MAX30002CWV+T [MAXIM]

Ultra-Low-Power, Single-Channel Integrated Bioimpedance (BioZ) AFE;
MAX30002CWV+T
型号: MAX30002CWV+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Ultra-Low-Power, Single-Channel Integrated Bioimpedance (BioZ) AFE

文件: 总44页 (文件大小:949K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here for production status of specific part numbers.  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
General Description  
Benefits and Features  
BioZ AFE with High Resolution Data Converter  
The MAX30002 is a complete bioimpedance (BioZ),  
analog front-end (AFE) solution for wearable applications.  
It offers high performance for clinical and fitness  
applications, with ultra-low-power for long battery life. The  
MAX30002 is a single bioimpedance channel capable of  
measuring respiration.  
• 17 Bits ENOB with 1.1µV Noise for BioZ  
P-P  
High AC Dynamic Range of 90mV  
Will Help  
P-P  
Prevent Saturation in the Presence of Motion/Direct  
Electrode Hits  
Longer Battery Life Compared to Competing Solutions  
The bioimpedance channel has ESD protection, EMI  
filtering, internal lead biasing, DC leads-off detection,  
ultra-low-power leads-on detection during standby mode,  
and a programmable resistive load for built-in self-test.  
Soft power-up sequencing ensures no large transients  
are injected into the electrodes. The channel also has  
high input impedance, low noise, high CMRR, program-  
mable gain, various low-pass and high-pass filter options,  
and a high resolution analog-to-digital converter. The  
bioimpedance channel includes integrated programmable  
current drive, works with common electrodes, and has the  
flexibility for 2 or 4 electrode measurements. It also has  
AC lead off detection.  
• 158µW at 1.1V Supply Voltage  
Leads-On Interrupt Feature Allows to Keep µC in  
Deep Sleep Mode Until Valid Lead Condition is  
Detected  
• Lead-On Detect Current: 0.63µA (typ)  
High Accuracy Allows for More Physiological Data  
Extractions  
8-Word FIFO Allows the MCU to Stay Powered Down  
for 256ms with Full Data Acquisition  
High-Speed SPI Interface  
Shutdown Current of 0.58µA (typ)  
The MAX30002 is available in a 28-pin TQFN and  
30-bump wafer-level package (WLP), operating over the  
0°C to +70°C commercial temperature range.  
Ordering Information appears at end of data sheet.  
Applications  
Single-Lead Wireless Patches for  
In-Patient/Out-Patient Monitoring  
Respiration and Hydration Monitors  
Impedance Based Heart Rate Detection  
19-100289; Rev 0, 3/18  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Functional Diagram  
AV DD  
DVDD  
OV DD  
MAX30002  
BIOIMPEDANCE CHANNEL  
CSB  
SDI  
HPF  
AAF  
BIP  
ESD, EMI,  
INPUT MUX,  
DC LEAD  
CHECK  
20-BIT  
INPUT  
AMP  
20-BIT  
ΣΔ ADC  
DECIMATION  
FIL TE R  
f-3dB  
PGA  
BIN  
=600Hz  
SCLK  
SDO  
SPI INTERFACE,  
FIFO,  
AND  
REGISTERS  
-20dB/dec  
-40dB/dec  
CLOCK  
DIVI DE R  
w/ PHASE  
ADJUST  
SELECTABLE PHASE  
INTB  
DRV P  
DRV N  
PUSH/PULL  
CURRENT  
SOURCE  
INT2B  
SUPPORT CIRCUITRY  
COMMO N-MODE  
BUFFER  
REFERENCE  
BUFFER  
fCLK  
fHFC  
FCLK  
SEQUENCER  
BANDGAP  
BIASING  
PLL  
AG ND  
VCM  
VBG  
VREF  
RBIAS  
CPLL  
DGND  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Absolute Maximum Ratings  
AVDD to AGND ....................................................-0.3V to +2.0V  
DVDD to DGND....................................................-0.3V to +2.0V  
AVDD to DVDD ....................................................-0.3V to +0.3V  
OVDD to DGND ...................................................-0.3V to +3.6V  
AGND to DGND ...................................................-0.3V to +0.3V  
CSB, SCLK, SDI, FCLK to DGND .......................-0.3V to +3.6V  
SDO, INTB, INT2B  
to DGND........ -0.3V to the lower of (3.6V and OVDD + 0.3V)  
All Other Pins  
to AGND ......... -0.3V to the lower of (2.0V and AVDD + 0.3V)  
Maximum Current into Any Pin.........................................±50mA  
Continuous Power Dissipation (T = +70ºC)  
A
28-Pin TQFN  
(derate 34.5mW/ºC above +70ºC)..........................2758.6mW  
30-Bump WLP  
(derate 24.3mW/ºC above +70ºC)..........................1945.5mW  
Operating Temperature Range...............................0ºC to +70°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (Soldering, 10sec).............................+300°C  
Soldering Temperature (reflow).......................................+260°C  
(Note 1)  
Package Thermal Characteristics  
TQFN  
WLP  
Junction-to-Ambient Thermal Resistance (θ ) ..........29°C/W  
Junction-to-Ambient Thermal Resistance (θ ) ..........44°C/W  
JA  
JA  
Junction-to-Case Thermal Resistance (θ ).................2°C/W  
JC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V  
= V  
= +1.1V to +2.0V, V  
= +1.65V to +3.6V, f  
= 32.768kHz, LN_BIOZ = 1, T = T  
to T  
, unless otherwise  
MAX  
DVDD  
AVDD  
OVDD  
FCLK  
A
MIN  
noted. Typical values are at V  
= V  
= +1.8V, V = +2.5V, T = +25°C.) (Note 2)  
OVDD A  
DVDD  
AVDD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
BIOIMPEDANCE (BIOZ) CHANNEL  
Signal Generator Resolution  
Square wave generator  
1
Bits  
DRVP/N Injected Full-Scale  
Current  
Programmable, see Register Map  
8 to 96  
μA  
P-P  
Internal bias resistor  
-30  
-10  
+30  
+10  
DRVP/N Injected Current  
Accuracy  
%
External bias resistor (0.1%, 10ppm, 324kΩ)  
DRVP/N Injected Current  
Power Supply Rejection  
<±1  
50  
%/V  
DRVP/N Injected Current  
Temperatue Coefficient  
External bias resistor, 32μA , 0 to 70ºC  
(0.1%, 10ppm, 324kΩ)  
P-P  
ppm/°C  
±(V  
-
AVDD  
0.5)  
DRVP/N Compliance Voltage  
Current Injection Frequency  
V
- V  
V
P-P  
DRVP  
DRVN  
0.125 to  
131.072  
Programmable, see Register Map  
kHz  
mV  
Shift from nominal gain < 1% (1.1V)  
Shift from nominal gain < 1% (1.8V)  
Programmable, see Register Map  
25  
90  
AC Differential Input Range  
BioZ Channel Gain  
ADC Sample Rate  
10 to 80  
V/V  
sps  
24.98 to  
64  
Programmable, see Register Map  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Electrical Characteristics (continued)  
(V  
= V  
= +1.1V to +2.0V, V  
= +1.65V to +3.6V, f  
= 32.768kHz, LN_BIOZ = 1, T = T  
to T  
, unless otherwise  
MAX  
DVDD  
AVDD  
OVDD  
FCLK  
A
MIN  
noted. Typical values are at V  
= V  
= +1.8V, V = +2.5V, T = +25°C.) (Note 2)  
OVDD A  
DVDD  
AVDD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
20  
MAX  
UNITS  
ADC Resolution  
Bits  
BW = 0.05 to 4Hz, Gain = 20x  
BW = 0.05 to 4Hz, Gain = 20x  
0.16  
1.1  
μV  
Input Referred Noise  
(BIP, BIN)  
RMS  
μV  
P-P  
DC to 4Hz, 32µA , 40kHz, Gain = 20x,  
P-P  
Impedance Resolution  
40  
mΩ  
P-P  
R
= 680Ω  
BODY  
125 to  
7200  
Input Analog High Pass Filter  
Demodulation Phase Range  
Programmable, see Register Map  
Programmable, see Register Map  
Programmable, see Register Map  
Hz  
0-180  
°
°
Demodulation Phase  
Resolution  
11.25  
DLPF[1:0] = 01  
DLPF[1:0] = 10  
DLPF[1:0] = 11  
DHPF[1:0] = 01  
DHPF[1:0] = 1x  
4
8
Output Digital Low Pass Filter  
Hz  
Hz  
16  
0.05  
0.5  
Output Digital High Pass Filter  
BIOIMPEDANCE (BIOZ) INPUT MUX  
IMAG[2:0] = 001  
IMAG[2:0] = 010  
IMAG[2:0] = 011  
IMAG[2:0] = 100  
IMAG[2:0] = 101  
5
10  
DC Lead Off Check  
20  
nA  
50  
100  
V
0.50  
MID  
VTH[1:0] = 11 (Note 4)  
VTH[1:0] = 10 (Note 5)  
VTH[1:0] = 01 (Note 6)  
VTH[1:0] = 00  
V
MID  
0.45  
DC Lead Off Comparator Low  
Threshold  
V
V
V
MID  
0.40  
V
MID  
0.30  
VTH[1:0] = 11 (Note 4)  
V
V
V
V
+ 0.50  
+ 0.45  
+ 0.40  
+ 0.30  
MID  
MID  
MID  
MID  
VTH[1:0] = 10 (Note 5)  
DC Lead Off Comparator High  
Threshold  
VTH[1:0] = 01 (Note 6)  
VTH[1:0] = 00  
Lead bias enabled, RBIASV[1:0] = 00  
Lead bias enabled, RBIASV[1:0] = 01  
Lead bias enabled, RBIASV[1:0] = 10  
50  
Lead Bias Impedance  
Lead Bias Voltage  
100  
200  
MΩ  
Lead bias enabled. Programmable,  
see Register Map  
V
/
AVDD  
2.15  
V
Maxim Integrated  
4  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Electrical Characteristics (continued)  
(V  
= V  
= +1.1V to +2.0V, V  
= +1.65V to +3.6V, f  
= 32.768kHz, LN_BIOZ = 1, T = T  
to T  
, unless otherwise  
MAX  
DVDD  
AVDD  
OVDD  
FCLK  
A
MIN  
noted. Typical values are at V  
= V  
= +1.8V, V = +2.5V, T = +25°C.) (Note 2)  
OVDD A  
DVDD  
AVDD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
kΩ  
Resistive Load Nominal Value  
Resistive Load Modulation Value  
R
Programmable, see Register Map  
Programmable, see Register Map  
0.625 to 5.0  
15 to 2960  
VAL  
R
mΩ  
MOD  
Resistive Load Modulation  
Frequency  
F
Programmable, see Register Map  
0.625 to 4.0  
Hz  
MOD  
INTERNAL REFERENCE/COMMON-MODE  
V
V
Output Voltage  
V
0.650  
100  
V
BG  
BG  
Output Impedance  
kΩ  
BG  
External V  
Capacitor  
Compensation  
BG  
C
1
µF  
BG  
V
V
V
V
Output Voltage  
V
T
T
= +25ºC  
0.995  
1.000  
10  
1.005  
V
REF  
REF  
REF  
REF  
REF  
A
Temperature Coefficient  
Buffer Line Regulation  
Buffer Load Regulation  
TC  
= 0ºC to +70ºC  
ppm/ºC  
µV/V  
REF  
A
330  
25  
I
= 0 to 100µA  
µV/µA  
LOAD  
External V  
Capacitor  
Compensation  
REF  
C
1
10  
0.650  
10  
µF  
V
REF  
VCM Output Voltage  
V
CM  
External V  
Capacitor  
Compensation  
CM  
C
1
µF  
CM  
DIGITAL INPUTS (SDI, SCLK, CSB, FCLK)  
Input-Voltage High  
Input-Voltage Low  
Input Hysteresis  
Input Capacitance  
Input Current  
V
0.7 x V  
V
V
IH  
OVDD  
V
0.3 x V  
IL  
OVDD  
V
0.05 x V  
V
HYS  
OVDD  
C
10  
pF  
µA  
IN  
I
-1  
+1  
IN  
DIGITAL OUTPUTS (SDO, INTB, INT2B)  
Output Voltage High  
V
I
I
= 1mA  
V
- 0.4  
V
V
OH  
SOURCE  
OVDD  
Output Voltage Low  
V
= 1mA  
SINK  
0.4  
+1  
OL  
Three-State Leakage Current  
-1  
µA  
Three-State Output  
Capacitance  
15  
pF  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Electrical Characteristics (continued)  
(V  
= V  
= +1.1V to +2.0V, V  
= +1.65V to +3.6V, f  
= 32.768kHz, LN_BIOZ = 1, T = T  
to T  
, unless otherwise  
MAX  
DVDD  
AVDD  
OVDD  
FCLK  
A
MIN  
noted. Typical values are at V  
= V  
= +1.8V, V = +2.5V, T = +25°C.) (Note 2)  
OVDD A  
DVDD  
AVDD  
PARAMETER  
POWER SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Analog Supply Voltage  
Digital Supply Voltage  
Interface Supply Voltage  
V
Connect AVDD to DVDD  
Connect DVDD to AVDD  
Power for I/O drivers only  
1.1  
1.1  
2.0  
2.0  
3.6  
V
V
V
AVDD  
DVDD  
OVDD  
V
V
1.65  
V
V
V
V
V
= V  
= V  
= V  
= V  
= V  
= V  
= +1.1V  
= +1.8V  
= +2.0V  
= +1.1V  
= +1.8V  
= +2.0V  
144  
163  
170  
158  
178  
185  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
DVDD  
DVDD  
DVDD  
DVDD  
DVDD  
DVDD  
BioZ channel ,  
LN_BIOZ = 0  
CGMAG[2:0] = 011  
190  
I
+
AVDD  
I
Supply Current  
µA  
BioZ channel ,  
LN_BIOZ = 1  
CGMAG[2:0] = 011  
DVDD  
V
T
205  
2.5  
= +70ºC  
= +25ºC  
1.3  
ULP Lead On  
Detect  
A
T
0.63  
A
V
= +1.65V, BioZ channel at 64sps  
OVDD  
0.1  
0.2  
(Note 7)  
Interface Supply Current  
I
µA  
µA  
OVDD  
V
= 3.6V, BioZ channel at 64sps  
OVDD  
1.1  
(Note 7)  
V = V  
AVDD  
T
T
= +70ºC  
= +25ºC  
1.3  
I
+
A
SAVDD  
I
DVDD  
= 2.0V  
Shutdown Current  
0.58  
2.5  
1.1  
SDVDD  
SOVDD  
A
I
V
= 3.6V, V  
= V  
= 2.0V  
OVDD  
AVDD  
DVDD  
ESD PROTECTION  
BIP, BIN, DRVP, DRVN  
IEC 61000-4-2 Contact Discharge (Note 8)  
IEC 61000-4-2 Air-Gap Discharge (Note 8)  
HMM (Human Metal Model)  
±8  
±15  
±8  
kV  
TIMING CHARACTERISTICS (NOTE 3)  
SCLK Frequency  
f
0
12  
MHz  
ns  
SCLK  
SCLK Period  
t
83  
15  
15  
CP  
CH  
SCLK Pulse Width High  
SCLK Pulse Width Low  
t
ns  
t
ns  
CL  
CSB Fall to SCLK Rise Setup  
Time  
t
To 1st SCLK rising edge (RE)  
15  
0
ns  
ns  
CSS0  
CSH0  
CSH1  
CSB Fall to SCLK Rise Hold  
