MAX5924DEUB+ [MAXIM]

暂无描述;
MAX5924DEUB+
型号: MAX5924DEUB+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

控制器
文件: 总20页 (文件大小:985K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3443; Rev 0; 10/04  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
General Description  
Features  
Hot Swap 1V to 13.2V with V  
Drive High-Side n-Channel MOSFET  
Operation With or Without R  
2.25V  
The MAX5924/MAX5925/MAX5926 1V to 13.2V hot-swap  
controllers allow the safe insertion and removal of circuit  
cards into live backplanes. These devices hot swap sup-  
plies ranging from 1V to 13.2V provided that the device  
CC  
SENSE  
Protected During Turn-On into Shorted Load  
Circuit-Breaker Threshold Adjustable Down to  
supply voltage, V , is at or above 2.25V and the hot-  
CC  
S
swapped supply, V , does not exceed V  
.
CC  
10mV  
The MAX5924/MAX5925/MAX5926 hot-swap controllers  
limit the inrush current to the load and provide a circuit-  
breaker function for overcurrent protection. The devices  
operate with or without a sense resistor. When operat-  
ing without a sense resistor, load-probing circuitry  
ensures a short circuit is not present during startup,  
then gradually turns on the external MOSFET. After the  
load probing is complete, on-chip comparators provide  
overcurrent protection by monitoring the voltage drop  
across the external MOSFET on-resistance. In the event  
of a fault condition, the load is disconnected.  
Programmable Slew-Rate Control  
Circuit Breaker with Temperature-Compensated  
RDS(ON) Sensing  
Programmable Turn-On Voltage  
Autoretry or Latched Fault Management  
10-Pin µMAX or 16-Pin QSOP Packages  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
10 µMAX  
The MAX5924/MAX5925/MAX5926 include many inte-  
grated features that reduce component count and  
design time, including programmable turn-on voltage,  
slew rate, and circuit-breaker threshold. An on-board  
charge pump provides the gate drive for a low-cost,  
external n-channel MOSFET.  
MAX5924AEUB  
MAX5924BEUB*  
MAX5924CEUB*  
MAX5924DEUB*  
MAX5925AEUB  
MAX5925BEUB*  
MAX5925CEUB*  
MAX5925DEUB*  
MAX5926EEE*  
10 µMAX  
10 µMAX  
10 µMAX  
10 µMAX  
The MAX5924/MAX5925/MAX5926 are available with  
open-drain PGOOD and/or PGOOD outputs. The  
devices also feature a circuit breaker with temperature-  
10 µMAX  
10 µMAX  
compensated R  
sensing. The MAX5926 features  
10 µMAX  
DS(ON)  
a selectable 0ppm/°C or 3300ppm/°C temperature coef-  
ficient. The MAX5924 temperature coefficient is  
0ppm/°C and the MAX5925 temperature coefficient is  
3300ppm/°C. Autoretry and latched fault-management  
configurations are available (see the Selector Guide).  
16 QSOP–EP**  
*Future product—contact factory for availability.  
**EP = Exposed pad.  
Typical Operating Circuits  
Applications  
TYPICAL OPERATION WITHOUT R  
SENSE  
Base Stations  
BACKPLANE  
REMOVABLE CARD  
N
RAID  
V
1V TO V  
OUT  
CC  
V
S
2.25V TO 13.2V  
Remote-Access Servers  
Network Routers and Switches  
Servers  
V
CC  
R
CB  
R
SC  
OUT  
CB  
GATE SENSE  
Portable Device Bays  
SC_DET  
V
CC  
MAX5925  
MAX5926  
GND  
GND  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
SEE FIGURE 1 FOR A DETAILED TYPICAL OPERATING CIRCUIT WITHOUT R  
.
SENSE  
Selector Guide appears at end of data sheet.  
Pin Configurations appear at end of data sheet.  
Typical Operating Circuits continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to GND, unless otherwise noted).  
Continuous Power Dissipation (T = +70°C)  
A
V
CC  
.........................................................................-0.3V to +14V  
10-Pin µMAX (derate 6.9mW/°C above +70°C)...........556mW  
16-Pin QSOP (derate 18.9mW/°C above +70°C).......1509mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature .....................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
GATE*.....................................................................-0.3V to +20V  
All Other Pins .........-0.3V to the lower of (V + 0.3V) and +14V  
CC  
SC_DET Current (200ms pulse width, 15% duty cycle) ...140mA  
Continuous Current (all other pins).....................................20mA  
*GATE is internally driven and clamped. Do not drive GATE with external source.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V , EN (MAX5924/MAX5925), EN1 (MAX5926) = +2.25V to +13.2V; EN2 (MAX5926) = 0V; V (see Figure 1) = +1.05V to V ; T =  
CC  
S
CC  
A
-40°C to +85°C, unless otherwise noted. Typical values are at V  
= 5V, R = 500from OUT to GND, C = 100µF, SLEW = open,  
CC  
L
L
T
= +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
POWER SUPPLIES  
Operating Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
2.25  
1.05  
13.20  
V
V
CC  
CC  
V Operating Range  
S
V
V as defined in Figure 1  
V
CC  
S
S
Supply Current  
I
FET on, SC_DET = V  
1.5  
2.5  
2.25  
350  
mA  
CC  
CC  
UNDERVOLTAGE LOCKOUT (UVLO)  
UVLO Threshold  
V
Default value, V and V increasing, Figure 1  
1.86  
123  
2.06  
900  
277  
V
UVLO  
S
CC  
V
V
UVLO Deglitch Time  
UVLO Startup Delay  
t
(Note 2)  
µs  
ms  
CC  
CC  
DG  
t
D,UVLO  
LOAD-PROBE  
2.25V < V  
< 5V  
4
3
30  
10  
65  
20  
CC  
Load-Probe Resistance (Note 3)  
R
LP  
5V < V  
< 13.2V  
CC  
Load-Probe Timeout  
t
61  
180  
102  
200  
163  
220  
ms  
mV  
LP  
Load-Probe Threshold Voltage  
CIRCUIT BREAKER  
V
(Note 4)  
LP,TH  
I
TC = high (MAX5926), MAX5924  
= 2.25V,  
35  
44  
37  
51  
42  
58  
CB  
V
CC  
T
= +25°C  
A
TC = low (MAX5926),  
MAX5925 (Note 5)  
I
I
CB25  
CB85  
5V V  
13.2V,  
CC  
49  
47  
58  
54  
52  
63  
58  
60  
70  
Circuit-Breaker Programming  
Current  
T
= +25°C  
A
µA  
V
= 2.25V,  
CC  
T
= +85°C  
A
TC = low (MAX5926),  
MAX5925 (Note 5)  
5V V  
13.2V,  
CC  
T
= +85°C  
A
Circuit-Breaker Programming  
