.3  
11.3  
C
(Notes 6, 8)  
Noise Figure Temperature  
Coefficient  
Single sideband, no blockers present,  
TC  
0.018  
dB/°C  
dB  
NF  
T
C
= -40°C to +85°C  
f
f
= 2793MHz, P  
= 2600MHz, f = 2250MHz,  
LO  
= 8dBm,  
BLOCKER  
BLOCKER  
Noise Figure Under Blocking  
Conditions  
RF  
NF  
22  
25  
B
P
= 0dBm, V = +5.0V, T = +25°C  
CC C  
LO  
(Notes 6, 8, 12)  
f
RF  
= 2600MHz, f = 2250MHz,  
LO  
P
= -10dBm, f  
= +25°C (Note 8)  
= f + 175MHz,  
62  
57  
78  
68  
67  
62  
83  
73  
RF  
SPUR LO  
T
C
2RF - 2LO Spur  
2 x 2  
dBc  
dBc  
f
RF  
= 2600MHz, f = 2250MHz,  
LO  
P
= -5dBm, f  
= f + 175MHz,  
RF  
SPUR LO  
T
C
= +25°C (Notes 8, 9)  
f
RF  
= 2600MHz, f = 2250MHz,  
LO  
P
= -10dBm, f  
= f + 116.67MHz,  
RF  
SPUR LO  
T
= +25°C (Note 8)  
C
3RF - 3LO Spur  
3 x 3  
f
RF  
= 2600MHz, f = 2250MHz,  
LO  
P
= -5dBm, f  
= f + 116.67MHz,  
RF  
SPUR LO  
T
C
= +25°C (Notes 8, 9)  
LO on and IF terminated into a matched  
impedance  
RF Input Return Loss  
LO Input Return Loss  
IF Output Impedance  
16  
dB  
dB  
RF and IF terminated into a matched  
impedance  
11.5  
200  
Nominal differential impedance at the IC’s  
IF outputs  
Z
IF  
RF terminated into 50, LO driven by 50Ω  
source, IF transformed to 50using  
external components shown in the Typical  
Application Circuit  
IF Output Return Loss  
20  
dB  
6
_______________________________________________________________________________________  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
MX197A  
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS  
(continued)  
(Typical Application Circuit optimized for the standard RF band (see Table 1), V  
= +4.75V to +5.25V, RF and LO ports are driven  
CC  
from 50sources, P = -3dBm to +3dBm, P = -5dBm, f = 2300MHz to 2900MHz, f = 1950MHz to 2550MHz, f = 350MHz,  
LO  
RF  
RF  
LO  
IF  
f
f
> f , T = -40°C to +85°C. Typical values are at V  
= +5.0V, P = -5dBm, P = 0dBm, f = 2600MHz, f = 2250MHz,  
RF  
IF  
LO  
C
CC RF LO RF LO  
= 350MHz, T = +25°C, unless otherwise noted.) (Note 7)  
C
PARAMETER  
RF-to-IF Isolation  
SYMBOL  
CONDITIONS  
MIN  
TYP  
23.5  
-31  
MAX  
UNITS  
dB  
LO Leakage at RF Port  
2LO Leakage at RF Port  
LO Leakage at IF Port  
(Notes 8, 9)  
-24  
dBm  
dBm  
dBm  
-27  
-9.6  
RFMAIN (RFDIV) converted power  
measured at IFDIV (IFMAIN) relative to  
IFMAIN (IFDIV), all unused ports terminated  
to 50(Notes 8, 9)  
Channel Isolation  
38.5  
42  
dB  
+3.3V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit optimized for the standard RF band (see Table 1). Typical values are at V  
= +3.3V, P = -5dBm,  
CC  
RF  
P
LO  
= 0dBm, f = 2600MHz, f = 2250MHz, f = 350MHz, T = +25°C, unless otherwise noted.) (Note 7)  
RF LO IF C  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Gain  
G
(Note 9)  
8.5  
0.2  
dB  
C
f
RF  
f
RF  
f
RF  
f
RF  
f
RF  
= 2305MHz to 2360MHz  
= 2500MHz to 2570MHz  
= 2570MHz to 2620MHz  
= 2500MHz to 2690MHz  
= 2700MHz to 2900MHz  
0.15  
0.15  
0.25  
0.15  
Conversion Gain Flatness  
dB  
f
T
= 2300MHz to 2900MHz,  
= -40°C to +85°C  
RF  
Gain Variation Over Temperature  
TC  
-0.01  
dB/°C  
CG  
C
Input Compression Point  
IP  
7.7  
dBm  
dBm  
1dB  
Third-Order Input Intercept Point  
IIP3  
f
f
- f  
= 1MHz, P = -5dBm per tone  
19.7  
RF1 RF2  
RF  
Third-Order Input Intercept  
Variation Over Temperature  
- f  
= 1MHz, T = -40°C to +85°C  
0.5  
9.7  
dBm  
dB  
RF1 RF2  
C
Noise Figure  
NF  
Single sideband, no blockers present  
Single sideband, no blockers present,  
T
SSB  
Noise Figure Temperature  
Coefficient  
TC  
0.018  
dB/°C  
NF  
= -40°C to +85°C  
C
_______________________________________________________________________________________  
7
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
+3.3V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS  
(continued)  
(Typical Application Circuit optimized for the standard RF band (see Table 1). Typical values are at V  
= +3.3V, P = -5dBm,  
CC  
RF  
P
LO  
= 0dBm, f = 2600MHz, f = 2250MHz, f = 350MHz, T = +25°C, unless otherwise noted.) (Note 7)  
RF LO IF C  
PARAMETER  
SYMBOL  
CONDITIONS  
= -10dBm, f = f + 175MHz  
MIN  
TYP  
MAX  
UNITS  
P
P
P
P
74  
69  
74  
64  
RF  
RF  
RF  
RF  
SPUR  
LO  
2RF - 2LO Spur  
2 x 2  
dBc  
= -5dBm, f  
= f + 175MHz  
LO  
SPUR  
= -10dBm, f  
= f + 116.67MHz  
LO  
SPUR  
3RF - 3LO Spur  
3 x 3  
dBc  
dB  
dB  
= -5dBm, f  
= f + 116.67MHz  
LO  
SPUR  
MX197A  
LO on and IF terminated into a matched  
impedance  
RF Input Return Loss  
LO Input Return Loss  
IF Output Impedance  
16  
11  
RF and IF terminated into a matched  
impedance  
Nominal differential impedance at the IC’s  
IF outputs  
Z
200  
IF  
RF terminated into 50, LO driven by 50Ω  
source, IF transformed to 50using  
external components shown in the Typical  
Application Circuit  
IF Output Return Loss  
26  
dB  
RF-to-IF Isolation  
25  
-36  
dB  
LO Leakage at RF Port  
2LO Leakage at RF Port  
LO Leakage at IF Port  
dBm  
dBm  
dBm  
-31  
-13.5  
RFMAIN (RFDIV) converted power  
measured at IFDIV (IFMAIN) relative to  
IFMAIN (IFDIV), all unused ports terminated  
to 50Ω  
Channel Isolation  
42  
dB  
Note 5: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating  
Characteristics.  
Note 6: Not production tested.  
Note 7: All limits reflect losses of external components, including a 0.8dB loss at f = 350MHz due to the 4:1 impedance trans-  
IF  
former. Output measurements taken at the IF outputs of Typical Application Circuit.  
Note 8: Guaranteed by design and characterization.  
Note 9: 100% production tested for functional performance.  
Note 10: RF frequencies below 2400MHz require external RF tuning similar to components listed in Table 2.  
Note 11: Maximum reliable continuous input power applied to the RF or IF port of this device is +12dBm from a 50source.  
Note 12: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of  
all SNR degradations in the mixer, including the LO noise as defined in Application Note 2021: Specifications and  
Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.  
8
_______________________________________________________________________________________  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
MX197A  
Typical Operating Characteristics  
(Typical Application Circuit, standard RF band (see Table 1), V = +5.0V, LO is high-side injected for a 350MHz IF, P = 0dBm,  
CC  
LO  
P
RF  
= -5dBm, T = +25°C, unless otherwise noted.)  
C
CONVERSION GAIN vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
CONVERSION GAIN vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
CONVERSION GAIN vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
11  
10  
9
11  
10  
9
11  
10  
9
T
= -30°C  
C
8
8
8
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 4.75V, 5.0V, 5.25V  
CC  
T
= +25°C  
C
7
7
7
T
= +85°C  
C
6
6
6
2200  
2400  
2600  
2800  