Time  
t
t
Applies to inactive RE preceding 1st RE  
CSB Rise to SCLK Rise Hold  
Time  
Applies to 32nd RE, executed write  
10  
15  
ns  
ns  
CSB Rise to SCLK Rise  
t
Applies to 32nd RE, aborted write sequence  
CSA  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Electrical Characteristics (continued)  
(V  
= V  
= +1.1V to +2.0V, V  
= +1.65V to +3.6V, f  
= 32.768kHz, LN_BIOZ = 1, T = T  
to T  
, unless otherwise  
MAX  
DVDD  
AVDD  
OVDD  
FCLK  
A
MIN  
noted. Typical values are at V  
= V  
= +1.8V, V = +2.5V, T = +25°C.) (Note 2)  
OVDD A  
DVDD  
AVDD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
100  
20  
8
TYP  
MAX  
UNITS  
ns  
SCLK Rise to CSB Fall  
t
Applies to 32nd RE  
CSF  
CSB Pulse-Width High  
t
ns  
CSPW  
SDI-to-SCLK Rise Setup Time  
SDI to SCLK Rise Hold Time  
t
ns  
DS  
t
8
ns  
DH  
C
C
= 20pF  
40  
20  
ns  
LOAD  
SCLK Fall to SDO Transition  
t
= 20pF, V  
≥ 2.5V  
= V  
≥ 1.8V,  
DOT  
LOAD  
DVDD  
AVDD  
DVDD  
ns  
V
SCLK Fall to SDO Hold  
CSB Fall to SDO Fall  
CSB Rise to SDO Hi-Z  
FCLK Frequency  
t
C
= 20pF  
2
ns  
ns  
DOH  
LOAD  
t
Enable time, C  
Disable time  
= 20pF  
LOAD  
30  
35  
DOE  
t
ns  
DOZ  
f
External reference clock  
32.768  
30.52  
15.26  
15.26  
kHz  
µs  
FCLK  
FCLK Period  
t
FP  
FCLK Pulse-Width High  
FCLK Pulse-Width Low  
t
50% duty cycle assumed  
50% duty cycle assumed  
µs  
FH  
t
µs  
FL  
Note 2:  
All devices are 100% production tested at T = +25ºC. Specifications over the operating temperature range and relevant  
A
supply voltage range are guaranteed by design and characterization.  
Note 3:  
Note 4:  
Note 5:  
Note 6:  
Note 7:  
Note 8:  
Guaranteed by design and characterization. Not tested in production.  
Use this setting only for V  
Use this setting only for V  
Use this setting only for V  
= V  
= V  
= V  
≥ 1.65V.  
≥ 1.55V.  
≥ 1.45V.  
AVDD  
AVDD  
AVDD  
DVDD  
DVDD  
DVDD  
f
= 4MHz, burst mode, BFIT[2:0] = 111, C  
= C  
= 50pF.  
SCLK  
SDO  
INTB  
ESD test performed with 1kΩ series resistor designed to withstand 8kV surge voltage.  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
SDI  
A6  
A5  
tDS  
A4  
A3  
tDH  
A2  
tCP  
A1  
A0  
R/WB DIN23 DIN22  
DIN1  
DIN0  
A6'  
SCLK  
1
2
3
4
5
6
7
8
9
10  
31  
32  
1'  
tCSA  
tCSH0  
tCH  
tCSH1  
tCSS0  
tCL  
CSB  
tCSPW  
tDOT  
tDOH  
tCSF  
Z
Z
DO23  
DO22  
DO1  
DO0  
SDO  
tDOZ  
tDOE  
Figure 1a. SPI Timing Diagram  
tFP  
FCLK  
tFH  
tFL  
Figure 1b. FCLK Timing Diagram  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Typical Operating Characteristics  
(V  
= V  
= 1.8V, V  
= 2.5V, T = +25°C, unless otherwise noted.)  
DVDD  
AVDD  
OVDD A  
BIOZ NOISE SPECTRUM vs. FREQUENCY  
INPUTS SHORTED, GAIN = 10, LPF = 16Hz  
BIOZ NOISE SPECTRUM vs. FREQUENCY  
INPUTS SHORTED, GAIN = 10, LPF = 4Hz  
BIOZ NOISE SPECTRUM vs. FREQUENCY  
INPUTS SHORTED, GAIN = 80, LPF = 4Hz  
0
-50  
0
-50  
0
-50  
-100  
-150  
-200  
-250  
-100  
-150  
-200  
-250  
-100  
-150  
-200  
-250  
0
8
16  
24  
32  
0
8
16  
24  
32  
0
8
16  
24  
32  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
BIOZ NOISE SPECTRUM vs. FREQUENCY  
INPUTS SHORTED, GAIN = 80, LPF = 16Hz  
BIOZ DIFFERENTIAL INPUT  
RESISTANCE vs. VOLTAGE  
0
-50  
1000000  
100000  
10000  
1000  
NO  
LEAD BIAS  
-100  
-150  
-200  
-250  
100MΩ  
LEAD BIAS  
200MΩ  
LEAD BIAS  
50MΩ LEAD  
BIAS  
100  
10  
0
8
16  
24  
32  
-800 -600 -400 -200  
0
200 400 600 800  
FREQUENCY (Hz)  
VBIP-VBIN (mV)  
BIOZ COMMON-MODE  
INPUT RESISTANCE vs. VOLTAGE  
VREF vs. TEMPERATURE  
1000000  
100000  
10000  
1000  
1000.6  
1000.5  
1000.4  
1000.3  
1000.2  
1000.1  
1000  
NO  
LEAD BIAS  
100MΩ  
LEAD BIAS  
200MΩ  
LEAD BIAS  
50MΩ  
LEAD BIAS  
999.9  
999.8  
999.7  
999.6  
100  
10  
-600  
-400  
-200  
0
200  
400  
600  
0
10  
20  
30  
40  
50  
60  
70  
VCM-VMID (mV)  
TEMPERATURE (°C)  
Maxim Integrated  
9
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Typical Operating Characteristics (continued)  
(V  
= V  
= 1.8V, V  
= 2.5V, T = +25°C, unless otherwise noted.)  
DVDD  
AVDD  
OVDD A  
DVDD SHUTDOWNCURRENT  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
VDVDD = +2.0V  
VDVDD = +1.8V  
VDVDD = +1.1V  
0
10  
20  
30  
40  
50  
60  
70  
TEMPERATURE (°C)  
AVDD SHUTDOWNCURRENT  
OVDD SHUTDOWN CURRENT  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
VOVDD = +1.5V  
VAVDD = +2.0V  
VAVDD = +1.8V  
VOVDD = +1.1V  
VOVDD = +1.8V  
VOVDD = +2.0V  
VAVDD = +1.5V  
VAVDD = +1.1V  
0.00  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
AVDD AND DVDD SUPPLY CURRENT  
vs. TEMPERATURE  
(BIOZ ENABLED, LN_BIOZ = 0)  
AVDD AND DVDD ULPCURRENT  
vs. TEMPERATURE  
200  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
1.2  
1
2.0V  
1.8V  
2.0V  
0.8  
0.6  
0.4  
0.2  
0
1.8V  
1.5V  
1.1V  
1.1V  
IDRV = 32 A  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Pin Configurations  
TEXTOP VIEW  
(BUMP SIDE DOWN)  
MAX30002  
1
2
3
4
5
6
+
21 20 19 18 17 16 15  
DRVP  
DRVN  
BIN  
BIP  
I.C.  
I.C.  
22  
23  
24  
25  
26  
27  
28  
14  
AVDD  
VREF  
I.C.  
FCLK  
13 DVDD  
12  
A
B
VBG  
VCM  
RBIAS  
I.C.  
AGND  
AGND  
OVDD  
SDO  
AGND  
AGND  
AGND  
SDI  
I.C.  
I.C.  
CPLL  
DVDD  
CSB  
DGND  
11 CPLL  
MAX30002  
VCM  
10  
9
RBIAS  
VBG  
I.C.  
DGND  
FCLK  
SCLK  
I.C.  
C
*EP  
+
8
AGND  
AGND  
VREF  
AVDD  
INTB  
INT2B  
1
2
3
4
5
6
7
D
E
TQFN  
(5mm x 5mm)  
*CONNECT EP TO AGND  
WLP  
(2.7mm x 2.9mm)  
Pin Description  
BUMP  
WLP  
PIN  
NAME  
FUNCTION  
TQFN  
Positive Output Current Source for Bio-Impedance Excitation. Requires a series  
capacitor between pin and electrode.  
A1  
A2  
1
2
DRVP  
DRVN  
Negative Output Current Source for Bio-Impedance Excitation. Requires a series  
capacitor between pin and electrode.  
A3  
A4  
4
5
BIN  
BIP  
Bioimpedance Negative Input.  
Bioimpedance Positive Input.  
A5, A6, B5,  
B6, C2  
6, 7, 9,  
10, 24  
I.C.  
Internally Connected. Connect to AGND.  
Bandgap Noise Filter Output. Connect a 1.0μF X7R ceramic capacitor between  
VBG and AGND.  
B1  
B2  
27  
26  
VBG  
External Resistor Bias. Connect a low tempco resistor between RBIAS and AGND.  
If external bias generator is not used then RBIAS can be left floating.  
RBIAS  
AGND  
B3, B4, C3,  
C4, D4  
Analog Power and Reference Ground. Connect into the printed circuit board ground  
plane.  
3, 8, 28  
Common Mode Buffer Output. Connect a 10μF X5R ceramic capacitor between  
VCM and AGND.  
C1  
25  
VCM  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Pin Description (continued)  
BUMP  
WLP  
PIN  
NAME  
FUNCTION  
TQFN  
Digital Ground for Both Digital Core and I/O Pad Drivers. Recommended to connect  
toAGND plane.  
C5  
12  
DGND  
C6  
D1  
11  
23  
CPLL  
VREF  
PLL Loop Filter Input. Connect 1nF capacitor between CPLL and AGND.  
ADC Reference Buffer Output. Connect a 10μF X5R ceramic capacitor between  
V
and AGND.  
REF  
Interrupt Output. INTB is an active-low status output. It can be used to interrupt an  
external device. INTB is three-stated when disabled.  
D2  
D3  
21  
19  
INTB  
OVDD  
Logic Interface Supply Voltage.  
32.768kHz Clock Input. FCLK Controls the sampling of the internal sigma-delta  
converter and decimator and derives all the internal clocks.  
D5  
14  
FCLK  
D6  
E1  
13  
22  
DVDD  
AVDD  
Digital Core Supply Voltage. Connect to AVDD.  
Analog Core Supply Voltage. Connect to DVDD.  
Interrupt 2 Output. INT2B is an active-low status output. It can be used to interrupt  
an external device. INT2B is three-stated when disabled.  
E2  
E3  
E4  
20  
18  
17  
INT2B  
SDO  
SDI  
Serial Data Output. SDO will change state on the falling edge of SCLK when CSB is  
low. SDO is three-stated when CSB is high.  
Serial Data Input. SDI is sampled into the device on the rising edge of SCLK when  
CSB is low.  
E5  
E6  
16  
15  
SCLK  
CSB  
Serial Clock Input. Clocks data in and out of the serial interface when CSB is low.  
Active-Low Chip-Select Input. Enables the serial interface.  
Exposed Pad. Connect EP toAGND.  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
EMI Filtering and ESD Protection  
Detailed Description  
EMI filtering of the BIP and BIN inputs consists of a single  
pole, low pass, differential, and common mode filter with  
the pole located at approximately 2MHz. The BIP and BIN  
inputs also have input clamps that protect the inputs from  
ESD events. The DRVP and DRVN outputs also feature  
ESD protection.  
BioZ Channel  
Figure 2 illustrates the BioZ channel block diagram,  
excluding the ADC. The channel comprises an input  
MUX, a programmable analog high-pass filter, an  
instrumentation amplifier, a mixer, an anti-alias filter,  
and a programmable gain amplifier. The MUX includes  
several features such as ESD protection, EMI filtering,  
lead biasing, leads off checking, and ultra-low-power  
leads-on checking. The output of this analog channel  
drives a high-resolution ADC.  
● ±8kV using the Contact Discharge method specified  
in IEC61000-4-2 ESD.  
● ±15kV using the Air Gap Discharge method specified  
in IEC61000-4-2 ESD.  
±8kV HMM  
Input MUX  
For IEC61000-4-2 ESD protection, use 1kΩ or larger  
series resistors on BIP, BIN, DRVP, and DRVN that are  
rated to withstand the appropriate surge voltages.  
The BioZ input MUX shown in Figure 3 contains integrated  
ESD and EMI protection, DC leads off detect current  
sources and comparators, lead-on detect, series isolation  
switches, lead biasing, and a built-in programmable  
resistor load, for self test.  
PCB  
HPF  
AAF  
BIP  
BIN  
ESD, EMI,  
INPUT MUX,  
DC LEAD  
CHECK  
INPUT  
AMP  
f-3dB  
PGA  
=600Hz  
-20dB/dec  
-40dB/dec  
SELECTABLE PHASE  
DRVP  
DRVN  
PUSH/PULL  
CURRENT  
SOURCE  
MAX30002  
Figure 2. BioZ Channel Input Amplifier, Mixer, and PGA Excluding the ADC and Current Drive Output  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
MAX30002  
ESD PROTECTION  
INPUT AND  
R LOAD  
ULP LEAD-ON  
LEAD  
BIAS  
DC LEAD-OFF CHECK  
AND  
CHECK  
EMI FILTER  
SWITCHES  
VTHH  
AVDD  
AVDD  
VMID  
50,  
100,  
15MΩ  
200MΩ  
5-100nA  
VTHL  
To BioZ  
INA IN+  
BIP  
AVDD  
AVDD  
5-100nA  
R
AG ND  
AG ND  
AG ND  
5-100nA  
3R  
AG ND  
To BioZ  
INA IN-  
AG ND  
BIN  
VTHH  
5-100nA  
50,  
100,  
5MΩ  
AG ND  
AG ND  
AG ND  
200MΩ  
VTHL  
AG ND  
AG ND  
VMID  
ESD  
PROTECTION  
From DRVP Current Generator  
DRV P  
Programmable  
Resistor Load  
AG ND  
AG ND  
From DRVN Current Generator  
DRV N  
AG ND  
AG ND  
Figure 3. BioZ Input MUX  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
The ULP lead-on detect operates by pulling BIN low with  
a pulldown resistance larger than 5MΩ and pulling BIP  
high with a pullup resistance larger than 15MΩ. A low-  
power comparator determines if BIP is pulled below a  
predefined threshold that occurs when both electrodes  
make contact with the body. When the impedance  
between BIP and BIN is less than 20MΩ, the LONINT status  
bit is asserted, and when the interrupt is enabled on either the  
INTB or INT2B pin, will alert the µC to a leads-on condition.  
Leads-Off Detection and  
ULP Leads-On Detection  
MAX30002 provides the capability of detecting lead off  
scenarios that involve two electrode and four electrode  
configurations through the use of digital threshold and  
analog threshold comparisons. There are three meth-  
ods to detect lead-off for the BioZ channel. There is a  
compliance monitor for the current generator on the  
DRVP and DRVN pins detecting when the voltage on  
the pins is outside its operating range. The CGMON bit  
in the CNFG_BIOZ (0x18) register enables this func-  
tion and the BCGMON, BCGMP, and BCGMN bits in  