Current During Startup  
I
2 x I  
µA  
V
CB,SU  
CB  
(No R  
)
SENSE  
Circuit-Breaker Enable Threshold  
(No R  
V
V
- V , rising gate voltage (Note 6)  
OUT  
4.0  
CB,EN  
GATE  
)
SENSE  
2
_______________________________________________________________________________________  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
ELECTRICAL CHARACTERISTICS (continued)  
(V , EN (MAX5924/MAX5925), EN1 (MAX5926) = +2.25V to +13.2V; EN2 (MAX5926) = 0V; V (see Figure 1) = +1.05V to V ; T =  
CC  
S
CC  
A
-40°C to +85°C, unless otherwise noted. Typical values are at V  
= 5V, R = 500from OUT to GND, C = 100µF, SLEW = open,  
CC  
L
L
T
= +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Circuit-Breaker Comparator  
Offset Voltage  
V
0.3  
4.7  
mV  
CB_OS  
Fast Circuit-Breaker Offset  
Resistor  
R
Figure 3  
1.2  
1.9  
2.5  
k  
CBF  
Slow Circuit-Breaker Delay  
Fast Circuit-Breaker Delay  
t
V
V
- V  
- V  
= 10mV  
0.95  
1.6  
2.80  
ms  
ns  
CBS  
CB  
CB  
SENSE  
t
= 500mV  
280  
CBF  
SENSE  
Circuit-Breaker Trip Gate  
Pulldown Current  
I
V
= 2.5V, V  
= 13.2V  
20  
27  
mA  
GATE,PD  
GATE  
CC  
MAX5924, TC = high (MAX5926)  
MAX5925, TC = low (MAX5926)  
0
Circuit-Breaker Temperature  
Coefficient  
TC  
ppm/°C  
ICB  
3300  
MOSFET DRIVER  
2.25V V  
12.6V  
3.46  
3.33  
2.19  
0.44  
239  
4.91  
5
6.70  
6.70  
CC  
External Gate Drive  
V
V
- V  
V
GS  
GATE  
OUT  
V
= 13.2V (Note 7)  
CC  
SLEW = open, C  
= 10nF  
9.5  
0.84  
16.00  
1.18  
GATE  
Load Voltage Slew Rate  
SR  
V/ms  
µA  
SLEW = 300nF, C  
= 10nF (Note 8)  
GATE  
Gate Pullup Current Capacity  
I
V
= 0V  
GATE  
GATE  
ENABLE COMPARATOR  
V
V
(MAX5924/MAX5925) or  
EN  
EN, EN1 Reference Threshold  
EN, EN1 Hysteresis  
V
0.755  
0.795  
30  
0.836  
50  
V
EN/UVLO  
(MAX5926) rising  
EN1  
V
mV  
nA  
EN,HYS  
EN (MAX5924/MAX5925) = V  
EN1 (MAX5926) = V  
,
CC  
EN, EN1 Input Bias Current  
I
8
EN  
CC  
DIGITAL OUTPUTS (PGOOD, PGOOD)  
Power-Good Output Low Voltage  
V
I
= 1mA  
OL  
0.3  
0.2  
0.4  
1
V
OL  
Power-Good Output Open-Drain  
Leakage Current  
I
PGOOD/PGOOD = 13.2V  
- V , rising gate voltage  
µA  
OH  
Power-Good Trip Point (% of V ) V  
GS  
V
50  
70  
99  
%
V
THPGOOD  
GATE  
OUT  
Power-Good Hysteresis  
V
0.36  
PG,HYS  
LOGIC AND TIMING (TC, LATCH (MAX5926), EN2 (MAX5926)  
Autoretry Delay  
t
Autoretry mode  
1.0  
2.0  
1.6  
3
2.6  
0.4  
s
V
RETRY  
V
IH  
Input Voltage  
V
IL  
Input Bias Current  
I
Logic high at 13.2V  
µA  
BIAS  
_______________________________________________________________________________________  
3
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
ELECTRICAL CHARACTERISTICS (continued)  
(V , EN (MAX5924/MAX5925), EN1 (MAX5926) = +2.25V to +13.2V; EN2 (MAX5926) = 0V; V (see Figure 1) = +1.05V to V ; T =  
CC  
S
CC  
A
-40°C to +85°C, unless otherwise noted. Typical values are at V  
= 5V, R = 500from OUT to GND, C = 100µF, SLEW = open,  
CC  
L L  
T
= +25°C, unless otherwise noted.) (Note 1)  
A
Note 1: All devices are 100% tested at T = +25°C and +85°C. All temperature limits at -40°C are guaranteed by design.  
A
Note 2: V  
drops 30% below the undervoltage lockout voltage during t  
are ignored.  
CC  
DG  
Note 3: R is the resistance measured between V  
and SC_DET during the load-probing phase, t .  
LP  
CC  
LP  
Note 4: Guaranteed by design.  
Note 5: The circuit-breaker programming current increases linearly from V  
Supply Voltage graph in the Typical Operating Characteristics.  
Note 6: See the Startup Mode section for more information.  
= 2.25V to 5V. See the Circuit-Breaker Current vs.  
CC  
Note 7: V  
is clamped to 17V (typ) above ground.  
GATE  
-9  
Note 8: dv/dt = 330 x 10 /C  
(V/ms), nMOS device used for measurement was IRF9530N. Slew rate is measured at the load.  
SLEW  
Typical Operating Characteristics  
(V  
= 5V, C = 100µF, C  
= 330nF, C  
= 10nF, R = 500, Figure 1, T = +25°C, unless otherwise noted.)  
CC  
L
SLEW  
GATE L A  
MAX5926 SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
MAX5926 SUPPLY CURRENT  
vs. TEMPERATURE  
GATE-DRIVE VOLTAGE  
vs. SUPPLY VOLTAGE  
2.0  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
7
6
5
4
3
2
V
= V  
S
V
= V  
CC  
CC  
S
ENABLED  
V
= 13.2V  
CC  
1.6  
1.2  
0.8  
0.4  
0
V
CC  
= 5.0V  
V
= 1V  
DISABLED  
S
V
= V  
CC  
S
V
= 3V  
S
V
= 5V  
S
V
= 3.0V  
CC  
V
= 2.25V  
10  
CC  
2
4
6
8
10  
12  
14  
-40  
-15  
35  
60  
85  
2
4
6
8
10  
12  
14  
V
(V)  
TEMPERATURE (°C)  
V
(V)  
CC  
CC  
CIRCUIT-BREAKER CURRENT  
vs. HOT-SWAP VOLTAGE  
CIRCUIT-BREAKER CURRENT  
vs. SUPPLY VOLTAGE (TC = 3300ppm/°C)  
GATE-DRIVE VOLTAGE  
vs. TEMPERATURE  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
56  
52  
48  
44  
40  
36  
55  
53  
51  
49  
47  
V
= V  
V
= V  
CC S  
CC  
S
V
= 5.0V  
CC  
TC = 3300ppm/°C  
V
= 3.0V  
CC  
V
= 13.2V  
CC  
TC = 0ppm/°C  
V
= 13.2V  
12  
CC  
-40  
-15  
10  
35  
60  
85  
0
2
4
6
8
10  
14  
2
4
6
8
10  
12  
14  
TEMPERATURE (°C)  
V
(V)  
V
(V)  
CC  
S
4
_______________________________________________________________________________________  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Typical Operating Characteristics (continued)  
(V  
= 5V, C = 100µF, C  
= 330nF, C  
= 10nF, R = 500, Figure 1, T = +25°C, unless otherwise noted.)  
CC  
L
SLEW  
GATE  
L
A
CIRCUIT-BREAKER PROGRAMMING  
CURRENT vs. TEMPERATURE  
CIRCUIT-BREAKER CURRENT  
vs. SUPPLY VOLTAGE (TC = 0ppm/°C)  
80  
39.4  
39.2  
39.0  
38.8  
38.6  
38.4  
38.2  
V
= V = 5V  
S
V
= V  
S
CC  
CC  
70  
60  
50  
40  
30  
20  
TC = 3300ppm/°C  
TC = 0ppm/°C  
-40  
-15  
10  
35  
60  
85  
2
4
6
8
10  
12  
14  
TEMPERATURE (°C)  
V
(V)  
CC  
TURN-ON WAVEFORM  
(C = OPEN)  
TURN-ON WAVEFORM  
(C = 330nF)  
SLEW  
SLEW  
MAX5924 toc09  
MAX5924 toc10  
