MAX5974AETE+G3U [MAXIM]

IC REG CTRLR FORWARD PWM 16-TQFN;
MAX5974AETE+G3U
型号: MAX5974AETE+G3U
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

IC REG CTRLR FORWARD PWM 16-TQFN

信息通信管理 开关
文件: 总28页 (文件大小:1388K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
General Description  
Features  
The MAX5974_ provide control for wide-input-voltage,  
active-clamped, current-mode PWM, forward converters  
in Power-over-Ethernet (PoE) powered device (PD) appli-  
cations. The MAX5974A/MAX5974C are well-suited for  
universal or telecom input range, while the MAX5974B/  
MAX5974D also accommodate low input voltage down  
to 10.5V.  
Peak Current-Mode Control, Active-Clamped Forward  
PWM Controller  
Regulation Without Optocoupler (MAX5974A/  
MAX5974B)  
Internal 1% Error Amplifier  
100kHz to 600kHz Programmable ±8% Switching  
Frequency, Synchronization Up to 1.2MHz  
The devices include several features to enhance supply  
efficiency. The AUX driver recycles magnetizing cur-  
rent instead of wasting it in a dissipative clamp circuit.  
Programmable dead time between the AUX and main  
driver allows for zero-voltage switching (ZVS). Under  
light-load conditions, the devices reduce the switching fre-  
quency (frequency foldback) to reduce switching losses.  
Programmable Frequency Dithering for Low-EMI,  
Spread-Spectrum Operation  
Programmable Dead Time, PWM Soft-Start, Current  
Slope Compensation  
Programmable Feed-Forward Maximum Duty-Cycle  
Clamp, 80% Maximum Limit  
The MAX5974A/MAX5974B feature unique circuitry to  
achieve output regulation without using an optocoupler,  
while the MAX5974C/MAX5974D utilize the traditional  
optocoupler feedback method. An internal error amplifier  
with a 1% reference is very useful in nonisolated design,  
eliminating the need for an external shunt regulator.  
Frequency Foldback for High-Efficiency Light-Load  
Operation  
Internal Bootstrap UVLO with Large Hysteresis  
● 100μA (typ) Startup Supply Current  
Fast Cycle-by-Cycle Peak Current-Limit, 35ns Typical  
The devices feature a unique feed-forward maximum  
duty-cycle clamp that makes the maximum clamp volt-  
age during transient conditions independent of the line  
voltage, allowing the use of a power MOSFET with lower  
breakdown voltage. The programmable frequency dither-  
ing feature provides low-EMI, spread-spectrum operation.  
Propagation Delay  
115ns Current-Sense Internal Leading-Edge Blanking  
Output Short-Circuit Protection with Hiccup Mode  
Reverse Current Limit to Prevent Transformer  
Saturation Due to Reverse Current  
The MAX5974_ are available in 16-pin TQFN-EP pack-  
ages and are rated for operation over the -40°C to +85°C  
temperature range.  
Internal 18V Zener Clamp on Supply Input  
3mm x 3mm, Lead-Free, 16-Pin TQFN-EP  
Applications  
®
PoE IEEE 802.3af/at Powered Devices  
High-Power PD (Beyond the 802.3af/at Standard)  
Active-Clamped Forward DC-DC Converters  
IP Phones  
IEEE is a registered service mark of the Institute of Electrical  
and Electronics Engineers, Inc.  
Wireless Access Nodes  
Security Cameras  
Ordering Information/Selector Guide appears at end of data  
sheet.  
19-5331; Rev 6; 7/17  
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Absolute Maximum Ratings  
IN to GND (V  
= 0V)...........................................-0.3V to +26V  
Maximum Input/Output Current (continuous)  
EN  
NDRV, AUXDRV to GND............................-0.3V to (V + 0.3V)  
RT, DT, FFB, COMP, SS, DCLMP, DITHER/SYNC  
EN.....................................................................................1mA  
NDRV, AUXDRV (pulsed for less than 100ns) ..................±1A  
IN  
to GND.................................................................-0.3V to +6V  
FB to GND (MAX5974A/MAX5974B only).................-6V to +6V  
FB to GND (MAX5974C/MAX5974D only)..............-0.3V to +6V  
CS, CSSC to GND ..................................................-0.8V to +6V  
PGND to GND......................................................-0.3V to +0.3V  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin TQFN (derate 20.8mW/°C above +70°C)......1666mW  
Operating Temperature Range......................... -40°C to +105°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
PACKAGE TYPE: 16 TQFN  
Package Code  
T1633+4  
21-0136  
90-0031  
Outline Number  
Land Pattern Number  
THERMAL RESISTANCE, FOUR-LAYER BOARD  
Junction to Ambient (θ  
)
48°C/W  
7°C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Electrical Characteristics  
IN  
(V = 12V (for MAX5974A/MAX5974C, bring V up to 17V for startup), V = V  
= V  
= V = V  
= V  
= V  
,
IN  
