MAX3940 [MAXIM]

10Gbps EAM Driver with Integrated Bias Network ; 10Gbps EAM驱动器,带有偏置网络\n
MAX3940
型号: MAX3940
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

10Gbps EAM Driver with Integrated Bias Network
10Gbps EAM驱动器,带有偏置网络\n

驱动器
文件: 总13页 (文件大小:351K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2730; Rev 0; 1/03  
10Gbps EAM Driver with Integrated  
Bias Network  
General Description  
Features  
The MAX3940 is designed to drive an electro-absorp-  
tion modulator (EAM) at data rates up to 10.7Gbps. It  
incorporates the functions of a biasing circuit and a  
modulation circuit, with integrated control op amps  
externally programmed by DC voltages.  
On-Chip Bias Network  
23ps Edge Speed  
Programmable Modulation Voltage Up to 3V  
P-P  
Programmable EAM Biasing Voltage Up to 1.25V  
Selectable Data-Retiming Latch  
Up to 10.7Gbps Operation  
The integrated bias circuit provides a programmable  
biasing current up to 50mA. This bias current reflects a  
bias voltage of up to 1.25V on an external 50load. The  
bias and modulation circuits are internally connected on  
chip, eliminating the need for an external bias inductor.  
Integrated Modulation and Biasing Functions  
50On-Chip Input and Output Terminations  
Pulse-Width Adjustment  
A high-bandwidth, fully differential signal path is internally  
implemented to minimize jitter accumulation. When a  
clock signal is available, the integrated data-retiming  
function can be selected to reject input-signal jitter.  
Enable and Polarity Controls  
ESD Protection  
The MAX3940 receives differential CML signals (ground  
referenced) with on-chip line terminations of 50. The  
output has a 50resistor for back termination and is  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
able to deliver a modulation current of 40mA  
to  
P-P  
MAX3940E/D  
-40°C to +85°C  
Dice*  
120mA , with an edge speed of 23ps (typical, 20% to  
P-P  
*Dice are designed to operate over a -40°C to +120°C junction  
temperature (T ) range, but are tested and guaranteed at  
80%). This modulation current reflects an EAM modula-  
J
tion voltage of 1.0V  
to 3.0V  
.
P-P  
P-P  
T
A
= +25°C only.  
The MAX3940 also includes an adjustable pulse-width  
control circuit to precompensate for asymmetrical EAM  
characteristics.  
Applications  
SONET OC-192 and SDH STM-64 Transmission  
Systems  
DWDM Systems  
Long/Short-Reach Optical Transmitters  
10Gbps Ethernet  
Typical Application Circuit  
-5.2V  
PLRT  
MODEN  
RTEN  
GND  
0.01µF  
50Ω  
50Ω  
DATA+  
DATA-  
DATA+  
DATA-  
EAM  
0.01µF  
MAX3952  
10Gbps  
SERIALIZER  
MAX3940  
0.01µF  
0.01µF  
50Ω  
50Ω  
CLK+  
CLK-  
CLK+  
50Ω  
OUT  
CLK-  
PWC+  
PWC-  
MODSET BIASSET  
V
EE  
2kΩ  
+
+
V
V
MODSET  
-
BIASSET  
-
-5.2V  
330pF  
0.1µF  
-5.2V  
-5.2V  
REPRESENTS A CONTROLLED-IMPEDANCE TRANSMISSION LINE.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
10Gbps EAM Driver with Integrated  
Bias Network  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage V  
..............................................-6.0V to +0.5V  
Current into or out of OUT..............................……………...80mA  
Storage Temperature Range .....................……-55°C to +150°C  