the STATUS (0x01) register indicate if the DRVP and  
DRVN pins are out of compliance. There is a DC lead-off  
circuit on the BIP and BIN pins that sinks or sources a  
programmable DC current and window comparators with  
a programmable threshold to detect the condition. There  
is a digital lead off detection monitoring the output of the  
BioZ ADC with programmable under and overvoltage  
levels performing a digital comparison. The EN_BLOFF  
bit in the CNFG_GEN (0x10) register enables this  
function and the BLOFF_HI_IT[7:0] and BLOFF_LO_  
IT[7:0] bits in the MNGR_DYN (0x05) register sets the  
digital threshold for detection. Refer to Table 1 for lead off  
conditions and register settings to allow detection.  
A 0nA/V  
± 300mV selection is available allowing  
MID  
monitoring of the input compliance of the INA during non-  
DC lead-off checks.  
Table 1. BioZ Lead Off Detection Configurations  
MEASURED  
SIGNAL  
CONFIGURATION CONDITION DRVP/N  
BIP/N  
REGISTER SETTING TO DETECT  
Two-Electrode  
(Shared DRV/BI)  
1 Electrode  
Rail to  
Rail  
Rail to Rail  
CNFG_GEN (0x10), EN_BLOFF[1:0] = 10 or 11  
Rail to Rail  
Off  
(Saturated Inputs) MNGR_DYN (0x05), BLOFF_HI_IT[7:0]  
1 DRV  
Electrode Off,  
Large Body  
Coupling  
Rail to  
Rail  
Normal  
½ Signal  
CNFG_BIOZ (0x18), CGMON = 1  
1 DRV  
Electrode Off,  
Small Body  
Coupling  
Rail to  
Rail  
Rail to Rail  
CNFG_GEN (0x10), EN_BLOFF[1:0] = 10 or 11  
Rail to Rail  
(Saturated Inputs) MNGR_DYN (0x05), BLOFF_HI_IT[7:0]  
Four-Electrode  
(Force/Sense)  
1 BI (sense)  
Electrode Off  
Normal  
Normal  
Floating  
Floating  
½ Signal  
CNFG_GEN (0x10), EN_DCLOFF = 10  
Both BIP/N  
(sense)  
Electrodes Off  
CNFG_GEN (0x10), EN_BLOFF[1:0] = 01 or 11  
MNGR_DYN (0x05), BLOFF_LO_IT[7:0]  
No Signal  
Wide Swing,  
Dependent on  
Body Coupling  
1 DRV and 1 BI Rail to  
Electrode Off Rail  
CNFG_GEN (0x10), EN_BLOFF[1:0] = 10 or 11  
MNGR_DYN (0x05), BLOFF_HI_IT[7:0]  
Rail to Rail  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Lead Bias  
Programmable Resistive Load  
The MAX30002 limits the BIP and BIN DC input common  
The programmable resistive load on the DRVP/DRVN  
mode range to V  
tained either through external/internal lead-biasing.  
±150mV. This range can be main-  
pins allows a built in self-test of the current generator  
(CG) and the entire BioZ channel. Refer to Figure 4 for  
implementation details.  
MID  
Internal DC lead-biasing consists of 50MΩ, 100MΩ,  
or 200MΩ selectable resistors to V  
that drive the  
Nominal resistance can be varied between 5kΩ and  
625Ω. The modulation resistance is dependent on the  
nominal resistance value with resolution of 247.5mΩ  
to 2.96Ω at the largest nominal resistance (5kΩ) and  
15.3mΩ to 46.3mΩ with the smallest nominal resistance  
(625Ω). Refer to Table 2 for a complete listing of nominal  
and modulated resistor values. Modulation rate can be  
programmed between 62.5mHz to 4Hz.  
MID  
electrodes within the input common mode requirements  
of the BioZ channel and can drive the connected body  
to the proper common mode voltage level. See the EN_  
RBIAS[1:0], RBIASV[1:0], RBIASP, and RBIASN bits in the  
CNFG_GEN (0x10) register to select a configuration.  
The common-mode voltage, V , can optionally be used  
CM  
as a body bias to drive the body to the common-mode  
voltage by connecting V  
body through a high value resistor such as 1MΩ to limit  
to a separate electrode on the  
See register CNFG_BMUX (0x17) to select the configuration  
for modulation rate and resistor value.  
CM  
curent into the body. If this is utilized then the internal lead  
bias resistors to V  
can be disabled.  
MID  
9.65kΩ  
150Ω  
100Ω  
55Ω  
DRVP_INT  
10kΩ  
5kΩ  
2.5kΩ  
1.25kΩ  
10kΩ  
10kΩ  
10kΩ  
10kΩ  
45Ω  
R
<0>  
VAL  
R
<1>  
VAL  
R
<2>  
VAL  
R
<0>  
R
<1>  
R
<2>  
R
<3>  
MOD  
MOD  
MOD  
MOD  
DRVN_INT  
Figure 4. Programmable Resistive Load Topology  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Table 2. Programmable Resistive Load Values  
R
R
MOD  
R
(mΩ)  
VAL  
MOD  
R
(Ω)  
NOM  
<2>  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
<1>  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
<0>  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
<3>  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
<2>  
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
<1>  
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
<0>  
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
-
2960.7  
980.6  
247.5  
5000.000  
2500.000  
1666.667  
740.4  
245.2  
61.9  
329.1  
109.0  
27.5  
1250.000  
1000.000  
833.333  
714.286  
625.000  
185.1  
61.3  
118.5  
39.2  
82.3  
27.2  
60.5  
20.0  
46.3  
15.3  
Current amplitudes between 8µA to 96µA are select-  
Current Generator  
PK  
PK  
able with current injection frequencies between 128Hz  
and 131.072kHz in power of two increments. See register  
CNFG_BIOZ (0x18) for configuration selections.  
The current generator provides square-wave modulating  
differential current that is AC injected into the body via  
pins DRVP and DRVN with the bio-impedance sensed  
differentially through pins BIP and BIN. Two and four  
electrode configurations are supported for typical wet and  
dry electrode impedances.  
Current amplitude should be chosen so as not exceed  
90mV  
at the BIP and BIN pins based on the network  
P-P  
impedance at the current injection frequency. A 47nF DC  
blocking capacitor is required between both DRVP and  
DRVN and their respective electrodes.  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Current Selection and Resolution Calculation  
Example 1 (Two Terminal with Common  
Protection)  
Selection of the appropriate current is accomplished by  
first calculating the network impedance at the injection  
frequency. Worst case electrode impedances should be  
used.  
Current Selection and Resolution Calculation  
Example 2 (Four Terminal)  
Selection of the appropriate current is accomplished by  
first calculating the network impedance at the injection  
frequency. Worst case electrode impedances should be  
used.  
Given Figure 6 and a current injection frequency of  
80kHz, the network impedance is:  
Given Figure 5 and a current injection frequency of  
80kHz, the network impedance is:  
2R  
E
R
+ 2R  
+ 2R  
+ 2R +  
S
= 2.7kΩ  
BODY  
DP1  
DP2  
2R  
E
1+ jωR C  
E
E
R
+ 2R + 2R + 2R +  
S
= 2.8kΩ  
BODY  
P1  
P2  
1+ jωR C  
E
E
where R  
= 100Ω, R  
= 1kΩ, R  
= 200Ω,  
BODY  
DP1  
DP2  
where R  
= 100Ω, R  
= 1kΩ, R  
= 200Ω,  
R = 100Ω, R = 1MΩ, C = 5nF. The maximum current  
S E E  
BODY  
P1  
P2  
R
= 100Ω, R = 1MΩ, C = 5nF. The maximum cur-  
injection is the maximum DRVP/N Compliance Voltage  
(V -0.5V = 0.6V for V = 1.1V) divided by the network  
S
E
E
rent injection is the maximum AC input differential range  
DD  
DD  
(90mV ) divided by the network impedance (2.8kΩ) or  
impedance (2.7kΩ) or 222.2µA . The closest selectable  
PK  
PK  
32.14µA . The closest selectable lower value is 32µA  
.
lower value is 96µA  
.
PK  
PK  
PK  
Given the current injection value and the channel band-  
width (refer to register CNFG_BIOZ (0x18) for digital LPF  
selection) the resolvable impedance can be calculated by  
dividing the appropriate input referred noise by the current  
injection value. For example, with a bandwidth of 4Hz, the  
Given the current injection value and the channel band-  
width (refer to register CNFG_BIOZ (0x18) for digital LPF  
selection) the resolvable impedance can be calculated by  
dividing the appropriate input referred noise by the current  
injection value. For example, with a bandwidth of 4Hz, the  
input referred noise with a gain of 20V/V is 0.16µV  
input referred noise with a gain of 40V/V is 0.12µV  
RMS  
RMS  
or 1.1µV . The resolvable impedance is, therefore,  
or 0.78µV . The resolvable impedance is therefore  
P-P  
P-P  
1.1µV /32µA = 34mΩ  
or 5mΩ  
.
0.78µV /96µA = 8mΩ  
or 1.2mΩ  
.
P-P  
PK  
P-P  
RMS  
P-P  
PK  
P-P  
RMS  
PCB  
DRVP  
BIP  
47nF  
C
= 5nF  
E
R
= 100Ω  
R
R
S
P1  
P2  
1kΩ  
200Ω  
10pF  
R
= 1MΩ  
E
PHYSICAL  
ELECTRODES  
DEFIB  
PROTECTION  
R
100Ω  
BODY  
ELECTRODE MODELS  
= 5nF  
47pF  
MAX30002  
C
E
10pF  
RS = 100Ω  
R
R
P2  
P1  
BIN  
1kΩ  
200Ω  
R
= 1MΩ  
E
47nF  
DRVN  
Figure 5. Example Configuration – Two Terminal with Common Protection  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
PCB  
C
= 5nF  
E
R
= 100Ω  
R
R
DP2  
S
DP1  
DRVP  
1kΩ  
200Ω  
47nF  
R
= 1MΩ  
E
C
= 5nF  
E
R
= 100Ω  
R
R
BP2  
S
BP1  
BIP  
1kΩ  
200Ω  
10pF  
10pF  
R
= 1MΩ  
E
PHYSICAL  
ELECTRODES  
DEFIB  
PROTECTION  
R
100Ω  
BODY  
ELECTRODE MODELS  
= 5nF  
47pF  
MAX30002  
C
E
RS = 100Ω  
R
R
BP2  
BP1  
BIN  
1kΩ  
200Ω  
R
= 1MΩ  
E
C
= 5nF  
E
RS = 100Ω  
47nF  
R
R
DP2  
DP1  
DRVN  
1kΩ  
200Ω  
R
= 1MΩ  
E
Figure 6. Example Configuration—Four Terminal  
Filter Section  
Reference and Common Mode Buffer  
The filter section consists of an FIR decimation filter to  
to convert the ADC sample rate to the final data rate,  
followed by a programmable IIR and FIR filter to  
implement HPF and LPF selections, respectively.  
The MAX30002 features internally generated reference  
voltages. The bandgap output (V ) pin requires an  
BG  
external 1.0µF capacitor to AGND and the reference  
output (V  
) pin requires a 10µF external capacitor to  
REF  
AGND for compensation and noise filtering.  
The high-pass filter options include a fourth-order IIR  
Butterworth filter with a 0.05Hz or 0.5Hz corner frequency  
along with a pass through setting for DC coupling.  
Lowpass filter options include a 12-tap linear phase  
(constant group delay) FIR filter with 4Hz, 8Hz, or 16Hz  
corner frequencies. See register CNFG_BIOZ (0x18) to  
configure the filters. Table 3 illustrates the BioZ latency in  
samples and time for each ADC data rate.  
A common-mode buffer is provided to buffer 650mV  
which is used to drive common mode voltages for internal  
blocks. Use a 10µF external capacitor between V  
to  
CM  
AGND to provide compensation and noise filtering. The  
common-mode voltage, V , can optionally be used as  
CM  
a body bias to drive the body to the common-mode volt-  
age by connecting V  
to a separate electrode on the  
CM  
body through a high value resistor such as 1MΩ. If this is  
utilized then the internal lead bias resistors to V may  
be disabled if the input signals are within the common-  
mode input range.  
Noise Measurements  
Table 4 shows the noise performance of the BioZ channel  
of MAX30002 referred to the BioZ inputs.  
MID  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Table 3. BioZ Latency in Samples and Time as a Function of BioZ Data Rate and  
Decimation  
BIOZ CHANNEL SETTINGS  
LATENCY  
INPUT  
SAMPLE RATE  
(Hz)  
WITHOUT  
LPF (INPUT  
SAMPLES)  
WITH LPF  
(INPUT  
SAMPLES)  
OUTPUT DATA  
RATE (sps)  
DECIMATION  
WITHOUT  
LPF(ms)  
WITH LPF (ms)  
RATIO  
32,768  
32,000  
32,000  
31,968  
32,768  
32,000  
32,000  
31,968  
64  
62.5  
50  
512  
512  
3,397  
3,397  
5,189  
5,189  
7,557  
7,557  
9,605  
9,605  
6,469  
6,469  
103.668  
106.156  
162.156  
162.319  
230.621  
236.156  
300.156  
300.457  
197.418  
202.156  
282.156  
282.439  
418.121  
428.156  
540.156  
540.697  
640  
9,029  
49.95  
32  
640  
9,029  
1,024  
1,024  
1,280  
1,280  
13,701  
13,701  
17,285  
17,285  
31.25  
25  
24.975  
Table 4. BioZ Channel Noise Performance  
GAIN  
BANDWIDTH  
NOISE  
SNR  
dB  
ENOB  
Bits  
16.6  
16.3  
16.0  
17.1  
16.9  
16.5  
17.6  
17.1  
16.7  
17.7  
17.2  
16.7  
µV  
V/V  
Hz  
4
RMS  
µV  
P-P  
0.23  
1.55  
101.6  
100.0  
98.0  
10  
20  
40  
80  
8
0.28  
