MAX378 [MAXIM]

High-Voltage, Fault-Protected Analog Multiplexers; 高电压,故障保护模拟多路复用器
MAX378
型号: MAX378
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

High-Voltage, Fault-Protected Analog Multiplexers
高电压,故障保护模拟多路复用器

复用器
文件: 总12页 (文件大小:106K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1902; Rev 1; 8/94  
Hig h -Vo lt a g e , Fa u lt -P ro t e c t e d  
An a lo g Mu lt ip le x e rs  
8/MAX379  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Fault Input Voltage ±75V with Power Supplies Off  
Fault Input Voltage ±60V with ±15V Power Supplies  
All Switches Off with Power Supplies Off  
The MAX378 8-channel single-ended (1-of-8) multiplexer  
and the MAX379 4-channel differential (2-of-8) multiplexer  
use a series N-channel/P-channel/N-channel structure to  
provide significant fault protection. If the power supplies to  
the MAX378/MAX379 are inadvertently turned off while  
input voltages are still applied, all channels in the muxes  
are turned off, and only a few nanoamperes of leakage cur-  
rent will flow into the inputs. This protects not only the  
MAX378/MAX379 and the circuitry they drive, but also the  
sensors or signal sources that drive the muxes.  
On Channel Turns OFF if Overvoltage Occurs on  
Input or Output  
Only Nanoamperes of Input Current Under All  
Fault Conditions  
No Increase in Supply Currents Due to Fault  
Conditions  
Latchup-Proof Construction  
The series N-channel/P-channel/N-channel protection  
structure has two significant advantages over the simple  
current-limiting protection scheme of the industrys first-  
generation fault-protected muxes. First, the Maxim protec-  
tion scheme limits fault currents to nanoamp leakage  
values rather than many milliamperes. This prevents dam-  
age to sensors or other sensitive signal sources. Second,  
the MAX378/MAX379 fault-protected muxes can withstand  
a continuous ±60V input, unlike the first generation, which  
had a continuous ±35V input limitation imposed by power  
dissipation considerations.  
Operates from ±4.5V to ±18V Supplies  
All Digital Inputs are TTL and CMOS Compatible  
Low-Power Monolithic CMOS Design  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
16 Plastic DIP  
24 Wide SO  
16 CERDIP  
Dice**  
MAX378CPE  
MAX378CWG  
MAX378CJE  
MAX378C/D  
MAX378EPE  
MAX378EWG  
MAX378EJE  
MAX378MJE  
MAX378MLP  
0°C to +70°C  
All digital inputs have logic thresholds of 0.8V and 2.4V,  
ensuring both TTL and CMOS compatibility without requir-  
ing pull-up resistors. Break-before-make operation is  
guaranteed. Power dissipation is less than 2mW.  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
-55°C to +125°C  
16 Plastic DIP  
24 Wide SO  
16 CERDIP  
16 CERDIP  
20 LCC*  
________________________Ap p lic a t io n s  
Data Acquisition Systems  
Industrial and Process Control Systems  
Avionics Test Equipment  
Ordering Information continued at end of data sheet.  
* Contact factory for availability.  
**The substrate may be allowed to float or be tied to V+ (JI CMOS).  
Signal Routing Between Systems  
__________________________________________________________P in Co n fig u ra t io n s  
TOP VIEW  
A0  
EN  
V-  
1
2
3
4
5
6
7
8
A0  
EN  
1
2
3
4
5
6
7
8
A1  
A1  
16  
16  
15 A2  
15 GND  
14 V+  
V-  
14 GND  
13 V+  
IN1  
IN1A  
MAX378  
MAX379  
13 IN1B  
IN2  
IN3  
IN2A  
IN3A  
IN4A  
OUTA  
12  
11  
10  
9
12  
11  
10  
9
IN5  
IN6  
IN7  
IN8  
IN2B  
IN3B  
IN4B  
OUTB  
IN4  
OUT  
DIP  
DIP  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e s a m p le s o r lit e ra t u re .  
Hig h -Vo lt a g e , Fa u lt -P ro t e c t e d  
An a lo g Mu lt ip le x e rs  
ABSOLUTE MAXIMUM RATINGS  
Voltage between Supply Pins ..............................................+44V  
V+ to Ground ...................................................................+22V  
V- to Ground......................................................................-22V  
Digital Input Overvoltage:  
Continuous Current, IN or OUT...........................................20mA  
Peak Current, IN or OUT  
(Pulsed at 1ms, 10% duty cycle max) ............................40mA  
Power Dissipation (Note 1) (CERDIP) ................................1.28W  
Operating Temperature Range:  
MAX378/379C .....................................................0°C to +70°C  