GATE  
5V/div  
0V  
GATE  
5V/div  
0V  
OUT  
5V/div  
0V  
OUT  
5V/div  
0V  
PGOOD  
5V/div  
0V  
PGOOD  
5V/div  
0V  
200µs/div  
2ms/div  
TURN-OFF WAVEFORM  
OVERCURRENT CIRCUIT-BREAKER EVENT  
MAX5924 toc11  
MAX5924 toc12  
1A/div  
0A  
EN1  
5V/div  
0V  
I
FET  
t
CBS  
GATE  
5V/div  
0V  
10V/div  
GATE  
OUT  
0V  
10V/div  
0V  
PGOOD  
5V/div  
0V  
5V/div  
0V  
PGOOD  
2µs/div  
400µs/div  
_______________________________________________________________________________________  
5
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Typical Operating Characteristics (continued)  
(V  
= 5V, C = 100µF, C  
= 330nF, C  
= 10nF, R = 500, Figure 1, T = +25°C, unless otherwise noted.)  
CC  
L
SLEW  
GATE  
L
A
AUTORETRY DELAY  
SHORT-CIRCUIT CIRCUIT-BREAKER EVENT  
MAX5924 toc14  
MAX5924 toc13  
I
FET  
1A/div  
EN1  
5V/div  
0V  
t
D,UVLO  
0A  
t
RETRY  
GATE  
OUT  
5V/div  
5V/div  
0V  
SC_DET  
OUT  
0V  
5V/div  
0V  
100mV/div  
0V  
5V/div  
0V  
PGOOD  
2µs/div  
400ms/div  
OVERCURRENT FAULT AND  
UVLO DELAY AND LOAD PROBING  
AUTORETRY DELAY  
MAX5924 toc16  
MAX5924 toc15  
EN1  
EN1  
5V/div  
0V  
5V/div  
0V  
GATE  
5V/div  
0V  
t
t
LP  
D,UVLO  
5V/div  
0V  
5V/div  
0V  
SC_DET  
OUT  
SC_DET  
OUT  
100mV/div  
0V  
200mV/div  
0V  
40ms/div  
400ms/div  
UVLO RESPONSE  
UVLO DEGLITCH RESPONSE  
MAX5924 toc17  
MAX5924 toc18  
>t  
DG  
2V/div  
GATE  
GATE  
2V/div  
0V  
<t  
DG  
0V  
1V/div  
1V/div  
0V  
V
CC  
V
CC  
0V  
200µs/div  
200µs/div  
6
_______________________________________________________________________________________  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Pin Description  
PIN  
MAX5924A/ MAX5924B/  
MAX5924C/ MAX5924D/  
MAX5925A/ MAX5925B/  
MAX5925C MAX5925D  
NAME  
FUNCTION  
MAX5926  
Power-Supply Input. Connect V  
to a voltage between 2.25V and 13.2V.  
CC  
1
1
1
V
CC  
V
must always be equal to or greater than V (see Figure 1).  
S
CC  
Short-Circuit Detection Output. SC_DET forces current into the external load  
through a series resistor, R , at startup to determine whether there is a short  
SC  
circuit (load probing). Select R based on the desired slow-comparator trip  
SC  
current (see the Selecting a Circuit-Breaker Threshold section). Connect  
2
2
2
SC_DET  
EN  
SC_DET to V when using R , or to disable load probing when it is not  
CC SENSE  
desired.  
ON/OFF Control Input. Drive EN high to enable the device. Drive EN low to  
disable the device. An optional external resistive-divider connected between  
3
3
V
, EN, and GND sets the programmable turn-on voltage.  
CC  
4
5
4
4
7
5
PGOOD Open-Drain Active-Low Power-Good Output  
PGOOD Open-Drain Active-High Power-Good Output  
5
GND  
Ground  
Slew-Rate Adjustment Input. Connect an external capacitor between SLEW and  
GND to adjust the gate slew rate. Leave SLEW unconnected for the default  
slew rate.  
6
6
12  
SLEW  
Gate-Drive Output. Connect GATE to the gate of the external n-channel  
MOSFET.  
7
8
7
8
13  
14  
GATE  
OUT  
Output Voltage. Connect OUT to the source of the external MOSFET.  
Circuit-Breaker Sense Input. Connect SENSE to OUT when not using an  
9
9
15  
16  
SENSE external R  
(Figure 1). Connect SENSE to the drain of the external  
SENSE  
MOSFET when using an external R  
(Figure 2).  
SENSE  
Circuit-Breaker Threshold Input. Connect an external resistor, R , from CB to  
V to set the circuit-breaker threshold voltage.  
S
CB  
10  
10  
CB  
Active-High ON/OFF Control Input. Drive EN1 high to enable the device when  
EN2 is low. Drive EN1 low to disable the device, regardless of the state of EN2.  
An optional external resistive-divider between V , EN1, and GND sets the  
CC  
3
EN1  
programmable turn-on voltage while EN2 is low.  
Active-Low ON/OFF Control Input. Drive EN2 low to enable the device when  
EN1 is high. Drive EN2 high to disable the device, regardless of the state of  
EN1.  
6
8
9
EN2  
LATCH  
TC  
Latch Mode Input. Drive LATCH low for autoretry mode. Drive LATCH high for  
latched mode.  
Circuit-Breaker Temperature Coefficient Selection Input. Drive TC low to select  
a 3300ppm/°C temperature coefficient. Drive TC high to select a 0ppm/°C  
temperature coefficient.  
10, 11  
EP  
N.C.  
EP  
No Connection. Not internally connected.  
Exposed Pad. Connect EP to GND.  
_______________________________________________________________________________________  
7
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
BACKPLANE  
REMOVABLE CARD  
1V TO V  
CC  
V
S
2.25V TO 13.2V  
V
CC  
R
20k  
R
SC  
CB  
CB  
GATE SENSE OUT  
SC_DET  
V+  
ON (ON*)  
V
CC  
GND  
C
L
MAX5925  
MAX5926  
PGOOD**  
EN (EN1**)  
EN2**  
EN  
PGOOD (PGOOD*)  
EN2  
GND  
SLEW  
GND  
TC** LATCH**  
C
SLEW  
*MAX5925A AND MAX5925C.  
**MAX5926.  
DC-DC CONVERTER  
Figure 1. Typical Operating Circuit (Without R  
)
SENSE  
BACKPLANE  
REMOVABLE CARD  
R
SENSE  
1V TO V  
CC  
V
S
2.25V TO 13.2V  
V
CC  
20kΩ  
R
CB  
CB  
SENSE GATE  
OUT  
V+  
ON (ON*)  
V
SC_DET  
CC  
GND  
C
L
MAX5924  
MAX5926  
PGOOD**  
EN (EN1**)  
EN2**  
EN  
PGOOD (PGOOD*)  
EN2  
GND  
SLEW  
GND  
TC**  
LATCH**  
C
SLEW  
V
CC  
*MAX5924A AND MAX5924C.  
**MAX5926.  
DC-DC CONVERTER  
Figure 2. Typical Operating Circuit (With R  
)
SENSE  
8
_______________________________________________________________________________________  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
GATE  
V
CC  
CHARGE PUMP  
MAX5924  
MAX5925  
MAX5926  
2µA  
N
SLEW  
A
V
CC  
R
LP  
N
SC_DET  
OUT  
V
S
SLOW  
COMPARATOR  
V
V
CB,TH  
CB  
TIMER  
R
CBF  
0.2V  
FAST  
COMPARATOR  
OSCILLATOR  
CBF,TH  
I
TC***  
CB  
PGOOD*  
PGOOD**  
LOGIC  
SENSE  
CONTROL  
LATCH***  
V
V
CC  
1.24V  
REF  
EN/(EN1***)  
V
CC  
0.8V  
CC  
GND  
1.24V  
*MAX5924B, MAX5924D, MAX5925B, MAX5925D, MAX5926 ONLY.  