0.35  
0.16  
0.19  
0.26  
0.12  
0.16  
0.22  
0.11  
0.15  
0.21  
1.87  
2.34  
1.10  
1.27  
1.68  
0.78  
1.07  
1.48  
0.72  
1.01  
1.42  
16  
4
104.9  
103.4  
100.9  
107.6  
104.9  
102.0  
108.3  
105.3  
102.4  
8
16  
4
8
16  
4
8
16  
SNR = 20log(V (RMS)/V (RMS)), ENOB = (SNR – 1.76)/6.02  
IN  
N
V
= 100mV, V  
= 35.4mV for a gain of 10V/V. The input amplitude is reduced accordingly for high gain settings.  
INRMS  
INP-P  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
If accessing the STATUS register or the BIOZ FIFO mem-  
ory, all interrupt updates will be made and the internal  
FIFO read pointer will be incremented in response to the  
30th SCLK rising edge, allowing for internal synchroniza-  
tion operations to occur. See the data tag structures used  
within the FIFO for means of detecting end-of-file (EOF)  
samples, invalid (empty samples) and other aides for  
efficiently using and managing normal mode read back  
operations.  
SPI Interface Description  
32 Bit Normal Mode Read/Write Sequences  
The MAX30002 interface is SPI/QSPI/Micro-wire/DSP  
compatible. The operation of the SPI interface is shown  
in Figure 1a. Data is strobed into the MAX30002 on SCLK  
rising edges. The device is programmed and accessed by  
a 32 cycle SPI instruction framed by a CSB low interval.  
The content of the SPI operation consists of a one byte  
command word (comprised of a seven bit address and a  
Read/Write mode indicator, i.e., A[6:0] + R/W) followed by  
a three-byte data word. The MAX30002 is compatible with  
CPOL = 0/CPHA = 0 and CPOL = 1/CPHA = 1 modes of  
operation.  
Burst Mode Read Sequence  
The MAX30002 provides commands to read back the  
BIOZ FIFO memory in a burst mode to increase data  
transfer efficiency. Burst mode uses different regis-  
ter addresses than the normal read sequence register  
addresses. The first 32 SCLK cycles operate exactly as  
described for the normal mode. If the µC continues to  
provide SCLK edges beyond the 32nd rising edge, the  
MSB of the next available FIFO word will be presented  
on the next falling SCLK edge, allowing the µC to sample  
the MSB of the next word on the 33rd SCLK rising edge.  
Any affected interrupts and/or FIFO read pointers will be  
incremented in response to the (30+nx24)th SCLK rising  
edge where n is an integer starting at 0. (i.e., on the 30th,  
54th, and 78th SCLK rising-edges for a three-word, burst-  
mode transfer).  
Write mode operations will be executed on the 32nd SCLK  
rising edge using the first four bytes of data available. In  
write mode, any data supplied after the 32nd SCLK rising  
edge will be ignored. Subsequent writes require CSB to  
de-assert high and then assert low for the next write com-  
mand. In order to abort a command sequence, the rise  
of CSB must precede the updating (32nd) rising-edge of  
SCLK, meeting the t  
requirement.  
CSA  
Read mode operations will access the requested data  
on the 8th SCLK rising edge, and present the MSB of  
the requested data on the following SCLK falling edge,  
allowing the µC to sample the data MSB on the 9th SCLK  
rising edge. Configuration, Status, and FIFO data are all  
available via normal mode read back sequences. If more  
than 32 SCLK rising edges are provided in a normal read  
sequence then the excess edges will be ignored and the  
device will read back zeros.  
This mode of operation will continue for every 24 cycle  
sub frame, as long as there is valid data in the FIFO. See  
the data tag structures used within each FIFO for means  
of detecting end-of-file (EOF) samples, invalid (empty  
samples) and other aides for efficiently using and manag-  
ing burst mode read back operations.  
There is no burst mode equivalent in write mode.  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
CSB  
SDI  
A6 A5 A4 A3 A2 A1 A0  
W
D23  
9
D16 D15  
16 17  
D8 D7  
D0 DON’T CARE  
24  
25  
32  
33  
SCLK  
1
8
IGNORE  
D EDGES  
COMMAND  
EXECUTED  
Z
Z
SDO  
SPI NORMAL MODE WRITE TRANSACTION  
CSB  
SDI  
A6 A5 A4 A3 A2 A1 A0  
1
R
DON’T CARE  
DON’T CARE  
16 17  
DON’T CARE  
DON’T CARE  
24  
25  
30  
32  
33  
SCLK  
8 9  
IGNORE  
D EDGES  
INTERRUPT /READ POINTER  
UPDATED (IF APPLICABLE  
)
Z
DO23  
DO16 DO15  
DO  
8
DO  
7
DO  
0
SDO  
SPI NORMAL MODE READ TRANSACTION  
Figure 7. SPI Normal Mode Transaction Diagram  
SDI  
A6 A5 A4 A3 A2 A1 A0  
1
R
DON’T CARE  
DON’T CARE  
16 17  
DON’T CARE  
24 25  
30  
32  
SCLK  
8 9  
READ POINTER  
UPDATED (TO B)  
DA8 DA7  
Z
SDO  
DA23  
DA16 DA15  
DA0 DB23  
CONTINUED TRANSACTION (SUB-FRAME 2)  
CSB  
33  
40 41  
48 49  
56  
54  
SCLK  
READ POINTER  
UPDATED (TO C)  
DB23  
DB16DB15  
DB8 DB7  
D 0  
B
SDO  
DC23  
CONTINUED TRANSACTION (SUB-FRAME 3)  
CSB  
57  
64 65  
72 73  
78  
80  
SCLK  
READ POINTER  
UPDATED (TO D)  
Z
DC16 DC15  
SDO  
DC23  
DC8 DC7  
DC0  
Figure 8. SPI Burst Mode Read Transactions Diagram  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
User Command and Register Map  
DATA INDEX  
REG  
[6:0]  
R/W  
NAME  
MODE  
23/15/7  
22/14/6  
21/13/5  
20/12/4  
19/11/3  
18/10/2  
17/9/1  
16/8/0  
0x00  
0x01  
NO-OP  
R/W  
R
x / x / x  
x / x / x  
x / x / x  
x / x / x  
x / x / x  
x / x / x  
x / x / x  
x / x / x  
DCLO  
FFINT  
x
x
x
BINT  
BOVF  
BOVER  
BUNDR  
STATUS  
BCGMON  
x
x
x
x
x
LONINT  
x
SAMP  
PLLINT  
BCGMP  
BCGMN  
LDOFF_PH  
LDOFF_PL  
LDOFF_NH  
LDOFF_NL  
EN_  
x
x
x
EN_BINT  
EN_BOVF  
EN_BOVER  
EN_SAMP  
EN_BUNDR  
EN_ PLLINT  
DCLOFFINT  
0x02  
0x03  
EN_INT  
R/W  
EN_INT2  
EN_BCGMON  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
EN_ LONINT  
x
x
x
x
x
x
x
x
x
x
INTB_TYPE[1:0]  
BFIT[2:0]  
x
0x04 MNGR_ INT  
R/W  
R/W  
x
x
CLR_PEDGE CLR_ SAMP  
SAMP_IT[1:0]  
x
x
x
x
MNGR_  
0x05  
DYN  
BLOFF_HI_IT[7:0]  
BLOFF_LO_IT[7:0]  
0x08  
0x09  
SW_RST  
SYNCH  
W
W
W
Data Required for Execution = 0x000000  
Data Required for Execution = 0x000000  
Data Required for Execution = 0x000000  
1 REV_ID[3:0]  
0x0A FIFO_ RST  
0
x
x
1
x
x
0
1
x
0x0F  
INFO  
R
0
x
x
x
x
x
x
x
x
x
x
EN_ULP_LON[1:0]  
FMSTR[1:0]  
x
EN_BIOZ  
x
0x10 CNFG_ GEN R/W  
CNFG_  
EN_BLOFF[1:0]  
VTH[1:0]  
EN_DCLOFF[1:0]  
EN_RBIAS[1:0]  
IPOL  
IMAG[2:0]  
RBIASP  
RBIASV[1:0]  
CALP_SEL[1:0]  
EN_BIST  
RBIASN  
x
x
OPENP  
CG_MODE[1:0]  
RMOD[2:0]  
AHPF[2:0]  
DLPF[1:0]  
CGMAG[2:0]  
OPENN  
CALN_SEL[1:0]  
RNOM[2:0]  
FBIST[1:0]  
GAIN[1:0]  
0x17  
0x18  
0x22  
R/W  
R/W  
R+  
x
x
x
BMUX  
x
x
RATE  
EXT_RBIAS  
LN_BIOZ  
CNFG_  
BIOZ  
DHPF[1:0]  
CGMON  
FCGEN[3:0]  
PHOFF[3:0]  
BIOZ_  
FIFO_  
BIOZ FIFO Burst Mode Read Back  
See FIFO Description for details  
BURST  
0x23 BIOZ_ FIFO  
0x7F NO-OP  
R
BIOZ FIFO Normal Mode Read Back  
See FIFO Description for details  
R/W  
x/x/x  
x/x/x  
x/x/x  
x/x/x  
x/x/x  
x/x/x  
x/x/x  
x/x/x  
Note: R/W Mode R+ denotes burst mode.  
x = Don’t Care  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Register Description  
NO_OP (0x00 and 0x7F) Registers  
No Operation (NO_OP) registers are read-write registers that have no internal effect on the device. If these registers are  
read back, DOUT remains zero for the entire SPI transaction. Any attempt to write to these registers is ignored without  
impact to internal operation.  
STATUS (0x01) Register  
STATUS is a read-only register that provides a comprehensive overview of the current status of the device. The first  
two bytes indicate the state of all interrupt bits (regardless of whether interrupts are enabled in registers EN_INT (0x02)  
or EN_INT2 (0x03)). All interrupt bits are active high. The last byte includes detailed status information for conditions  
associated with the other interrupt bits.  
Table 5. STATUS (0x01) Register Map  
REG  
NAME  
R/W  
23/15/7  
x
22/14/6 21/13/5  
20/12/4  
DCLOFF INT  
x
19/11/3  
BINT  
18/10/2  
BOVF  
x
17/9/1  
BOVER  
SAMP  
16/8/0  
BUNDR  
PLLINT  
x
x
x
x
BCGMON  
LONINT  
0x01 STATUS  
R
LDOFF_  
PH  
LDOFF_  
PL  
LDOFF_  
NH  
LDOFF_  
NL  
x
x
BCGMP  
BCGMN  
Table 6. Status (0x01) Register Meaning  
INDEX  
NAME  
MEANING  
DC Lead-Off Detection Interrupt. Indicates that the MAX30002 has determined it is in a BioZ leads  
off condition (as selected in CNFG_GEN) for more than 90ms. Remains active as long as the leads-  
off condition persists, then held until cleared by STATUS read back (32nd SCLK).  
D[20]  
DCLOFFINT  
BIOZ FIFO Interrupt. Indicates BIOZ records meeting/exceeding the BIOZ FIFO Interrupt Threshold  
(BFIT) are available for read back. Remains active until BIOZ FIFO is read back to the extent  
required to clear the BFIT condition.  
D[19]  
D[18]  
BINT  
BIOZ FIFO Overflow. Indicates the BIOZ FIFO has overflowed and the data record has been  
corrupted. Remains active until a FIFO Reset (recommended) or SYNCH operation is issued.  
BOVF  
BIOZ Over Range. Indicates the BIOZ output magnitude has exceeded the BIOZ High Threshold  
(BLOFF_HI_IT) for at least 100ms, recommended for use in 2 and 4 electrode BIOZ Lead Off  
detection. Remains active as long as the condition persists, then held until cleared by STATUS read  
back (32nd SCLK).  
D[17]  
D[16]  
D[15]  
BOVER  
BUNDR  
BIOZ Under Range. Indicates the BIOZ output magnitude has been bounded by the BIOZ Low  
Threshold (BLOFF_LO_IT) for at least 1.7 seconds, recommended for use in 4 electrode BIOZ Lead  
Off detection. Remains active as long as the condition persists, then held until cleared by STATUS  
read back (32nd SCLK).  
BIOZ Current Generator Monitor. Indicates the DRVP and/or DRVN current generator has been in a  
Lead Off condition for at least 128ms, recommended for use in 4 electrode BIOZ Lead Off detection.  
Remains active as long as the condition persists, then held until cleared by STATUS read back (32nd  
SCLK).  
BCGMON  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Table 6. Status (0x01) Register Meaning (continued)  
INDEX  
NAME  
MEANING  
Ultra-Low Power (ULP) Leads-On Detection Interrupt. Indicates that the MAX30002 has determined  
it is in a leads-on condition (as selected in CNFG_GEN).  
LONINT is asserted whenever EN_ULP_LON[1:0] in register CNFG_GEN is set to either 01 or 10  
to indicate that the ULP leads on detection mode has been enabled. The STATUS register has to be  
read back once after ULP leads on detection mode has been activated to clear LONINT and enable  
leads on detection.  
D[11]  
LONINT  
LONINT remains active while the leads-on condition persists, then held until cleared by STATUS  
read back (32nd SCLK).  
Sample Synchronization Pulse. Issued on the BioZ base-rate sampling instant, for use in assisting  
µC monitoring and synchronizing other peripheral operations and data, generally recommended for  
use as a dedicated interrupt.  
Frequency is selected by SAMP_IT[1:0], see MNGR_INT for details.  
Clear behavior is defined by CLR_SAMP, see MNGR_INT for details.  
D[9]  
D[8]  
SAMP  
PLL Unlocked Interrupt. Indicates that the PLL has not yet achieved or has lost its phase lock.  
PLLINT will only be asserted when the PLL is powered up and active (BIOZ Channel enabled).  
Remains asserted while the PLL unlocked condition persists, then held until cleared by STATUS  
read back (32nd SCLK).  
PLLINT  
BIOZ Current Generator Monitor Positive Output. Indicates the DRVP current generator has been in  
a Lead Off condition for at least 128ms. This is not strictly an interrupt bit, but is a detailed status bit,  
covered by the BCGMON interrupt bit.  
D[5]  
D[4]  
BCGMP  
BCGMN  
BIOZ Current Generator Monitor Negative Output. Indicates the DRVN current generator has been  
in a Lead Off condition for at least 128ms. This is not strictly an interrupt bit, but is a detailed status  