3000  
3000  
3000  
2200  
2200  
2200  
2400  
2600  
2800  
3000  
3000  
3000  
2200  
2200  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
INPUT IP3 vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
INPUT IP3 vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
26  
25  
24  
23  
22  
26  
25  
24  
23  
22  
26  
25  
24  
23  
22  
P
= -5dBm/TONE  
P
= -5dBm/TONE  
RF  
P
= -5dBm/TONE  
RF  
RF  
T
= +85°C  
C
V
= 5.25V  
CC  
T
= +25°C  
C
V
= 5.0V  
CC  
V
= 4.75V  
P
= -3dBm, 0dBm, +3dBm  
CC  
LO  
T
= -30°C  
C
2200  
2400  
2600  
2800  
2400  
2600  
2800  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
NOISE FIGURE vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
NOISE FIGURE vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
NOISE FIGURE vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
13  
12  
11  
10  
9
13  
12  
11  
10  
9
13  
12  
11  
10  
9
T
= +85°C  
C
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 4.75V, 5.0V, 5.25V  
CC  
T
= +25°C  
C
T
= -30°C  
C
8
8
8
7
7
7
2200  
2400  
2600  
2800  
2400  
2600  
2800  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
_______________________________________________________________________________________  
9
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, standard RF band (see Table 1), V  
= +5.0V, LO is high-side injected for a 350MHz IF, P = 0dBm,  
LO  
CC  
P
RF  
= -5dBm, T = +25°C, unless otherwise noted.)  
C
2LO - 2RF RESPONSE vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
2LO - 2RF RESPONSE vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
2LO - 2RF RESPONSE vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
80  
70  
60  
50  
80  
70  
60  
50  
80  
70  
60  
50  
P
= -5dBm  
P
= -5dBm  
RF  
P
= -5dBm  
RF  
RF  
P
= +3dBm  
LO  
T
= +85°C  
C
MX197A  
T
= +25°C  
C
P
= 0dBm  
LO  
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= -3dBm  
LO  
T
= -30°C  
C
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
3LO - 3RF RESPONSE vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
3LO - 3RF RESPONSE vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
3LO - 3RF RESPONSE vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
95  
85  
75  
65  
55  
95  
85  
75  
65  
55  
95  
85  
75  
65  
55  
P
= -5dBm  
P
= -5dBm  
P
= -5dBm  
RF  
RF  
RF  
T
= -30°C  
C
V
= 4.75V, 5.0V, 5.25V  
CC  
T
= +25°C, +85°C  
C
P
= -3dBm, 0dBm, +3dBm  
LO  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT P  
(LO > RF, STANDARD RF BAND)  
vs. RF FREQUENCY  
INPUT P  
(LO > RF, STANDARD RF BAND)  
vs. RF FREQUENCY  
INPUT P  
(LO > RF, STANDARD RF BAND)  
vs. RF FREQUENCY  
1dB  
1dB  
1dB  
13  
12  
11  
10  
9
13  
12  
11  
10  
9
13  
12  
11  
10  
9
V
= 5.0V  
CC  
T
= +85°C  
C
V
= 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
= +25°C  
V
= 4.75V  
2600  
C
CC  
T
= -30°C  
C
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
10 ______________________________________________________________________________________  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
MX197A  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, standard RF band (see Table 1), V  
= +5.0V, LO is high-side injected for a 350MHz IF, P = 0dBm,  
LO  
CC  
P
RF  
= -5dBm, T = +25°C, unless otherwise noted.)  
C
CHANNEL ISOLATION vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
CHANNEL ISOLATION vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
CHANNEL ISOLATION vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
60  
55  
50  
45  
40  
35  
30  
60  
60  
55  
50  
45  
40  
35  
30  
55  
50  
45  
40  
35  
30  
V = 4.75V, 5.0V, 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
= -30°C, +25°C, +85°C  
C
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO LEAKAGE AT IF PORT vs. LO FREQUENCY  
(LO > RF, STANDARD RF BAND)  
LO LEAKAGE AT IF PORT vs. LO FREQUENCY  
(LO > RF, STANDARD RF BAND)  
LO LEAKAGE AT IF PORT vs. LO FREQUENCY  
(LO > RF, STANDARD RF BAND)  
0
0
-10  
-20  
-30  
-40  
0
P
= -3dBm, 0dBm, +3dBm  
LO  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
T
= -30°C  
C
V
= 4.75V, 5.0V, 5.25V  
CC  
T
= +25°C, +85°C  
C
2550  
2750  
2950  
3150  
3350  
2550  
2750  
2950  
3150  
3350  
2550  
2750  
2950  
3150  
3350  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
40  
30  
20  
10  
40  
30  
20  
10  
40  
30  
20  
10  
V = 4.75V, 5.0V, 5.25V  
CC  
T
= +85°C  
P
= -3dBm, 0dBm, +3dBm  
LO  
C
T
= -30°C  
C
T
= +25°C  
C
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
______________________________________________________________________________________ 11  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, standard RF band (see Table 1), V  
= +5.0V, LO is high-side injected for a 350MHz IF, P = 0dBm,  
LO  
CC  
P
RF  
= -5dBm, T = +25°C, unless otherwise noted.)  
C
LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(LO > RF, STANDARD RF BAND)  
LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(LO > RF, STANDARD RF BAND)  
-10  
LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(LO > RF, STANDARD RF BAND)  
-10  
-10  
-20  
-30  
-40  
-50  
T
= -30°C, +25°C, +85°C  
C
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
MX197A  
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 4.75V, 5.0V, 5.25V  
CC  
2300  
2520  
2740  
2960  
3180  
3400  
2300  
2520  
2740  
2960  
3180  
3400  
2300  
2520  
2740  
2960  
3180  
3400  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(LO > RF, STANDARD RF BAND)  
-10  
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(LO > RF, STANDARD RF BAND)  
-10  
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(LO > RF, STANDARD RF BAND)  
-10  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
T
= -30°C, +25°C, +85°C  
C
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
2300  
2520  
2740  
2960  
3180  
3400  
2300  
2520  
2740  
2960  
3180  
3400  
2300  
2520  
2740  
2960  
3180  
3400  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
12 ______________________________________________________________________________________  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
MX197A  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, standard RF band (see Table 1), V  
= +5.0V, LO is high-side injected for a 350MHz IF, P = 0dBm,  
LO  
CC  
P
RF  
= -5dBm, T = +25°C, unless otherwise noted.)  
C
RF PORT RETURN LOSS vs. RF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
IF PORT RETURN LOSS vs. IF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
IF PORT RETURN LOSS vs. IF FREQUENCY  
(LO > RF, STANDARD RF BAND)  
0
0
0
5
f
= 2600MHz  
f
= 350MHz  
LO  
IF  
5
5
10  
15  
20  
25  
30  
f
= 2350MHz  
10  
15  
20  
25  
30  
10  
15  
20  
25  
30  
LO  
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
f
= 2600MHz  
230  
f
= 2950MHz  
LO  
LO  
2200  
2400  
2600  
2800  
3000  