Operating Junction Temperature Range....……-55°C to +150°C  
Processing Temperature (die)....................………………+400°C  
EE  
Voltage at MODEN,  
RTEN, PLRT, MODSET, BIASSET ...........(V - 0.5V) to +0.5V  
EE  
Voltage at DATA+, DATA-, CLK+, and CLK-……-1.65V to +0.5V  
Voltage at OUT .............................................……….-4V to +0.5V  
Voltage at PWC+, PWC-...................(V - 0.5V) to (V + 1.7V)  
EE  
EE  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = -5.5V to -4.9V, T = -40°C to +85°C. Typical values are at V = -5.2V, I  
= 30mA, I = 100mA, and T = +25°C, unless  
MOD A  
EE  
A
EE  
BIAS  
otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
-4.9  
170  
195  
UNITS  
Power-Supply Voltage  
V
-5.5  
V
EE  
Retime disabled  
Retime enabled  
122  
139  
12  
Excluding I  
and  
BIAS  
Supply Current  
I
EE  
mA  
dB  
I
(Note 1)  
MOD  
Power-Supply Noise Rejection  
SIGNAL INPUT (Note 3)  
Input Data Rates  
PSNR  
f 10MHz (Note 2), see Figure 4  
NRZ  
10.7  
50  
Gbps  
Single-Ended Input Resistance  
R
V
Input to GND (Note 3)  
DC-coupled, Figure 1a  
AC-coupled, Figure 1b  
DC-coupled (Note 4)  
AC-coupled (Note 4)  
42.5  
-1  
58.5  
0
IN  
Single-Ended Input Voltage  
Differential Input Voltage  
Differential Input Return Loss  
V
IS  
-0.4  
0.2  
0.2  
+0.4  
2.0  
1.6  
V
V
P-P  
ID  
10GHz  
17  
10  
RL  
(Note 3)  
dB  
IN  
10GHz < f 15GHz  
EAM BIAS  
Maximum Bias Current  
Minimum Bias Current  
BIASSET Voltage Range  
Equivalent Bias Resistance  
V
V
= V + 2V  
50  
55  
mA  
mA  
V
BIASSET  
BIASSET  
EE  
= V  
0.3  
1
EE  
V
V
V
+ 2  
EE  
BIASSET  
EE  
R
(Note 5)  
36.4  
BSEQV  
V
V
V
V
V
= V + 0.11V  
2.1  
8.8  
3.9  
BIASSET  
BIASSET  
BIASSET  
BIASSET  
BIASSET  
EE  
Bias-Current-Setting Accuracy  
T
= +25°C  
= V + 0.36V  
11.2  
58  
mA  
A
EE  
= V + 2.0V  
52  
EE  
< V + 0.36V  
-1300  
-480  
+1300  
+480  
Bias-Current Temperature  
Stability  
EE  
(Note 6)  
ppm/°C  
kΩ  
V + 0.36V  
EE  
BIASSET Input Resistance  
20  
5
50driver load, V  
Figure 2  
= V + 0.55V,  
EE  
BIASSET  
BIASSET Bandwidth  
MHz  
EAM MODULATION  
Maximum Modulation Current  
Minimum Modulation Current  
MODSET Voltage Range  
V
V
= V + 1V  
120  
127  
38  
mA  
mA  
MODSET  
MODSET  
EE  
P-P  
= V  
40  
EE  
P-P  
V
V
V + 1  
EE  
V
MODSET  
EE  
Equivalent Modulation Resistance  
R
(Note 7)  
11.1  
MODEQV  
2
_______________________________________________________________________________________  
10Gbps EAM Driver with Integrated  
Bias Network  
ELECTRICAL CHARACTERISTICS (continued)  
(V = -5.5V to -4.9V, T = -40°C to +85°C. Typical values are at V = -5.2V, I  
= 30mA, I = 100mA, and T = +25°C, unless  
MOD A  
EE  
A
EE  
BIAS  
otherwise noted.)  
PARAMETER  
Modulation Set Bandwidth  
MODSET Input Resistance  
SYMBOL  
CONDITIONS  
MIN  
TYP  
5
MAX  
UNITS  
MHz  
Modulation depth 10%, 50driver load,  
see Figure 2  
20  
kΩ  
Modulation-Current Temperature  
Stability  
(Note 6)  
-480  
+480  
ppm/°C  
Modulation-Current Setting Error  
Output Resistance  
50driver load, T = +25°C  
-5  
+5  
%
A
R
OUT to GND  
42.5  
50  
58.5  
OUT  
BIASSET = V , MODEN = V , MODSET =  