bit, covered by the BCGMON interrupt bit.  
DC Lead Off Detection Detailed Status. Indicates that the MAX30002 has determined  
(as selected by CNFG_GEN):  
D[3]  
D[2]  
D[1]  
D[0]  
LDOFF_PH  
LDOFF_PL  
LDOFF_NH  
LDOFF_NL  
BIP is above the high threshold (V  
), BIP is below the low threshold (V  
), BIN is above the high  
THL  
THH  
threshold (VT ), BIN is below the low threshold (V  
), respectively.  
HH  
THL  
Remains active as long as the leads-off detection is active and the leads-off condition persists, then  
held until cleared by STATUS read back (32nd SCLK). LDOFF_PH to LDOFF_NL are detailed status  
bits that are asserted at the same time as DCLOFFINT.  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
EN_INT (0x02) and EN_INT2 (0x03) Registers  
EN_INT and EN_INT2 are read/write registers that govern the operation of the INTB output and INT2B output, respectively.  
The first two bytes indicate which interrupt input bits are included in the interrupt output OR term (ex. a one in an EN_INT  
register indicates that the corresponding input bit is included in the INTB interrupt output OR term). See the STATUS register  
for detailed descriptions of the interrupt bits. The power-on reset state of all EN_INT bits is 0 (ignored by INT).  
EN_INT and EN_INT2 can also be used to mask persistent interrupt conditions in order to perform other interrupt-driven  
operations until the persistent conditions are resolved.  
INTB_TYPE[1:0] allows the user to select between a CMOS or an open-drain NMOS mode INTB output. If using open-  
drain mode, an option for an internal 125kΩ pullup resistor is also offered.  
All INTB and INT2B types are active-low (INTB low indicates the device requires servicing by the µC); however, the open-  
drain mode allows the INTB line to be shared with other devices in a wired-or configuration.  
In general, it is suggested that INT2B be used to support specialized/dedicated interrupts of use in specific applications,  
such as the self-clearing versions of SAMP or RRINT.  
Table 7. EN_INT (0x02) and EN_INT2 (0x03) Register Maps  
REG  
NAME  
R/W  
23/15/7  
22/14/6  
21/13/5  
20/12/4  
19/11/3  
18/10/2  
17/9/1  
16/8/0  
EN_DCL  
OFFINT  
EN_  
BOVER  
EN_  
BUNDR  
x
x
x
EN_BINT  
EN_BOVF  
0x02  
0x03  
EN_INT  
EN_INT2  
R/W  
EN_  
BCGMON  
EN_  
LONINT  
EN_  
SAMP  
EN_  
PLLINT  
x
x
x
x
x
x
x
x
x
x
INTB_TYPE[1:0]  
Table 8. EN_INT (0x02 and 0x03) Register Meaning  
INDEX  
NAME  
DEFAULT  
FUNCTION  
EN_DCLOFFINT  
EN_BINT  
EN_BOVF  
EN_BOVER  
EN_BUNDR  
EN_BCGMON  
EN_LONINT  
EN_SAMP  
Interrupt Enables for interrupt bits in STATUS[23:8]  
0 = Individual interrupt bit is not included in the interrupt OR term  
1 = Individual interrupt bit is included in the interrupt OR term  
D[23:8]  
0x0000  
EN_PLLINT  
INTB Port Type (EN_INT Selections)  
00 = Disabled (Three-state)  
11  
11  
01 = CMOS Driver  
10 = Open-Drain NMOS Driver  
11 = Open-Drain NMOS Driver with Internal 125kΩ Pullup Resistance  
D[1:0]  
INTB_TYPE[1:0]  
INT2B Port Type (EN_INT2 Selections)  
00 = Disabled (three-state)  
01 = CMOS Driver  
10 = Open-Drain nMOS Driver  
11 = Open-Drain nMOS Driver with Internal 125kΩ Pullup Resistance  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
MNGR_INT (0x04)  
MNGR_INT is a read/write register that manages the operation of the configurable interrupt bits in response to BIOZ FIFO  
conditions (see the STATUS register and BIOZ FIFO descriptions for more details).  
Table 9. MNGR_INT (0x04) Register Map  
REG  
NAME  
R/W  
23/15/7  
22/14/6  
21/13/5  
20/12/4  
19/11/3  
18/10/2  
17/9/1  
BFIT[2:0]  
x
16/8/0  
x
x
x
x
x
x
x
x
x
x
x
x
MNGR_  
INT  
0x04  
R/W  
CLR_  
FAST  
CLR_  
SAMP  
x
x
x
x
SAMP_IT[1:0]  
Table 10. MNGR_INT (0x04) Register Functionality  
INDEX  
NAME  
DEFAULT  
FUNCTION  
BIOZ FIFO Interrupt Threshold (issues BINT based on number of unread  
FIFO records)  
D[18:16]  
BFIT[2:0]  
011  
000 to 111 = 1 to 8, respectively (i.e. BFIT[2:0]+1 unread records)  
Sample Synchronization Pulse (SAMP) Clear Behavior:  
0 = Clear SAMP on STATUS Register Read Back (recommended for debug/  
evaluation only).  
D[2]  
CLR_SAMP  
1
1 = Self-clear SAMP after approximately one-fourth of one data rate cycle.  
Sample Synchronization Pulse (SAMP) Frequency  
00 = issued every sample instant  
D[1:0]  
SAMP_IT[1:0]  
00  
01 = issued every 2nd sample instant  
10 = issued every 4th sample instant  
11 = issued every 16th sample instant  
MNGR_DYN (0x05)  
MNGR_DYN is a read/write register that manages the settings of any general/dynamic modes within the device. This  
register contains the interrupt thresholds for BIOZ AC Lead-Off Detection (see CNFG_GEN for more details). Unlike  
many CNFG registers, changes to dynamic modes do not impact FIFO operations or require a SYNCH operation (though  
the affected circuits may require time to settle, resulting in invalid/corrupted FIFO output voltage information during the  
settling interval).  
Table 11. MNGR_DYN (0x05) Register Map  
REG  
NAME  
R/W  
23/15/7  
22/14/6  
21/13/5  
20/12/4  
19/11/3  
18/10/2  
17/9/1  
16/8/0  
x
x
x
x
x
x
x
x
MNGR_  
DYN  
0x05  
R/W  
BLOFF_HI_IT[7:0]  
BLOFF_LO_IT[7:0]  
Maxim Integrated  
27  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Table 12. MNGR_DYN (0x05) Register Functionality  
INDEX  
NAME  
DEFAULT  
FUNCTION  
BIOZ AC Lead Off Over-Range Threshold  
If EN_BLOFF[1:0] = 1x and the ADC output of a BIOZ measurement exceeds the  
symmetric thresholds defined by ±2048*BLOFF_HI_IT for over 128ms, the BOVER  
interrupt bit will be asserted.  
For example, the default value (BLOFF_IT= 0xFF) corresponds to a BIOZ output  
upper threshold of 0x7F800 or about 99.6% of the full scale range, and a BIOZ  
output lower threshold of 0x80800 or about 0.4% of the full scale range with the  
LSB weight ≈ 0.4%.  
D[15:8]  
BLOFF_HI_IT[7:0]  
0xFF  
BIOZ AC Lead Off Under-Range Threshold  
If EN_BLOFF[1:0] = 1x and the output of a BIOZ measurement is bounded by the  
symmetric thresholds defined by ±32*BLOFF_LO_IT for over 128ms, the BUNDR  
interrupt bit will be asserted.  
D[7:0]  
BLOFF_LO_IT[7:0]  
0xFF  
SW_RST (0x08)  
SW_RST (Software Reset) is a write-only register/command that resets the MAX30002 to its original default conditions at  
the end of the SPI SW_RST transaction (i.e. the 32nd SCLK rising edge). Execution occurs only if DIN[23:0] = 0x000000.  
The effect of a SW_RST is identical to power-cycling the device.  
Table 13. SW_RST (0x08) Register Map  
REG  
NAME  
R/W  
23/15/7  
22/14/6  
21/13/5  
20/12/4  
19/11/3  
18/10/2  
17/9/1  
16/8/0  
D[23:16] = 0x00  
D[15:8] = 0x00  
D[7:0] = 0x00  
0x08  
SW_RST  
R/W  
SYNCH (0x09)  
SYNCH (Synchronize) is a write-only register/command that begins new BIOZ operations and recording, beginning  
on the internal MSTR clock edge following the end of the SPI SYNCH transaction (i.e. the 32nd SCLK rising edge).  
Execution occurs only if DIN[23:0] = 0x000000. SYNCH will reset and clear the FIFO memory and the DSP filter (to mid-  
scale), allowing the user to effectively set the “Time Zero” for the FIFO records. No configuration settings are impacted.  
For best results, users should wait until the PLL has achieved lock before synchronizing if the CNFG_GEN settings have  
been altered.  
Once the device is initially powered up, it will need to be fully configured prior to launching recording operations. Likewise,  
anytime a change to CNFG_GEN or CNFG_ BIOZ registers are made there may be discontinuities in the BIOZ records and  
possibly changes to the size of the time steps recorded in the FIFOs. The SYNCH command provides a means to restart  
operations cleanly following any such disturbances.  
If a FIFO overflow event occurs and a portion of the record is lost, it is recommended to use the SYNCH command to  
recover and restart the recording, (avoiding issues with missing data).  
Table 14. SYNCH (0x09) Register Map  
REG  
NAME  
R/W  
23/15/7  
22/14/6  
21/13/5  
20/12/4  
19/11/3  
18/10/2  
17/9/1  
16/8/0  
D[23:16] = 0x00  
D[15:8] = 0x00  
D[7:0] = 0x00  
0x09  
SYNCH  
R/W  
Maxim Integrated  
28  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
FIFO_RST (0x0A)  
FIFO_RST (FIFO Reset) is a write-only register/command that begins a new BIOZ recording by resetting the FIFO  
memory and resuming the record with the next available BIOZ data. Execution occurs only if DIN[23:0] = 0x000000.  
Unlike the SYNCH command, the operations of any active BIOZ circuitry are not impacted by FIFO_RST, so no settling/  
recovery transients apply. FIFO_RST can also be used to quickly recover from a FIFO overflow state.  
Table 15. FIFO_RST (0x0A) Register Map  
REG  
NAME  
R/W  
23/15/7  
22/14/6  
21/13/5  
20/12/4  
19/11/3  
18/10/2  
17/9/1  
16/8/0  
D[23:16] = 0x00  
D[15:8] = 0x00  
D[7:0] = 0x00  
0x0A  
FIFO_RST  
R/W  
INFO (0x0F)  
INFO is a read-only register that provides information about the MAX30002. The first nibble contains an alternating bit pattern  
to aide in interface verification. The second nibble contains the revision ID. The third nibble includes part ID information.  
Note: Due to internal initialization procedures, this command will not read-back valid data if it is the first com-  
mand executed following either a power-cycle event, or a SW_RST event.  
Table 16. INFO (0x0F) Register Map  
REG  
NAME  
R/W  
23/15/7  
22/14/6  
21/13/5  
20/12/4  
19/11/3  
18/10/2  
17/9/1  
16/8/0  
0
x
x
1
x
x
0
1
x
1
0
x
REV_ID[3:0]  
0x0F  
INFO  
R
x
x
x
x
x
x
x
x
Table 17. INFO (0x0F) Register Meaning  
INDEX  
NAME  
MEANING  
Revision ID  
D[19:16]  
REV_ID[3:0]  
CNFG_GEN (0x10)  
CNFG_GEN is a read/write register which governs general settings, most significantly the master clock rate for all internal  
timing operations. Anytime a change to CNFG_GEN is made, there may be discontinuities in the BIOZ record and pos-  
sibly changes to the size of the time steps recorded in the FIFOs. The SYNCH command can be used to restore internal  
synchronization resulting from configuration changes. Note when EN_BIOZ is logic-low, the device is in one of two ultra-  
low power modes (determined by EN_ULP_LON).  
Table 18. CNFG_GEN (0x10) Register Map  
REG  
NAME  
R/W  
23/15/7  
22/14/6  
21/13/5  
20/12/4  
19/11/3  
x
18/10/2  
17/9/1  
x
16/8/0  
EN_ULP_LON[1:0]  
EN_BLOFF[1:0]  
VTH[1:0]  
FMSTR[1:0]  
EN_BIOZ  
x
CNFG_  
GEN  
0x10  
R/W  
EN_DCLOFF[1:0]  
EN_RBIAS[1:0]  
IPOL  
IMAG[2:0]  
RBIASP  
RBIASV[1:0]  
RBIASN  
Maxim Integrated  
29  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Table 19. CNFG_GEN (0x10) Register Functionality  
INDEX  
NAME  
DEFAULT  
FUNCTION  
Ultra-Low Power Lead-On Detection Enable  
00 = ULP Lead-On Detection disabled  
EN_ULP_LON  
[1:0]  
01 = Reserved. Do not use.  
10 = BioZ ULP Lead-On Detection enabled.  
11 = Reserved. Do not use.  
D[23:22]  
00  
ULP mode is only active when the BioZ channel is powered down/disabled.  
Master Clock Frequency. Selects the Master Clock Frequency (FMSTR), which also  
determines the BioZ timing characteristics. These are generated from FCLK, which  
is always 32.768kHz.  
D[21:20]  
D[18]  
FMSTR[1:0]  
EN_BIOZ  
00  
00 = F  
01 = F  
10 = F  
11 = F  
= 32768Hz  
= 32000Hz  
= 32000Hz  
= 31968.78Hz  
MSTR  
MSTR  
MSTR  
MSTR  
BIOZ Channel Enable  
0 = BIOZ Channel disabled  
1 = BIOZ Channel enabled  
0
BIOZ Digital Lead Off Detection Enable  
00 = Digital Lead Off Detection disabled  
01 = Lead Off Under Range Detection, 4 electrode BIOZ applications  
10 = Lead Off Over Range Detection, 2 and 4 electrode BIOZ applications  
11 = Lead Off Over & Under Range Detection, 4 electrode BIOZ applications  
AC Method, requires active BIOZ Channel , enables BOVER & BUNDR interrupt  