MAX378/379E ..................................................-40°C to +85°C  
MAX378/379M ...............................................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +150°C  
V+ ......................................................................+4V  
V- ........................................................................-4V  
Analog Input with Multiplexer Power On..............................±65V  
V , V  
EN A  
{
Recommended  
Power Supplies  
V+ .....................................+15V  
V- .......................................-15V  
{
}
Analog Input with Multiplexer Power Off..............................±80V  
Note 1: Derate 12.8mW/°C above T = +75°C  
A
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V+ = +15V, V- = -15V; V (Logic Level High) = +2.4V, V (Logic Level Low) = +0.8V, unless otherwise noted.)  
AH  
AL  
8/MAX379  
0°C to +70°C  
and  
-40°C to +85°C  
-55°C to +125°C  
PARAMETER  
SYMBOL  
CONDITIONS  
TEMP  
UNITS  
MIN TYP MAX MIN TYP MAX  
STATIC  
ON Resistance  
+25°C  
Full  
2.0  
3.0  
3.0  
4.0  
2.0  
3.0  
3.5  
4.0  
V
V
AL  
= ±10V, I = 100µA  
IN  
= 0.8V, V = 2.4V  
AH  
OUT  
r
k  
DS(ON)  
±
+25°C -0.5 0.03 0.5  
-1.0 0.03 1.0  
V
IN  
= ±10V, V  
=
10V  
OUT  
OFF Input Leakage Current  
OFF Output Leakage Current  
I
nA  
IN(OFF)  
V
= 0.8V (Note 6)  
EN  
Full  
-50  
50  
-50  
50  
2.0  
±
+25°C -1.0 0.1  
1.0  
-2.0 0.1  
V
= ±10V, V  
=
10V  
MAX378  
MAX379  
OUT  
IN  
I
V
= 0.8V  
Full  
Full  
-200  
-100  
200 -200  
100 -100  
200  
100  
20  
nA  
nA  
OUT(OFF)  
EN  
(Note 6)  
+25°C -10 0.1  
10  
-20 0.1  
V
= V  
= ±10V  
IN(ALL)  
OUT  
ON Channel Leakage Current  
Analog Signal Range  
I
V
= V = 2.4V  
= 0.8V (Note 5)  
MAX378  
MAX379  
Full  
Full  
Full  
-600  
-300  
-15  
600 -600  
300 -300  
600  
300  
+15  
OUT(ON)  
AH EN  
V
AL  
V
AN  
(Note 2)  
+15  
-15  
V
Differential OFF Output  
Leakage Current  
MAX379 only  
(Note 6)  
I
Full  
-50  
50  
-50  
50  
nA  
DIFF  
FAULT  
+25°C  
Full  
20  
20  
nA  
µA  
Output Leakage Current  
(with Input Overvoltage)  
V
= 0V, V = ±60V  
OUT IN  
I
OUT(OFF)  
(Notes 3, 4)  
10  
25  
20  
40  
Input Leakage Current  
(with Overvoltage)  
V
= ±60V, V = ±10V  
OUT  
IN  
I
+25°C  
+25°C  
µA  
µA  
IN(OFF)  
(Notes 3, 4)  
Input Leakage Current  
(with Power Supplies Off)  
V
= ±75V, V = V  
= 0V  
OUT  
IN  
EN  
I
10  
0.8  
1.0  
20  
0.8  
1.0  
IN(OFF)  
A = A = A = 0V or 5V  
0 1 2  
CONTROL  
Input Low Threshold  
Input High Threshold  
V
AL  
(Note 4)  
(Note 4)  
Full  
Full  
V
V
V
AH  
2.4  
2.4  
Input Leakage Current  
(High or Low)  
I
A
V
A
= 5V or 0V (Note 5)  
Full  
-1.0  
-1.0  
µA  
2
_______________________________________________________________________________________  
Hig h -Vo lt a g e , Fa u lt -P ro t e c t e d  
An a lo g Mu lt ip le x e rs  
8/MAX379  
ELECTRICAL CHARACTERISTICS (continued)  
(V+ = +15V, V- = -15V; V (Logic Level High) = +2.4V, V (Logic Level Low) = +0.8V, unless otherwise noted.)  
AH  
AL  
0°C to +70°C  
and  
-40°C to +85°C  
-55°C to +125°C  
PARAMETER  
SYMBOL  
CONDITIONS  
TEMP  
UNITS  
MIN TYP MAX MIN TYP MAX  
DYNAMIC  
Access Time  
t
Figure 1  
V = +5V, V = ±10V  
EN  
+25°C  
+25°C  
0.5  
1.0  
0.5  
1.0  
µs  
ns  
A
Break-Before-Make Delay  
(Figure 2)  
IN  
t
-t  
25 200  
25 200  
ON OFF  
A , A , A strobed  
0
1
2
+25°C  
Full  
400 750  
1000  
400 1000  
1500  
300  
Enable Delay (ON)  
Enable Delay (OFF)  
t
Figure 3  
Figure 3  
ns  
ns  
µs  
ON(EN)  
+25°C  
Full  
300 500  
1000  
t
OFF(EN)  
1000  
1.2  
1.2  
Settling Time (0.1%)  
(0.01%)  
t
+25°C  
SETT  
3.5  
3.5  
V
= 0.8V, R = 1k, C = 15pF  
EN  
L
L
OFF Isolation”  
OFF  
+25°C  
+25°C  
+25°C  
50  
68  
50  
68  
dB  
pF  
pF  
(ISO)  
V = 7V  
, f = 100kHz  
RMS  
Channel Input Capacitance  
Channel Output Capacitance  
C
5
5
IN(OFF)  
25  
12  
25  
12  
MAX378  
MAX379  
C
OUT(OFF)  
Digital Input Capacitance  
C
+25°C  
+25°C  
5
5
pF  
pF  
A
Input to Output Capacitance  
SUPPLY  
C
0.1  
0.1  
DS(OFF)  
+25°C  
Full  
0.1  
0.3  
0.6  
0.7  
0.2  
0.5  
1.0  
1.0  
V
= 0.8V or 2.4V  
EN  
Positive Supply Current  
I+  
I-  
mA  
mA  
V
All V = 0V or 5V  
A
+25°C  
Full  
0.01 0.1  
0.02 0.2  
0.01 0.1  
0.02 0.1  
V
= 0.8V or 2.4V  
EN  
Negative Supply Current  
All V = 0V or 5V  
A
Power-Supply Range for  