**MAX5924A, MAX5924C, MAX5925A, MAX5925C, MAX5926 ONLY.  
***MAX5926 ONLY.  
EN2***  
Figure 3. Functional Diagram  
_______________________________________________________________________________________  
9
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Detailed Description  
V
RISES ABOVE  
CC  
The MAX5924/MAX5925/MAX5926 are hot-swap con-  
troller ICs designed for applications where a line card is  
inserted into a live backplane. Normally, when a line card  
is plugged into a live backplane, the card’s discharged  
filter capacitors provide a low impedance that can  
momentarily cause the main power supply to collapse.  
The MAX5924/MAX5925/MAX5926 are designed to  
reside either in the backplane or in the removable card  
to provide inrush current limiting and short-circuit pro-  
tection. This is achieved using an external n-channel  
MOSFET and an optional external current-sense resistor.  
V
UVLO  
AUTODETECT  
R
SENSE  
R
R
SENSE  
ABSENT  
SENSE  
PRESENT  
LOAD  
PROBE*  
SLEW-RATE-  
LIMITED STARTUP  
SUCCESS  
FAILURE  
Several critical parameters can be programmed:  
Slew rate (inrush current)  
NORMAL  
OPERATION  
FAULT  
MANAGEMENT  
Circuit-breaker threshold  
*V  
MUST REACH V  
WITHIN t .  
LP,TH LP  
OUT  
Turn-on voltage  
Figure 4. Startup Flow Chart  
Fault-management mode (MAX5926)  
Circuit-breaker temperature coefficient (MAX5926)  
See the Selector Guide for a device-specific list of fac-  
tory-preset features and parameters.  
V
OUT  
SR = dV  
dt  
SR = dV  
dt  
Startup Mode  
The MAX5924/MAX5925/MAX5926 control an external  
MOSFET connected in series with the hot-swapped  
C
= SMALL  
L
power supply, V . These devices hold the external  
S
MOSFET off while the supply voltage, V , is below the  
CC  
V
LP,TH  
(0.2V typ)  
undervoltage lockout threshold or when the device is  
V
OUT  
disabled (see the EN (MAX5924/MAX5925, EN1/EN2  
(MAX5926) section). When V  
rises above V  
and  
CC  
UVLO  
C
= LARGE  
L
I
INRUSH  
the MAX5924/MAX5925/MAX5926 are enabled, an  
undervoltage lockout timer initiates. V must remain  
C
L
= SMALL  
CC  
greater than V  
for t  
to enter startup.  
UVLO  
D,UVLO  
I
PROBE  
I
LOAD  
During the first stage of startup, the MAX5924/  
MAX5925/MAX5926 detect whether an external sense  
resistor is present and autoconfigure accordingly  
(Figure 4). Bilevel fault protection temporarily disables,  
and load-probing circuitry enables, if no sense resistor  
is detected (see the Load Probing section). During load  
I
LOAD  
t
< t  
PROBE LP  
Figure 5. Startup Waveform  
During startup, the MAX5924/MAX5925/MAX5926 gradu-  
ally turn on the MOSFET, and V rises at a rate deter-  
mined by the selected slew rate, SR (see the Slew Rate  
section). The inrush current, I , is limited to a level  
probing, if V  
does not rise above V  
within t  
,
OUT  
OUT  
LP,TH  
LP  
the device manages the fault according to the selected  
fault-management mode (see the Latched and  
INRUSH  
proportional to the load capacitance, C , and SR:  
Autoretry Fault Management section). If V  
rises  
L
OUT  
above V  
within t , the MAX5924/MAX5925/  
LP,TH  
LP  
I
(A) = C x 1000 x SR  
L
INRUSH  
MAX5926 begin startup (Figure 5). If an external  
is detected, load probing is bypassed and  
where SR is in V/ms and C is the load capacitance in  
R
L
SENSE  
Farads. For operation with and without R  
GS  
, once  
bilevel fault protection enables with a startup circuit-  
breaker programming current of I = 2 x I to  
SENSE  
V
exceeds V  
, PGOOD and/or PGOOD assert  
CB,EN  
CB,SU  
CB  
and the MAX5924/MAX5925/MAX5926 enable standard  
bilevel fault protection (see the Bilevel Fault Protection  
section).  
accommodate the higher-than-normal inrush current  
required to charge board capacitance, C .  
L
10 ______________________________________________________________________________________  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
after it detects a large amplitude event such as a  
short circuit.  
Load Probing  
The MAX5924/MAX5925/MAX5926 load-probing circuit-  
ry detects short-circuit conditions during startup. As the  
device begins load probing, SC_DET is connected to  
In each case, when a fault is encountered, the power-  
good output deasserts and the device drives GATE low.  
After a fault, the MAX5924A, MAX5924B, MAX5925A,  
and MAX5925B latch GATE low and the MAX5924C,  
MAX5924D, MAX5925C, and MAX5925D enter the  
autoretry mode. The MAX5926 has selectable latched or  
autoretry modes. Figure 7 shows the slow comparator  
response to an overcurrent fault.  
V
through an internal switch with an on-resistance of  
CC  
R
(Figure 6). V  
then charges the load with a probe  
LP  
CC  
current:  
I
= (V  
- V  
)/(R + R ) (Figure 1)  
OUT LP SC  
PROBE  
CC  
If the load voltage does not reach V  
(0.2V, typ)  
LP,TH  
within t , a short-circuit fault is detected and the chan-  
LP  
nel is turned off according to the selected fault-manage-  
ment mode (see the Fault Management section and  
Figure 5). PGOOD/PGOOD asserts at the end of the  
Bilevel Fault Protection  
Bilevel Fault Protection in Startup Mode  
Bilevel fault protection is disabled during startup when  
startup period, t  
, if no fault condition is present  
START  
no R  
is detected. The device enables bilevel fault  
SENSE  
protection when R  
(see the Turn-On Waveforms in the Typical Operating  
Characteristics).  
is detected, but the overcurrent  
SENSE  
trip levels are higher than normal during startup because  
I = 2 x I (see the Startup Mode section).  
CB,SU  
Normal Operation  
In normal operation, after startup is complete, protec-  
tion is provided by turning off the external MOSFET  
when a fault condition is encountered. Dual-speed/  
bilevel fault protection incorporates two comparators  