CS  
CSSC  
DITHER/SYNC  
FB  
FFB  
DCLMP  
GND  
V
= +2V, NDRV = AUXDRV = SS = COMP = unconnected, R = 34.8kΩ, R = 25kΩ, C = 1µF, T = -40°C to +85°C (MAX5974B,  
EN  
RT DT IN A  
MAX5974C, MAX5974D), T = -40°C to +105°C (MAX5974A), unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
UNDERVOLTAGE LOCKOUT/STARTUP (IN)  
MAX5974A/C  
15.4  
8
16  
16.5  
8.85  
-40°C to  
+85°C  
8.4  
Bootstrap UVLO Wakeup Level  
V
V
V
rising  
falling  
V
INUVR  
IN  
MAX5974B/D  
-40°C to  
+125°C  
7.95  
8.4  
8.85  
-40°C to +85°C  
-40°C to +125°C  
6.65  
6.6  
17  
7
7
7.35  
7.35  
20  
Bootstrap UVLO Shutdown  
Level  
V
V
V
INUVF  
IN  
IN Clamp Voltage  
V
I
= 2mA (sinking)  
18.5  
IN_CLAMP  
IN  
V
= +15V (for  
IN  
-40°C to +85°C  
-40°C to +125°C  
100  
100  
150  
250  
MAX5974A/C);  
IN Supply Current in  
Undervoltage Lockout  
I
V
= +7.5V (for  
µA  
START  
IN  
MAX5974B/D), when  
in bootstrap UVLO  
-40°C to +85°C  
-40°C to +125°C  
1.8  
1.8  
3
4
IN Supply Current After Startup  
I
V
= +12V  
mA  
C
IN  
ENABLE (EN)  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
1.17  
1.17  
1.215  
1.2155  
1.14  
1.26  
1.2655  
1.19  
1.19  
1
V
V
V
rising  
falling  
ENR  
EN  
Enable Threshold  
Input Current  
V
1.09  
1.085  
V
ENF  
EN  
1.14  
-40°C to +85°C  
-40°C to +105°C  
I
µA  
EN  
1.5  
OSCILLATOR (RT)  
RT Bias Voltage  
V
1.23  
V
RT  
NDRV Switching Frequency  
Range  
f
100  
-8  
600  
+8  
kHz  
SW  
-40°C to +85°C  
-40°C to +105°C  
NDRV Switching Frequency  
Accuracy  
%
%
-11  
+11  
-40°C to +85°C  
-40°C to +125°C  
79  
79  
80  
80  
82  
83  
Maximum Duty Cycle  
D
f
= 250kHz  
SW  
MAX  
SYNCHRONIZATION (SYNC)  
Synchronization Logic-High  
Input  
V
2.91  
V
IH-SYNC  
SYNCIN  
Synchronization Pulse Width  
50  
ns  
Synchronization Frequency  
Range  
1.1 x  
2 x  
f
SW  
f
kHz  
f
SW  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Electrical Characteristics (continued)  
(V = 12V (for MAX5974A/MAX5974C, bring V up to 17V for startup), V = V  
= V  
= V = V  
= V  
= V  
,
IN  
IN  
CS  
CSSC  
DITHER/SYNC  
FB  
FFB  
DCLMP  
GND  
V
= +2V, NDRV = AUXDRV = SS = COMP = unconnected, R = 34.8kΩ, R = 25kΩ, C = 1µF, T = -40°C to +85°C (MAX5974B,  
EN  
RT DT IN A  
MAX5974C, MAX5974D), T = -40°C to +105°C (MAX5974A), unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Maximum Duty Cycle During  
Synchronization  
D
x f  
/
MAX  
SYNC  
%
f
SW  
DITHERING RAMP GENERATOR (DITHER)  
-40°C to +85°C  
45  
44.5  
43  
50  
50  
50  
50  
2
55  
55.5  
57  
Charging Current  
V
V
= 0V  
µA  
µA  
DITHER  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
Discharging Current  
= 2.2V  
DITHER  
42  
58  
Ramp’s High Trip Point  
V
V
Ramp’s Low Trip Point  
0.4  
SOFT-START AND RESTART (SS)  
-40°C to +85°C  
-40°C to +125°C  
9.5  
9
10  
10  
10.5  
11  
Charging Current  
I
I
µA  
SS-CH  
I
V
= 2V, normal shutdown  
0.65  
1.34  
2
mA  
SS-D  
SS  
(V  
< V  
or V < V  
),  
EN  
ENF  
IN  
INUVF  
Discharging Current  
V
= 2V, hiccup mode discharge for  
1.6  
2
2.4  
µA  
V
SS-DH  
SS  
t
(Note 2)  
RSTRT  
Discharge Threshold to Disable  
Hiccup and Restart  
V
0.15  
SS-DTH  
Minimum Restart Time During  
Hiccup Mode  
Clock  
Cycles  
t
1024  
5
RSTRT-MIN  
Normal Operating High Voltage  
Duty-Cycle Control Range  
DUTY-CYCLE CLAMP (DCLMP)  
DCLMP Input Current  
V
V
V
SS-HI  
V
D
(typ) = (V /2.43V)  
SS-DMAX  
0
2
SS-DMAX  
MAX  
I
V
= 0 to 5V  
-100  
73  
0
+100  
77.5  
58  
nA  
%
DCLMP  
DCLMP  
V
= 0.5V  
= 1V  
75.4  
56  
DCLMP  
DCLMP  
DCLMP  
Duty-Cycle Control Range  
V
V
V
54  
D
(typ) =  
DCLMP-R  
MAX  
1 - (V  
/2.43V)  
= 2V  
14.7  
16.5  
18.3  
DCLMP  
NDRV DRIVER  
-40°C to +85°C  
-40°C to +125°C  
1.9  
1.9  
4.7  
1
3.4  
3.5  
8.3  
I
(sinking) =  
NDRV  
Pulldown Impedance  
R
NDRV-N  
100mA  
Pullup Impedance  
Peak Sink Current  
Peak Source Current  
Fall Time  
R
I
(sourcing) = 50mA  
A
NDRV-P  
NDRV  
0.65  
14  
A
t
C
C
= 1nF  
= 1nF  
ns  
ns  
NDRV-F  
NDRV  
Rise Time  
t
27  
NDRV-R  
NDRV  
AUXDRV DRIVER  
-40°C to +85°C  
-40°C to +125°C  
4.3  
4.3  
7.7  
I
(sinking) =  
AUXDRV  
Pulldown Impedance  
R
AUX-N  
50mA  
7.95  
18.9  
Pullup Impedance  
Peak Sink Current  
R
I
(sourcing) = 25mA  
10.6  
0.5  
AUX-P  
AUXDRV  
A
Maxim Integrated  
4  
www.maximintegrated.com  
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Electrical Characteristics (continued)  
(V = 12V (for MAX5974A/MAX5974C, bring V up to 17V for startup), V = V  
= V  
= V = V  
= V  
= V  
,
IN  
IN  
CS  
CSSC  
DITHER/SYNC  
FB  
FFB  
DCLMP  
GND  
V
= +2V, NDRV = AUXDRV = SS = COMP = unconnected, R = 34.8kΩ, R = 25kΩ, C = 1µF, T = -40°C to +85°C (MAX5974B,  