behavior. Uses BIOZ excitation current set in CNFG_BIOZ with digital thresholds  
set in MNGR_DYN.  
D[15:14]  
EN_BLOFF[1:0]  
00  
DC Lead-Off Detection Enable  
00 = DC Lead-Off Detection disabled  
01 = Reserved. Do not use.  
10 = DCLOFF Detection applied to the BIP/N pins.  
11 = Reserved. Do not use.  
DC Method, requires active selected channel, enables DCLOFF interrupt and status  
bit behavior.  
D[13:12]  
D[11]  
EN_DCLOFF  
00  
Uses current sources and comparator thresholds set below.  
DC Lead-Off Current Polarity (if current sources are enabled/connected)  
DCLOFF_ IPOL  
0
0 = BIP - Pullup  
BIN – Pulldown  
1 = BIP - Pulldown BIN – Pullup  
DC Lead-Off Current Magnitude Selection  
000 = 0nA (Disable and Disconnect Current Sources)  
001 = 5nA  
010 = 10nA  
D[10:8]  
IMAG[2:0]  
000  
011 = 20nA  
100 = 50nA  
101 = 100nA  
110 = Reserved. Do not use.  
111 = Reserved. Do not use.  
Maxim Integrated  
30  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Table 19. CNFG_GEN (0x10) Register Functionality (continued)  
INDEX  
NAME  
DEFAULT  
FUNCTION  
DC Lead-Off Voltage Threshold Selection  
00 = V  
01 = V  
10 = V  
11 = V  
± 300mV  
± 400mV  
± 450mV  
± 500mV  
MID  
MID  
MID  
MID  
D[7:6]  
VTH[1:0]  
00  
Enable and Select Resistive Lead Bias Mode  
00 = Resistive Bias disabled  
01 = Reserved. Do not use.  
D[5:4]  
D[3:2]  
EN_RBIAS[1:0]  
RBIASV[1:0]  
00  
01  
10 = BioZ Resistive Bias enabled if EN_BIOZ is also enabled  
11 = Reserved. Do not use.  
If EN_BIOZ is not asserted at the same time or prior to EN_RBIAS[1:0] being  
enabled, then EN_RBIAS[1:0] will remain set to 00.  
Resistive Bias Mode Value Selection  
00 = R  
01 = R  
10 = R  
= 50MΩ  
= 100MΩ  
= 200MΩ  
BIAS  
BIAS  
BIAS  
11 = Reserved. Do not use.  
Enables Resistive Bias on Positive Input  
D[1]  
D[0]  
RBIASP  
RBIASN  
0
0
0 = BIP is not resistively connected to V  
MID  
1 = BIP is connected to V  
through a resistor (selected by RBIASV).  
MID  
Enables Resistive Bias on Negative Input  
0 = BIN is not resistively connected to V  
MID  
1 = BIN is connected to V  
through a resistor (selected by RBIASV).  
MID  
Table 20 shows BIOZ data rates that can be realized with various setting of FMSTR, along with RATE configuration bits  
available in the CNFG_BIOZ register. Note FMSTR also determines the timing resolution of the CAL waveform generator.  
Table 20. Master Frequency Summary Table  
MASTER FREQUENCY  
BIOZ DATA RATES  
(B_RATE)  
FMSTR  
[1:0]  
(f  
)
MSTR  
(Hz)  
(sps)  
0 = 64  
1 = 32  
00  
01  
10  
11  
32,768  
32,000  
32,000  
31,968  
0 = 62.50  
1 = 31.25  
0 = 50  
1 = 25  
0 = 49.95  
1 = 24.98  
Maxim Integrated  
31  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
CNFG_BMUX(0x17)  
CNFG_BMUX is a read/write register which configures the operation, settings, and functionality of the input multiplexer  
associated with the BIOZ channel.  
Table 21. CNFG_BMUX (0x17) Register Map  
REG  
NAME  
R/W 23/15/7 22/14/6  
21/13/5  
20/12/4  
19/11/3  
18/10/2  
17/9/1  
CALN_SEL[1:0]  
RNOM[2:0]  
FBIST[1:0]  
16/8/0  
x
x
x
x
x
OPENP  
OPENN  
CALP_SEL[1:0]  
CNFG_  
BMUX  
0x17  
R/W  
CG_MODE[1:0]  
RMOD[2:0]  
EN_BIST  
x
x
Table 22. CNFG_BMUX (0x17) Register Functionality  
INDEX  
NAME  
DEFAULT  
FUNCTION  
Open the BIP Input Switch (most often used for testing and calibration)  
0 = BIP is internally connected to the BIOZ channel  
D[21]  
OPENP  
1
1 = BIP is internally isolated from the BIOZ channel  
Open the BIN Input Switch (most often used for testing and calibration)  
0 = BIN is internally connected to the BIOZ channel  
D[20]  
OPENN  
1
1 = BIN is internally isolated from the BIOZ channel  
BIP Calibration Selection  
00 = No calibration signal applied  
01 = Input is connected to VMID  
10 = Reserved. Do not use.  
11 = Reserved. Do not use.  
CALP_  
SEL[1:0]  
D[19:18]  
00  
BIN Calibration Selection  
00 = No calibration signal applied  
01 = Input is connected to VMID  
10 = Reserved. Do not use.  
11 = Reserved. Do not use.  
CALN_  
SEL[1:0]  
D[17:16]  
00  
BIOZ Current Generator Mode Selection  
00 = Unchopped Sources with Low Pass Filter  
(higher noise, excellent 50/60Hz rejection, recommended for BioZ applications)  
01 = Chopped Sources without Low Pass Filter  
(low noise, no 50/60Hz rejection, recommended for BioZ applications  
with digital LPF, possibly battery powered BioZ applications)  
10 = Chopped Sources with Low Pass Filter  
CG_  
MODE[1:0]  
D[13:12]  
00  
(low noise, excellent 50/60Hz rejection)  
11 = Chopped Sources with Resistive CM Setting  
(Not recommended to be used for drive currents >32µA)  
(low noise, excellent 50/60Hz rejection, lower input impedance)  
BIOZ Modulated Resistance Built-In-Self-Test (RMOD BIST) Mode Enable  
0 = RMOD BIST Disabled  
1 = RMOD BIST Enabled  
D[11]  
EN_BIST  
0
To avoid body interference, the BIP/N switches should be open in this mode.  
When enabled, the DRVP/N isolation switches are opened and the DRVP/N-to-BIP/N  
internal switches are engaged. Also, the lead bias resistors are applied to the BIOZ  
inputs in 200MΩ mode.  
Maxim Integrated  
32  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Table 22. CNFG_BMUX (0x17) Register Functionality (continued)  
INDEX  
NAME  
DEFAULT  
FUNCTION  
BIOZ RMOD BIST Nominal Resistance Selection  
See RMOD BIST Settings Table for details.  
D[10:8]  
RNOM[2:0]  
000  
BIOZ RMOD BIST Modulated Resistance Selection (See RMOD BIST Settings table  
for details.)  
000 = Modulated Resistance Value 0  
D[6:4]  
RMOD[2:0]  
100  
001 = Modulated Resistance Value 1  
010 = Modulated Resistance Value 2  
011 = Reserved, Do Not Use  
1xx = All SWMOD Switches Open - No Modulation (DC value = RNOM)  
BIOZ RMOD BIST Frequency Selection  
Calibration Source Frequency Selection (FCAL)  
13  
00 = f  
01 = f  
10 = f  
11 = f  
/2  
/2  
/2  
(Approximately  
(Approximately  
(Approximately 1/4 Hz)  
(Approximately 1/16 Hz)  
4 Hz)  
1 Hz)  
MSTR  
MSTR  
MSTR  
15  
17  
D[1:0]  
FBIST[1:0]  
00  
19  
/2  
MSTR  
Actual frequencies are determined by FMSTR selection (see CNFG_GEN for details),  
approximate frequencies are based on a 32,768 Hz clock (FMSTR[1:0]=00). All  
selections use 50% duty cycle.  
Table 23. CNFG_BMUX (0x17) RMOD BIST Settings  
NOMINAL RESISTANCE  
MODULATED RESISTANCE  
RNOM[2:0]  
RMOD[2:0]  
(Ω)  
(mΩ)  
000  
001  
010  
1xx  
2960.7  
980.6  
247.5  
000  
5000  
2500  
1667  
Unmodulated  
000  
001  
010  
1xx  
740.4  
245.2  
61.9  
001  
010  
Unmodulated  
000  
001  
010  
1xx  
329.1  
109.0  
27.5  
Unmodulated  
Maxim Integrated  
33  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Table 23. CNFG_BMUX (0x17) RMOD BIST Settings (continued)  
RNOM[2:0]  
AND SWNOM  
SWITCHES ENGAGED  
NOMINAL RESISTANCE  
MODULATED RESISTANCE  
RMOD[2:0]  
(Ω)  
(mΩ)  
000  
001  
1xx  
185.1  
61.3  
Unmodulated  
011  
100  
101  
110  
111  
1250  
000  
001  
1xx  
118.5  
39.2  
Unmodulated  
1000  
833  
714  
625  
000  
001  
1xx  
82.3  
27.2  
Unmodulated  
000  
001  
1xx  
60.5  
20.0  
Unmodulated  
000  
001  
1xx  
46.3  
15.3  
Unmodulated  
CNFG_BIOZ(0x18)  
CNFG_BIOZ is a read/write register which configures the operation, settings, and function of the BIOZ channel, including  
the associated modulated current generator. Anytime a change to CNFG_BIOZ is made, there may be discontinuities in  
the BIOZ record and possibly changes to the size of the time steps recorded in the BIOZ FIFO. The SYNCH command  
can be used to restore internal synchronization resulting from configuration changes.  
Table 24. CNFG_BIOZ (0x18) Register Map  
REG  
NAME  
R/W  
23/15/7  
22/14/6  
21/13/5  
20/12/4  
19/11/3  
18/10/2  
17/9/1  
16/8/0  
EXT_  
RBIAS  
RATE  
AHPF[2:0]  
LN_BIOZ  
GAIN[1:0]  
CNFG_  
BIOZ  
0x18  
R/W  
DHPF[1:0]  
CGMON  
DLPF[1:0]  
CGMAG[2:0]  
FCGEN[3:0]  
PHOFF[3:0]  
Maxim Integrated  
34  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Table 25. CNFG_BIOZ (0x18) Register Functionality  
INDEX  
NAME  
DEFAULT  
FUNCTION  
BIOZ Data Rate (also dependent on FMSTR selection, see CNFG_GEN):  
FMSTR = 00: f  
0 = 64sps  
1 = 32sps  
= 32,768Hz  
= 32,000Hz  
= 32,000 Hz  
= 31,968 Hz  
MSTR  
MSTR  
MSTR  
MSTR  
FMSTR = 01: f  
0 = 62.50sps  
1 = 31.25sps  
D[23]  
RATE  
0
FMSTR = 10: f  
0 = 50sps  
1 = 25sps  
FMSTR = 11: f  
0 = 49.95sps  
1 = 24.98sps  
BIOZ Channel Analog High-Pass Filter Cutoff Frequency and Bypass  
000 = 125Hz  
001 = 300Hz  
010 = 800Hz  
D[22:20]  
AHPF[2:0]  
010  
011 = 2000Hz  
100 = 3700Hz  
101 = 7200Hz  
11x = Bypass AHPF  
External Resistor Bias Enable  
0 = Internal Bias Generator used  
1 = External Bias Generator used  
Note: Use of the external resistor bias will improve the temperature coefficient of all  
biases within the product, but the main benefit is improved control of BIOZ current  
generator magnitude. If enabled, the user must include the required external resistor  
between RBIAS and GND, and the temperature coefficent achieved will be determined  
by the combined performance of the internal bandgap and the external resistor.  
D[19]  
EXT_RBIAS  
0
BIOZ Channel Instrumentation Amplifier (INA) Power Mode  
0 = BIOZ INA is in low power mode  
1 = BIOZ INA is in low noise mode  
D[18]  
LN_BIOZ  
GAIN[1:0]  
0
BIOZ Channel Gain Setting  
00 = 10V/V  
01 = 20V/V  
D[17:16]  
00  
10 = 40V/V  
11 = 80V/V  
BIOZ Channel Digital High-Pass Filter Cutoff Frequency  
00 = Bypass (DC)  
01 = 0.05Hz  
D[15:14]  
DHPF[1:0]  
00  
1x = 0.50Hz  
Maxim Integrated  
35  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Table 25. CNFG_BIOZ (0x18) Register Functionality (continued)  
INDEX  
NAME  
DEFAULT  
FUNCTION  
BIOZ Channel Digital Low-Pass Filter Cutoff Frequency  
00 = Bypass (Decimation only, no FIR filter)  
01 = 4Hz  
10 = 8Hz  
D[13:12]  
DLPF[1:0]  
01  
11 = 16Hz (Available for 64, 62.5, 50, and 49.95sps BIOZ Rate selections only)  
Note: See Table 39 below. If an unsupported DLPF setting is specified, the 4Hz  
setting (DLPF[1:0] = 01) will be used internally; the CNFG_BIOZ register will continue  
to hold the value as written, but return the effective internal value when read back.  
BIOZ Current Generator Modulation Frequency  
0000 = 4*f  
0001 ≈ 2*f  
(approximately 128000Hz) 1000 = f  
/64 (approximately 500Hz)  
/128 (approximately 250Hz)  
/256 (approximately 125Hz)  
MSTR  
MSTR  
MSTR  
(approximately 80000Hz) 1001 = f  
(approximately 40000Hz) 101x = f  
MSTR  
0010 ≈ f  
0011 ≈ f  
MSTR  
MSTR  
/2  
(approximately 18000Hz) 11xx = f /256 (approximately 125Hz)  
MSTR  
MSTR  
D[11:8]  
FCGEN[3:0]  
1000  
0100 = f  
0101 = f  
0110 = f  
/4  
/8  
(approximately 8000Hz)  
(approximately 4000Hz)  
MSTR  
MSTR  
MSTR  
/16 (approximately 2000Hz)  
/32 (approximately 1000Hz)  
0111 = f  
MSTR  
Actual frequencies determined by FMSTR selection, see CNFG_GEN register and  
table below for details.  
BIOZ Current Generator Monitor  
0 = Current Generator Monitors disabled  
1 = Current Generator Monitors enabled, requires active BIOZ channel and Current  
Generators. Enables BCGMON interrupt and status bit behavior. Monitors current  
source compliance levels, useful in detecting DRVP/DRVN lead off conditions with 4  
electrode BIOZ applications.  
D[7]  
CGMON  
0
BIOZ Current Generator Magnitude  
000 = Off (DRVP and DRVN floating, Current Generators Off)  
001 = 8µA  
010 = 16µA  
011 = 32µA  
D[6:4]  
CGMAG[2:0]  
000  
100 = 48µA  
101 = 64µA  
110 = 80µA  
111 = 96µA  
See Table 40 and 41 below for a list of allowed CGMAG settings vs. FCGEN  
selections.  
BIOZ Current Generator Modulation Phase Offset  
Phase Resolution and Offset depends on FCGEN setting:  
D[3:0]  