with different thresholds and response times to monitor  
the current:  
CB  
Slow Comparator  
The slow comparator is disabled during startup while  
the external MOSFET turns on. This allows the  
MAX5924/MAX5925/MAX5926 to ignore higher than  
normal inrush currents charging the board capacitors  
when a card is first plugged in.  
1) Slow comparator. This comparator has a 1.6ms  
(typ) response time. The slow comparator ignores  
low-amplitude momentary current glitches. After an  
extended overcurrent condition, a fault is acknowl-  
edged and the MOSFET gate is discharged.  
PGOOD*  
2) Fast comparator. This comparator has a fixed  
response time and a higher threshold voltage. The  
fast comparator turns off the MOSFET immediately  
PGOOD**  
V
GATE  
V
THPGOOD  
14  
12  
10  
8
4.3V TO 6.7V  
V
OUT  
I
LIM  
6
I
LOAD  
tCBS  
V
= V  
S
CC  
4
*MAX5924B, MAX5924D, MAX5925B, MAX5925D, AND MAX5926 ONLY.  
**MAX5924A, MAX5924C, MAX5925A, MAX5925C, AND MAX5926 ONLY.  
2
4
6
8
10  
12  
14  
V
(V)  
CC  
Figure 6. Load-Probe Resistance vs. Supply Voltage  
Figure 7. Slow Comparator Response to an Overcurrent Fault  
______________________________________________________________________________________ 11  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Table 1. Selecting Fault Management  
Mode (MAX5926)  
60  
V
= 13.2V  
CC  
LATCH  
Low  
FAULT MANAGEMENT  
Autoretry mode  
Latched mode  
50  
40  
30  
20  
10  
0
High  
Power-Good Outputs  
The power-good output(s) are open-drain output(s) that  
deassert:  
When V  
< V  
CC  
UVLO  
During t  
When V < V  
D,UVLO  
GS  
THPGOOD  
3
4
0
1
2
5
6
7
During load probing  
V
(V)  
GS  
When disabled (EN = GND (MAX5924/MAX5925),  
EN1 = GND or EN2 = high (MAX5926))  
Figure 8a. Gate Discharge Current vs. MOSFET Gate-to-Source  
Voltage  
During fault management  
During t  
or when latched off (MAX5924A,  
RETRY  
If the slow comparator detects an overload condition while  
in normal operation (after startup is complete), it turns off  
the external MOSFET by discharging the gate capaci-  
MAX5924B, MAX5925A, MAX5925B, or MAX5926  
(LATCH = low)).  
PGOOD/PGOOD asserts only if the part is in normal  
mode and no faults are present.  
tance with I  
. The magnitude of I  
GATE,PD  
GATE,PD  
depends on the external MOSFET gate-to-source volt-  
age, V . The discharge current is strongest immedi-  
GS  
ately following a fault and decreases as the MOSFET  
gate is discharged (Figure 8a).  
Undervoltage Lockout (UVLO)  
UVLO circuitry prevents the MAX5924/MAX5925/  
MAX5926 from turning on the external MOSFET until V  
CC  
. UVLO  
exceeds the UVLO threshold, V  
, for t  
UVLO  
D,UVLO  
Fast Comparator  
The fast comparator is used for serious current overloads  
or short circuits. If the load current reaches the fast com-  
parator threshold, the device quickly forces the MOSFET  
off. The fast comparator has a response time of 280ns,  
protects the external MOSFET from insufficient gate-drive  
voltage, and t ensures that the board is fully  
D,UVLO  
plugged into the backplane and V  
is stable prior to  
CC  
powering the hot-swapped system. Any input voltage  
transient at V  
below the UVLO threshold for more than  
CC  
and discharges GATE with I  
(Figure 8a).  
GATE,PD  
the UVLO deglitch period, t , resets the device and ini-  
DG  
tiates a startup sequence. Device operation is protected  
from momentary input-voltage steps extending below the  
Latched and Autoretry Fault Management  
The MAX5924A, MAX5924B, MAX5925A, and MAX5925B  
latch the external MOSFET off when an overcurrent fault  
is detected. Following an overcurrent fault, the  
MAX5924C, MAX5924D, MAX5925C, and MAX5925D  
enter autoretry mode. The MAX5926 can be configured  
for either latched or autoretry mode (see Table 1).  
UVLO threshold for a deglitch period, t  
However, the  
DG.  
power-good output(s) may momentarily deassert if the  
magnitude of a negative step in V exceeds approxi-  
CC  
mately 0.5V, and V  
drops below V  
. Operation is  
CC  
UVLO  
unaffected and the power-good output(s) assert(s) within  
200µs as shown in Figure 8b. This figure also shows that  
In autoretry, a fault turns the external MOSFET off then  
automatically restarts the device after the autoretry  
if the UVLO condition exceeds t  
= 900µs (typ), the  
DG  
power-good output(s) again deassert(s) and the load is  
disconnected.  
delay, t  
. During the autoretry delay, pull EN or  
RETRY  
EN1 low to restart the device. In latched mode, pull EN  
or EN1 low for at least 100µs to clear a latched fault  
and restart the device.  
12 ______________________________________________________________________________________  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
V = V = 13.2V  
S
CC  
C
= 1µF  
SLEW  
C = 10µF  
L
GATE  
2V/div  
1V/div  
MOSFET ONLY  
V
CC  
5V/div  
MOSFET AND  
= 20nF  
C
GATE  
0V  
0V  
1V/div  
PGOOD  
200µs/div  
10ms/div  
Figure 8b. PGOOD Behavior with Large Negative Input-Voltage  
Figure 9. Impact of C  
on the V  
Waveform  
GATE  
GATE  
Step when V is Near V  
S
S(MIN)  
Determining Inrush Current  
V
S
Determining a circuit’s inrush current is necessary to  
choose a proper MOSFET. The MAX5924/MAX5925/  
MAX5926 regulate the inrush current by controlling the  
output-voltage slew rate, but inrush current is also a  
function of load capacitance. Determine an anticipated  
inrush current using the following equation:  
R
CB  
R
1
V
GATE  
SENSE  
OUT  
CB  
EN (EN1)  
CC  
dV  
R
2
OUT  
MAX5924_  
MAX5925_  
MAX5926  
I
(A) = C  
= C × SR × 1000  
L
INRUSH  
L
R
SC  
dt  
where C is the load capacitance in Farads, and SR is  
L
SC_DET  
(EN2)  
the selected MAX5924/MAX5925/MAX5926 output slew  
rate in V/ms. For example, assuming a load capaci-  