EE  
EE  
Total Off Current  
1
mA  
dB  
V
, DATA+ = high, DATA- = low  
EE  
I
I
= 30mA,  
= 50mA  
BIAS  
MOD  
Output Return Loss  
RL  
5GHz  
8
OUT  
Output Edge Speed  
20% to 80% (Notes 6, 8)  
Figure 3 (Note 6)  
(Notes 6, 8)  
23  
32  
ps  
ps  
ps  
Setup/Hold Time  
t
, t  
SU HD  
25  
20  
Pulse-Width Adjustment Range  
50  
Pulse-Width Control Input Range  
(Single Ended)  
V
+
0.5  
V
+
EE  
1.5  
EE  
For PWC+ and PWC-  
(PWC+) - (PWC-)  
V
Pulse-Width Control Input Range  
(Differential)  
-0.5  
-10  
+0.5  
V
Output Overshoot  
δ
(Notes 6, 8)  
+10  
1.1  
14  
%
Driver Random Jitter  
Driver Deterministic Jitter  
CONTROL INPUTS  
RJ  
(Note 6)  
0.3  
6.8  
ps  
RMS  
DR  
DR  
DJ  
PWC- = GND (Notes 6, 9)  
ps  
P-P  
V
+
2.0  
EE  
Input High Voltage  
V
(Note 10)  
V
IH  
V
+
0.8  
EE  
Input Low Voltage  
Input Current  
V
(Note 10)  
(Note 10)  
V
IL  
-80  
+80  
µA  
Note 1: Supply current remains elevated once the retiming function has been enabled. Power must be cycled to reduce supply  
current after the retiming function has been disabled.  
Note 2: Power-supply noise rejection is specified as PSNR = 20Log(V  
/ V  
). V  
is the voltage across a 50load.  
OUT  
noise (on Vcc)  
OUT  
V
= 100mV  
.
noise (on Vcc)  
P-P  
Note 3: For DATA+, DATA-, CLK+, and CLK-.  
Note 4: CLK input characterized at 10.7Gbps  
Note 5: R  
= (V  
- V ) / I  
with MODEN = V , DATA+ = high, and DATA- = low.  
OUT EE  
BSEQV  
BIASSET  
EE  
Note 6: Guaranteed by design and characterization using the circuit shown in Figure 4.  
Note 7: R = (V - V ) / (I - 37mA) with BIASSET = V  
.
EE  
MODEQV  
MODSET  
EE  
OUT  
Note 8: 50load, characterized at 10.7Gbps with a 1111 1111 0000 0000 pattern.  
Note 9: Deterministic jitter is defined as the arithmetic sum of PWD (pulse-width distortion) and PDJ (pattern-dependent jitter).  
7
Measured with a 10.7Gbps 2 - 1 PRBS pattern with eighty 0s and eighty 1s inserted in the data pattern.  
Note 10: For MODEN and PLRT.  
_______________________________________________________________________________________  
3
10Gbps EAM Driver with Integrated  
Bias Network  
Test Circuits and Timing Diagrams  
0V  
100mV  
1.0V  
(a) DC-COUPLED SINGLE-ENDED CML INPUT  
800mV  
-0.5V  
-1.0V  
0.4V  
0V  
100mV  
-0.4V  
(b) AC-COUPLED SINGLE-ENDED (CML OR PECL) INPUT  
Figure 1. Definition of Single-Ended Input Voltage Range  
0V  
0V  
V
V
V
OUT  
OUT  
BIASSET  
(c) RESULT OF MODULATING BIASSET  
AND MODSET 180° OUT OF PHASE  
(a) MODULATING BIASSET  
0V  
V
V
mW  
OUT  
P
OUT  
MODSET  
(d) RESULTING OPTICAL OUTPUT  
(b) MODULATING MODSET  
NOTE: ALL AMPLITUDES ARE RELATIVE  
Figure 2. Modulating BIASSET and MODSET pads  
4
_______________________________________________________________________________________  
10Gbps EAM Driver with Integrated  
Bias Network  
Test Circuits and Timing Diagrams (continued)  
CLK+  
V
V
= 0.1V TO 1V  
P-P  
IS  
IS  
P-P  
DC-COUPLED  
CLK-  
t
t
HD  
0.1V TO 0.8V  
SU  
P-P  
P-P  
AC-COUPLED  
DATA-  
DATA+  
(DATA+) -  
(DATA-)  
V
= 0.2V TO 2V  
P-P  
DC-COUPLED  
ID  
P-P  
0.2V TO 1.6V  
P-P  
P-P  
AC-COUPLED  
I
OUT  
I
I
= 40mA TO 120mA  
P-P  
MOD  
BIAS  
