MAX40203AUK+T [MAXIM]

Analog Circuit,;
MAX40203AUK+T
型号: MAX40203AUK+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Analog Circuit,

文件: 总14页 (文件大小:458K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here for production status of specific part numbers.  
MAX40203  
Ultra-Tiny Nanopower, 1A Ideal Diodes  
with Ultra-Low-Voltage Drop  
General Description  
Benefits and Features  
The MAX40203 is an ideal diode current-switch with  
forward voltage drop that is approximately an order  
of magnitude smaller than that of Schottky diodes.  
When forward biased and enabled, the MAX40203  
conducts with 230mV of voltage drop while carrying  
currents as high as 1A. During a short-circuit or a fast  
power-up, the device limits its output current to 2A. The  
MAX40203 thermally protects itself and any downstream  
circuitry from overcurrent conditions.  
Lower Voltage Drop in Portable Applications  
• 14mV Forward Drop at 1mA (SOT Package)  
• 28mV Forward Drop at 100mA (SOT Package)  
• 100mV Forward Drop at 500mA (SOT Package)  
• 230mV Forward Drop at 1A (SOT Package)  
Longer Battery Life  
• Low Leakage When Reverse-Biased from VDD:  
• 10nA (Typ)  
• Low Supply Quiescent Current  
• 300nA (Typ), 500nA (Max)  
This ideal diode operates from a supply voltage of 1.2V  
to 5.5V. The supply current is relatively constant with load  
current, and is typically 300nA. When disabled (EN = low),  
the ideal diode blocks voltages up to 6V in either direction,  
makes it suitable for use in most low-voltage, portable  
electronic devices.  
Smaller Footprint Than Larger Schottky Diodes  
• Tiny 0.77mm x 0.77mm 4-Bump WLP  
• SOT23-5 Package  
Wide Supply Voltage Range: 1.2V to 5.5V  
Thermally Self-Protecting  
The MAX40203 is available in a tiny, 0.77mm x 0.77mm,  
4-bump wafer-level package (WLP), with a 0.35mm bump  
pitch and a 5-pin SOT-23 package. It is specified over the  
automotive -40°C to +125°C temperature range.  
-40°C to +125°C Operating Temperature Range  
Ordering Information appears at end of data sheet.  
Applications  
Simplified Block Diagram  
Notebook and Tablet Computers  
Battery Backup Systems  
Powerline Fault Recorders  
Cellular Phones  
VDD  
OUT  
Electronic Toys  
USB-Powered Peripherals  
Portable Medical Devices  
EN  
GND  
19-100354; Rev 0; 6/18  
MAX40203  
Ultra-Tiny Nanopower, 1A Ideal Diodes  
with Ultra-Low-Voltage Drop  
Absolute Maximum Ratings  
Any Pin to GND.......................................................-0.3V to +6V  
Continuous Current into EN ...............................................10mA  
Continuous Current Flowing  
Continuous Power Dissipation (T = +70°C) (SOT, derate  
A
3.90mW/°C above +70°C)......................................312.60mW  
Operating Temperature Range......................... -40°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -60°C to +165°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
Between VDD and OUT (WLP)........................................1.5A  
Continuous Current Flowing  
Between VDD and OUT (SOT) ...........................................1A  
Continuous Power Dissipation (T = +70°C) (WLP, derate  
A
9.58mW/°C above +70°C)...........................................766mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
4 WLP  
Package Code  
N40F0+1  
Outline Number  
21-100273  
Land Pattern Number  
Thermal Resistance, Four-Layer Board:  
Refer to Application Note 1891  
Junction to Ambient (θ  
)
104.41°C/W  
N/A  
JA  
Junction to Case (θ  
)
JC  
5 SOT23  
Package Code  
Outline Number  
U5+2  
21-0057  
90-0174  
Land Pattern Number  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
255.90°C/W  
81°C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX40203  