50  
140  
230  
320  
410  
500  
50  
140  
320  
410  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
LO PORT RETURN LOSS vs. LO FREQUENCY  
(LO > RF, STANDARD RF BAND)  
SUPPLY CURRENT vs. TEMPERATURE (T )  
C
(LO > RF, STANDARD RF BAND)  
0
5
400  
390  
380  
370  
360  
350  
V
= 5.25V  
CC  
P
= +3dBm  
LO  
10  
15  
20  
25  
V
= 5.0V  
CC  
P
= 0dBm  
LO  
P
= -3dBm  
LO  
V
= 4.75V  
CC  
1900 2150 2400 2650 2900 3150 3400  
LO FREQUENCY (MHz)  
-35  
-15  
5
25  
45  
65  
85  
TEMPERATURE (°C)  
______________________________________________________________________________________ 13  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, extended RF band (see Table 2), V  
= +5.0V, LO is high-side injected for a 350MHz IF, P = 0dBm,  
LO  
CC  
P
RF  
= -5dBm, T = +25°C, unless otherwise noted.)  
C
CONVERSION GAIN vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
CONVERSION GAIN vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
CONVERSION GAIN vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
11  
10  
9
11  
10  
9
11  
10  
9
T
C
= -30°C  
MX197A  
8
8
8
P
LO  
= -3dBm, 0dBm, +3dBm  
V
CC  
= 4.75V, 5.0V, 5.25V  
T
C
= +85°C  
7
7
7
T
C
= +25°C  
6
6
6
1800  
1900  
2000  
2100  
2200  
2300  
1800  
1900  
2000  
2100  
2200  
2300  
1800  
1900  
2000  
2100  
2200  
2300  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
INPUT IP3 vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
INPUT IP3 vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
26  
25  
24  
23  
22  
26  
25  
24  
23  
22  
26  
25  
24  
23  
22  
P
= -5dBm/TONE  
P
RF  
= -5dBm/TONE  
P
= -5dBm/TONE  
RF  
RF  
T
C
= +85°C  
V
= 5.25V  
CC  
T
C
= +25°C  
V
CC  
= 5.0V  
V
= 4.75V  
P
LO  
= -3dBm, 0dBm, +3dBm  
CC  
T
C
= -30°C  
1800  
1900  
2000  
2100  
2200  
2300  
1800  
1900  
2000  
2100  
2200  
2300  
1800  
1900  
2000  
2100  
2200  
2300  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
NOISE FIGURE vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
NOISE FIGURE vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
NOISE FIGURE vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
13  
12  
11  
10  
9
13  
12  
11  
10  
9
13  
12  
11  
10  
9
T
C
= +85°C  
V = 4.75V, 5.0V, 5.25V  
CC  
T
C
= +25°C  
P
= -3dBm, 0dBm, +3dBm  
8
8
LO  
8
T
C
= -30°C  
7
7
7
1800  
1900  
2000  
2100  
2200  
2300  
1800  
1900  
2000  
2100  
2200  
2300  
1800  
1900  
2000  
2100  
2200  
2300  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
14 ______________________________________________________________________________________  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
MX197A  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, extended RF band (see Table 2), V  
= +5.0V, LO is high-side injected for a 350MHz IF, P = 0dBm,  
LO  
CC  
P
RF  
= -5dBm, T = +25°C, unless otherwise noted.)  
C
2LO - 2RF RESPONSE vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
2LO - 2RF RESPONSE vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
2LO - 2RF RESPONSE vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
70  
60  
50  
40  
70  
60  
50  
40  
70  
60  
50  
40  
P
RF  
= -5dBm  
P
= -5dBm  
RF  
P
= -5dBm  
RF  
T
C
= +85°C  
T
C
= +25°C  
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 4.75V, 5.0V, 5.25V  
CC  
T
C
= -30°C  
1800  
1900  
2000  
2100  
2200  
2300  
1800  
1900  
2000  
2100  
2200  
2300  
1800  
1900  
2000  
2100  
2200  
2300  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
3LO - 3RF RESPONSE vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
3LO - 3RF RESPONSE vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
3LO - 3RF RESPONSE vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
95  
85  
75  
65  
55  
95  
85  
75  
65  
55  
95  
85  
75  
65  
55  
P
= -5dBm  
P
= -5dBm  
RF  
P
RF  
= -5dBm  
RF  
T
C
= -30°C  
P
LO  
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
CC  
T
C
= +25°C, +85°C  
1800  
1900  
2000  
2100  
2200  
2300  
1800  
1900  
2000  
2100  
2200  
2300  
1800  
1900  
2000  
2100  
2200  
2300  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT P  
(LO > RF, EXTENDED RF BAND)  
vs. RF FREQUENCY  
INPUT P  
(LO > RF, EXTENDED RF BAND)  
vs. RF FREQUENCY  
INPUT P  
(LO > RF, EXTENDED RF BAND)  
vs. RF FREQUENCY  
1dB  
1dB  
1dB  
13  
12  
11  
13  
12  
11  
13  
12  
11  
T
C
= +85°C  
V
CC  
= 5.25V  
V
= 5.0V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
10  
9
10  
9
10  
9
T
C
= +25°C  
V
CC  
= 4.75V  
T
C
= -30°C  
1800  
1900  
2000  
2100  
2200  
2300  
1800  
1900  
2000  
2100  
2200  
2300  
1800  
1900  
2000  
2100  
2200  
2300  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
______________________________________________________________________________________ 15  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, extended RF band (see Table 2), V  
= +5.0V, LO is high-side injected for a 350MHz IF, P = 0dBm,  
LO  
CC  
P
RF  
= -5dBm, T = +25°C, unless otherwise noted.)  
C
CHANNEL ISOLATION vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
CHANNEL ISOLATION vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
CHANNEL ISOLATION vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
60  
60  
60  
55  
50  
55  
50  
55  
50  
MX197A  
45  
40  
35  
30  
45  
40  
35  
30  
45  
40  
35  
30  
P
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
CC  
T
= -30°C, +25°C, +85°C  
LO  
C
1800  
1900  
2000  
2100  
2200  
2300  
1800  
1900  
2000  
2100  
2200  
2300  
1800  
1900  
2000  
2100  
2200  
2300  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO LEAKAGE AT IF PORT vs. LO FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
0
LO LEAKAGE AT IF PORT vs. LO FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
0
LO LEAKAGE AT IF PORT vs. LO FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
0
-10  
-20  
-30  
-10  
-20  
-30  
-10  
-20  
-30  
P
= -3dBm, 0dBm, +3dBm  
V
CC  
= 4.75V, 5.0V, 5.25V  
LO  
T
C
= -30°C, +25°C, +85°C  
2150  
2250  
2350  
2450  
2550  
2650  
2150  
2250  
2350  
2450  
2550  
2650  
2150  
2250  
2350  
2450  
2550  
2650  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
30  
20  
30  
20  
30  
20  
V = 4.75V, 5.0V, 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
C
= +85°C  
T
= +25°C  
C
T
C
= -30°C  
10  
10  
10  
1800  
1900  
2000  
2100  
2200  
2300  
1800  
1900  
2000  
2100  
2200  
2300  
1800  
1900  
2000  
2100  
2200  
2300  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
16 ______________________________________________________________________________________  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
MX197A  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, extended RF band (see Table 2), V  
= +5.0V, LO is high-side injected for a 350MHz IF, P = 0dBm,  
LO  
CC  
P
RF  
= -5dBm, T = +25°C, unless otherwise noted.)  