Continuous Operation  
V
OP  
(Note 7)  
+25°C ±4.5  
±18 ±4.5  
±18  
Note 2: When the analog signal exceeds +13.5V or -12V, the blocking action of Maxims gate structure goes into operation. Only  
leakage currents flow and the channel ON resistance rises to infinity.  
Note 3: The value shown is the steady-state value. The transient leakage is typically 50µA. See Detailed Description.  
Note 4: Guaranteed by other static parameters.  
Note 5: Digital input leakage is primarily due to the clamp diodes. Typical leakage is less than 1nA at +25°C.  
Note 6: Leakage currents not tested at T = cold temp.  
A
Note 7: Electrical characteristics, such as ON Resistance, will change when power supplies other than ±15V are used.  
_______________________________________________________________________________________  
3
Hig h -Vo lt a g e , Fa u lt -P ro t e c t e d  
An a lo g Mu lt ip le x e rs  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
INPUT LEAKAGE vs.  
INPUT VOLTAGE WITH V+ = V- = 0V  
OFF CHANNEL LEAKAGE CURRENT vs.  
INPUT VOLTAGE WITH ±15V SUPPLIES  
OUTPUT LEAKAGE CURRENT vs. OFF CHANNEL  
OVERVOLTAGE WITH ±15V SUPPLIES  
10n  
1m  
100µ  
10µ  
100µ  
10µ  
1µ  
1µ  
1n  
100n  
OPERATING  
RANGE  
OPERATING  
RANGE  
OPERATING  
RANGE  
100n  
10n  
10n  
1n  
100p  
1n  
100p  
10p  
10p  
1p  
100p  
10p  
1p  
8/MAX379  
-100  
-50  
0
50  
100  
-120  
-60  
0
60  
120  
-120  
-60  
0
60  
120  
V
IN  
(V)  
V (V)  
IN  
V
IN(OFF)  
(V)  
DRAIN-SOURCE ON-RESISTANCE vs.  
ANALOG INPUT VOLTAGE  
7
6
5
4
3
2
+3.5V  
+4V  
+13V  
±5V  
SUPPLIES  
+13V  
±15V  
SUPPLIES  
NOTE: Typical R  
match @ +10V  
DS(ON)  
1
0
Analog in (±15V supplies) = 2%  
for lowe s t to hig he s t R  
DS(ON)  
c ha nne l; @ -10V Ana log in,  
match = 3%.  
-15 -10  
-5  
0
5
10  
15  
20  
ANALOG INPUT (V)  
A2  
ADDRESS  
MAX378: V = 3.0V  
AH  
IN1  
IN2  
DRIVE (V )  
A
±10V  
50%  
MAX378  
GND  
IN2-IN7  
A1  
A0  
EN  
0V  
±
PROBE  
V
A
10V  
IN8  
+V  
50  
AH  
+10V  
OUT  
OUTPUT A  
-10V  
10M  
14pF  
90%  
t
A
Figure 1. Access Time vs. Logic Level (High)  
_______________________________________________________________________________________  
4
Hig h -Vo lt a g e , Fa u lt -P ro t e c t e d  
An a lo g Mu lt ip le x e rs  
8/MAX379  
A2  
MAX358: V = 3.0V  
AH  
+5V  
IN1  
IN2  
ADDRESS  
MAX378*  
IN2-IN7  
IN8  
A1  
A0  
EN  
DRIVE (V )  
0V  
A
V
A
V
OUT  
2.4V  
OUT  
50Ω  
OUTPUT  
50%  
50%  
GND  
12.5pF  
1k  
t
OPEN  
*SIMILAR CONNECTION FOR MAX379  
Figure 2. Break-Before-Make Delay (t  
)
OPEN  
+10V  
IN1  
A2  
MAX378: V = 3.0V  
AH  
ENABLE DRIVE  
50%  
MAX378*  
GND  
IN2-IN7  
OUT  
A1  
A0  
EN  
0V  
90%  
V
A
OUTPUT  
90%  
12.5pF  
1k  
50Ω  
t
ON(EN)  
t
OFF(EN)  
*SIMILAR CONNECTION FOR MAX379  
Figure 3. Enable Delay (t  
, t  
)
ON(EN) OFF(EN)  
+5V  
+15V  
0V  
V-  
V-  
A0  
A0  
+5V  
A1  
A1  
A2  
or  
A2  
0V  
MAX378  
MAX378  
EN  
EN  
I
OUT  
IN1  
I
OUT  
IN1  
IN8  
10k  
±75V  
10k  
±60V  
V
V-  
GND  
V-  
GND  
±10V  
ANALOG  
SIGNAL  
0V  
-15V  
Figure 4. Input Leakage Current (Overvoltage)  
Figure 5. Input Leakage Current (with Power Supplies OFF)  
_______________________________________________________________________________________  
5
Hig h -Vo lt a g e , Fa u lt -P ro t e c t e d  
An a lo g Mu lt ip le x e rs  
Truth Table—MAX378  
Truth Table—MAX379  
ON  
SWITCH  
ON  
SWITCH  
A2  
A1  
A0  
EN  
A1  
A0  
EN  
X
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
NONE  
X
0
0
1
1
X
0
1
0
1
0
1
1
1
1
NONE  
1
2
3
4
5
6
7
8
1
2
3
4
Note: Logic “0 = V 0.8V, Logic “1” = V 2.4V  
AL  
AH  
+15V  
V+  
8/MAX379  
THERMOCOUPLE  
STRAIN GUAGE  
+15V  
IN1  
OUT  
IN2  
IN3  
MAX420  
4-20mA LOOP  
TRANSMITTER  
-15V  
1M  
+15V  
V+  
MAX378  
IN4  
IN5  
IN6  
IN7  
IN8  
IN1  
IN2  
IN3  
IN4  
IN5  
100k  
10k  
+10V  
GAIN REFERENCE  
DG508A  
MAX358  
OR  
OUT  
ZERO REFERENCE  
V-  
-15V  
GND  
1k  
MAX378  
V-  
-15V  
GND  
111Ω  
Figure 6. Typical Data Acquisition Front End  
In systems with fewer than eight inputs, an unused chan-  
nel can be connected to the system ground reference  
point for software zero correction. A second channel  
connected to the system voltage reference allows gain  
correction of the entire data acquisition system as well.  
_______________Typ ic a l Ap p lic a t io n s  
Fig ure 6 s hows a typ ic a l d a ta a c q uis ition s ys te m  