Ultra-Tiny Nanopower, 1A Ideal Diodes  
with Ultra-Low-Voltage Drop  
Electrical Characteristics  
(V  
= +3.6V, V  
= V  
, C = 0.1μF in parallel with 10µF, C = 1F, T = -40°C to +125°C. Typical values are at T = +25°C,  
DD  
EN  
DD  
IN  
L
A
A
unless otherwise noted (Notes 1, 2).)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
FORWARD BIASED CHARACTERISTICS  
Supply Voltage  
Guaranteed by V  
at 100mA  
1.2  
5.5  
500  
650  
1.2  
V
FWD  
No load current (I = 0), T = +25°C  
300  
nA  
nA  
µA  
C
A
Supply Current (Forward  
Biased, Enabled)  
No load current (I = 0) -40°C < T < +85°C  
I
C
A
AG  
No load current (I = 0), -40°C < T < +125°C  
C
A
-40°C < T < +85°C, V  
A
= 0V, V  
= 0V  
= 0V  
130  
130  
14  
600  
2000  
35  
Supply Current (Forward  
Biased, Disabled)  
EN  
OUT  
nA  
-40°C < T < +125°C, V  
=0V, V  
OUT  
A
EN  
I
I
I
I
I
I
= 1mA  
FWD  
FWD  
FWD  
FWD  
FWD  
FWD  
= 100mA  
= 200mA, V  
= 200mA, V  
= 500mA  
28  
70  
Forward Voltage  
(VDD – VOUT)  
(SOT23 Only)  
= 1.5V  
= 3.6V  
69  
120  
90  
DD  
DD  
V
mV  
FWD  
41  
100  
230  
200  
500  
= 1A (Note 3)  
Stable for all load currents (see Applications  
section for further details)  
Capacitive Loading  
0.3–100  
µF  
°C  
°C  
Device temperature at which the MOSFET  
switch turns off, over-riding the Enable pin and  
the applied voltage polarity  
Thermal Protection  
Threshold  
163  
Thermal Protection  
Hysteresis  
14  
REVERSE-BIASED CHARACTERISTICS  
Turn-Off Reverse  
Threshold  
(V  
- V  
)
26  
mV  
nA  
OUT  
DD  
T
= +25°C  
-50  
+10  
+50  
+150  
100  
A
V
= 4V  
= 5V  
OUT  
-40°C < T < +85°C  
A
-150  
Leakage Current from  
VDD (Reverse Biased)  
I
T = +25°C  
A
15  
CA  
V
V
V
OUT  
-40°C < T < +125°C  
-0.5  
+0.5  
200  
μA  
A
= 2.0V, V  
= 5.5V, -40°C < T < +85°C  
A
15  
nA  
DD  
OUT  
T = +25°C  
350  
900  
A
= 4V  
OUT  
-40°C < T < +85°C  
1400  
900  
A
Current Into OUT  
(Reverse Biased)  
I
T = +25°C  
360  
700  
700  
nA  
C
A
V
= 5V  
-40°C < T < +85°C  
1400  
2200  
OUT  
A
-40°C < T < +125°C  
A
Maxim Integrated  
3  
www.maximintegrated.com  
MAX40203  
Ultra-Tiny Nanopower, 1A Ideal Diodes  
with Ultra-Low-Voltage Drop  
Electrical Characteristics (continued)  
(V  
= +3.6V, V  
= V  
, C = 0.1μF in parallel with 10µF, C = 1F, T = -40°C to +125°C. Typical values are at T = +25°C,  
DD  
EN  
DD  
IN  
L
A
A
unless otherwise noted (Notes 1, 2).)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
-100  
-150  
-100  
-500  
TYP  
MAX  
+100  
+150  
+100  
+500  
UNITS  
T = +25°C  
+10  
A
V
V
= 0V, V  
= 0V, V  
= 4V  
= 5V  
EN  
OUT  
Leakage Current Into VDD  
(Reverse Biased,  
Disabled)  
-40°C < T < +85°C  
A
I
nA  
AG  
T
= +25°C  
10  
15  
A
EN  
OUT  
-40°C < T < +125°C  
A
ENABLE (EN)  
T
= +25°C  
50  
0.1  
0.4  
nA  
μA  
V
A
Low Level Input Current  
I
V
= 0V (Note 2)  
AE  
EN  
-40°C < T < 125°C  
A
Low Input Voltage Level  
High Input Voltage Level  
V
IL  
V
1.25  
V
IH  
High Level Input Current  
I
I
V
V
= 3.6V (Note 2)  
= 5V (Note 2)  
T
T
= +25°C  
= +25°C  
80  
nA  
EG  
EG  
EN  
A
750  
nA  
nA  
A
High Level Input Current  
EN  
(V  
> V  
)
EN  
DD  
-40°C < T < +125°C  
1300  
350  
A
Enable Input Hysteresis  
TRANSIENTS AND TIMINGS  
Power-Up Delay  
10  
mV  
450  
320  
µs  
µs  
Measured from V  
current reaching 90% of its final value  
= V  
to the forward  
EN  
DD  
Enable Time  
Disable Time  
Load current prior to disabling is 100mA, time  
measured from V  
1mA  
= 0 until output current <  
80  
µs  
EN  
Note 1: Limits are 100% tested at T = +25°C. Limits over the operating temperature range and relevant supply voltage range are  
A