EN  
RT DT IN A  
MAX5974C, MAX5974D), T = -40°C to +105°C (MAX5974A), unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
A
PARAMETER  
Peak Source Current  
Fall Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.3  
24  
MAX  
UNITS  
A
t
C
C
= 1nF  
ns  
AUX-F  
AUXDRV  
Rise Time  
t
= 1nF  
45  
ns  
AUX-R  
AUXDRV  
DEAD-TIME PROGRAMMING (DT)  
DT Bias Voltage  
V
1.215  
40  
V
DT  
R
R
R
R
= 10kΩ  
= 100kΩ  
= 10kΩ  
= 100kΩ  
From NDRV falling  
to AUXDRV falling  
DT  
DT  
DT  
DT  
ns  
300  
310  
350  
40  
410  
420  
NDRV to AUXDRV Delay  
(Dead Time)  
t
DT  
From AUXDRV rising  
to NDRV rising  
ns  
360  
CURRENT-LIMIT COMPARATOR (CS)  
Cycle-by-Cycle Peak  
V
375  
393  
410  
-88  
mV  
CS-PEAK  
Current-Limit Threshold  
Turns AUXDRV off  
for the remaining  
cycle if reverse  
current limit is  
exceeded  
-40°C to +85°C  
-40°C to +105°C  
-118  
-100  
Cycle-by-Cycle Reverse  
V
mV  
CS-REV  
Current-Limit Threshold  
-124  
-100  
-88  
Current-Sense Blanking Time for  
Reverse Current Limit  
t
CS-BLANK-  
REV  
From AUXDRV falling edge  
115  
8
ns  
Events  
ns  
Number of Consecutive Peak  
Current-Limit Events to Hiccup  
N
HICCUP  
Current-Sense Leading-Edge  
Blanking Time  
t
From NDRV rising edge  
115  
CS-BLANK  
From CS rising (10mV overdrive) to  
NDRV falling (excluding leading-edge  
blanking)  
Propagation Delay from  
Comparator Input to NDRV  
t
35  
ns  
ns  
PDCS  
Minimum On-Time  
t
100  
150  
200  
ON-MIN  
SLOPE COMPENSATION (CSSC)  
-40°C to +85°C  
-40°C to +125°C  
47  
52  
52  
58  
Current ramp’s peak  
added to CSSC  
input per switching  
cycle  
Slope Compensation Current  
Ramp Height  
µA  
46.5  
59.5  
PWM COMPARATOR  
Comparator Offset Voltage  
Current-Sense Gain  
-40°C to +85°C  
-40°C to +125°C  
1.35  
1.34  
3.1  
1.7  
1.7  
2
2
V
A
V
- V  
CSSC  
V
PWM-OS  
COMP  
ΔV  
/ΔV  
(Note 3)  
3.33  
3.6  
V/V  
ns  
CS-PWM  
COMP  
CSSC  
Current-Sense Leading-Edge  
Blanking Time  
t
From NDRV rising edge  
115  
150  
CSSC-BLANK  
Change in V = 10mV (including  
internal leading-edge blanking)  
CSSC  
Comparator Propagation Delay  
t
ns  
PWM  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Electrical Characteristics (continued)  
(V = 12V (for MAX5974A/MAX5974C, bring V up to 17V for startup), V = V  
= V  
= V = V  
= V  
= V  
,
IN  
IN  
CS  
CSSC  
DITHER/SYNC  
FB  
FFB  
DCLMP  
GND  
V
= +2V, NDRV = AUXDRV = SS = COMP = unconnected, R = 34.8kΩ, R = 25kΩ, C = 1µF, T = -40°C to +85°C (MAX5974B,  
EN  
RT DT IN A  
MAX5974C, MAX5974D), T = -40°C to +105°C (MAX5974A), unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ERROR AMPLIFIER  
MAX5974A/B  
1.5  
1.52  
1.54  
V
0, V  
when I  
=
COMP  
MAX5974C/D  
1.202  
1.215  
1.227  
FB  
FB Reference Voltage  
FB Input Bias Current  
V
V
REF  
= 2.5V  
COMP  
MAX5974DATE  
(Note 4)  
1.202  
1.215  
1.230  
MAX5974A/B  
MAX5974C/D  
-250  
-500  
+250  
+100  
I
V
= 0 to 1.75V  
nA  
FB  
FB  
MAX5974DATE  
(Note 4)  
-1000  
+100  
Voltage Gain  
A
80  
dB  
EAMP  
MAX5974A/B  
MAX5974C/D  
1.8  
1.8  
2.55  
2.66  
3.2  
3.5  
Transconductance  
g
mS  
M
Open loop (typical  
gain = 1) -3dB  
frequency  
MAX5974A/B  
MAX5974C/D  
2
Transconductance Bandwidth  
BW  
MHz  
30  
Source Current  
V
V
= 1V, V  
= 2.5V  
300  
300  
375  
375  
455  
455  
µA  
µA  
FB  
COMP  
Sink Current  
= 1.75V, V  
= 1V  
FB  
COMP  
FREQUENCY FOLDBACK (FFB)  
V
Gain  
-to-FFB Comparator  
CSAVG  
10  
30  
30  
V/V  
µA  
-40°C to +85°C  
-40°C to +125°C  
26  
26  
33  
V
V
= 0V,  
= 0V (not in  
FFB  
FFB Bias Current  
I
FFB  
CS  
33.5  
FFB mode)  
NDRV Switching Frequency  
During Foldback  
f
f
/2  
SW  
kHz  
SW-FB  
THERMAL SHUTDOWN  
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
T
Temperature rising  
Temperature falling  
165  
10  
°C  
°C  
SD  
Note 1: All devices are 100% production tested at T = +25°C. Limits over temperature are guaranteed by design.  
A
Note 2: See the Output Short-Circuit Protection with Hiccup Mode section.  
Note 3: The parameter is measured at the trip point of latch with V = 0V. Gain is defined as ∆V  
/∆V  
for 0.15V <  
FB  
COMP  
CSSC  
∆V  
< 0.25V.  
CSSC  
Note 4: Operates over the -40°C to +125°C operating temperature range.  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Typical Operating Characteristics  
(V = 12V (for MAX5974A/MAX5974C, bring V up to 17V for startup), V  
= V  
= V  
= V = V  
= V  
=
IN  
IN  
CS  
CSSC  
DITHER/SYNC  
FB  
FFB  
DCLMP  
V
, V  
= 2V, NDRV = AUXDRV = SS = COMP = unconnected, R = 34.8kΩ, R = 25kΩ, unless otherwise noted.)  