tance of 100µF and using the value of SR = 10V/ms, the  
anticipated inrush current is 1A. If a 16V/ms output slew  
rate is used, the inrush current increases to 1.6A.  
Choose SR so the maximum anticipated inrush current  
does not trip the fast circuit-breaker comparator during  
startup.  
GND  
(R + R ) V  
EN/UVLO  
2
1
( ) ARE FOR MAX5926 ONLY.  
V
=
S,TURN-ON  
R
2
Figure 10. Adjustable Turn-On Voltage  
and the slew rate is slow (Figure 3). Figure 9 illustrates  
how the addition of gate capacitance eliminates this ini-  
Slew Rate  
tial jump. C  
should not exceed 25nF.  
GATE  
The MAX5924/MAX5925/MAX5926 limit the slew rate of  
V
. Connect an external capacitor, C  
, between  
OUT  
SLEW  
EN (MAX5924/MAX5925),  
EN1/EN2 (MAX5926)  
SLEW and GND to adjust the slew-rate limit. Floating  
SLEW sets the maximum slew rate to the default value.  
The enable comparators control the on/off function of  
the MAX5924/MAX5925/MAX5926. Enable is also used  
to reset the fault latch in latch mode. Pull EN or EN1 low  
for 100µs to reset the latch. A resistive divider between  
Calculate C  
using the following equation:  
SLEW  
C
SLEW  
= 330 10-9 / SR  
where SR is the desired slew rate in V/ms.  
EN or EN1, V , and GND sets the programmable turn-  
S
A 2µA (typ) pullup current clamped to 1.4V causes an  
on voltage to a voltage greater than V  
(Figure 10).  
UVLO  
initial jump in the gate voltage, V  
, if C  
is small  
GATE  
GATE  
______________________________________________________________________________________ 13  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
15,000  
12,000  
9000  
6000  
3000  
0
15,000  
12,000  
9000  
6000  
3000  
0
TC = 0ppm/°C  
TC = 3300ppm/°C  
V
V
V
= 1.5V  
= 1.4V  
= 1.3V  
S
S
S
V
= 1.5V  
S
V
V
V
V
V
= 1.4V  
= 1.3V  
= 1.2V  
= 1.1V  
= 1.0V  
S
S
S
S
S
V
V
V
= 1.2V  
= 1.1V  
= 1.0V  
S
S
S
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Maximum Circuit-Breaker Programming Resistor vs. Temperature  
Selecting a Circuit-Breaker Threshold  
The MAX5924/MAX5925/MAX5926 offer a circuit-break-  
er function to protect the external MOSFET and the load  
from the potentially damaging effects of excessive cur-  
I
LOAD  
R
DS(ON)  
rent. As load current flows through R  
(Figure 12)  
DS(ON)  
V
V
S
OUT  
or R  
(Figure 13), a voltage drop is generated.  
SENSE  
After V  
exceeds V  
, the MAX5924/MAX5925/  
CB,EN  
GS  
R
CB  
MAX5926 monitor this voltage to detect overcurrent  
conditions. If this voltage exceeds the circuit-breaker  
threshold, the external MOSFET turns off and the  
power-good output(s) deassert(s). To accommodate  
different MOSFETs, sense resistors, and load currents,  
CB GATE  
SENSE OUT  
SLOW  
COMPARATOR  
V
CB,TH  
V
V
CB,OS  
the MAX5924/MAX5925/MAX5926 voltage across R  
CB  
MAX5925  
MAX5926  
can be set between 10mV and 500mV. The value of the  
circuit-breaker voltage must be carefully selected  
based on V (Figure 11).  
S
R
CBF  
FAST  
COMPARATOR  
V
CBF,TH  
No R  
Mode  
SENSE  
CB,OS  
I
CB  
When operating without R  
, calculate the circuit-  
TC  
SELECT  
SENSE  
breaker threshold using the MOSFET’s R  
at the  
DS(ON)  
worst possible operating condition, and add a 20%  
overcurrent margin to the maximum circuit current. For  
example, if a MOSFET has an R  
of 0.06at T =  
A
DS(ON)  
+25°C, and a normalized on-resistance factor of 1.75 at  
= +105°C, the R used for calculation is the  
Figure 12. Circuit Breaker Using R  
DS(ON)  
T
A
DS(ON)  
product of these two numbers, or (0.06) x (1.75) =  
0.105. Then, if the maximum current is expected to be  
2A, using a 20% margin, the current for calculation is  
(2A) x (1.2) = 2.4A. The resulting minimum circuit-  
breaker threshold is then a product of these two num-  
bers, or (0.105) x (2.4A) = 0.252V. Using this method  
to choose a circuit-breaker threshold allows the circuit  
to operate under worst-case conditions without causing  
a circuit-breaker fault, but the circuit-breaker function  
will still detect a short circuit or a gross overcurrent  
condition.  
To determine the proper circuit-breaker resistor value  
use the following equation, which refers to Figure 12:  
I
x R  
(T) + V  
DS(ON)  
CB,OS  
(
)
TRIPSLOW  
R
=
CB  
I
CB  
where I  
current.  
is the desired slow-comparator trip  
TRIPSLOW  
14 ______________________________________________________________________________________  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
I
LOAD  
R
SENSE  
V
V
50  
45  
40  
35  
30  
25  
20  
S
OUT  
V = V = 13.2V, R = 672, I = 5A,  
TRIPSLOW  
S
CC  
CB  
R (25) = 6.5mΩ  
DS(ON)  
R
CB  
CIRCUIT-BREAKER TRIP REGION  
(V  
V  
)
SENSE  
CB  
GATE  
OUT  
SLOW  
CB  
SENSE  
V
CB,TH  
COMPARATOR  
V
V
CB,OS  
CB,OS  
MAX5925  
MAX5926  
R
CBF  
V
= R  
(T) x I  
CB,OS  
SENSE  
DS(ON)  
LOAD(MAX)  
(4500ppm/°C)  
FAST  
V
CBF,TH  
V
= I (T) x R + R  
CB CB  
CB  
COMPARATOR  
(3300ppm/°C)  
I
CB  
TC  
-40  
-15  
10  
35  
60  
85  
110  
SELECT  
TEMPERATURE (°C)  
Figure 13. Circuit Breaker Using R  
Figure 14. Circuit-Breaker Trip Point and Current-Sense  
Voltage vs. Temperature  
SENSE  
The fast-comparator trip current is determined by the  
selected R value and cannot be adjusted indepen-  
To determine the proper circuit-breaker resistor value,  
use the following equation, which refers to Figure 12:  
CB  
dently. The fast-comparator trip current is given by:  
I
x R  
(
+ R  
± V  
CB,OS  
)
CB  
CB  
CBF  
R
I
x R  
+ V  
SENSE  
CB,  
(
)
TRIPSLOW  
OS  
I
=
TRIPFAST  
R
=
(T)  
CB  
DS(ON)  
I
CB  
where I  
current.  
is the desired slow-comparator trip  
R
Mode  
TRIPSLOW  
SENSE  
When operating with R  
, calculate the circuit-  
SENSE  
breaker threshold using the worst possible operating  
conditions, and add a 20% overcurrent margin to the  