PHOFF[3:0]  
0000  
FCGEN[3:0] ≥ 0010: Phase Offset = PHOFF[3:0]*11.25° (0 to 168.75°)  
FCGEN[3:0] = 0001: Phase Offset = PHOFF[3:1]*22.50° (0 to 157.50°)  
FCGEN[3:0] = 0000: Phase Offset = PHOFF[3:2]*45.00° (0 to 135.00°)  
Maxim Integrated  
36  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Table 26. Supported RATE and DLPF Options  
DLPF[1:0] / Digital LPF Cut Off  
CNFG_GEN  
FMSTR[1:0]  
RATE  
Sample Rate  
00  
01  
10  
11  
0 = 64sps  
1 = 32sps  
16.384Hz  
4.096Hz  
16.0Hz  
4.0Hz  
00 = 32,768Hz  
01 = 32,000Hz  
10 = 32,000Hz  
11 = 31,968Hz  
Bypass  
4.096Hz  
8.192Hz  
0 = 62.5sps  
1 = 31.25sps  
0 = 50sps  
Bypass  
Bypass  
Bypass  
4.0Hz  
4.0Hz  
8.0Hz  
8.0Hz  
16.0Hz  
4.0Hz  
1 = 25sps  
0 = 49.95sps  
1 = 25.98sps  
15.984Hz  
3.996Hz  
3.996Hz  
7.992Hz  
Note: Combinations shown in grey are unsupported and will be internally mapped to the default settings shown.  
Table 27. Actual BIOZ Current Generator Modulator Frequencies vs.  
FMSTR[1:0] Selection  
BIOZ Current Generator Modulation Frequency (Hz)  
FCGEN[3:0]  
FMSTR[1:0] = 00  
= 32,768Hz  
FMSTR[1:0] = 01  
= 32,000Hz  
FMSTR[1:0] = 10  
= 32,000Hz  
FMSTR[1:0] = 11  
f
f
f
f
= 31,968Hz  
MSTR  
MSTR  
MSTR  
MSTR  
0000  
0001  
131,072  
81,920  
40,960  
18,204  
8,192  
4,096  
2,048  
1,024  
512  
128,000  
80,000  
40,000  
17,780  
8,000  
4,000  
2,000  
1,000  
500  
128,000  
80,000  
40,000  
17,780  
8,000  
4,000  
2,000  
1,000  
500  
127,872  
81,920  
40,960  
18,204  
7,992  
3,996  
1,998  
999  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
500  
1001  
256  
250  
250  
250  
101x, 11xx  
128  
125  
125  
125  
Maxim Integrated  
37  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Table 28. Allowed CGMAG Option vs. FCGEN Selections  
APPROXIMATE CURRENT  
GENERATOR  
MODULATION FREQUENCY (Hz)  
CURRENT GENERATOR  
MAGNITUDE  
CGMAG[2:0]  
OPTIONS ALLOWED  
FCGEN[3:0]  
OPTIONS ALLOWED (µA  
)
P-P  
0000  
0001  
0010  
0011  
12,8000  
80,000  
40,000  
18,000  
All  
All  
0100  
8,000  
All except 111  
All except 96  
0101  
0110  
4,000  
2,000  
1,000  
500  
000, 001, 010, 011  
000, 001, 010  
Off, 8, 16, 32  
Off, 8, 16  
0111  
1000  
000, 001  
Off, 8  
1001  
250  
101x, 11xx  
125  
FIFO Memory Description  
The device provides read only FIFO memory for BIOZ information. The operation of this FIFO memory is detailed in the  
following sections.  
Table 29 summarizes the method of access and data structure within the FIFO memory.  
Table 29. FIFO Memory Access and Data Structure Summary  
DATA STRUCTURE (D[23:0])  
FIFO  
AND  
REG  
MODE  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
BIOZ  
Burst  
BTAG  
[2:0]  
0x22  
0x23  
BIOZ Sample Voltage Data [19:0]  
BIOZ Sample Voltage Data [19:0]  
0
BTAG  
[2:0]  
BIOZ  
0
Maxim Integrated  
38  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
If the write pointer ever traverses the entire FIFO array  
and catches up to the read pointer (due to failure of the  
µC to read/maintain FIFO data), a FIFO overflow will  
occur and data will be corrupted. The BOVF STATUS  
and tag bits will indicate this condition and the FIFO  
should be cleared before continuing measurements using  
either a SYNCH or FIFO_RST command—note overflow  
events will result in the loss of samples and thus timing  
information, so these conditions should not occur in well-  
designed applications.  
BIOZ FIFO Memory (8 Words x 24 Bits)  
The BIOZ FIFO memory is a standard circular FIFO  
consisting of 8 words, each with 24 bits of information.  
The BIOZ FIFO is independently managed by internal  
read and write pointers. The read pointer is updated in  
response to the 32nd SCLK rising edge in a normal mode  
read back transaction and on the (32 + n x 24)th SCLK  
rising edge(s) in a burst mode transaction where n = 0 to  
up to 31. Once a FIFO sample is marked as read, it can-  
not be accessed again.  
Do not read beyond the last valid FIFO word to prevent  
possible data corruption.  
The write pointer is governed internally. To aide data  
management and reduce µC overhead, the device pro-  
vides a user-programmable BIOZ FIFO Interrupt Threshold  
(BFIT[2:0]) governing the BIOZ Interrupt bit (BINT). This  
threshold can be programmed with values from 1 to 8, rep-  
resenting the number of unread BIOZ FIFO entries required  
before the BINT bit will be asserted, alerting the µC that  
there is a significant amount of data in the BIOZ FIFO ready  
for read back (see MNGR_INT (0x04) for details).  
BIOZ FIFO Data Structure  
The data portion of the word contains the 20-bit BIOZ volt-  
age information measured at the requested sample rate  
in left justified two’s complement format. One bit is set to  
0 and the remaining three bits of data hold important data  
tagging information (see details in Table 30).  
Table 30. BIOZ FIFO BIOZ Data Tags (BTAG[2:0] = D[2:0])  
DATA  
VALID  
TIME  
VALID  
BTAG [2:0]  
DESCRIPTION  
RECOMMENDED USER ACTION  
Log sample into BIOZ record and increment the time  
step. Continue to read data from the BIOZ FIFO.  
000  
Valid Sample  
Yes  
?
Yes  
Yes  
Log sample into BIOZ record and increment the  
Over/Under Range Sample time step. Determine if the data is valid or a lead off  
001  
010  
condition. Continue to read data from the BIOZ FIFO.  
Log sample into BIOZ record and increment the time  
step. Suspend read of the BIOZ FIFO until more  
samples are available.  
Last Valid Sample  
Yes  
?
Yes  
Yes  
(EOF)  
Log sample into BIOZ record and increment the  
Last Over/Under Range  
Sample (EOF)  
time step. Determine if the data is valid or a lead off  
condition. Suspend read of the BIOZ FIFO until more  
samples are available.  
011  
10x  
110  
Unused  
-
-
-
Discard this sample without incrementing the time  
base. Suspend read of the BIOZ FIFO until more  
samples are available.  
FIFO Empty  
(exception)  
No  
No  
Discard this sample without incrementing the time  
base. Issue a FIFO_RST command to clear the FIFOs  
or re-SYNCH if necessary. Note the corresponding  
halt and resumption in all the FIFOs.  
FIFO Overflow  
(exception)  
111  
No  
No  
Maxim Integrated  
39  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
thresholds (see MNGR_DYN and CNFG_GEN) and that  
the voltage information in the sample should be evaluated  
to see if it is valid or indicates a leads-off condition. Note  
that while the voltage data may be invalid, samples of this  
type do represent valid time steps in the BIOZ record.  
This is also the last sample currently available in the BIOZ  
FIFO (End-of-File, EOF). The µC should wait until further  
samples are available before requesting more data from  
the BIOZ FIFO.  
BIOZ Data Tags (BTAG)  
The final three bits in the sample are used as a data tag  
(BTAG[2:0] = D[2:0]) to assist in managing data transfers.  
The BTAG structure used is detailed below.  
VALID: BTAG = 000 indicates that BIOZ data for this  
sample represents both a valid voltage and time step in  
the BIOZ record.  
OVER or UNDER RANGE: BTAG = 001 indicates that  
BIOZ data for this sample violated selected range thresh-  
olds (see MNGR_DYN and CNFG_GEN) and that the  
voltage information in the sample should be evaluated to  
see if it is valid or indicative of a leads-off condition. Note  
that while the voltage data may be invalid, samples of this  
type do represent valid time steps in the BIOZ record.  
EMPTY: BTAG = 110 is appended to any requested read  
back data from an empty FIFO. The presence of this tag  
alerts the user that this FIFO data does not represent a  
valid sample or time step. Note that if handled properly  
by the µC, an occurrence of an empty tag will not com-  
promise the integrity of a continuous FIFO record – this  
tag only indicates that the read back request was either  
premature or unnecessary.  
VALID EOF: BTAG = 010 indicates that BIOZ data for  
this sample represents both a valid voltage and time  
step in the BIOZ record, and that this is the last sample  
currently available in the BIOZ FIFO (End-of-File, EOF).  
The µC should wait until further samples are available  
before requesting more data from the BIOZ FIFO.  
OVERFLOW: BTAG = 111 indicates that the FIFO has  
overflowed and that there are interruptions or missing data  
in the sample records. The BIOZ Overflow (BOVF) bit is  
also included in the STATUS register. A FIFO_RESET is  
required to resolve this situation, effectively clearing the  
FIFO so that valid sampling going forward is assured.  
OVER or UNDER RANGE EOF: BTAG = 011 indicates  
that BIOZ data for this sample violated selected range  
Typical Application Circuit  
1.1V to 2.0V  
1.65V to 3.6V  
10µF  
0.1µF  
10µF  
0.1µF  
AVDD  
DVDD  
OVDD  
CSB  
SDI  
CSB  
DRVP  
MOSI  
SCLK  
MISO  
INTB  
INT2B  
FCLK  
47nF  
47pF  
SCLK  
SDO  
BIP  
MCU  
200Ω  
200Ω  
10pF  
10pF  
ELECTRODES  
MAX30002  
INTB  
INT2B  
FCLK  
BIN  
DRVN  
RBIAS  
CPLL  
47nF  
324kΩ  
1nF  
AGND  
VCM  
VBG  
VREF  
DGND  
10µF  
1µF  
10µF  
Figure 9. Two-Electrode Respiration Monitor Typical Application Circuit  
Maxim Integrated  
40  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Four Electrode Respiration  
Monitoring Application  
See Figure 11 for an example of a clinical application  
for monitoring respiration using four electrodes and with  
optional defibrillation protection circuitry. The electrode  
models are shown to illustrate the electrical characteristics  
of the physical electrodes.  
Application Diagrams  
See Figure 10 for an example of a clinical application  
for monitoring respiration using just two electrodes and  
with optional shared defibrillation protection circuitry. The  
electrode models are shown to illustrate the electrical  
characteristics of the physical electrodes.  
PCB  
DRVP  
47nF  
CE=5nF  
RS=100Ω  
RP1  
RP2  
BIP  
1kΩ  
200Ω  
10pF  
10pF  
RE=1MΩ  
RBODY  
100Ω  
PHYSICAL  
ELECTRODES  
DEFIB  
ELECTRODE MODELS  
47pF  
MAX30002  
BIN  
PROTECTION  
CE=5nF  
RS=100Ω  
RP1  
RP2  
1kΩ  
200Ω  
RE=1MΩ  
47nF  
DRVN  
Figure 10. Two Electrode Respiration Monitoring with Optional Common Defibrillation Protection.  
Maxim Integrated  
41  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
PCB  
CE=5nF  
RS=100Ω  
RDP1  
1kΩ  
RDP2  
DRVP  
200Ω  
47nF  
RE=1MΩ  
CE=5nF  
RS=100Ω  
RBP1  
1kΩ  
RBP2  
BIP  
200Ω  
10pF  
10pF  
RE=1MΩ  
RBODY  
100Ω  
PHYSICAL  
ELECTRODES  
DEFIB  
PROTECTION  
ELECTRODE MODELS  
47pF  
MAX30002  
CE=5nF  
RS=100Ω  
RBP1  
RBP2  
BIN  
1kΩ  
200Ω  
RE=1MΩ  
CE=5nF  
RS=100Ω  
RDP1  
1kΩ  
RDP2  
47nF  
DRVN  
200Ω  
RE=1MΩ  
Figure 11. Four Electrode Respiration Monitoring with Optional Defibrillation Protection.  
Maxim Integrated  
42  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Ordering Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PART  
TEMP RANGE  
PIN-PACKAGE  
28 TQFN-EP**  
28 TQFN-EP**  
30WLP  
MAX30002CTI+*  
MAX30002CTI+T*  
MAX30002CWV+  
MAX30002CWV+T  
0ºC TO +70ºC  
0ºC TO +70ºC  
0ºC TO +70ºC  
0ºC TO +70ºC  
30WLP  
PACKAGE PACKAGE  
OUTLINE  
NO.  
LAND PATTERN  
NO.  
TYPE  
CODE  
+Denotes lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
*Future product. Contact factory for availability.  
**EP = Exposed pad.  
28-TQFN  
T2855+8  
21-0140  
90-0028  
Refer to  
Application  
Note 1891  
30 WLP  
W302L2+1  
21-100074  
Chip Information  
PROCESS: CMOS  
Maxim Integrated  
43  
www.maximintegrated.com  
MAX30002  
Ultra-Low-Power, Single-Channel Integrated  
Bioimpedance (BioZ) AFE  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
3/18  
Initial release  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2018 Maxim Integrated Products, Inc.  
44  