using the MAX378 multiplexer. Since the multiplexer  
is driving a high-impedance input, its error is a func-  
tion of its own resistance (R  
) times the multi-  
DS(ON)  
A MAX420 precision op amp is connected as a pro-  
grammable-gain amplifier, with gains ranging from 1 to  
10,000. The guaranteed 5µV unadjusted offset of the  
MAX420 maintains high signal accuracy, while program-  
mable gain allows the output signal level to be scaled to  
the optimum range for the remainder of the data acqui-  
sition system, normally a Sample/Hold and A/D. Since  
the gain-changing multiplexer is not connected to the  
external sensors, it can be either a DG508A multiplexer  
or the fault-protected MAX358 or MAX378.  
plexer leakage current (I  
) and the amplifier  
OUT(ON)  
bias current (I  
):  
BIAS  
V
ERR  
= R  
x (I  
+ I  
BIAS  
(MAX420))  
DS(ON)  
OUT(ON)  
= 2.0kx (2nA + 30pA)  
= 18.0µV maximum error  
In most cases, this error is low enough that preamplifi-  
cation of input signals is not needed, even with very  
low-level signals such as 40µV/°C from type J thermo-  
couples.  
6
_______________________________________________________________________________________  
Hig h -Vo lt a g e , Fa u lt -P ro t e c t e d  
An a lo g Mu lt ip le x e rs  
8/MAX379  
Input switching, however, must be done with a fault-  
protected MAX378 multiplexer, to provide the level of  
protection and isolation required with most data acqui-  
sition inputs. Since external signal sources may contin-  
ue to supply voltage when the multiplexer and system  
power are turned off, non-fault-protected multiplexers,  
or even first-generation fault-protected devices, will  
allow many milliamps of fault current to flow from out-  
side sources into the multiplexer. This could result in  
damage to either the sensors or the multiplexer. A non-  
fault-protected multiplexer will also allow input overvolt-  
a g e s to a p p e a r a t its outp ut, p e rha p s d a ma g ing  
Sample/Holds or A/Ds. Such input overdrives may also  
cause input-to-input shorts, allowing the high current  
output of one sensor to possibly damage another.  
Q
Q
Q
3
1
2
+60V  
OVERVOLTAGE  
S
S
D
S
D
D
N-CHANNEL MOSFET  
IS TURNED OFF  
G
G
G
BECAUSE V = -60V  
GS  
The MAX378 eliminates all of the above problems. It  
not only limits its output voltage to safe levels, with or  
without power applied (V+ and V-), but also turns all  
channels off when power is removed. This allows it to  
draw only sub-microamp fault currents from the inputs,  
and maintain isolation between inputs for continuous  
input levels up to ±75V with power supplies off.  
Figure 8. +60V Overvoltage with Multiplexer Power OFF  
-15V  
+15V  
-15V  
+60V FORCED  
ON COMMON  
OUTPUT  
LINE BY  
EXTERNAL  
CIRCUITRY  
_______________De t a ile d De s c rip t io n  
Q
Q
Q
3
-60V  
1
2
Fa u lt P ro t e c t io n Circ u it ry  
The MAX378/MAX379 are fully fault protected for contin-  
uous input voltages up to ±60V, whether or not the V+  
and V- power supplies are present. These devices use  
a “series FET” switching scheme which not only pro-  
tects the multiplexer output from overvoltage, but also  
limits the input current to sub-microamp levels.  
-60V  
OVERVOLTAGE  
N-CHANNEL MOSFET  
IS TURNED OFF  
+15V FROM  
DRIVERS  
N-CHANNEL  
MOSFET IS OFF  
-15V FROM  
DRIVERS  
BECAUSE V = +45V  
GS  
P-CHANNEL  
MOSFET IS OFF  
Figures 7 and 8 show how the series FET circuit pro-  
tects against overvoltage conditions. When power is  
off, the gates of all three FETs are at ground. With a -60V  
input, N-channel FET Q1 is turned on by the +60V gate-  
Figure 9. -60V Overvoltage on an OFF Channel with  
Multiplexer Power Supply ON  
-15V  
+15V  
-15V  
Q
1
Q
2
Q
3
-60V  
S
Q
1
Q
2
Q
3
+13.5V  
-60V  
OVERVOLTAGE  
+60V  
OVERVOLTAGE  
+13.5V  
OUTPUT  
S
D
S
D
D
N-CHANNEL MOSFET  
IS TURNED ON  
V
TN = +1.5V  
N-CHANNEL MOSFET  
IS TURNED ON  
G
G
G
BECAUSE V = +60V  
GS  
-15V FROM  
DRIVERS  
N-CHANNEL  
MOSFET IS ON  
+15V FROM  
DRIVERS  
BECAUSE V = -45V  
GS  
P-CHANNEL  
MOSFET IS OFF  
Figure 7. -60V Overvoltage with Multiplexer Power OFF  
_______________________________________________________________________________________  
Figure 10. +60V Overvoltage Input to the ON Channel  
7