maximum circuit current. For example, with a maximum  
expected current of 2A, using a 20% margin, the cur-  
rent for calculation is (2A) x (1.2) = 2.4A. The resulting  
minimum circuit-breaker threshold is then a product of  
The fast-comparator trip current is determined by the  
selected R value and cannot be adjusted indepen-  
dently. The fast-comparator trip current is given by:  
CB  
I
x R + R ± V  
(
)
CB  
CB  
SENSE  
CBF  
CB,OS  
I
=
TRIPFAST  
R
this current and R  
= 0.06, or (0.06) x (2.4A) =  
SENSE  
0.144V. Using this method to choose a circuit-breaker  
threshold allows the circuit to operate under worst-case  
conditions without causing a circuit-breaker fault, but  
the circuit-breaker function will still detect a short-circuit  
or a gross overcurrent condition.  
Table 3. Suggested External MOSFETs  
APPLICATION  
PART  
DESCRIPTION  
CURRENT (A)  
Table 2. Programming the Temperature  
Coefficient (MAX5926)  
International Rectifier  
IRF7401  
1
SO-8  
2
5
Siliconix Si4378DY  
SO-8  
TC  
TC  
(ppm/°C)  
ICB  
Siliconix SUD40N02-06  
Siliconix SUB85N02-03  
DPAK  
D2PAK  
High  
Low  
0
10  
3300  
______________________________________________________________________________________ 15  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Applications Information  
HIGH-CURRENT PATH  
Component Selection  
n-Channel MOSFET  
Select the external n-channel MOSFET according to the  
application’s current and voltage level. Table 3 lists some  
SENSE RESISTOR  
recommended components. Choose the MOSFET’s  
on-resistance, R  
, low enough to have a minimum  
DS(ON)  
voltage drop at full load to limit the MOSFET power dis-  
sipation. High R can cause undesired power  
R
CB  
DS(ON)  
loss and output ripple if the board has pulsing loads or  
triggers an external undervoltage reset monitor at full  
load. Determine the device power-rating requirement to  
accommodate a short circuit on the board at startup  
with the device configured in autoretry mode.  
MAX5924  
MAX5925  
MAX5926  
Figure 15. Kelvin Connection for the Current-Sense Resistor  
Using the MAX5924/MAX5925/MAX5926 in latched mode  
allows the consideration of MOSFETs with higher R  
DS(ON)  
Circuit-Breaker Temperature Coefficient  
In applications where the external MOSFET’s on-resis-  
tance is used as a sense resistor to determine overcur-  
rent conditions, a 3300ppm/°C temperature coefficient  
is desirable to compensate for the R  
ture coefficient. Use the MAX5926’s TC input to select  
the circuit-breaker programming current’s temperature  
(see Table 2). The MAX5924 temper-  
ature coefficient is preset to 0ppm/°C, and the  
MAX5925’s is preset to 3300ppm/°C.  
and lower power ratings. A MOSFET can typically with-  
stand single-shot pulses with higher dissipation than the  
specified package rating. Low MOSFET gate capaci-  
tance is not necessary since the inrush current limiting is  
achieved by limiting the gate dv/dt. Table 4 lists some  
recommended manufacturers and components.  
tempera-  
DS(ON)  
coefficient, TC  
Be sure to select a MOSFET with an appropriate gate  
drive (see the Typical Operating Characteristics).  
ICB  
Typically, for V  
less than 3V or greater than 12V, select  
CC  
a 2.5V V MOSFET.  
GS  
Setting TC  
to 3300ppm/°C allows the circuit-breaker  
ICB  
threshold to track and compensate for the increase in the  
MOSFET’s R with increasing temperature. Most  
MOSFETs have a temperature coefficient within a  
3000ppm/°C to 7000ppm/°C range. Refer to the MOSFET  
data sheet for a device-specific temperature coefficent.  
Optional Sense Resistor  
Select the sense resistor in conjunction with R to set  
the slow and fast circuit-breaker thresholds (see the  
Selecting a Circuit-Breaker Threshold section). The  
sense-resistor power dissipation depends on the device  
DS(ON)  
CB  
R
and I  
are temperature dependent, and can  
CB  
configuration. If latched mode is selected, P  
=
DS(ON)  
RSENSE  
(I  
P
)2 x R  
; if autoretry is selected, then  
therefore be expressed as functions of temperature. At  
a given temperature, the MAX5925/MAX5926 indicate  
an overcurrent condition when:  
OVERLOAD  
SENSE  
OVERLOAD  
= (I  
)2 x R  
x (t /t  
).  
RSENSE  
SENSE  
ON RETRY  
Choose a sense-resistor power rating of twice the  
P
for long-term reliable operation. In addition,  
RSENSE  
I
x R  
(T) I (T) x R + |V  
|
TRIPSLOW  
DS(ON)  
CB  
CB  
CB,OS  
ensure that the sense resistor has an adequate I2T rating  
to survive instantaneous short-circuit conditions.  
where V  
is the worst-case offset voltage. Figure 14  
CB,OS  
graphically portrays operating conditions for a MOSFET  
with a 4500ppm/°C temperature coefficient.  
Table 4. Component Manufacturers  
COMPONENT  
MANUFACTURER  
Dale-Vishay  
IRC  
PHONE  
WEBSITE  
402-564-3131  
828-264-8861  
888-522-5372  
310-233-3331  
www.vishay.com  
www.irctt.com  
Sense Resistors  
Fairchild  
www.fairchildsemi.com  
www.irf.com  
MOSFETs  
International Rectifier  
16 ______________________________________________________________________________________  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Design Procedure  
I
x R  
+ V  
CB,OS  
(
TRIPSLOW  
)
Given:  
DS(ON)105  
R
CB  
=
V  
= V = 5V  
S
I
CC  
CB85  
C = 150µF  
L
R
= ((6A x 8.58m) + 4.7mV)/69.5µA = 808Ω  
CB  
Full-Load Current = 5A  
Layout Considerations  
No R  
SENSE  
Keep all traces as short as possible and maximize the  
high-current trace dimensions to reduce the effect of  
undesirable parasitic inductance. Place the MAX5924/  
MAX5925/MAX5926 close to the card’s connector. Use  
a ground plane to minimize impedance and induc-  
tance. Minimize the current-sense resistor trace length  
(<10mm), and ensure accurate current sensing with  
Kelvin connections.  
I  
= 500mA  