guaranteed by design and characterization.  
Note 2: Refer to the Supply and Leakage Current Naming Conventions in the Detailed Description section for all the different  
currents that are specified in the Electrical Characteristics Table.  
Note 3: 1A pulsed current in duty cycle used for this test to make sure the device’s self heating is negligible. For more information,  
see Thermal Performance and Power Dissipation section.  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX40203  
Ultra-Tiny Nanopower, 1A Ideal Diodes  
with Ultra-Low-Voltage Drop  
Typical Operating Characteristics  
(V  
= 3.6V, GND = 0V, EN = V , I  
=100mA, C  
= 10µF to GND. Typical values are at T = +25°C, unless otherwise noted.)  
OUT A  
DD  
DD LOAD  
GROUND CURRENT  
vs. FORWARD/LOAD CURRENT  
QUIESCENT SUPPLY CURRENT  
vs. SUPPLY INPUT VOLTAGE  
GROUND CURRENT  
vs. FORWARD/LOAD CURRENT  
toc03  
toc01  
toc02  
4
3
2
1
0
800  
2
TA = +125°C  
VDD = 1.5V  
VDD = 1.2V  
700  
600  
500  
400  
300  
200  
100  
0
TA = +125°C  
TA = +125°C  
1.5  
1
TA=+85°C  
TA= +85°C  
TA = +85°C  
0.5  
0
TA = +25°C  
TA = +25°C  
TA = +25°C  
TA = -40°C  
TA = -40°C  
TA = -40°C  
0
0
0
50  
100  
150  
200  
250  
300  
0
1
2
3
4
5
6
0
10 20 30 40 50 60 70 80 90 100  
FORWARD/LOAD CURRENT (mA)  
SUPPLY INPUT VOLTAGE (V)  
FORWARD/LOAD CURRENT (mA)  
GROUND CURRENT  
vs. FORWARD/LOAD CURRENT  
GROUND CURRENT  
vs. FORWARD/LOAD CURRENT  
GROUND CURRENT  
vs. FORWARD/LOAD CURRENT  
toc04b  
toc04a  
toc05  
100  
10  
1
20  
16  
12  
8
20  
16  
12  
8
VDD = 3.6V  
VDD = 5.5V  
VDD = 3.6V  
TA = +85°C  
TA = +125°C  
TA = -40°C  
TA = +25°C  
TA = +85°C  
TA = +125°C  
TA = +85°C  
TA = +125°C  
4
4
TA = -40°C  
TA = +25°C  
TA = -40°C  
800  
TA = +25°C  
0.1  
0
0
0.0001 0.001 0.01 0.1  
1
10 100 1000  
200  
400  
600  
800  
1000  
0
200  
400  
600  
1000  
FORWARD/LOAD CURRENT (mA)  
FORWARD/LOAD CURRENT (mA)  
FORWARD/LOAD CURRENT (mA)  
FORWARD VOLTAGE vs.  
FORWARD CURRENT (SOT)  
FORWARD VOLTAGE vs.  
FORWARD CURRENT (SOT)  
FORWARD VOLTAGE vs.  
FORWARD CURRENT (SOT)  
toc08  
toc07  
toc06  
300  
250  
200  
150  
100  
50  
150  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = 3.6V  
VDD = 1.5V  
VDD = 1.2V  
TA = +125°C  
TA = +25°C  
TA = -40°C  
TA = +85°C  
TA = +85°C  
TA = +125°C  
TA=+125°C  
TA = -40°C  
TA = +25°C  
40  
30  
20  
10  
TA = -40°C  
800  
TA = +25°C  
TA=+85°C  
0
0
200  
400  
600  
1000  
0
10 20 30 40 50 60 70 80 90 100  
FORWARD CURRENT (mA)  
0
50  
100  
150  
200  
250  
300  
FORWARD CURRENT (mA)  
FORWARD CURRENT (mA)  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX40203  
Ultra-Tiny Nanopower, 1A Ideal Diodes  
with Ultra-Low-Voltage Drop  
Typical Operating Characteristics (continued)  
(V  
= 3.6V, GND = 0V, EN = V , I  
=100mA, C  
= 10µF to GND. Typical values are at T = +25°C, unless otherwise noted.)  
DD  
DD LOAD  
OUT  
A
FORWARD VOLTAGE  
vs. FORWARD CURRENT (SOT)  
QUIESCENT SUPPLY CURRENT  
QUIESCENT SUPPLY CURRENT  
vs. ENABLE INPUT  
vs. ENABLE INPUT  
toc11  
toc09  
toc10  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
400  
0.5  
VDD = 3.6V  
VDD = 5.5V  
VDD = 1.2V  
0.4  
0.3  
0.2  
0.1  
0
300  
200  
100  
0
EN = VDD  
TA = +85°C  
EN = VDD  
TA = +125°C  
EN = GND  
TA = -40°C  
EN = GND  
TA = +25°C  
600  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE(°C)  
0
200  
400  
800  
1000  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE(°C)  
FORWARD CURRENT (mA)  
CATHODE CURRENT  
AT REVERSE OPERATION  
ANODE CURRENT  
AT REVERSE OPERATION  
QUIESCENT SUPPLY CURRENT  
vs. ENABLE INPUT  
toc14  
toc13  
toc12  
120  
100  
80  
60  
40  
20  
0
1400  
1200  
1000  
800  
600  
400  