GND EN RT DT  
IN UVLO WAKE-UP LEVEL  
vs. TEMPERATURE  
IN UVLO SHUTDOWN LEVEL  
vs. TEMPERATURE  
IN UVLO WAKE-UP LEVEL  
vs. TEMPERATURE  
16.3  
8.6  
8.5  
8.4  
8.3  
8.2  
8.1  
8.0  
7.3  
7.2  
7.1  
7.0  
6.9  
6.8  
MAX5974A/MAX5974C  
MAX5974B/MAX5974D  
16.2  
16.1  
16.0  
15.9  
15.8  
15.7  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-40  
0
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
EN RISING THRESHOLD  
vs. TEMPERATURE  
EN FALLING THRESHOLD  
vs. TEMEPRATURE  
UVLO SHUTDOWN CURRENT  
vs. TEMPERATURE  
1.220  
1.218  
1.216  
1.214  
1.212  
1.210  
1.150  
1.149  
1.148  
1.147  
1.146  
1.145  
1.144  
1.143  
1.142  
140  
120  
100  
80  
MAX5974A/MAX5974C  
MAX5974B/MAX5974D  
60  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY CURRENT  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(MAX5974A/MAX5974C)  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(MAX5974B/MAX5974D)  
vs. SWITCHING FREQUENCY  
10,000  
1000  
100  
10,000  
1000  
100  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
T
A
= +85°C  
T = +85°C  
A
T
A
= -40°C  
T
= -40°C  
A
10  
10  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
100 200 300 400 500 600 700 800  
SWITCHING FREQUENCY (kHz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Typical Operating Characteristics (continued)  
(V = 12V (for MAX5974A/MAX5974C, bring V up to 17V for startup), V  
= V  
= V  
= V = V  
= V  
=
IN  
IN  
CS  
CSSC  
DITHER/SYNC  
FB  
FFB  
DCLMP  
V
, V  
= 2V, NDRV = AUXDRV = SS = COMP = unconnected, R = 34.8kΩ, R = 25kΩ, unless otherwise noted.)  
GND EN RT DT  
SWITCHING FREQUENCY  
SOFT-START CHARGING CURRENT  
vs. TEMPERATURE  
SWITCHING FREQUENCY  
vs. TEMPERATURE  
vs. R VALUE  
RT  
1000  
100  
10  
10.06  
10.05  
10.04  
10.03  
10.02  
10.01  
10.00  
9.99  
252  
251  
250  
249  
248  
247  
246  
245  
244  
9.98  
9.97  
10  
100  
-40  
-15  
10  
35  
60  
85  
-40  
-40  
0
-15  
10  
35  
60  
85  
R
VALUE (kΩ)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
RT  
FREQUENCY DITHERING  
MAXIMUM DUTY CYCLE  
vs. SWITCHING FREQUENCY  
MAXIMUM DUTY CYCLE  
vs. TEMPERATURE  
vs. R  
DITHER  
14  
12  
10  
8
83  
82  
81  
80  
79  
78  
77  
76  
75  
81.0  
80.9  
80.8  
80.7  
80.6  
80.5  
80.4  
80.3  
80.2  
6
4
2
0
300 400 500 600 700 800 900 1000  
(kΩ)  
0
100 200 300 400 500 600 700 800  
SWITCHING FREQUENCY (kHz)  
-15  
10  
35  
60  
85  
R
TEMPERATURE (°C)  
DITHER  
MAXIMUM DUTY CYCLE  
vs. SYNC FREQUENCY  
MAXIMUM DUTY CYCLE  
MAXIMUM DUTY CYCLE  
vs. V  
vs. V  
SS  
DCLMP  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 0.5V  
SS  
0
250  
300  
350  
400  
450  
500  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
0.5  
1.0  
1.5  
2.0  
2.5  
SYNC FREQUENCY (kHz)  
V
V
(V)  
DCLMP  
SS  
Maxim Integrated  
8
www.maximintegrated.com  
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Typical Operating Characteristics (continued)  
(V = 12V (for MAX5974A/MAX5974C, bring V up to 17V for startup), V  
= V  
= V  
= V = V  
= V  
=
IN  
IN  
CS  
CSSC  
DITHER/SYNC  
FB  
FFB  
DCLMP  
V
, V  
= 2V, NDRV = AUXDRV = SS = COMP = unconnected, R = 34.8kΩ, R = 25kΩ, unless otherwise noted.)  
GND EN RT DT  
PEAK CURRENT-LIMIT THRESHOLD  
vs. TEMPERATURE  
DEAD TIME vs. R VALUE  
DEAD TIME vs. TEMPERATURE  
DT  
400  
350  
300  
250  
200  
150  
100  
50  
102  
100  
98  
398  
397  
396  
395  
394  
393  
392  
391  
390  
389  
388  
96  
94  
92  
90  
0
88  
10 20 30 40 50 60 70 80 90 100  
VALUE (kΩ)  
-40  
-15  
10  
35  
60  
85  
110  
-40  
-15  
10  
35  
60  
85  
R
TEMPERATURE (°C)  
DT  
TEMPERATURE (°C)  
SLOPE COMPENSATION CURRENT  
vs. TEMPERATURE  
NDRV MINIMUM ON-TIME  
vs. TEMPERATURE  
REVERSE CURRENT-LIMIT THRESHOLD  
vs. TEMPERATURE  
-97  
-98  
54.0  
53.5  
53.0  
52.5  
52.0  
51.5  
51.0  
50.5  
50.0  
170  
165  
160  
155  
150  
145  
140  
-99  
-100  
-101  
-102  
-103  
-104  
-105  
-106  
-107  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FEEDBACK VOLTAGE  
vs. TEMPERATURE  
CURRENT-SENSE GAIN  
vs. TEMPERATURE  
FEEDBACK VOLTAGE  
vs. TEMPERATURE  
3.40  
3.39  
3.38  
3.37  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
1.220  
1.219  
1.218  
1.217  
1.216  
1.215  
1.214  
1.213  
1.212  
1.211  
1.210  
1.522  
1.521  
1.520  
1.519  
1.518  
1.517  
1.516  
MAX5974C/MAX5974D  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Maxim Integrated  
9
www.maximintegrated.com  
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Typical Operating Characteristics (continued)  
(V = 12V (for MAX5974A/MAX5974C, bring V up to 17V for startup), V  
= V  
= V  
= V = V  
= V  
DCLMP  
=
IN  
IN  
CS  
CSSC  
DITHER/SYNC  
FB  
FFB  
V
, V  
= 2V, NDRV = AUXDRV = SS = COMP = unconnected, R = 34.8kΩ, R = 25kΩ, unless otherwise noted.)  