P-P  
= 0mA TO 50mA  
NOTE: I  
RELATES TO RETIMED DATA  
OUT  
Figure 3. Setup and Hold Timing Definition  
GND  
R
OUT  
50  
50Ω  
50Ω  
OSCILLOSCOPE  
OUT  
50Ω  
50Ω  
50Ω  
50Ω  
50Ω  
DATA+  
PATTERN  
GENERATOR  
Z
L
50Ω  
DATA-  
I
I
BIAS  
MOD  
MAX3940  
V
V
EE  
EE  
V
EE  
MODSET  
BIASSET  
-5.2V  
0.1µF  
300pF  
V
V
EE  
EE  
Figure 4. AC Characterization Circuit  
_______________________________________________________________________________________  
5
10Gbps EAM Driver with Integrated  
Bias Network  
Test Circuits and Timing Diagrams (continued)  
VOLTAGE  
GND  
V
BIAS  
V
MOD  
V
OUT  
USABLE RANGE  
V
+ 1.67V  
EE  
BELOW USABLE RANGE  
Figure 5. Bias and Modulation Relationship to EAM Voltage  
Typical Operating Characteristics  
(Typical values are at V = -5.2V, I  
= 30mA, I  
= 100mA, T = +25°C, unless otherwise noted.)  
EE  
BIAS  
MOD A  
10Gbps ELECTRICAL EYE DIAGRAM  
10Gbps ELECTRICAL EYE DIAGRAM  
= 1V , 231 - 1 PRBS)  
P-P  
(V  
= 3V , 231 - 1 PRBS)  
P-P  
(V  
10.3Gbps OPTICAL EYE DIAGRAM  
MOD  
MOD  
ASIP, INC.  
20ps/div  
20ps/div  
20ps/div  
PULSE WIDTH vs. R  
PWC  
SUPPLY CURRENT vs. TEMPERATURE  
R
()  
PWC-  
(50LOAD, EXCLUDES I  
, I  
)
BIAS MOD  
2000 1750 1500 1250 1000 750 500 250  
0
170  
160  
150  
140  
130  
120  
110  
100  
850  
840  
830  
820  
810  
800  
790  
780  
770  
760  
750  
MEASURED AT 1.25Gbps  
WITH A 1010 PATTERN  
RETIMING ENABLED  
RETIMING DISABLED  
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90  
0
250 500 750 1000 1250 1500 1750 2000  
()  
R
PWC+  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
10Gbps EAM Driver with Integrated  
Bias Network  
Typical Operating Characteristics (continued)  
(Typical values are at V = -5.2V, I  
= 30mA, I  
= 100mA, T = +25°C, unless otherwise noted.)  
EE  
BIAS  
MOD A  
V
vs. V  
MODSET  
(Z = 50)  
L
PULSE-WIDTH DISTORTION  
vs. TEMPERATURE  
MOD  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
IS RELATIVE TO V  
MODSET  
EE  
0
0.25  
0.50  
0.75  
1.00  
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90  
V
(V)  
TEMPERATURE (°C)  
MODSET  
V
vs. V  
BIASSET  
(Z = 50)  
L
BIAS  
POWER-SUPPLY NOISE REJECTION  
vs. FREQUENCY  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
-1.6  
30  
V
IS RELATIVE TO V  
EE  
BIASSET  
25  
20  
15  
10  
5
0
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
1000  
0.1  
1
10  
100  
10,000  
V
FREQUENCY (kHz)  
BIASSET  
DIFFERENTIAL S  
vs. FREQUENCY  
S
vs. FREQUENCY  
11  
22  
(DEVICE POWERED)  
0
-5  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
_______________________________________________________________________________________  
7
10Gbps EAM Driver with Integrated  
Bias Network  
Pad Description  
PAD  
NAME  
FUNCTION  
BP1, BP2,  
BP4, BP5,  
BP7BP12,  
BP14, BP15,  
BP17BP24,  
BP26, BP27,  
BP28  
GND  
Ground. All pads must be connected to board ground.  
BP3  
BP6  
DATA+  
DATA-  
CLK+  
CLK-  
Noninverting Data Input, with 50On-Chip Termination  
Inverting Data Input, with 50On-Chip Termination  
BP13  
BP16  
BP25  
Noninverting Clock Input for Data Retiming, with 50On-Chip Termination  
Inverting Clock Input for Data Retiming, with 50On-Chip Termination  