Hig h -Vo lt a g e , Fa u lt -P ro t e c t e d  
An a lo g Mu lt ip le x e rs  
to-source voltage. The P-channel device (Q2), howev-  
ly connected to the output. In a typical data acquisition  
er, has +60V V and is turned off, thereby preventing  
the input signal from reaching the output. If the input  
system, such as in Figure 6, the dominant delay is not the  
switching time of the MAX378 multiplexer, but is the set-  
tling time of the following amplifiers and S/H. Another limit-  
ing factor is the RC time constant of the multiplexer  
GS  
voltage is +60V, Q1 has a negative V , which turns it  
GS  
off. Similarly, only sub-microamp leakage currents can  
flow from the output back to the input, since any volt-  
age will turn off either Q1 or Q2.  
R
plus the signal source impedance multiplied by  
DS(ON)  
the load capacitance on the output of the multiplexer.  
Even with low signal source impedances, 100pF of capac-  
itance on the multiplexer output will approximately double  
the settling time to 0.01% accuracy.  
Figure 9 shows the condition of an OFF channel with  
V+ and V- present. As with Figures 7 and 8, either an  
N-channel or a P-channel device will be off for any  
input voltage from -60V to +60V. The leakage current  
with negative overvoltages will immediately drop to a  
few nanoamps at +25°C. For positive overvoltages,  
that fault current will initially be 40µA or 50µA, decaying  
over a few seconds to the nanoamp level. The time  
constant of this decay is caused by the discharge of  
stored charge from internal nodes, and does not com-  
promise the fault-protection scheme.  
Op e ra t io n w it h S u p p ly Vo lt a g e  
Ot h e r t h a n ±1 5 V  
The main effect of supply voltages other than ±15V is  
the reduction in output signal range. The MAX378 limits  
the output voltage to about 1.5V below V+ and about 3V  
above V-. In other words, the output swing is limited to  
+3.5V to -2V when operating from ±5V. The Typical  
8/MAX379  
Operating Characteristics graphs show typical R  
,
DS(ON)  
Figure 10 shows the condition of the ON channel with  
V+ and V- present. With input voltages less than ±10V,  
all three FETs are on and the input signal appears at the  
output. If the input voltage exceeds V+ minus the N-  
for ±15V, ±10V, and ±5V power supplies. Maxim tests  
and guarantees the MAX378/MAX379 for operation from  
±4.5V to ±18V supplies. The switching delays are  
increased by about a factor of 2 at ±5V, but break-  
before-make action is preserved.  
channel threshold voltage (V ), then the N-channel  
TN  
FET will turn off. For voltages more negative than V-  
The MAX378/MAX379 can be operated with a single +9V  
to +22V supply, as well as asymmetrical power supplies  
such as +15V and -5V. The digital threshold will remain  
approximately 1.6V above GND and the analog character-  
minus the P-channel threshold (V ), the P-channel  
TP  
device will turn off. Since V is typically 1.5V and V  
TN  
TP  
is typically 3V, the multiplexers output swing is limited  
to about -12V to +13.5V with ±15V supplies.  
istics such as R  
are determined by the total voltage  
DS(ON)  
The Typical Operating Characteristics graphs show typi-  
cal leakage vs. input voltage curves. Although the max-  
imum ra te d inp ut of the s e d e vic e s is ± 65V, the  
MAX378/MAX379 typically have excellent performance  
up to ±75V, providing additional margin for the unknown  
transients that exist in the real world. In summary, the  
MAX378/MAX379 provide superior protection from all  
fault conditions while using a standard, readily pro-  
duced junction-isolated CMOS process.  
difference between V+ and V-. Connect V- to 0V when  
operating with a +9V to +22V single supply.  
This means that the MAX378/MAX379 will operate with  
standard TTL-logic levels, even with ±5V power sup-  
plies. In all cases, the threshold of the EN pin is the  
same as the other logic inputs.  
Table 1a. MAX378 Charge Injection  
Supply Voltage Analog Input Level Injected Charge  
S w it c h in g Ch a ra c t e ris t ic s  
a n d Ch a rg e In je c t io n  
+1.7V  
0V  
-1.7V  
+100pC  
+70pC  
+45pC  
±5V  
Ta b le 1 s hows typ ic a l c ha rg e -inje c tion le ve ls vs .  
power-supply voltages and analog input voltage. Note  
that since the channels are well matched, the differen-  