200  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VDD = 1.2V  
VDD = 1.2V  
VDD = 5.5V  
TA=+125°C  
TA = +125°C  
EN = VDD  
TA = +85°C  
TA = +85°C  
TA=-40°C  
TA=+25°C  
EN = GND  
TA = +25°C  
2.8  
TA = -40°C  
4.4 5.2  
1.2  
2
2.8  
3.6  
4.4  
5.2  
6
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE(°C)  
1.2  
2
3.6  
VOUT (V)  
6
VOUT (V)  
CATHODE CURRENT  
AT REVERSE OPERATION  
GROUND CURRENT  
AT REVERSE OPERATION  
ANODE CURRENT  
AT REVERSE OPERATION  
toc15  
toc16  
toc17  
1400  
1200  
1000  
800  
600  
400  
200  
0
1400  
1200  
1000  
800  
600  
400  
200  
0
60  
50  
40  
30  
20  
10  
0
VDD = 1.2V  
VDD = 1.5V  
VDD = 1.5V  
TA = +125°C  
TA = +125°C  
TA = +125°C  
TA = +85°C  
TA = +85°C  
TA = +85°C  
TA = +25°C  
TA = +25°C  
TA = -40°C  
4.4 5.2  
TA = -40°C  
4.5 5.5  
TA = +25°C  
2.8  
TA = -40°C  
1.2  
2
3.6  
6
1.5  
2.5  
3.5  
1.5  
2.5  
3.5  
4.5  
5.5  
VOUT (V)  
VOUT (V)  
VOUT (V)  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX40203  
Ultra-Tiny Nanopower, 1A Ideal Diodes  
with Ultra-Low-Voltage Drop  
Typical Operating Characteristics (continued)  
(V  
= 3.6V, GND = 0V, EN = V , I  
=100mA, C  
= 10µF to GND. Typical values are at T = +25°C, unless otherwise noted.)  
DD  
DD LOAD  
OUT  
A
ANODE CURRENT  
AT REVERSE OPERATION  
GROUND CURRENT  
AT REVERSE OPERATION  
CATHODE CURRENT  
AT REVERSE OPERATION  
toc20  
toc18  
toc19  
1400  
1200  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
40  
30  
20  
10  
0
VDD = 3.6V  
TA = +125°C  
VDD = 1.5V  
VDD = 3.6V  
TA = +125°C  
TA = +125°C  
TA = +25°C  
TA = +85°C  
TA = +85°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
TA = -40°C  
TA = +25°C  
TA = -40°C  
5.5  
0
-10  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
6
3.6  
4
4.4  
4.8  
5.2  
5.6  
6
3.6  
4
4.4  
4.8  
5.2  
5.6  
6
VOUT (V)  
VOUT (V)  
VOUT (V)  
GROUND CURRENT  
AT REVERSE OPERATION  
POWER-UP RESPONSE  
ENABLE TRANSIENT RESPONSE  
(IFWD = 1A)  
(RL = 3.6k)  
toc21  
toc22  
toc23  
1000  
800  
600  
400  
200  
0
VDD = 3.6V  
TA = +125°C  
VDD  
VEN  
2V/div  
2V/div  
TA = +85°C  
VOUT  
VOUT  
1V/div  
1V/div  
TA = -40°C  
TA = +25°C  
4.4  
100μs/div  
3.6  
4
4.8  
VOUT (V)  
5.2  
5.6  
6
100μs/div  
ENABLE TRANSIENT RESPONSE  
(IFWD = 100mA)  
DISABLE TRANSIENT RESPONSE  
(IFWD = 1A)  
DISABLE TRANSIENT RESPONSE  
(IFWD = 100mA)  
toc26  
toc24  
toc25  
VEN  
VEN  
VEN  
2V/div  
2V/div  
2V/div  
VOUT  
VOUT  
VOUT  
1V/div  
1V/div  
1V/div  
100μs/div  
20μs/div  
40μs/div  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX40203  
Ultra-Tiny Nanopower, 1A Ideal Diodes  
with Ultra-Low-Voltage Drop  
Pin Configuration  
TOP VIEW  
TOP VIEW  
MAX40203  
+
1
2
5
4
V
1
2
3
OUT  
N.C.  
DD  
+
V
OUT  
GND  
MAX40203  
DD  
GND  
EN  
EN  
WLP  
SOT-23  
Pin Description  
PIN  
NAME  
FUNCTION  
WLP  
A1  
SOT23  
1
5
VDD  
OUT  
Input Current (Diode Anode) and Supply Voltage when VDD > VOUT  
A2  
Current Output (or Diode Cathode). OUT is also the internal supply when VOUT > VDD.  
Active High Enable Input with a Weak Internal Pullup. Drive EN high to enable the device,  
and pull it low to disable the device.  
B1  
3
EN  
B2  
2
4
GND  
N.C.  
Ground. Power supply return.  
No Connection. Not internally connected.  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX40203  
Ultra-Tiny Nanopower, 1A Ideal Diodes  
with Ultra-Low-Voltage Drop  
connect to V  
should not be turned on before V  
for full temperature operating range. EN  
DD  
Detailed Description  
.
DD  
The MAX40203 mimics a near-ideal diode. The device  
blocks reverse-voltages and passes current when  
forward biased just as a conventional discrete diode does.  