OUT  
Driver Output. Provides both modulation and bias output. DC-couple to EAM.  
TTL/CMOS Modulation Enable Input. Set low or float for normal operation. Set high to put the EAM  
BP29  
MODEN  
RTEN  
in the absorption (logic 0) state. Contains an internal 100kpulldown to V  
.
EE  
BP30  
BP31  
Data-Retiming Input. Connect to V for retimed data. Connect to GND to bypass retiming latch.  
EE  
BIASSET Bias Current Set. Apply a voltage to set the bias current of the driver output.  
BP32  
BP33BP41  
BP42  
MODSET Modulation Current Set. Apply a voltage to set the modulation current of the driver output.  
V
Negative Supply Voltage. All pads must be connected to V  
.
EE  
EE  
PWC+  
PWC-  
Positive Input for Modulation Pulse-Width Adjustment (see the Design Procedure section).  
Negative Input for Modulation Pulse-Width Adjustment. Ground to disable the pulse-width  
adjustment feature (see the Design Procedure section).  
BP43  
BP44  
Differential Data Polarity Swap Input. Set high or float for normal operation. Set low to invert the  
differential signal polarity. Contains an internal 100kpullup to GND.  
PLRT  
Polarity Switch  
Detailed Description  
The MAX3940 includes a polarity switch. When the  
PLRT pad is high or left floating, the output maintains  
the polarity of the input data. When the PLRT pad is  
low, the output is inverted relative to the input data.  
The MAX3940 EAM driver consists of two main parts: a  
high-speed modulation driver and an EAM-biasing  
block. The clock and data inputs to the driver are com-  
patible with PECL and CML logic levels. The modula-  
tion and bias current are output through the OUT pad.  
Clock/Data Input Logic Levels  
The MAX3940 is directly compatible with ground-refer-  
ence CML. Either DC- or AC-coupling may be used for  
CML referenced to ground. For all other logic types,  
AC-coupling should be used.  
The modulation output stage is composed of a high-  
speed differential pair and a programmable current  
source with a maximum modulation current of 120mA.  
The rise and fall times are typically 23ps. The modulation  
current is designed to produce an EAM voltage up to  
Optional Data Input Latch  
To reject pattern-dependent jitter in the input data, a syn-  
chronous differential clock signal should be connected to  
the CLK+ and CLK- inputs, and the RTEN control input  
3.0V  
when driving a 50module. The 3.0V  
results  
P-P  
P-P  
from 120mA  
through the parallel combination of the  
P-P  
50EAM load and the internal 50back termination.  
should be connected to V  
.
EE  
8
_______________________________________________________________________________________  
10Gbps EAM Driver with Integrated  
Bias Network  
The input data is retimed on the rising edge of CLK+. If  
RTEN is connected to ground, the retiming function is dis-  
abled and the input data is directly connected to the out-  
put stage. Leave CLK+ and CLK- open when retiming is  
disabled.  
Z
Z
× R  
OUT  
+ R  
OUT  
L
L
V
I  
×
BIAS  
BIAS  
To program the desired bias current, force a voltage at  
the BIASSET pad (see the Typical Application Circuit).  
Pulse-Width Control  