tial charge injection for the MAX379 is typically less  
than 5pC. The charge injection that occurs during  
switching creates a voltage transient whose magnitude  
is inversely proportional to the capacitance on the mul-  
tiplexer output.  
+5V  
0V  
-5V  
+200pC  
+130pC  
+60pC  
±10V  
+10V  
0V  
-10V  
+500pC  
+180pC  
+50pC  
±15V  
Test Conditions:  
C = 1000pF on multiplexer output; the tabu-  
L
The channel-to-channel switching time is typically 600ns,  
with about 200ns of break-before-make delay. This 200ns  
break-before-make delay prevents the input-to-input short  
that would occur if two input channels were simultaneous-  
lated analog input level is applied to channel 1; channels 2  
through 8 are open circuited. EN = +5V, A1 = A2 = 0V, A0 is  
toggled at 2kHz rate between 0V and 3V. +100pC of charge  
creates a +100mV step when injected into a 1000pF load  
capacitance.  
8
_______________________________________________________________________________________  
Hig h -Vo lt a g e , Fa u lt -P ro t e c t e d  
An a lo g Mu lt ip le x e rs  
8/MAX379  
rents as the off-channel input voltages are varied. The  
Table 1b. MAX379 Charge Injection  
MAX378 output leakage varies only a few picoamps as  
all seven off inputs are toggled from -10V to +10V. The  
output voltage change depends on the impedance level  
Injected Charge  
Supply  
Analog  
Differential  
Voltage Input Level  
Out A  
Out B  
A-B  
at the MAX378 output, which is R  
plus the input  
DS(ON)  
signal source resistance in most cases, since the load  
driven by the MAX378 is usually a high impedance. For  
a signal source impedance of 10kor lower, the DC  
crosstalk exceeds 120dB.  
+1.7V  
0V  
-1.7V  
+105pC  
+73pC  
+48pC  
+107pC  
+74pC  
+50pC  
-2pC  
-1pC  
-2pC  
±5V  
±10V  
±15V  
+5V  
0V  
-5V  
+215pC  
+135pC  
+62pC  
+220pC  
+139pC  
+63pC  
-5pC  
-4pC  
-1pC  
Table 2 shows typical AC crosstalk and off-isolation per-  
formance. Digital feedthrough is masked by the analog  
charge injection when the output is enabled. When the  
output is disabled, the digital feedthrough is virtually  
unmeasurable, since the digital pins are physically iso-  
lated from the analog section by the GND and V- pins.  
The ground plane formed by these lines is continued  
onto the MAX378/MAX379 die to provide over 100dB  
isolation between the digital and analog sections.  
+10V  
0V  
-10V  
+525pC  
+180pC  
+55pC  
+530pC  
+185pC  
+55pC  
-5pC  
-5pC  
0pC  
Test Conditions: C = 1000pF on Out A and Out B; the tabulat-  
L
ed analog input level is applied to inputs 1A and 1B; channels  
2 through 4 are open circuited. EN = +5V, A1 = 0V, A0 is tog-  
gled from 0V to 3V at a 2kHz rate.  
Dig it a l In t e rfa c e Le ve ls  
The typical digital threshold of both the address lines  
and the EN pin is 1.6V, with a temperature coefficient of  
about -3mV/°C. This ensures compatibility with 0.8V to  
2.4V TTL-log ic s wing s ove r the e ntire te mp e ra ture  
range. The digital threshold is relatively independent of  
the supply voltages, moving from 1.6V typical to 1.5V  
typical as the power supplies are reduced from ±15V to  
±5V. In all cases, the digital threshold is referenced to  
GND.  
Table 2a. Typical Off-Isolation  
Rejection Ratio  
Frequency  
One Channel Driven  
All Channels Driven  
100kHz  
74dB  
64dB  
500kHz  
72dB  
48dB  
1MHz  
66dB  
44dB  
Test Conditions:  
V
IN  
= 20V  
at the tabulated frequency,  
P-P  
The digital inputs can also be driven with CMOS-logic  
levels swinging from either V+ to V- or from V+ to GND.  
The digital input current is just a few nanoamps of leak-  
age at all input voltage levels, with a guaranteed maxi-  
mum of 1µA. The digital inputs are protected from ESD  
by a 30V zener diode between the input and V+, and  
can be driven ±4V beyond the supplies without drawing  
excessive current.  
R
L
= 1.5kbetween OUT and GND, EN = 0V.  
20V  
P-P  
OIRR = 20 Log ____________  
V
OUT (P-P)  
Table 2b. Typical Crosstalk  
Rejection Ratio  
Op e ra t io n a s a De m u lt ip le x e r  
The MAX378/MAX379 will function as a demultiplexer,  
where the input is applied to the OUT pin, and the input  
pins are used as outputs. The MAX378/MAX379 pro-  
vide both break-before-make action and full fault protec-  
tion when operated as a demultiplexer, unlike earlier  