INRUSH  
Procedures:  
1) Calculate the required slew rate and corresponding  
C
SLEW  
:
I
V
ms  
INRUSH  
SR =  
= 3.3  
1000 × C  
L
When the output is short circuited, the voltage drop  
across the external MOSFET becomes large. Hence, the  
power dissipation across the switch increases, as does  
the die temperature. An efficient way to achieve good  
power dissipation on a surface-mount package is to lay  
out two copper pads directly under the MOSFET pack-  
age on both sides of the board. Connect the two pads  
to the ground plane through vias, and use enlarged  
copper mounting pads on the top side of the board.  
9  
9  
330 × 10  
330 × 10  
C
=
=
= 0.1µF  
SLEW  
V
SR  
3.3  
ms  
2) Select a MOSFET and determine the worst-case  
power dissipation.  
3) Minimize power dissipation at full load current and  
at high temperature by selecting a MOSFET with an  
appropriate R  
. Assume a 20°C temperature  
DS(ON)  
It is important to maximize the thermal coupling between  
the MOSFET and the MAX5925/MAX5926 to balance the  
device junction temperatures. When the temperatures of  
the two devices are equal, the circuit-breaker trip  
threshold is most accurate. Keep the MOSFET and the  
MAX5925/MAX5926 as close to each other as possible  
to facilitate thermal coupling.  
difference between the MAX5924/MAX5925/  
MAX5926 and the MOSFET.  
For example, at room temperature the IRF7822’s  
R
= 6.5m. The temperature coefficient for  
DS(ON)  
this device is 4000ppm/°C. The maximum R  
DS(ON)  
for the MOSFET at T  
= +105°C is:  
J(MOSFET)  
ppm  
°C  
R
= 6.5m× 1+ (105°C 25°C) × 4000  
DS(ON)105  
Typical Operating Circuits  
(continued)  
= 8.58mΩ  
The power dissipation in the MOSFET at full load is:  
TYPICAL OPERATION WITH R  
SENSE  
BACKPLANE  
REMOVABLE CARD  
2
2
P = I R = (5A) × 8.58m= 215mW  
R
SENSE  
D
N
V
1V TO V  
OUT  
CC  
V
S
2.25V TO 13.2V  
V
CC  
4) Select R  
.
CB  
R
CB  
Since the MOSFET’s temperature coefficient is  
4000ppm/°C, which is greater than TC  
(3300ppm/°C), calculate the circuit-breaker thresh-  
old at high temperature so the circuit breaker is  
guaranteed not to trip at lower temperature during  
normal operation (Figure 15).  
ICB  
CB  
OUT  
SENSE GATE  
V
CC  
MAX5924  
MAX5926  
GND  
GND  
I
= I  
+ 20% = 5A + 20% = 6A  
TRIPSLOW  
FULL LOAD  
R
= 8.58m(max), from step 2  
DS(ON)105  
I
= 58µA x (1 + (3300ppm/°C x (85 - 25)°C)  
= 69.5µA (min)  
CB85  
SEE FIGURE 2 FOR A DETAILED TYPICAL OPERATING CIRCUIT WITH R  
.
SENSE  
______________________________________________________________________________________ 17  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Selector Guide  
POWER-GOOD OUTPUT  
CIRCUIT-BREAKER  
TEMPCO  
PART  
FAULT MANAGEMENT  
PGOOD  
PGOOD  
(ppm/°C)  
(OPEN-DRAIN)  
(OPEN-DRAIN)  
MAX5924A  
0
Latched  
Latched  
MAX5924B  
MAX5924C  
MAX5924D  
MAX5925A  
MAX5925B  
MAX5925C  
MAX5925D  
MAX5926  
0
0
Autoretry  
0
Autoretry  
3300  
Latched  
3300  
3300  
Latched  
Autoretry  
3300  
Autoretry  
0 or 3300 (Selectable)  
Latched or Autoretry (Selectable)  
Pin Configurations  
TOP VIEW  
V
CC  
1
2
3
4
5
6
7
8
16 CB  
SC_DET  
EN1  
15 SENSE  
14 OUT  
13 GATE  
V
1
2
3
4
5
10 CB  
CC  
SC_DET  
EN  
9
8
7
6
SENSE  
PGOOD  
GND  
MAX5924  
MAX5925  
OUT  
MAX5926  
12 SLEW  
11 N.C.  
10 N.C.  
PGOOD (PGOOD)  
GND  
GATE  
SLEW  
EN2  
PGOOD  
LATCH  
µMAX  
9
TC  
( ) FOR THE MAX5924A, MAX5924C, MAX5925A, AND MAX5925C.  
QSOP-EP  
Chip Information  
TRANSISTOR COUNT: 3751  
PROCESS: BiCMOS  
18 ______________________________________________________________________________________  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
e
4X S  
10  
10  
INCHES  
MAX  
MILLIMETERS  
MAX  
1.10  
0.15  
0.95  
3.05  
3.00  
3.05  
3.00  
5.05  
0.70  
DIM MIN  
MIN  
-
A
-
0.043  
0.006  
0.037  
0.120  
0.118  
0.120  
0.118  
0.199  
A1  
A2  
D1  
D2  
E1  
E2  
H
0.002  
0.030  
0.116  
0.114  
0.116  
0.114  
0.187  
0.05  
0.75  
2.95  
2.89  
2.95  
2.89  
4.75  
0.40  
H
0 0.50±0.1  
0.6±0.1  
L
0.0157 0.0275  
0.037 REF  
L1  
b
0.940 REF  
0.007  
0.0106  
0.177  
0.270  
0.200  
1
1
e
0.0197 BSC  
0.500 BSC  
0.6±0.1  
c
0.0035 0.0078  
0.0196 REF  
0.090  
BOTTOM VIEW  
0.498 REF  
S
α
TOP VIEW  
0°  
6°  
0°  
6°  
D2  
E2  
GAGE PLANE  
A2  
c
A
E1  
b
L
α
A1  
D1  
L1  
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 10L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0061  
I
1
______________________________________________________________________________________ 19  
1V to 13.2V, n-Channel Hot-Swap Controllers  
Require No Sense Resistor  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE,  
16L QSOP, .150" EXPOSED PAD  
1
21-0112  
C
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5924DEUB+T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO10, ROHS COMPLIANT, MO-187CBA, MICRO MAX, PACKAGE-10
MAXIM

MAX5924DEUB-T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO10, MO-187CBA, MICRO MAX, PACKAGE-10
MAXIM

MAX5924_06

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor
MAXIM

MAX5924_10

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor
MAXIM

MAX5925

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor
MAXIM

MAX5925A

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor
MAXIM

MAX5925AEUB

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor
MAXIM

MAX5925AEUB+

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO10, ROHS COMPLIANT, MO-187CBA, MICRO MAX, PACKAGE-10
MAXIM

MAX5925AEUB-T

暂无描述
MAXIM

MAX5925B

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor
MAXIM

MAX5925BEUB

1V to 13.2V, n-Channel Hot-Swap Controllers Require No Sense Resistor
MAXIM

MAX5925BEUB+

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO10, ROHS COMPLIANT, MO-187CBA, MICRO MAX, PACKAGE-10
MAXIM