C
LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
P
LO  
= -3dBm, 0dBm, +3dBm  
V
CC  
= 4.75V, 5.0V, 5.25V  
T
C
= -30°C, +25°C, +85°C  
2300  
2520  
2740  
2960  
3180  
3400  
2300  
2520  
2740  
2960  
3180  
3400  
2300  
2520  
2740  
2960  
3180  
3400  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
-10  
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
-10  
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
-10  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
T
C
= -30°C, +25°C, +85°C  
P
LO  
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
CC  
2300  
2520  
2740  
2960  
3180  
3400  
2300  
2520  
2740  
2960  
3180  
3400  
2300  
2520  
2740  
2960  
3180  
3400  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
______________________________________________________________________________________ 17  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, extended RF band (see Table 2), V  
= +5.0V, LO is high-side injected for a 350MHz IF, P = 0dBm,  
LO  
CC  
P
RF  
= -5dBm, T = +25°C, unless otherwise noted.)  
C
RF PORT RETURN LOSS vs. RF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
IF PORT RETURN LOSS vs. IF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
IF PORT RETURN LOSS vs. IF FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
0
0
0
f
IF  
= 350MHz  
f
LO  
= 2600MHz  
5
10  
15  
20  
25  
30  
5
10  
15  
20  
25  
30  
5
10  
15  
20  
25  
30  
f
LO  
= 2350MHz  
V
= 4.75V, 5.0V, 5.25V  
CC  
MX197A  
P
= -3dBm, 0dBm, +3dBm  
LO  
f
LO  
= 2600MHz  
f
LO  
= 2950MHz  
410 500  
1800  
1900  
2000  
2100  
2200  
2300  
50  
140  
230  
320  
410  
500  
50  
140  
230  
320  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
SUPPLY CURRENT vs. TEMPERATURE (T )  
C
LO PORT RETURN LOSS vs. LO FREQUENCY  
(LO > RF, EXTENDED RF BAND)  
(LO > RF, EXTENDED RF BAND)  
400  
0
V
= 5.25V  
CC  
P
= +3dBm  
LO  
390  
380  
5
10  
370  
360  
350  
15  
20  
25  
V
= 5.0V  
CC  
P
= -3dBm  
LO  
P
LO  
= 0dBm  
V
= 4.75V  
CC  
-35  
-15  
5
25  
45  
65  
85  
1900 2150 2400 2650 2900 3150 3400  
LO FREQUENCY (MHz)  
TEMPERATURE (°C)  
18 ______________________________________________________________________________________  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
MX197A  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, standard RF band (see Table 1), V  
= +5.0V, LO is low-side injected for a 350MHz IF, P = 0dBm,  
LO  
CC  
P
RF  
= -5dBm, T = +25°C, unless otherwise noted.)  
C
CONVERSION GAIN vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
CONVERSION GAIN vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
CONVERSION GAIN vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
11  
11  
11  
T
C
= -30°C  
10  
9
10  
9
10  
9
8
7
6
8
7
6
8
7
6
P
LO  
= -3dBm, 0dBm, +3dBm  
T
C
= +25°C  
V
= 4.75V, 5.0V, 5.25V  
CC  
T
C
= +85°C  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
INPUT IP3 vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
INPUT IP3 vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
26  
26  
25  
26  
P = -5dBm/TONE  
RF  
P
= -5dBm/TONE  
P
= -5dBm/TONE  
RF  
RF  
T
C
= +85°C  
25  
24  
23  
22  
25  
24  
23  
22  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
= +25°C  
C
24  
23  
V
CC  
= 4.75V, 5.0V, 5.25V  
T
C
= -30°C  
22  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
NOISE FIGURE vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
NOISE FIGURE vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
NOISE FIGURE vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
13  
12  
11  
10  
9
13  
12  
11  
10  
9
13  
12  
11  
10  
9
T
C
= +85°C  
V
CC  
= 4.75V, 5.0V, 5.25V  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
C
= +25°C  
8
8
8
T
C
= -30°C  
7
7
7
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
______________________________________________________________________________________ 19  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, standard RF band (see Table 1), V  
= +5.0V, LO is low-side injected for a 350MHz IF, P = 0dBm,  
LO  
CC  
P
RF  
= -5dBm, T = +25°C, unless otherwise noted.)  
C
2RF - 2LO RESPONSE vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
2RF - 2LO RESPONSE vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
2RF - 2LO RESPONSE vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
80  
70  
60  
50  
80  
70  
60  
50  
80  
70  
60  
50  
P
= -5dBm  
RF  
P
= -5dBm  
P
= -5dBm  
RF  
RF  
T
C
= +85°C  
P
LO  
= 0dBm  
P
LO  
= +3dBm  
V
= 4.75V, 5.0V, 5.25V  
CC  
MX197A  
T
C
= -30°C  
P
LO  
= -3dBm  
2800  
T
C
= +25°C  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
3000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
3RF - 3LO RESPONSE vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
3RF - 3LO RESPONSE vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
3RF - 3LO RESPONSE vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
95  
85  
75  
65  
55  
95  
85  
75  
95  
85  
75  
P
= -5dBm  
P = -5dBm  
RF  
RF  
P
RF  
= -5dBm  
65  
55  
65  
55  
V
= 4.75V, 5.0V, 5.25V  
2600  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
= -30°C, +25°C, +85°C  
C
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT P  
(RF > LO, STANDARD RF BAND)  
vs. RF FREQUENCY  
INPUT P  
(RF > LO, STANDARD RF BAND)  
vs. RF FREQUENCY  
1dB  
INPUT P  
(RF > LO, STANDARD RF BAND)  
vs. RF FREQUENCY  
1dB  
1dB  
13  
12  
11  
13  
12  
11  
13  
12  
11  
V
= 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
C
= +85°C  
V
CC  
= 5.0V  
10  
9
10  
9
10  
9
T
= -30°C  
C
V
= 4.75V  
T
C
= +25°C  
CC  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
20 ______________________________________________________________________________________  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
MX197A  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, standard RF band (see Table 1), V  
= +5.0V, LO is low-side injected for a 350MHz IF, P = 0dBm,  
LO  
CC  
P
RF  
= -5dBm, T = +25°C, unless otherwise noted.)  
C
CHANNEL ISOLATION vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
CHANNEL ISOLATION vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
CHANNEL ISOLATION vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
55  
50  
45  
40  
35  
30  
55  
50  
45  
40  
35  
30  
55  
50  
45  
40  
35  
30  
P
LO  
= -3dBm, 0dBm, +3dBm  
V
CC  
= 4.75V, 5.0V, 5.25V  
T
C
= -30°C, +25°C, +85°C  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO LEAKAGE AT IF PORT vs. LO FREQUENCY  
(RF > LO, STANDARD RF BAND)  
0
LO LEAKAGE AT IF PORT vs. LO FREQUENCY  
(RF > LO, STANDARD RF BAND)  
0
LO LEAKAGE AT IF PORT vs. LO FREQUENCY  
(RF > LO, STANDARD RF BAND)  
0
-10  
-10  
-10  
T
= -30°C, +25°C, +85°C  
C
P
LO  
= -3dBm, 0dBm, +3dBm  
V
CC  
= 4.75V, 5.0V, 5.25V  
-20  
-30  
-20  
-30  
-20  
-30  
1850  
2050  
2250  
2450  