However, instead of a cut-in voltage around 500mV and  
a logarithmic voltage-current transfer curve, these ideal  
diodes exhibit a near-constant voltage drop independent  
of the magnitude of the forward current. This voltage drop  
is around 100mV at 500mA of forward current.  
It should be noted, however, that these ideal diodes are  
designed to be used to switch between different DC  
sources, and not for rectifying AC. In applications where  
an input voltage that is negative with respect to ground  
may be applied to the diode, conventional diodes should  
be used.  
Principle of Operation  
The near-constant forward voltage drop helps with supply  
regulation; a conventional diode's voltage drop typically  
increases by 60mV for every decade change in forward  
current. Similar to normal diodes, these ideal diodes also  
become resistive as the forward current exceeds the  
specified limit (see Figure 1). Unlike conventional diodes,  
ideal diodes include automatic thermal protection; if the  
die temperature exceeds a safe limit, they turn off in order  
to protect themselves and the circuitry connected to them.  
Like a conventional diode, the ideal diode turns off when  
reverse-biased. The turn-on and turn-off times for enable  
and disable responses are similar to those of forward and  
reverse-bias conditions.  
The MAX40203 uses an internal P-channel MOSFET to  
pass the current from the VDD input to the OUT output.  
The internal MOSFET is controlled by circuitry that:  
1) Switches on the MOSFET (enable input is high), the  
MAX40203 is forward biased.  
2) Turns the MOSFET off when the V  
is greater than  
OUT  
V
.
DD  
3) Turns the MOSFET off if the enable input is pulled  
low.  
4) Turns off the MOSFET when the die temperature  
exceeds the thermal protection threshold.  
Supply and Leakage Current  
Naming Convention  
Figure 2 describes the naming conventions for all the  
different currents that are specified in the Electrical  
Characteristics table.  
The MAX40203 features an active-high enable input (EN)  
that allows the forward current path to be turned off when  
not required. The device is disabled when EN is low,  
and the ideal diode blocks voltages on either side to a  
maximum of 6V above ground. This feature allows these  
ideal diodes to be used to switch between power supply  
sources, or to control which sub-systems are to be pow-  
ered up. The EN input has an internal weak pullup, it can  
be left open for normal operation (for -40°C to +85°C), or  
In forward biased mode: I is the current entering into the  
A
V
pin. I  
is the current entering the V  
pin and exit-  
DD  
AC  
DD  
ing from the OUT pin. I  
the current entering the V  
AG  
DD  
pin and exiting from the GND pin.  
I (forward biased) = I  
+ I  
AC  
A
AG  
Likewise, in reverse biased mode: I  
is the fraction of  
300  
CA  
the current that enters the OUT pin and exits from the  
pin. There is also an I , in reverse bias conditions,  
VDD = 3.6V  
250  
V
DD  
CG  
enters in the OUT pin and exits from the GND pin.  
TA = +85°C  
200  
I
(reverse biased) = I + I  
C
CA  
CG  
The supply current is defined as the current entering the  
pin (I ), when V ≥ V , no load current, and EN is  
150  
TA = +25°C  
V
DD  
AG  
A
C
floating. This current all flows to GND.  
100  
TA = +125°C  
50  
TA = -40°C  
100 1000  
0
1
10  
FORWARD CURRENT (mA)  
Figure 1. Forward Voltage vs. Forward Current  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX40203  
Ultra-Tiny Nanopower, 1A Ideal Diodes  
with Ultra-Low-Voltage Drop  
The leakage current under reverse biased conditions (I  
)
CA  
Applications Information  
is the current exiting from the V  