相关型号:

MAX30003

Ultra-Low Power, Single-Channel Integrated Biopotential (ECG, R-to-R Detection) AFE
MAXIM

MAX30003CTI+

Analog Circuit, 1 Func, CMOS, TQFN-28
MAXIM

MAX30003CTI+T

Analog Circuit, 1 Func, CMOS, TQFN-28
MAXIM

MAX30003CWV+

Analog Circuit, 1 Func, CMOS, PBGA30, WLP-30
MAXIM

MAX30003CWV+T

Analog Circuit, 1 Func, CMOS, PBGA30, WLP-30
MAXIM

MAX30003WING

MAX30003 Biopotential AFE
MAXIM

MAX30003_V01

Ultra-Low Power, Single-Channel Integrated Biopotential (ECG, R-to-R Detection) AFE
MAXIM

MAX30004

Ultra-Low Power, Single-Channel Integrated Biopotential (R-to-R Detection) AFE
MAXIM

MAX30004CTI+T

Analog Circuit, 1 Func, CMOS, TQFN-28
MAXIM

MAX30004CTI+T*

Ultra-Low Power, Single-Channel Integrated Biopotential (R-to-R Detection) AFE
MAXIM

MAX30004CWV+

Analog Circuit, 1 Func, CMOS, PBGA30, WLP-30
MAXIM

MAX30004CWV+T

Analog Circuit, 1 Func, CMOS, PBGA30, WLP-30
MAXIM