2650  
1850  
2050  
2250  
2450  
2650  
1850  
2050  
2250  
2450  
2650  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
30  
30  
30  
T
C
= +85°C  
20  
10  
20  
10  
20  
10  
T
= +25°C  
C
V
= 4.75V, 5.0V, 5.25V  
CC  
P
LO  
= -3dBm, 0dBm, +3dBm  
T
= -30°C  
C
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
______________________________________________________________________________________ 21  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, standard RF band (see Table 1), V  
= +5.0V, LO is low-side injected for a 350MHz IF, P = 0dBm,  
LO  
CC  
P
RF  
= -5dBm, T = +25°C, unless otherwise noted.)  
C
LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(RF > LO, STANDARD RF BAND)  
LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(RF > LO, STANDARD RF BAND)  
LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(RF > LO, STANDARD RF BAND)  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
MX197A  
V
CC  
= 4.75V, 5.0V, 5.25V  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
C
= -30°C, +25°C, +85°C  
1900  
2100  
2300  
2500  
2700  
2900  
1900  
2100  
2300  
2500  
2700  
2900  
1900  
2100  
2300  
2500  
2700  
2900  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(RF > LO, STANDARD RF BAND)  
-10  
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(RF > LO, STANDARD RF BAND)  
-10  
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(RF > LO, STANDARD RF BAND)  
-10  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 4.75V, 5.0V, 5.25V  
CC  
T
= -30°C, +25°C, +85°C  
C
1900  
2100  
2300  
2500  
2700  
2900  
1900  
2100  
2300  
2500  
2700  
2900  
1900  
2100  
2300  
2500  
2700  
2900  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
22 ______________________________________________________________________________________  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
MX197A  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, standard RF band (see Table 1), V  
= +5.0V, LO is low-side injected for a 350MHz IF, P = 0dBm,  
LO  
CC  
P
RF  
= -5dBm, T = +25°C, unless otherwise noted.)  
C
RF PORT RETURN LOSS vs. RF FREQUENCY  
IF PORT RETURN LOSS vs. IF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
IF PORT RETURN LOSS vs. IF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
(RF > LO, STANDARD RF BAND)  
0
0
5
0
5
f
= 350MHz  
f
LO  
= 2250MHz  
IF  
5
V
= 4.75V, 5.0V, 5.25V  
CC  
f
= 2250MHz  
LO  
10  
10  
10  
f
LO  
= 2650MHz  
15  
20  
25  
30  
15  
20  
25  
30  
15  
20  
25  
30  
f
LO  
= 1850MHz  
P
= -3dBm, 0dBm, +3dBm  
LO  
2200  
2400  
2600  
2800  
3000  
50  
140  
230  
320  
410  
500  
50  
140  
230  
320  
410  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
LO PORT RETURN LOSS vs. LO FREQUENCY  
(RF > LO, STANDARD RF BAND)  
SUPPLY CURRENT vs. TEMPERATURE (T )  
C
(RF > LO, STANDARD RF BAND)  
0
5
400  
390  
380  
V
= 5.25V  
CC  
P
= +3dBm  
LO  
10  
15  
20  
25  
370  
360  
350  
P
= -3dBm  
LO  
P
= 0dBm  
V
= 5.0V  
LO  
CC  
V
= 4.75V  
CC  
1900 2150 2400 2650 2900 3150 3400  
LO FREQUENCY (MHz)  
-35  
-15  
5
25  
45  
65  
85  
TEMPERATURE (°C)  
______________________________________________________________________________________ 23  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, standard RF band (see Table 1), V  
= +3.3V, LO is low-side injected for a 350MHz IF, P = 0dBm,  
LO  
CC  
P
RF  
= -5dBm, T = +25°C, unless otherwise noted.)  
C
CONVERSION GAIN vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
CONVERSION GAIN vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
CONVERSION GAIN vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
11  
10  
9
11  
10  
9
11  
10  
9
V
= 3.3V  
V
CC  
= 3.3V  
CC  
T
C
= -30°C  
T
C
= +25°C  
MX197A  
8
8
8
P
LO  
= -3dBm, 0dBm, +3dBm  
7
7
7
V
CC  
= 3.0V, 3.3V, 3.6V  
T
C
= +85°C  
6
6
6
5
5
5
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
3000  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
INPUT IP3 vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
INPUT IP3 vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
22  
21  
20  
19  
18  
17  
22  
21  
20  
19  
18  
17  
22  
21  
20  
19  
18  
17  
V
= 3.3V  
V
= 3.3V  
CC  
P
= -5dBm/TONE  
P
= -5dBm/TONE  
P
RF  
= -5dBm/TONE  
CC  
RF  
RF  
T
C
= +85°C  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
= +25°C  
C
V
= 3.0V, 3.3V, 3.6V  
CC  
T
C
= -30°C  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
NOISE FIGURE vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
NOISE FIGURE vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
NOISE FIGURE vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
13  
12  
11  
10  
13  
12  
11  
10  
13  
12  
11  
10  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
T
C
= +85°C  
9
8
9
8
9
8
V
CC  
= 3.0V, 3.3V, 3.6V  
2600 2800  
P = -3dBm, 0dBm, +3dBm  
LO  
T
C
= +25°C  
T
= -30°C  
C
7
7
7
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
24 ______________________________________________________________________________________  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
MX197A  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, standard RF band (see Table 1), V  
= +3.3V, LO is low-side injected for a 350MHz IF, P = 0dBm,  
LO  
CC  
P
RF  
= -5dBm, T = +25°C, unless otherwise noted.)  
C
2RF - 2LO RESPONSE vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
2RF - 2LO RESPONSE vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
2RF - 2LO RESPONSE vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
90  
80  
70  
90  
80  
70  
90  
80  
70  
P
= -5dBm  
P
= -5dBm  
P
= -5dBm  
RF  
V
= 3.3V  
V
CC  
= 3.3V  
RF  
RF  
CC  
T
C
= -30°C  
P
= +3dBm  
LO  
V
= 3.6V  
CC  
P
= 0dBm  
LO  
V
= 3.3V  
CC  
60  
50  
60  
50  
60  
50  
T
C
= +25°C  
T
C
= +85°C  
P
= -3dBm  
LO  
V
= 3.0V  
CC  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
3RF - 3LO RESPONSE vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
3RF - 3LO RESPONSE vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
3RF - 3LO RESPONSE vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
95  
85  
75  
65  
55  
45  
95  
85  
75  
65  
55  
45  
95  
85  
75  
65  
55  
45  
P
= -5dBm  
P
= -5dBm  
P
= -5dBm  
RF  
RF  
RF  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
V
= 3.0V, 3.3V, 3.6V  
CC  
P
LO  
= -3dBm, 0dBm, +3dBm  
T
C
= -30°C, +25°C, +85°C  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT P  
(RF > LO, STANDARD RF BAND)  
vs. RF FREQUENCY  
INPUT P  
(RF > LO, STANDARD RF BAND)  
vs. RF FREQUENCY  
INPUT P  
(RF > LO, STANDARD RF BAND)  
vs. RF FREQUENCY  
1dB  
1dB  
1dB  
10  
9
10  
9
10  
9
V
= 3.3V  
V
CC  
= 3.3V  
CC  
T
C
= +85°C  
V
CC  
= 3.3V  
V
CC  
= 3.6V  
P
= -3dBm, 0dBm, +3dBm  
LO  
8
8
8
7
7
7
T
C
= +25°C  
V
= 3.0V  
CC  
6
6
6
T
C
= -30°C  
5
5
5
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