pin. This current enters  
DD  
Loading Limitations  
the device from the OUT pin. There is also a current that  
flows from the OUT pin to the GND pin (I ). Thus, I  
Due to the very low quiescent current of these ideal diodes,  
the internal control circuitry has limited response speed.  
Therefore, when the load contains significant capacitance  
and currents are high (> 500mA), both the turn-on time  
and the turn-off time can be noticeable. In most situations  
this is unlikely to be an issue, but the source impedance  
needs to be within certain limits if the source voltage is  
below 2V. This is because a sufficiently large current surge  
can drop the input voltage to below the minimum supply,  
causing the internal circuitry to start to shut down.  
=
C
CG  
I
+ I . Note that I is proportional to the magnitude of  
CA  
CG CA  
the reverse bias. The I  
current is essentially the supply  
CG  
current, it is less sensitive to the magnitude of the reverse  
bias.  
The high input level current, I , when V  
EG  
> V  
is a  
EN  
DD  
current that flows only to GND.  
V
EN  
I
E
A
EN  
I
I
A
C
R
LD  
V
C
V
DD  
V
V
LD  
A
A
C
OUT  
A
A
GND  
I
G
A
AMMETERS ASSUMED TO HAVE NO BURDEN  
Figure 2. Ideal Diode Test Setup and Naming Convention  
D1  
EXTERNAL  
SUPPLY  
MAX40203  
L
S
R
S
TO LOAD  
OUT  
GND  
V
DD  
C
IN  
C
S
C
L
EN  
Figure 3. Typical OR Application Showing Source Impedance  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX40203  
Ultra-Tiny Nanopower, 1A Ideal Diodes  
with Ultra-Low-Voltage Drop  
In Figure 3, the input source inductance and resistance  
are shown. When a sudden current step occurs, the ideal  
diode becomes forward biased and turns on, and the  
resulting current surge causes a momentary drop across  
The power dissipation is the differential voltage (V  
)
).  
FWD  
multiplied by the current passed by the device (I  
FWD  
The quiescent current has a negligible effect. The ambi-  
ent temperature is essentially the PCB temperature, since  
this is where all the heat is sunk to. Therefore, the die  
L and R . Placing C very close to the V  
pin reduces  
S
S
S
DD  
both  
L
S
and R . Adding larger capacitance load is  
temperature rise is [V  
x I x θ ] + T , where T  
FWD JA A A  
S
FWD  
recommended for better load step response.  
is the temperature of the board or ambient temperature.  
Example calculations follow for power dissipation and die  
temperature for SOT package.  
Thermal Performance and Power Dissipation  
The MAX40203 is not designed to operate in continuous  
thermal fault conditions greater than 150°C. If the junction  
SOT-23:  
temperature rises to well above T = +150°C, an internal  
Because the SOT-23 package has a higher thermal  
resistance than the WLP, we'll reduce the forward  
J
thermal sensor signals the shutdown logic, which turns  
off the MOSFET, allowing the IC to cool. The thermal  
sensor turns the MOSFET on again after the IC’s junction  
temperature cools by roughly 14°C. The shutdown logic  
is intended to protect against short-term transient thermal  
faults, not continuous over-temperature conditions. A  
continuous over-temperature condition can result in a  
cycled output (Figure 4) with an average temperature  
greater than 150°C and should be avoided. During  
continuous operation, do not exceed the absolute  
current by 50%, yielding I  
= 500mA, V  
= 175mV  
FWD  
FWD  
(maximum value at 500mA), T = 85°C.  
A
P
= 500mA x 175mV = 87.5mW.  
DIS  
Package Derate Calculation:  
From the Absolute Maximum Ratings, the Maximum  
Power Dissipation up to 70°C is 312.6mW. At 85°C  
ambient temperature, the maximum power dissipation is:  
312.6mW – [(85°C - 70°C) x 3.9mW/°C] = 253.5mW.  