The pulse-width control circuit can be used to compen-  
sate for pulse-width distortion introduced by the EAM.  
The differential voltage between PWC+ and PWC-  
adjusts the pulse-width compensation. The adjustment  
range is typically 50ps. Optional single-ended opera-  
tion is possible by forcing a voltage on the PWC+ pad  
while leaving the PWC- pad unconnected. When PWC-  
is connected to ground, the pulse-width control circuit  
is automatically disabled.  
The resulting I  
current can be calculated by the fol-  
BIAS  
lowing equation:  
V
BIASSET  
36.4Ω  
I
BIAS  
The input impedance of the BIASSET pad is typically  
20k. Note that the minimum output voltage is V  
+
EE  
1.67V (see Figure 5).  
Programming the Pulse-Width Control  
Three methods of control are possible when pulse predis-  
tortion is desired to minimize distortion at the receiver.  
The pulse width may be set with a 2kpotentiometer with  
Modulation Output Enable  
The MAX3940 incorporates a modulation current-  
enable input. When MODEN is low or floating, the mod-  
ulation/bias output (OUT) is enabled. When MODEN is  
high, the output is switched to the logic 0 state. The  
typical enable time is 2ns and the typical disable time  
is 2ns.  
the center tapped to V (or equivalent fixed resistors), or  
EE  
by applying a voltage to the PWC+ pad, or by applying a  
differential voltage across the PWC+ and PWC- pads.  
See Table 1 for the desired effect of the pulse-width set-  
ting. Pulse width is defined as (positive pulse  
width)/((positive pulse width + negative pulse width)/2).  
Design Procedure  
Input Termination Requirement  
The MAX3940 data and clock inputs are CML compati-  
ble. However, it is not necessary to drive the IC with a  
standard CML signal. As long as the specified input  
voltage swings are met, the MAX3940 will operate  
properly.  
Programming the Modulation Voltage  
The EAM modulation voltage results from I  
passing  
MOD  
through the EAM impedance (Z ) in parallel with the  
L
internal 50termination resistor (R  
).  
OUT  
Z
Z
× R  
+ R  
L
OUT  
OUT  
V
I  
×
MOD  
MOD  
Applications Information  
L
Layout Considerations  
To minimize loss and crosstalk, keep the connections  
between the MAX3940 output and the EAM module as  
short as possible. Use good high-frequency layout  
techniques and multilayer boards with an uninterrupted  
ground plane to minimize EMI and crosstalk. Circuit  
boards should be made using low-loss dielectrics. Use  
controlled-impedance lines for the clock and data  
inputs as well as for the data output. Wafer capacitors  
To program the desired modulation current, force a  
voltage at the MODSET pad (see the Typical  
Application Circuit). The resulting I  
current can be  
MOD  
calculated by the following equation:  
V
MODSET  
11.1Ω  
I
+ 37mA  
MOD  
An internal, independent current source drives a constant  
37mA to the modulation circuitry and any voltage above  
are required to filter the V supply. Connect the back-  
EE  
side of the die to GND.  
V
on the MODSET pad adds to this. The input imped-  
EE  
ance of the MODSET pad is typically 20k. Note that the  
Table 1. Pulse-Width Control  