______________________________________________________________________________________ 25  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, standard RF band (see Table 1), V  
= +3.3V, LO is low-side injected for a 350MHz IF, P = 0dBm,  
LO  
CC  
P
RF  
= -5dBm, T = +25°C, unless otherwise noted.)  
C
CHANNEL ISOLATION vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
CHANNEL ISOLATION vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
CHANNEL ISOLATION vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
55  
50  
45  
40  
35  
30  
55  
50  
45  
40  
35  
30  
55  
50  
45  
40  
35  
30  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
MX197A  
P
LO  
= -3dBm, 0dBm, +3dBm  
V
= 3.0V, 3.3V, 3.6V  
2600  
T
C
= -30°C, +25°C, +85°C  
CC  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO LEAKAGE AT IF PORT vs. LO FREQUENCY  
(RF > LO, STANDARD RF BAND)  
LO LEAKAGE AT IF PORT vs. LO FREQUENCY  
(RF > LO, STANDARD RF BAND)  
LO LEAKAGE AT IF PORT vs. LO FREQUENCY  
(RF > LO, STANDARD RF BAND)  
0
0
0
V
= 3.3V  
V
CC  
= 3.3V  
CC  
T
C
= -30°C  
-10  
-10  
-10  
-20  
-30  
-20  
-30  
-20  
-30  
T
C
= +85°C  
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 3.0V, 3.3V, 3.6V  
CC  
T
C
= +25°C  
1850  
2050  
2250  
2450  
2650  
1850  
2050  
2250  
2450  
2650  
1850  
2050  
2250  
2450  
2650  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
30  
25  
20  
15  
10  
30  
25  
20  
15  
10  
30  
25  
20  
15  
10  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
T
C
= +85°C  
V
CC  
= 3.0V, 3.3V, 3.6V  
T
C
= +25°C  
P
LO  
= -3dBm, 0dBm, +3dBm  
T
C
= -30°C  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
2200  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
26 ______________________________________________________________________________________  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
MX197A  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, standard RF band (see Table 1), V  
= +3.3V, LO is low-side injected for a 350MHz IF, P = 0dBm,  
LO  
CC  
P
RF  
= -5dBm, T = +25°C, unless otherwise noted.)  
C
LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(RF > LO, STANDARD RF BAND)  
LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(RF > LO, STANDARD RF BAND)  
LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(RF > LO, STANDARD RF BAND)  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-10  
V
= 3.3V  
V
CC  
= 3.3V  
CC  
-20  
-30  
-40  
-50  
T
C
= -30°C, +25°C, +85°C  
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 3.0V, 3.3V, 3.6V  
CC  
1900  
2100  
2300  
2500  
2700  
2900  
1900  
2100  
2300  
2500  
2700  
2900  
1900  
2100  
2300  
2500  
2700  
2900  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(RF > LO, STANDARD RF BAND)  
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(RF > LO, STANDARD RF BAND)  
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
(RF > LO, STANDARD RF BAND)  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-10  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
-20  
-30  
-40  
-50  
V
CC  
= 3.0V, 3.3V, 3.6V  
P
LO  
= -3dBm, 0dBm, +3dBm  
T
C
= -30°C, +25°C, +85°C  
1900  
2100  
2300  
2500  
2700  
2900  
1900  
2100  
2300  
2500  
2700  
2900  
1900  
2100  
2300  
2500  
2700  
2900  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
______________________________________________________________________________________ 27  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, standard RF band (see Table 1), V  
= +3.3V, LO is low-side injected for a 350MHz IF, P = 0dBm,  
LO  
CC  
P
RF  
= -5dBm, T = +25°C, unless otherwise noted.)  
C
RF PORT RETURN LOSS vs. RF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
IF PORT RETURN LOSS vs. IF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
IF PORT RETURN LOSS vs. IF FREQUENCY  
(RF > LO, STANDARD RF BAND)  
0
0
10  
20  
30  
40  
0
10  
20  
30  
40  
V
= 3.3V  
f
= 350MHz  
f
LO  
= 2250MHz  
V
= 3.3V  
CC  
CC  
IF  
5
P
= -3dBm, 0dBm, +3dBm  
LO  
f
LO  
= 2650MHz  
10  
15  
20  
25  
30  
MX197A  
f
LO  
= 1850MHz  
V
= 3.0V, 3.3V, 3.6V  
CC  
f
= 2250MHz  
LO  
2200  
2400  
2600  
2800  
3000  
50  
140  
230  
320  
410  
500  
50  
140  
230  
320  
410  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
LO PORT RETURN LOSS vs. LO FREQUENCY  
(RF > LO, STANDARD RF BAND)  
SUPPLY CURRENT vs. TEMPERATURE (T )  
C
(RF > LO, STANDARD RF BAND)  
0
300  
V
= 3.3V  
CC  
V
= 3.6V  
CC  
P
= +3dBm  
LO  
290  
280  
270  
260  
250  
5
10  
V
= 3.3V  
CC  
15  
20  
25  
P
= -3dBm  
LO  
P
= 0dBm  
LO  
V
= 3.0V  
5
CC  
1900 2150 2400 2650 2900 3150 3400  
LO FREQUENCY (MHz)  
-35  
-15  
25  
45  
65  
85  
TEMPERATURE (°C)  
28 ______________________________________________________________________________________  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
MX197A  
Pin Description  
PIN  
NAME  
FUNCTION  
Main Channel RF Input. Internally matched to 50. Requires an input DC-blocking  
capacitor.  
1
RFMAIN  
2, 5, 6, 8, 12, 15,  
18, 23, 28, 31, 34  
GND  
GND  
Ground. Not internally connected. Ground these pins or leave unconnected.  
Ground. Internally connected to the exposed pad. Connect all ground pins and the  
exposed pad (EP) together.  
3, 7, 20, 22, 24–27  
4, 10, 16, 21, 30,  
36  
Power Supply. Connect bypass capacitors as close as possible to the pin (see the  
Typical Application Circuit).  
V
CC  
9
RFDIV  
Diversity Channel RF Input. Internal matched to 50. Requires a DC-blocking capacitor.  
IF Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the  
bias current for the diversity IF amplifier.  
11  
IFD_SET  
Diversity Mixer Differential IF Output. Connect pullup inductors from each of these pins  
13, 14  
17  
IFD+, IFD-  
LO_ADJ_D  
LO  
to V  
(see the Typical Application Circuit).  
CC  
LO Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the  
bias current for the diversity LO amplifier.  
Local Oscillator Input. This input is internally matched to 50. Requires an input DC-  
blocking capacitor.  
19  
LO Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias  
current for the main LO amplifier.  
29  
LO_ADJ_M  
IFM-, IFM+  
IFM_SET  
Main Mixer Differential IF Output. Connect pullup inductors from each of these pins to  
32, 33  
35  
V
(see the Typical Application Circuit).  
CC  
IF Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias  
current for the main IF amplifier.  
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that  
uses multiple ground vias to provide heat transfer out of the device into the PCB ground  
planes. These multiple ground vias are also required to achieve the noted RF performance.  
EP  
The integrated LO buffer provides a high drive level to  
Detailed Description  
the mixer core, reducing the LO drive required at the  
MAX19997A’s input to a range of -3dBm to +3dBm. The  