maximum junction temperature rating of T = +150°C.  
J
The power dissipation determined above is 87.5mW, so  
it is well within the limit. Note that, due to the SOT-23's  
higher thermal resistance, a continuous forward current of  
1A would be above the limit.  
Although the MAX40203's operating range is -40°C ≤ T  
A
≤ +125°C, care must be taken when using heavy loads  
(e.g., I above 500mA to 1A). The forward voltage  
FWD  
drop across the V  
and OUT pins increases linearly with  
DD  
The junction temperature is  
forward current when the forward current is high. In this  
resistive region, the dissipation increases with the square  
of the forward current.  
85°C + (87.5mW/3.9mW/°C) = 85°C + 22.4°C = 107.4°C,  
which is well below the maximum rating.  
Note that for I  
=1A, the worst-case forward voltage  
FWD  
increases to 500mV, yielding a power dissipation of  
500mW, which is greater than the maximum limit, and  
would be expected to trip the thermal shutdown.  
VDD = 3.6V, RL = 2.2, TA = +125°C  
VOUT  
1V/div  
400ms/div  
Figure 4. Cycled Output During Continuous Thermal Overload  
Condition  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX40203  
Ultra-Tiny Nanopower, 1A Ideal Diodes  
with Ultra-Low-Voltage Drop  
Typical Application Circuits  
Typical Application: Battery and Wall-Adapter Power-ORing  
A typical use for an ideal diode is to serve as a diode with very low voltage drop in a simple power supply ORing circuit  
for portable electronics. The low, <50mV, drop is a significant improvement compared to any diode of similar size. In  
many systems, the wall-adapter has sufficient output capability that it can use a standard, cheap diode while the ideal  
diode is used for the battery circuit. However, an ideal diode can be used for D1 as well to maximize efficiency even  
when powered from the wall adapter.  
The ideal diode has far lower reverse leakage at higher temperatures than typical large schottky diodes. As a result, the  
ideal diode can be used with primary cells without danger of damaging them.  
DIODE (D1)  
FROM WALL ADAPTER  
MAX40203  
BATTERY  
LOAD  
EN  
Higher Currents Using Paralleled Ideal Diodes  
Since the ideal diode current flows through a mosfet, placing two or more in parallel will safely increase the current  
handling capability. This relies on the strong positive temperature coefficient of mosfets, so by keeping the paralleled  
units in close thermal contact, they will inherently share the current.  
The figure below shows two units in parallel; this can be extended to multiple units as needed. The upper limit depends  
on close thermal tracking; up to six units is generally practical when using the WLP versions. If possible, use 2oz copper  
for the PCB's top metal to help with the thermal connection and keep the units as close together as practical.  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX40203  
Ultra-Tiny Nanopower, 1A Ideal Diodes  
with Ultra-Low-Voltage Drop  
Typical Application Circuits (continued)  
MAX40203  
OUT  
V
DD  
EN  
GND  
MAX40203  
OUT  
V
DD  
EN  
GND  
Ordering Information  
TEMP  
RANGE  
PIN-  
TOP  
PART  
PACKAGE MARK  
MAX40203ANS+T* -40°C to +125°C  
MAX40203AUK+T -40°C to +125°C  
4 WLP  
+H  
5 SOT23  
AMJO  
+ Denotes a lead(Pb)-free/RoHS-compliant package.  
T Denotes tape-and-reel.  
*Future Product—Contact factory for availability.  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX40203  
Ultra-Tiny Nanopower, 1A Ideal Diodes  
with Ultra-Low-Voltage Drop  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
6/18  
Initial release  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2018 Maxim Integrated Products, Inc.  
14  