minimum output voltage is V + 1.67V (see Figure 5).  
EE  
PULSE  
WIDTH  
R
, R  
FOR  
V
V
PWC+  
-
PWC+ PWC-  
PWC+  
Programming the Bias Voltage  
R
+ R  
= 2k(PWC- OPEN)  
V
PWC+  
PWC-  
PWC-  
As in the case of modulation, the EAM bias voltage  
100%  
>100%  
<100%  
R
R
R
= R  
> R  
< R  
V
+ 1V  
EE  
0V  
PWC+  
PWC+  
PWC+  
PWC-  
PWC-  
PWC-  
results from I  
passing through the EAM impedance  
BIAS  
(Z ) in parallel with the internal 50termination resistor  
> V + 1V  
>0V  
<0V  
L
EE  
(R  
OUT  
).  
< V + 1V  
EE  
_______________________________________________________________________________________  
9
10Gbps EAM Driver with Integrated  
Bias Network  
RTEN  
MODEN  
PLRT  
50Ω  
R
OUT  
50Ω  
50Ω  
50Ω  
50Ω  
50Ω  
OUT  
CLK+  
CLK-  
V
Z
L
EE  
D
Q
0
1
POLARITY  
MUX  
PWC  
DATA+  
DATA-  
I
I
MOD  
BIAS  
50Ω  
50Ω  
MAX3940  
V
V
EE  
EE  
MODSET  
BIASSET  
PWC+  
PWC-  
+
+
V
V
MODSET  
-
BIASSET  
-
2kΩ  
V
V
EE  
EE  
V
EE  
Figure 6. Functional Diagram  
Interface Schematics  
Laser Safety and IEC 825  
Figures 7 and 8 show simplified input and output cir-  
cuits of the MAX3940 EAM driver.  
Using the MAX3940 EAM driver alone does not ensure  
that a transmitter design is compliant with IEC 825. The  
entire transmitter circuit and component selections must  
be considered. Each customer must determine the level  
of fault tolerance required by their application, recogniz-  
ing that Maxim products are not designed or authorized  
for use as components in systems intended for surgical  
implant into the body, for applications intended to sup-  
port or sustain life, or for any other application where the  
failure of a Maxim product could create a situation where  
personal injury or death may occur.  
Wire Bonding Die  
For high-current density and reliable operation, the  
MAX3940 uses gold metalization. Make connections to  
the die with gold wire only, using ball-bonding techniques.  
Minimize bond-wire lengths and ensure that the span  
between the ends of the bond wire does not come clos-  
er to the edge of the die than two times the bond-wire  
diameter. The minimum length of the bond wires might  
be constrained by the type of wire bonder used, as well  
as the dimensions of the die.  
To minimize inductance, keep the connections from  
OUT, GND, and V as short as possible. This is crucial  
EE  
for optimal performance.  
10 ______________________________________________________________________________________  
10Gbps EAM Driver with Integrated  
Bias Network  
GND  
GND  
GND  
MAX3940  
50Ω  
50Ω  
MAX3940  
50  
50Ω  
GND  
OUT  
DATA+/CLK+  
DATA-/CLK-  
50Ω  
GND  
V
EE  
V
EE  
Figure 8. Simplified Output Circuit  
Figure 7. Simplified Input Circuit  
Chip Information  
Chip Topography/  
Pad Configuration  
The origin for pad coordinates is defined as the bottom  
left corner of the bottom left pad. All pad locations are  
referenced from the origin and indicate the center of  
the pad where the bond wire should be connected.  
Refer to Maxim application note HFAN-08.0.1:  
Understanding Bonding Coordinates and Physical Die  
Size for detailed information.  
TRANSISTOR COUNT: 2084  
PROCESS: SiGe BIPOLAR  