IF port incorporates a differential output, which is ideal  
for providing enhanced 2RF - 2LO (low-side injection)  
and 2LO - 2RF (high-side injection) performance.  
The MAX19997A dual, downconversion mixer provides  
high linearity and low noise figure for a multitude of  
1800MHz to 2900MHz base-station applications. The  
device fully supports both low-side and high-side LO  
injection architectures for the 2300MHz to 2900MHz  
WiMAX, LTE, WCS, and MMDS bands. WCDMA,  
cdma2000, and PCS1900 applications utilizing high-  
side LO injection architectures are also supported by  
adding one additional tuning element (a shunt inductor)  
on each RF port.  
RF Input and Balun  
The MAX19997A’s two RF inputs (RFMAIN and RFDIV)  
provide a 50match when combined with a series DC-  
blocking capacitor. This DC-blocking capacitor is  
required as the input is internally DC shorted to ground  
through each channel’s on-chip balun. When using a  
22pF DC-blocking capacitor, the RF port input return  
loss is typically 15dB over the RF frequency range of  
2600MHz to 2900MHz.  
The MAX19997A operates over an LO range of  
1950MHz to 3400MHz and an IF range of 50MHz to  
550MHz. Integrated baluns and matching circuitry allow  
50single-ended interfaces to the RF and LO ports.  
______________________________________________________________________________________ 29  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
The MAX19997A’s RF range can be further extended  
down to 1800MHz by adding one additional tuning ele-  
Applications Information  
Input and Output Matching  
The RF and LO inputs are internally matched to 50. No  
matching components are required for RF frequencies  
ranging from 2400MHz to 2900MHz. RF and LO inputs  
require only DC-blocking capacitors for interfacing.  
ment on each RF port. For 1950MHz RF applications,  
connect a 12nH shunt inductor from pins 1 and 9 to  
ground. Also, change the value of the DC-blocking  
capacitors (C1 and C8) from 22pF to 1pF. See the  
Typical Application Circuit for details.  
If desired, the RF band can be extended down to  
1800MHz by adding two external matching compo-  
nents on each RF port. See the Typical Application  
Circuit and Table 2 for details.  
LO Input, Buffer, and Balun  
A two-stage internal LO buffer allows a wide input  
power range for the LO drive. All guaranteed specifica-  
tions are for an LO signal power from -3dBm to +3dBm.  
The on-chip low-loss balun, along with an LO buffer,  
drives the double-balanced mixer. All interfacing and  
matching components from the LO input to the IF out-  
puts are integrated on-chip.  
MX197A  
The IF output impedance is 200(differential). For  
evaluation, an external low-loss 4:1 (impedance ratio)  
balun transforms this impedance down to a 50single-  
ended output (see the Typical Application Circuit).  
Reduced-Power Mode  
Each channel of the MAX19997A has two pins  
(LO_ADJ_ _, IF_ _SET) that allow external resistors to set  
the internal bias currents. Nominal values for these  
resistors are shown in Tables 1 and 2. Larger-value  
resistors can be used to reduce power dissipation at the  
expense of some performance loss. If 1% resistors are  
not readily available, 5% resistors may be substituted.  
High-Linearity Mixer  
The core of the MAX19997A is a pair of double-  
balanced, high-performance passive mixers.  
Exceptional linearity is provided by the large LO swing  
from the on-chip LO buffer. When combined with the  
integrated IF amplifiers, the cascaded IIP3, 2RF - 2LO  
rejection, and NF performance are typically +24dBm  
IIP3, -67dBc, and 10.3dB, respectively for low-side LO  
injection architectures covering the 2300MHz to  
2900MHz band. Cascaded performance levels are  
comparable for high-side LO injection architectures;  
IIP3, 2LO - 2RF rejection, and NF levels are typically  
rated at +24dBm IIP3, -73dBc, and 10.4dB, respective-  
ly over the same 2300MHz to 2900MHz band.  
Significant reductions in power consumption can be  
realized by operating the mixer with an optional supply  
voltage of +3.3V. Doing so reduces the overall power  
consumption by up to 53%. See the +3.3V Supply,  
Low-Side LO Injection AC Electrical Characteristics  
table and the relevant +3.3V curves in the Typical  
Operating Characteristics section to evaluate the power  
vs. performance tradeoffs.  
Differential IF Output Amplifier  
The MAX19997A mixers have an IF frequency range of  
50MHz to 550MHz. The differential, open-collector IF  
Layout Considerations  
A properly designed PCB is an essential part of any  
RF/microwave circuit. Keep RF signal lines as short as  
possible to reduce losses, radiation, and inductance.  
For the best performance, route the ground pin traces  
directly to the exposed pad under the package.  
output ports require external pullup inductors to V  
.
CC  
These pullup inductors are also used to resonate out the  
parasitic shunt capacitance of the IC, PCB components,  
and PCB to provide an optimized IF match at the fre-  
quency of interest. Note that differential IF outputs are  
ideal for providing enhanced 2RF - 2LO and 2LO - 2RF  
rejection performance. Single-ended IF applications  
require a 4:1 balun to transform the 200differential  
output impedance to a 50single-ended output. After  
the balun, voltage standing-wave ratio (VSWR) is typi-  
cally 1.2:1.  
The PCB exposed pad MUST be connected to the  
ground plane of the PCB. It is suggested that multiple  
vias be used to connect this pad to the lower-level  
ground planes. This method provides a good RF/ther-  
mal-conduction path for the device. Solder the exposed  
pad on the bottom of the device package to the PCB.  
The MAX19997A evaluation kit can be used as a refer-  
ence for board layout. Gerber files are available upon  
request at www.maxim-ic.com.  
30 ______________________________________________________________________________________  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
MX197A  
path to the die. It is important that the PCB on which the  
MAX19997A is mounted be designed to conduct heat  
from the EP. In addition, provide the EP with a low-  
inductance path to electrical ground. The EP MUST be  
soldered to a ground plane on the PCB, either directly  
or through an array of plated via holes.  
Power-Supply Bypassing  
Proper voltage supply bypassing is essential for high-  
frequency circuit stability. Bypass each V  
pin with  
CC  
the capacitors shown in the Typical Application Circuit.  
Exposed Pad RF/Thermal Considerations  
The exposed pad (EP) of the MAX19997A’s 36-pin thin  
QFN-EP package provides a low thermal-resistance  
Table 1. Standard RF Band Application Circuit Component Values (Optimized for  
Frequencies Ranging from 2400MHz to 2900MHz)  
DESIGNATION  
QTY  
DESCRIPTION  
COMPONENT SUPPLIER  
Murata Electronics North  
America, Inc.  