generations of fault-protected multiplexers.  
Frequency  
100kHz  
70dB  
62dB  
500kHz  
68dB  
46dB  
1MHz  
64dB  
42dB  
F
L
= 1.5k  
= 10k  
R
L
Test Conditions: Specified R connected from OUT to GND,  
L
Ch a n n e l-t o -Ch a n n e l Cro s s t a lk ,  
Off Is o la t io n , a n d Dig it a l Fe e d t h ro u g h  
At DC a nd low fre q ue nc ie s , c ha nne l-to-c ha nne l  
crosstalk is caused by variations in output leakage cur-  
EN = +5V, A0 = A1 = A2 = +5V (Channel 1 selected). 20V  
P-P  
at the tabulated frequency is applied to Channel 2. All other  
channels are open circuited. Similar crosstalk rejection can be  
observed between any two channels.  
_______________________________________________________________________________________  
9
Hig h -Vo lt a g e , Fa u lt -P ro t e c t e d  
An a lo g Mu lt ip le x e rs  
_____________________________________________P in Co n fig u ra t io n s (c o n t in u e d )  
TOP VIEW  
A0  
EN  
A1  
A0  
EN  
A1  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
A2  
N.C.  
GND  
N.C.  
V+  
N.C.  
N.C.  
N.C.  
N.C.  
GND  
N.C.  
V+  
3
3
4
4
MAX378  
V-  
IN1  
IN2  
IN3  
MAX379  
V-  
IN1A  
IN2A  
IN3A  
5
5
8/MAX379  
IN5  
IN6  
N.C.  
IN7  
N.C.  
N.C.  
6
IN1B  
IN2B  
IN3B  
IN4B  
N.C.  
N.C.  
OUTB  
6
7
7
8
8
IN4  
N.C.  
N.C.  
OUT  
IN4A  
N.C.  
9
9
10  
11  
12  
10  
11  
12  
N.C.  
OUTA  
13 IN8  
SO  
SO  
V- 4  
IN1 5  
N.C. 6  
IN2 7  
IN3 8  
18  
17  
16  
15  
14  
V- 4  
IN1A 5  
N.C. 6  
IN2A 7  
IN3A 8  
18  
V+  
GND  
V+  
17  
16  
15  
14  
IN1B  
N.C.  
IN2B  
IN3B  
N.C.  
IN5  
IN6  
MAX378  
MAX379  
LCC  
LCC  
10 ______________________________________________________________________________________  
Hig h -Vo lt a g e , Fa u lt -P ro t e c t e d  
An a lo g Mu lt ip le x e rs  
8/MAX379  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
_________________Ch ip To p o g ra p h ie s  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
16 Plastic DIP  
24 Wide SO  
16 CERDIP  
Dice**  
MAX378  
MAX379CPE  
MAX379CWG  
MAX379CJE  
MAX379C/D  
MAX379EPE  
MAX379EWG  
MAX379EJE  
MAX379MJE  
MAX379MLP  
IN8 OUT  
IN4  
0°C to +70°C  
0°C to +70°C  
IN7  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
-55°C to +125°C  
16 Plastic DIP  
24 Wide SO  
16 CERDIP  
16 CERDIP  
20 LCC*  
IN7  
IN6  
IN3  
IN2  
0. 229"  
(5. 816mm)  
* Contact factory for availability.  
**The substrate may be allowed to float or be tied to V+ (JI CMOS).  
IN5  
V+  
IN1  
V-  
GND  
A0  
A2  
A1  
EN  
0. 151"  
(3. 835mm)  
NOTE: Connect substrate to V+ or leave it floating.  
MAX379  
OUTB OUTA  
IN4A  
IN4B  
IN3B  
IN2B  
IN3A  
0. 229"  
(5. 816mm)  
IN2A  
IN1B  
V+  
IN1A  
V-  
GND  
A0  
A1  
EN  
0. 151"  
(3. 835mm)  
NOTE: Connect substrate to V+ or leave it floating.  
______________________________________________________________________________________ 11  
Hig h -Vo lt a g e , Fa u lt -P ro t e c t e d  
An a lo g Mu lt ip le x e rs  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.093  
MAX  
0.104  
0.012  
0.019  
0.013  
0.299  
MIN  
2.35  
0.10  
0.35  
0.23  
7.40  
MAX  
2.65  
0.30  
0.49  
0.32  
7.60  
D
A
A1 0.004  
0°- 8°  
B
C
E
e
0.014  
0.009  
0.291  
A
0.101mm  
0.004in.  
1.27  
0.050  
e
B
A1  
H
L
0.394  
0.016  
0.419  
0.050  
10.00  
0.40  
10.65  
1.27  
C
L
8/MAX379  
INCHES  
MILLIMETERS  
MAX  
PINS  
DIM  
MIN MAX MIN  
E
H
Wide SO  
SMALL-OUTLINE  
PACKAGE  
0.398 0.413 10.10 10.50  
0.447 0.463 11.35 11.75  
0.496 0.512 12.60 13.00  
0.598 0.614 15.20 15.60  
D
D
D
D
D
16  
18  
20  
24  
28  
(0.300 in.)  
0.697 0.713 17.70 18.10  
21-0042A  
INCHES  
MILLIMETERS  
DIM  
D1  
MIN  
MAX  
0.200  
MIN  
MAX  
5.08  
A
A1 0.015  
A2 0.125  
A3 0.055  
0.38  
3.18  
1.40  
0.41  
1.27  
0.20  
18.92  
0.13  
7.62  
6.10  
0.150  
0.080  
0.022  
0.065  
0.012  
0.765  
0.030  
0.325  
0.280  
3.81  
2.03  
0.56  
1.65  
0.30  
19.43  
0.76  
8.26  
7.11  
B
0.016  
B1 0.050  
C
D
0.008  
0.745  
E
D1 0.005  
0.300  
E1 0.240  
E
E1  
D
e
0.100 BSC  
0.300 BSC  
2.54 BSC  
7.62 BSC  
A3  
e
A
B
A2  
A1  
A
L
e
0.115  
0˚  
0.400  
0.150  
15˚  
10.16  
3.81  
L
2.92  
0˚  
α
15˚  
21-587A  
α
16-PIN PLASTIC  
DUAL-IN-LINE  
PACKAGE  
C
e
B1  
e
e
A
B
B
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1994 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX378-MAX379