SUBSTRATE: SOI  
DIE THICKNESS: 8 mils  
Maxim characterized this circuit with gold wire (1-mil  
diameter wire) ball bonded to the pads. Die pad size is  
4 mils (102µm) square, and die thickness is 8 mils  
(203µm).  
______________________________________________________________________________________ 11  
10Gbps EAM Driver with Integrated  
Bias Network  
Chip Topography  
PLRT PWC-  
PWC+  
V
V
V
V
V
EE  
V
V
EE  
V
V
EE  
MODSET BIASSET RTEN MODEN  
EE  
EE  
EE  
EE  
EE  
EE  
GND  
GND  
GND  
GND  
GND  
OUT  
DATA+  
1.6mm  
(63 mils)  
GND  
GND  
DATA-  
GND  
GND  
GND  
GND  
GND  
(0, 0)  
GND  
GND  
GND  
GND  
CLK+ GND  
GND  
CLK-  
GND  
GND  
GND  
GND  
GND  
2.3mm  
(90.6 mils)  
12 ______________________________________________________________________________________  
10Gbps EAM Driver with Integrated  
Bias Network  
Table 2. Bondpad Locations  
COORDINATES (µm)  
COORDINATES (µm)  
PAD  
NUMBER  
PAD  
NUMBER  
PAD NAME  
PAD NAME  
X
Y
X
Y
BP1  
BP2  
GND  
GND  
DATA+  
GND  
GND  
DATA-  
GND  
GND  
GND  
GND  
GND  
GND  
CLK+  
GND  
GND  
CLK-  
GND  
GND  
GND  
GND  
GND  
GND  
51.2  
933.2  
807.2  
681.2  
555.2  
429.2  
303.2  
177.2  
51.2  
BP23  
BP24  
BP25  
BP26  
BP27  
BP28  
BP29  
BP30  
BP31  
BP32  
BP33  
BP34  
BP35  
BP36  
BP37  
BP38  
BP39  
BP40  
BP41  
BP42  
BP43  
BP44  
GND  
GND  
2028  
108.6  
51.2  
2028  
234.6  
BP3  
51.2  
OUT  
2028  
574.8  
BP4  
51.2  
GND  
2028  
700.8  
BP5  
51.2  
GND  
2028  
856.2  
BP6  
51.2  
GND  
2028  
982.2  
BP7  
51.2  
MODEN  
RTEN  
1953.8  
1827.8  
1701.8  
1575.8  
1449.8  
1323.8  
1197.8  
1071.8  
945.8  
819.8  
693.8  
567.8  
441.8  
315.8  
189.8  
63.8  
1140.4  
1140.4  
1140.4  
1140.4  
1140.4  
1140.4  
1140.4  
1140.4  
1140.4  
1140.4  
1140.4  
1140.4  
1140.4  
1140.4  
1140.4  
1140.4  
BP8  
51.2  
BP9  
231.8  
357.8  
483.8  
609.8  
769.4  
895.4  
1021.4  
1147.4  
1305.2  
1431.2  
1606.2  
1732.2  
1874  
2028  
-63.6  
-63.6  
-63.6  
-63.6  
-63.6  
-63.6  
-63.6  
-63.6  
-63.6  
-63.6  
-63.6  
-63.6  
-63.2  
-43.8  
BIASSET  
MODSET  
BP10  
BP11  
BP12  
BP13  
BP14  
BP15  
BP16  
BP17  
BP18  
BP19  
BP20  
BP21  
BP22  
V
V
V
V
V
V
V
V
V
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
PWC+  
PWC-  
PLRT  
Package Information  
For the latest package outline information, go to  
www.maxim-ic.com/packages.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX3940E/D

10Gbps EAM Driver with Integrated Bias Network
MAXIM

MAX3940EVKIT

Evaluation Kit for the MAX3940
MAXIM

MAX3941

10Gbps EAM Driver with Integrated Bias Network
MAXIM

MAX3941ETG

10Gbps EAM Driver with Integrated Bias Network
MAXIM

MAX3941ETG-T

Support Circuit, 1-Func, Bipolar, 4 X 4 MM, TQFN-24
MAXIM

MAX3941EVKIT

Evaluation Kit for the MAX3941
MAXIM

MAX3942

10Gbps Modulator Driver
MAXIM

MAX3942ETG

10Gbps Modulator Driver
MAXIM

MAX3942ETG+

10Gbps Modulator Driver
MAXIM

MAX3942EVKIT

Evaluation Kit for the MAX3942
MAXIM

MAX3945ETE

1.0625Gbps to 11.3Gbps, SFP Dual-Path Limiting Amplifier
MAXIM

MAX3945ETE+

Clock Recovery Circuit, 1-Func, CMOS, 3 X 3 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, TQFN-16
MAXIM