C1, C8  
2
22pF microwave capacitors (0402)  
Murata Electronics North  
America, Inc.  
C14  
1
6
6
1.5pF microwave capacitor (0402)  
0.01µF microwave capacitors (0402)  
82pF microwave capacitors (0603)  
C4, C9, C13, C15,  
C17, C18  
Murata Electronics North  
America, Inc.  
C10, C11, C12,  
C19, C20, C21  
Murata Electronics North  
America, Inc.  
L1, L2, L3, L4  
L7, L8  
4
0
120nH wire-wound high-Q inductors* (0805)  
Not used  
Coilcraft, Inc.  
7501% resistors (0402). Use for V  
= +5.0V applications. Larger  
CC  
values can be used to reduce power at the expense of some  
performance loss. See the Typical Operating Characteristics section.  
Digi-Key Corp.  
Digi-Key Corp.  
Digi-Key Corp.  
Digi-Key Corp.  
R1, R4  
2
1.1k1% resistors (0402). Use for V  
= +3.3V applications. Larger  
CC  
values can be used to reduce power at the expense of some  
performance loss. See the Typical Operating Characteristics section.  
6981% resistors (0402). Use for V  
= +5.0V applications. Larger  
CC  
values can be used to reduce power at the expense of some  
performance loss. See the Typical Operating Characteristics section.  
R2, R5  
R3, R6  
2
2
8451% resistors (0402). Use for V  
= +3.3V applications. Larger  
CC  
values can be used to reduce power at the expense of some  
performance loss. See the Typical Operating Characteristics section.  
0resistors (1206). These resistors can be increased in value to reduce  
power dissipation in the device, but reduces the compression point. Full  
Digi-Key Corp.  
Mini-Circuits  
P
performance achieved using 0.  
1dB  
T1, T2  
U1  
2
1
4:1 IF baluns (TC4-1W-17+)  
MAX19997A IC (36 TQFN-EP)  
Maxim Integrated Products,  
Inc.  
*Use 390nH (0805) inductors for an IF frequency of 200MHz. Contact the factory for details.  
______________________________________________________________________________________ 31  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
Table 2. Extended RF Band Application Circuit Component Values (Optimized for  
1950MHz Operation)  
DESIGNATION  
QTY  
DESCRIPTION  
COMPONENT SUPPLIER  
Murata Electronics North  
America, Inc.  
C1, C8  
2
1pF microwave capacitors (0402)  
Murata Electronics North  
America, Inc.  
C14  
1
6
1.5pF microwave capacitor (0402)  
0.01µF microwave capacitors (0402)  
C4, C9, C13, C15,  
C17, C18  
Murata Electronics North  
America, Inc.  
MX197A  
C10, C11, C12,  
C19, C20, C21  
Murata Electronics North  
America, Inc.  
6
4
2
82pF microwave capacitors (0603)  
L1, L2, L3, L4  
120nH wire-wound high-Q inductors* (0805)  
Coilcraft, Inc.  
12nH inductors (0402). Use to improve RF match from 1800MHz to  
2400MHz. Connect L7 and L8 from pins 1 and 9, respectively, to ground.  
L7, L8  
Coilcraft, Inc.  
7501% resistors (0402). Use for V  
= +5.0V applications. Larger  
CC  
values can be used to reduce power at the expense of some  
performance loss. See the Typical Operating Characteristics section.  
R1, R4  
R2, R5  
R3, R6  
2
2
2
Digi-Key Corp.  
Digi-Key Corp.  
6981% resistors (0402). Use for V  
= +5.0V applications. Larger  
CC  
values can be used to reduce power at the expense of some  
performance loss. See the Typical Operating Characteristics section.  
0resistors (1206). These resistors can be increased in value to reduce  
power dissipation in the device, but reduces the compression point. Full  
Digi-Key Corp.  
Mini-Circuits  
P
performance achieved using 0.  
1dB  
T1, T2  
U1  
2
1
4:1 IF baluns (TC4-1W-17+)  
MAX19997A IC (36 TQFN-EP)  
Maxim Integrated Products,  
Inc.  
*Use 390nH (0805) inductors for an IF frequency of 200MHz. Contact the factory for details.  
32 ______________________________________________________________________________________  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
MX197A  
Typical Application Circuit  
C19  
T1  
L1*  
L2*  
IF MAIN OUTPUT  
V
CC  
C21  
R3  
4:1  
R1  
V
CC  
C20  
R2  
V
CC  
C17  
C18  
L7**  
+
C1  
RFMAIN  
GND  
GND  
RF MAIN INPUT  
1
2
3
4
5
6
7
8
9
27  
26  
25  
24  
23  
22  
21  
20  
19  
GND  
GND  
GND  
GND  
MAX19997A  
GND  
V
CC  
V
CC  
C4  
GND  
GND  
GND  
V
CC  
GND  
V
CC  
C15  
EXPOSED  
PAD  
GND  
GND  
LO  
RFDIV  
RF DIV INPUT  
LO  
C14  
C8  
L8**  
V
CC  
C9  
R4  
V
CC  
T2  
R5  
C11  
C13  
*USE 390nH (0805) INDUCTORS FOR AN IF FREQUENCY OF 200MHz.  
CONTACT FACTORY FOR DETAILS.  
**CONNECT INDUCTORS TO IMPROVE RF MATCH FROM 1800MHz TO  
2400MHz. SEE TABLE 2 FOR DETAILS.  
L4*  
V
CC  
C12  
R6  
IF DIV OUTPUT  
L3*  
4:1  
C10  
______________________________________________________________________________________ 33  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
Pin Configuration/  
Functional Block Diagram  
Chip Information  
PROCESS: SiGe BiCMOS  
TOP VIEW  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
+
1
2
3
4
5
6
7
8
9
27  
RFMAIN  
GND  
GND  
MAX19997A  
26  
GND  
MX197A  
25  
24  
23  
22  
21  
20  
19  
GND  
GND  
GND  
GND  
GND  
LAND  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE NO.  
21-0141  
PATTERN NO.  
V
CC  
90-0049  
36 Thin QFN-EP T3666+2  
GND  
GND  
V
CC  
GND  
EXPOSED  
PAD  
GND  
LO  
GND  
RFDIV  
6mm x 6mm THIN QFN (EXPOSED PAD)  
EXPOSED PAD ON THE BOTTOM OF THE PACKAGE.  
34 ______________________________________________________________________________________  
Dual, SiGe High-Linearity, 1800MHz to 2900MHz  
Downconversion Mixer with LO Buffer  
MX197A  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
2
3
10/08  
9/10  
2/11  
8/11  
Initial release  
2, 3, 4, 10,  
15, 29, 30, 34  
Minor style edits  
Increased IF frequency range from 50MHz to 550MHz  
1, 3, 29, 30  
Expanded +5.0V Supply DC Electrical Characteristics table without  
changing existing limits  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 35  
© 20101 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX19997A_11

Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19997A_1108

Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19998

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19998ETP+

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19998ETP+T

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19999

Dual, SiGe High-Linearity, 3000MHz to 4000MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19999ETX+

Dual, SiGe High-Linearity, 3000MHz to 4000MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19999ETX+T

Dual, SiGe High-Linearity, 3000MHz to 4000MHz Downconversion Mixer with LO Buffer
MAXIM

MAX1999EEI

High-Efficiency, Quad Output, Main Power- Supply Controllers for Notebook Computers
MAXIM

MAX1999EEI+

Dual Switching Controller, Current-mode, 500kHz Switching Freq-Max, BICMOS, PDSO28, 0.150 INCH, 0.025 INCH PITCH, QSOP-28
MAXIM

MAX1999EVKIT

Evaluation Kit for the MAX1777/MAX1977/MAX1999
MAXIM

MAX199ACAI

Multi-Range (【4V, 【2V, +4V, +2V), +5V Supply, 12-Bit DAS with 8+4 Bus Interface
MAXIM