GND EN RT DT  
TRANSCONDUCTANCE HISTOGRAM  
(MAX5974A/MAX5974B)  
TRANSCONDUCTANCE HISTOGRAM  
(MAX5974C/MAX5974D)  
TRANSCONDUCTANCE  
vs. TEMPERATURE  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
MAX5974C/MAX5974D  
MAX5974A/MAX5974B  
2.0  
-40  
0
0
-15  
10  
35  
60  
85  
2.44 2.46 2.48 2.50 2.52 2.54 2.56 2.58 2.60 2.62 2.64  
TRANSCONDUCTANCE (mS)  
2.56 2.58 2.60 2.62 2.64 2.66 2.68 2.70 2.72 2.74 2.76  
TRANSCONDUCTANCE (mS)  
TEMPERATURE (°C)  
ENABLE RESPONSE  
SHUTDOWN RESPONSE  
MAX5974A/B/C/D toc32  
MAX5974A/B/C/D toc31  
V
EN  
V
EN  
5V/div  
5V/div  
V
NDRV  
V
NDRV  
10V/div  
10V/div  
V
AUXDRV  
V
AUXDRV  
10V/div  
10V/div  
V
OUT  
V
OUT  
5V/div  
5V/div  
100µs/div  
200µs/div  
V
SS  
RAMP RESPONSE  
V
RAMP RESPONSE  
DCLMP  
MAX5974A/B/C/D toc33  
MAX5974A/B/C/D toc34  
V
SS  
V
DCLMP  
2V/div  
2V/div  
V
NDRV  
V
NDRV  
10V/div  
10V/div  
V
AUXDRV  
V
AUXDRV  
10V/div  
10V/div  
10µs/div  
10µs/div  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Typical Operating Characteristics (continued)  
(V = 12V (for MAX5974A/MAX5974C, bring V up to 17V for startup), V  
= V  
= V  
= V = V  
= V  
DCLMP  
=
IN  
IN  
CS  
CSSC  
DITHER/SYNC  
FB  
FFB  
V
, V  
= 2V, NDRV = AUXDRV = SS = COMP = unconnected, R = 34.8kΩ, R = 25kΩ, unless otherwise noted.)  
GND EN RT DT  
NDRV 10% TO 90% RISE TIME  
NDRV 90% TO 10% FALL TIME  
AUXDRV 10% TO 90% RISE TIME  
MAX5974A/B/C/D toc37  
MAX5974A/B/C/D toc35  
MAX5974A/B/C/D toc36  
0ns  
27.6ns  
45.6ns  
V
NDRV  
V
NDRV  
V
AUXDRV  
2V/div  
2V/div  
2V/div  
13.8ns  
0ns  
0ns  
10ns/div  
10ns/div  
10ns/div  
AUXDRV 90% TO 10% FALL TIME  
PEAK NDRV CURRENT  
MAX5974A/B/C/D toc39  
MAX5974A/B/C/D toc38  
PEAK SOURCE CURRENT  
0ns  
V
I
NDRV  
AUXDRV  
2V/div  
0.5A/div  
21ns  
PEAK SINK CURRENT  
10ns/div  
200ns/div  
SHORT-CURRENT BEHAVIOR  
PEAK AUXDRV CURRENT  
MAX5974A/B/C/D toc40  
MAX5974A/B/C/D toc41  
15V  
5V  
V
PEAK SOURCE  
CURRENT  
IN  
5V/div  
I
V
NDRV  
AUXDRV  
0.2A/div  
10V/div  
V
CS  
500mV/div  
PEAK SINK CURRENT  
400ns/div  
40ms/div  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Pin Configuration  
TOP VIEW  
16  
15  
14  
13  
12  
1
2
3
4
DT  
AUXDRV  
MAX5974A  
MAX5974B  
MAX5974C  
MAX5974D  
DITHER/  
SYNC  
11  
NDRV  
10  
RT  
PGND  
EP  
9
FFB  
CS  
5
6
7
8
ꢀꢁ ꢂꢃꢄꢅ  
ꢆꢇmm ꢈ ꢇmmꢉ  
Pin Description  
PIN  
NAME  
FUNCTION  
Dead-Time Programming Resistor Connection. Connect resistor R from DT to GND to set the  
DT  
1
DT  
desired dead time between the NDRV and AUXDRV signals. See the Dead Time section to calculate  
the resistor value for a particular dead time.  
Frequency Dithering Programming or Synchronization Connection. For spread-spectrum frequency  
operation, connect a capacitor from DITHER to GND and a resistor from DITHER to RT. To  
synchronize the internal oscillator to the externally applied frequency, connect DITHER/SYNC to the  
synchronization pulse.  
DITHER/  
SYNC  
2
Switching Frequency Programming Resistor Connection. Connect resistor R from RT to GND to set  
RT  
3
4
5
RT  
FFB  
the PWM switching frequency. See the Oscillator/Switching Frequency section to calculate the resistor  
value for the desired oscillator frequency.  
Frequency Foldback Threshold Programming Input. Connect a resistor from FFB to GND to set the  
output average current threshold below which the converter folds back the switching frequency to 1/2  
of its original value. Connect to GND to disable frequency foldback.  
Transconductance Amplifier Output and PWM Comparator Input. COMP is level shifted down and  
connected to the inverting input of the PWM comparator. COMP is actively pulled low by the controller  
after shutdown.  
COMP  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Pin Description (continued)  
PIN  
6
NAME  
FB  
FUNCTION  
Transconductance Amplifier Inverting Input  
7
GND  
Signal Ground  
Current Sense with Slope Compensation Input. A resistor connected from CSSC to CS programs the  
amount of slope compensation. See the Programmable Slope Compensation section.  
8
9
CSSC  
CS  
Current-Sense Input. Current-sense connection for average current sense and cycle-by-cycle current  
limit. Peak current-limit trip voltage is 400mV and reverse current-limit trip voltage is -100mV.  
10  
11  
PGND  
NDRV  
Power Ground. PGND is the return path for gate-driver switching currents.  
Main Switch Gate-Driver Output  
pMOS Active Clamp Switch Gate-Driver Output. AUXDRV can also be used to drive a pulse  
transformer for synchronous flyback application.  
12  
13  
AUXDRV  
IN  
Converter Supply Input. IN has wide UVLO hysteresis, enabling the design of efficient power supplies.  
See the Enable Input section to determine if an external zener diode is required at IN.  
Enable Input. The gate drivers are disabled and the device is in a low-power UVLO mode when the  
14  
15  
EN  
voltage on EN is below V  
enable conditions. See the Enable Input section for more information about interfacing to EN.  