相关型号:

MAX4020EEE

Low-Cost, High-Speed, SOT23, Single-Supply Op Amps with Rail-to-Rail Outputs
MAXIM

MAX4020EEE+

Video Amplifier, 1 Channel(s), 4 Func, PDSO16, 0.150 INCH, 0.025 INCH PITCH, MO-137AB, QSOP-16
MAXIM

MAX4020EEE+T

Video Amplifier, 1 Channel(s), 4 Func, PDSO16, 0.150 INCH, 0.025 INCH PITCH, MO-137AB, QSOP-16
MAXIM

MAX4020EEE-T

Video Amplifier, 1 Channel(s), 4 Func, PDSO16, 0.150 INCH, 0.025 INCH PITCH, MO-137AB, QSOP-16
MAXIM

MAX4020ESD

Low-Cost, High-Speed, SOT23, Single-Supply Op Amps with Rail-to-Rail Outputs
MAXIM

MAX4020ESD+

Video Amplifier, 1 Channel(s), 4 Func, PDSO14, 0.150 INCH, MS-012AB, SO-14
MAXIM

MAX4020ESD-T

Video Amplifier, 1 Channel(s), 4 Func, PDSO14, 0.150 INCH, MS-012AB, SO-14
MAXIM

MAX4022

Low-Cost, High-Speed, Single-Supply, Gain of +2 Buffers with Rail-to-Rail Outputs in SOT23
MAXIM

MAX4022EEE

Low-Cost, High-Speed, Single-Supply, Gain of +2 Buffers with Rail-to-Rail Outputs in SOT23
MAXIM

MAX4022EEE+

Buffer Amplifier, 4 Func, PDSO16, QSOP-16
MAXIM

MAX4022EEE+T

Buffer Amplifier, 4 Func, PDSO16, QSOP-16
MAXIM

MAX4022EEE-T

Buffer Amplifier, 4 Func, PDSO16, QSOP-16
MAXIM