High-Voltage, Fault-Protected Analog Multiplexers
MAXIM

MAX3780

Quad 2.5Gbps Cable Transceiver
MAXIM

MAX3780CCQ

Line Transceiver, 4 Func, 4 Driver, 4 Rcvr, BIPolar, PQFP100, 14 X 14 MM, 1 MM HEIGHT, EXPOSED PAD, TQFP-100
MAXIM

MAX3780CCQ-T

Line Transceiver, 4 Func, 4 Driver, 4 Rcvr, BIPolar, PQFP100, 14 X 14 MM, 1 MM HEIGHT, EXPOSED PAD, TQFP-100
MAXIM

MAX3780EVKIT

Evaluation Kit for the MAX3780
MAXIM

MAX3781

MAX3781 Evaluation Kit
MAXIM

MAX3781EVKIT

MAX3781 Evaluation Kit
MAXIM

MAX3781UCM

Interface Circuit, BIPolar, PQFP48, 7 X 7 MM, 1 MM HEIGHT, EXPOSED PAD, TQFP-48
MAXIM

MAX3782

Dual 1.25Gbps Transceiver
MAXIM

MAX3782EVKIT

Evaluation Kit for the MAX3782
MAXIM

MAX3782UGK

Interface Circuit, Bipolar, 10 X 10 MM, 0.90 MM HEIGHT, QFN-68
MAXIM

MAX3782UGK-T

Interface Circuit, Bipolar, 10 X 10 MM, 0.90 MM HEIGHT, QFN-68
MAXIM