. When the voltage on EN is above V  
, the device checks for other  
ENF  
ENR  
Feed-Forward Maximum Duty-Cycle Clamp Programming Input. Connect a resistive divider between  
the input supply voltage DCLMP and GND. The voltage at DCLMP sets the maximum duty cycle  
DCLMP  
(D  
) of the converter inversely proportional to the input supply voltage, so that the MOSFET  
MAX  
remains protected during line transients.  
Soft-Start Programming Capacitor Connection. Connect a capacitor from SS to GND to program the  
soft-start period. This capacitor also determines hiccup mode current-limit restart time. A resistor from  
16  
SS  
EP  
SS to GND can also be used to set the D  
below 75%.  
MAX  
Exposed Pad. Internally connected to GND. Connect to a large ground plane to maximize thermal  
performance. Not intended as an electrical connection point.  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Block Diagrams  
Maxim Integrated  
14  
www.maximintegrated.com  
 
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Block Diagrams (continued)  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
The devices include a cycle-by-cycle current limit that  
turns off the main and AUX drivers whenever the internal-  
ly set threshold of 400mV is exceeded. Eight consecutive  
occurrences of current-limit events trigger hiccup mode,  
which protects external components by halting switching  
Detailed Description  
The MAX5974A/MAX5974B/MAX5974C/MAX5974D are  
optimized for controlling a 25W to 50W active-clamped,  
self-driven synchronous rectification forward converter in  
continuous-conduction mode. The main switch gate driver  
(NDRV) and the active-clamped switch driver (AUXDRV)  
are sized to optimize efficiency for 25W design. The  
features-rich devices are ideal for PoE IEEE 802.3af/at-  
powered devices.  
for a period of time (t  
) and allowing the overload  
RSTRT  
current to dissipate in the load and body diode of the syn-  
chronous rectifier before soft-start is reattempted.  
The reverse current-limit feature of the devices turns the  
AUX driver off for the remaining off period when V  
CS  
The MAX5974A/MAX5974C offer a 16V bootstrap UVLO  
wake-up level with a 9V wide hysteresis. The low startup  
and operating currents allow the use of a smaller storage  
capacitor at the input without compromising startup and  
hold times. The MAX5974A/MAX5974C are well-suited  
for universal input (rectified 85V AC to 265V AC) or tele-  
com (-36V DC to -72V DC) power supplies.  
exceeds the -100mV threshold. This protects the trans-  
former core from saturation due to excess reverse current  
under some extreme transient conditions.  
Current-Mode Control Loop  
The advantages of current-mode control over voltage-  
mode control are twofold. First, there is the feed-forward  
characteristic brought on by the controller’s ability to  
adjust for variations in the input voltage on a cycle-by-  
cycle basis. Second, the stability requirements of the cur-  
rent-mode controller are reduced to that of a single-pole  
system, unlike the double pole in voltage-mode control.  
The MAX5974B/MAX5974D have a UVLO rising threshold  
of 8.4V and can accommodate for low-input voltage (12V  
DC to 24V DC) power sources such as wall adapters.  
Power supplies designed with the MAX5974A/MAX5974C  
use a high-value startup resistor, R , that charges a res-  
IN  
ervoir capacitor, C (see the Typical Application Circuits).  
The devices use a current-mode control loop where the  
scaled output of the error amplifier (COMP) is compared  
to a slope-compensated current-sense signal at CSSC.  
IN  
During this initial period, while the voltage is less than  
the internal bootstrap UVLO threshold, the device typi-  
cally consumes only 100µA of quiescent current. This low  
startup current and the large bootstrap UVLO hysteresis  
Input Clamp  
When the device is enabled, an internal 18V input clamp  
is active. During an overvoltage condition, the clamp pre-  
vents the voltage at the supply input IN from rising above  
18.5V (typ).  
help to minimize the power dissipation across R even at  
the high end of the universal AC input voltage (265V AC).  
IN  
Feed-forward maximum duty-cycle clamping detects  
changes in line conditions and adjusts the maximum duty  
cycle accordingly to eliminate the clamp voltage’s (i.e.,  
the main power FET’s drain voltage) dependence on the  
input voltage.  
When the device is disabled, the input clamp circuitry is  
also disabled.  
Enable Input  
For EMI-sensitive applications, the programmable fre-  
quency dithering feature allows up to ±10% variation in  
the switching frequency. This spread-spectrum modula-  
tion technique spreads the energy of switching harmonics  
over a wider band while reducing their peaks, helping to  
meet stringent EMI goals.  
The enable input is used to enable or disable the device.  
Driving EN low disables the device. Note that the inter-  
nal 18V input clamp is also disabled when EN is low.  
Therefore, an external 18V zener diode is needed for  
certain operating conditions as described below.  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
The digital output connected to EN should be capable of  
withstanding more than the maximum supply voltage.  
UVLO on Power Source  
The enable input has an accurate threshold of 1.26V  
(max). For applications that require a UVLO on the  
power source, connect a resistive divider from the power  
source to EN to GND as shown in Figure 1. A zener diode  
between IN and GND is required to prevent the NDRV  
and AUXDRV gate-drive voltages from exceeding 20V,  
the maximum allowed gate voltage of power FETs.  
MCU Control of Enable Input  
When using a microcontroller GPIO to control the enable  
input, an 18V zener diode is required on IN as shown in  
Figure 2.  
High-Voltage Logic Control of Enable Input  
In the case where EN is externally controlled by a high-  
voltage open-drain/collector output (e.g., PGOOD indi-  
cator of a powered device controller), connect IN to EN  
The external zener diode should clamp in the following  
range:  
20V > V > V  
through a resistor R  
and connect EN to an open-drain  
Z
UVLO(MAX)  
EN  
or open-collector output as shown in Figure 3. Select R  
EN  
where V is the zener voltage and V  
maximum wakeup level (16.5V or 8.85V depending on the  
device version). An 18V zener diode is the best choice.  
is the  
UVLO(MAX)  
Z
such that the voltage at IN, when EN is low, is less than  
20V (i.e., the maximum gate voltage of the main and AUX  
FETs):  
Design the resistive divider by first selecting the value of  
R
R
to be on the order of 100kΩ. Then calculate R  
EN  
+ R  
EN1  
EN2  
V
×
< 20V  
S(MAX)  
R
as follows:  
EN  
IN  
V
where V  
is the maximum supply voltage. Obeying  
EN(MAX)  
_
S(MAX)  
V
= R  
×
EN1  
EN2  
this relationship eliminates the need for an external zener  
diode.  
V
V
EN(MAX)  
S(UVLO)  
where V  
age and is equal to 1.26V and V  
UVLO threshold for the power source, below which the  
device is disabled.  
is the maximum enable threshold volt-  
EN(MAX)  
The digital output connected to EN should be capable of  
withstanding more than 20V.  
is the desired  
S(UVLO)  
V
S
V
S
R
IN  
R
IN  
IN  
IN  
18V  
C
IN  
C
IN  
18V  
MAX5974  
MAX5974_  
R
R
EN1  
MCU  
DIGITAL  
CONTROL  
I/O  
EN  
EN  
N
EN2  
Figure 2. MCU Control of the Enable Input  
Figure 1. Programmable UVLO for the Power Source  
Maxim Integrated  
17  
www.maximintegrated.com  
 
 
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Because the MAX5974B/MAX5974D are designed for  
use with low-voltage power sources such as wall adapters  
outputting 12V to 24V, they have a lower UVLO wake-up  
threshold of 8.4V.  
V
S
R
IN  
Startup Operation  
The device starts up when the voltage at IN exceeds 16V  
(MAX5974A/MAX5974C) or 8.4V (MAX5974B/MAX5974D)  
and the enable input voltage is greater than 1.26V.  
IN  
C
IN  
MAX5974  
During normal operation, the voltage at IN is nor-  
mally derived from a tertiary winding of the transformer  
(MAX5974C/MAX5974D). However, at startup there is no  
energy being delivered through the transformer; hence,  
a special bootstrap sequence is required. In the Typical  
R
EN  
DIGITAL  
CONTROL  
EN  
Application Circuits, C  
charges through the startup  
IN  
N
resistor, R , to an intermediate voltage. Only 100µA of  
IN  
the current supplied through R is used by the ICs, the  
IN  
remaining input current charges C until V reaches the  
IN  
IN  
bootstrap UVLO wake-up level. Once V exceeds this  
IN  
level, NDRV begins switching the n-channel MOSFET  
and transfers energy to the secondary and tertiary out-  
puts. If the voltage on the tertiary output builds to higher  
than 7V (the bootstrap UVLO shutdown level), then start-  
up has been accomplished and sustained operation com-  
Figure 3. High-Voltage Logic Control of the Enable Input  
V
S
mences. If V drops below 7V before startup is complete,  
IN  
the device goes back to low-current UVLO. In this case,  
increase the value of C in order to store enough energy  
to allow for the voltage at the tertiary winding to build up.  
IN  
R
IN  
While the MAX5974A/MAX5974B derive their input volt-  
age from the coupled inductor output during normal  
operation, the startup behavior is similar to that of the  
MAX5974C/MAX5974D.  
IN  
C
IN  
MAX5974_  
Soft-Start  
EN  
A capacitor from SS to GND, C , programs the soft-start  
SS  
time. V  
controls the oscillator duty cycle during startup  
SS  
to provide a slow and smooth increase of the duty cycle  
Figure 4. Always-On Operation  
to its steady-state value. Calculate the value of C  
follows:  
as  
SS  
Always-On Operation  
I
× t  
SS  
2V  
For always-on operation, connect EN to IN as shown  
in Figure 4. No external zener diode is needed for this  
configuration.  
SS-CH  
C
=
SS  
where I  
(10µA typ) is the current charging C dur-  
SS-CH  
SS  
Bootstrap Undervoltage Lockout  
ing soft-start and t is the programmed soft-start time.  
SS  
The devices have an internal bootstrap UVLO that is very  
useful when designing high-voltage power supplies (see  
the Block Diagrams). This allows the device to bootstrap  
itself during initial power-up. The MAX5974A/MAX5974C  
A resistor can also be added from the SS pin to GND to  
clamp V  
cycle to be less than 80% (see the Duty-Cycle Clamping  
section)  
< 2V and, hence, program the maximum duty  
SS  
soft-start when V exceeds the bootstrap UVLO thresh-  
IN  
old of V  
(16V typ).  
INUVR  
Maxim Integrated  
18  
www.maximintegrated.com  
 
 
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
n-Channel MOSFET Gate Driver  
Dead Time  
The NDRV output drives an external n-channel MOSFET.  
NDRV can source/sink in excess of 650mA/1000mA  
peak current; therefore, select a MOSFET that yields  
acceptable conduction and switching losses. The external  
MOSFET used must be able to withstand the maximum  
clamp voltage.  
Dead time between the main and AUX output edges allow  
ZVS to occur, minimizing conduction losses and improv-  
ing efficiency. The dead time (t ) is applied to both lead-  
DT  
ing and trailing edges of the main and AUX outputs as  
shown in Figure 5. Connect a resistor between DT and  
GND to set t to any value between 40ns and 400ns:  
DT  
p-Channel MOSFET Gate Driver  
The AUXDRV output drives an external p-channel  
MOSFET with the aid of a level shifter. The level shifter  
10kΩ  
40ns  
R
=
× t  
DT  
DT  
consists of C  
Application Circuits. When AUXDRV is high, C  
recharged through D5. When AUXDRV is low, the gate of  
the p-channel MOSFET is pulled below the source by the  
voltage stored on C  
, R  
, and D5 as shown in the Typical  
Oscillator/Switching Frequency  
AUX AUX  
is  
AUX  
The ICs’ switching frequency is programmable between  
100kHz and 600kHz with a resistor R  
connected  
RT  
between RT and GND. Use the following formula to deter-  
mine the appropriate value of R needed to generate the  
, turning on the pFET.  
AUX  
RT  
Add a zener diode between gate to source of the external  
n-channel and p-channel MOSFETs after the gate resis-  
tors to protect V  
mum rating during transient condition (see the Typical  
Application Circuits).  
desired output-switching frequency (f ):  
SW  
9
from rising above its absolute maxi-  
8.7×10  
GS  
R
=
RT  
f
SW  
where f  
is the desired switching frequency.  
SW  
BLANKING, t  
BLK  
NDRV  
AUXDRV  
DEAD TIME, t  
DT  
Figure 5. Dead Time Between AUXDRV and NDRV  
Maxim Integrated  
19  
www.maximintegrated.com  
 
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Peak Current Limit  
Reverse Current Limit  
The current-sense resistor (R  
Circuits), connected between the source of the n-channel  
in the Typical Application  
The devices protect the transformer against saturation  
due to reverse current by monitoring the voltage across  
CS  
MOSFET and PGND, sets the current limit. The current-  
R
while the AUX output is low and the p-channel FET  
CS  
limit comparator has a voltage trip level (V  
) of  
is on.  
CS-PEAK  
400mV. Use the following equation to calculate the value  
of R  
Output Short-Circuit Protection  
with Hiccup Mode  
:
CS  
When the device detects eight consecutive peak current-  
limit events, both NDRV and AUXDRV driver outputs are  
400mV  
R
=
CS  
I
PRI  
turned off for a restart period, t . After t  
RSTRT  
, the  
RSTRT  
device undergoes soft-start. The duration of the restart  
where I  
is the peak current in the primary side of the  
PRI  
period depends on the value of the capacitor at SS (C ).  
transformer, which also flows through the MOSFET. When  
the voltage produced by this current (through the current-  
sense resistor) exceeds the current-limit comparator  
threshold, the MOSFET driver (NDRV) terminates the  
current on-cycle, within 35ns (typ).  
SS  
During this period, C is discharged with a pulldown cur-  
SS  
rent of I  
(2µA typ). Once its voltage reaches 0.15V,  
SS-DH  
the restart period ends and the device initiates a soft-start  
sequence. An internal counter ensures that the minimum  
restart period (t  
) is 1024 clock cycles when the  
RSTRT-MIN  
The devices implement 115ns of leading-edge blanking  
to ignore leading-edge current spikes. These spikes are  
caused by reflected secondary currents, current-discharg-  
ing capacitance at the FET’s drain, and gate-charging cur-  
rent. Use a small RC network for additional filtering of the  
leading-edge spike on the sense waveform when needed.  
Set the corner frequency between 10MHz and 20MHz.  
time required for C  
to discharge to 0.15V is less than  
SS  
1024 clock cycles. Figure 6 shows the behavior of the  
device prior and during hiccup mode.  
Frequency Foldback for High-Efficiency  
Light-Load Operation  
The frequency foldback threshold can be programmed  
from 0 to 20% of the full load current using a resistor from  
FFB to GND.  
After the leading-edge blanking time, the device monitors  
V
for any breaches of the peak current limit of 400mV.  
CS  
The duty cycle is terminated immediately when V  
exceeds 400mV.  
CS  
V
CS-PEAK  
(400mV)  
V
CSBL  
(BLANKED CS  
VOLTAGE)  
HICCUP  
DISCHARGE WITH I  
SS-DH  
V
SS-HI  
SOFT-START  
VOLTAGE,  
V
SS-DTH  
V
SS  
t
t
RSTRT  
SS  
Figure 6. Hiccup Mode Timing Diagram  
Maxim Integrated  
20  
www.maximintegrated.com  
 
 
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
When V  
falls below V  
, the device folds back  
FFB  
Oscillator Synchronization  
CSAVG  
the switching frequency to 1/2 the original value to reduce  
switching losses and increase the converter efficiency.  
Calculate the value of R  
The internal oscillator can be synchronized to an external  
clock by applying the clock to DITHER/SYNC directly. The  
external clock frequency can be set anywhere between  
1.1x to 2x the internal clock frequency.  
as follows:  
FFB  
10×I  
×R  
CS  
LOAD(LIGHT)  
R
=
Using an external clock increases the maximum duty  
FFB  
I
FFB  
cycle by a factor equal to f  
/f . This factor should  
SYNC SW  
be accounted for in setting the maximum duty cycle using  
any of the methods described in the Duty-Cycle Clamping  
section. The formula below shows how the maximum duty  
cycle is affected by the external clock frequency:  
where R  
is the resistor between FFB and GND,  
is the current at light-load conditions that  
FFB  
I
LOAD(LIGHT)  
triggers frequency foldback, R is the value of the sense  
resistor connected between CS and PGND, and I  
CS  
is  
FFB  
the current sourced from FFB to R  
(30µA typ).  
FFB  
V
f
SYNC  
f
SW  
MIN  
D
=
×
MAX  
Duty-Cycle Clamping  
2.43V  
The maximum duty cycle is determined by the lowest  
of three voltages: 2V, the voltage at SS (V ), and the  
where V  
is described in the Duty-Cycle Clamping sec-  
is the switching frequency as set by the resistor  
MIN  
SS  
tion, f  
SW  
voltage (2.43V - V  
calculated as:  
). The maximum duty cycle is  
DCLMP  
connected between RT and GND, and f  
nal clock frequency.  
is the exter-  
SYNC  
V
MIN  
Frequency Dithering for Spread-  
Spectrum Applications (Low EMI)  
The switching frequency of the converter can be dith-  
ered in a range of ±10% by connecting a capacitor from  
DITHER/SYNC to GND, and a resistor from DITHER/  
SYNC to RT as shown in the Typical Application Circuits.  
This results in lower EMI.  
D
=
MAX  
2.43V  
= minimum (2V, V , 2.43V - V ).  
DCLMP  
where V  
MIN  
SS  
SS  
By connecting a resistor between SS and ground, the  
voltage at SS can be made to be lower than 2V. V  
calculated as follows:  
is  
SS  
A current source at DITHER/SYNC charges the capacitor  
C
to 2V at 50µA. Upon reaching this trip point, it  
DITHER  
V
= R  
×I  
SS SS-CH  
SS  
discharges C  
to 0.4V at 50µA. The charging and  
DITHER  
discharging of the capacitor generates a triangular wave-  
form on DITHER/SYNC with peak levels at 0.4V and 2V  
and a frequency that is equal to:  
where R  
GND, and I  
(10µA typ).  
is the resistor connected between SS and  
SS  
is the current sourced from SS to R  
SS-CH  
SS  
50µA  
DCLMP  
f
=
TRI  
C
× 3.2V  
To set D  
using supply voltage feed-forward, connect  
MAX  
DITHER  
a resistive divider between the supply voltage, DCLMP,  
and GND as shown in the Typical Application Circuits.  
This feed-forward duty-cycle clamp ensures that the  
external n-channel MOSFET is not stressed during supply  
Typically, f  
should be set close to 1kHz. The resistor  
TRI  
R
connected from DITHER/SYNC to RT deter-  
DITHER  
mines the amount of dither as follows:  
transients. V  
is calculated as follows:  
DCLMP  
4
3
R
RT  
DITHER  
%DITHER =  
×
R
R
DCLMP2  
V
=
× V  
S
DCLMP  
R
+ R  
DCLMP2  
DCLMP1  
where %DITHER is the amount of dither expressed as a  
percentage of the switching frequency. Setting R  
to 10 x R generates ±10% dither.  
RT  
where R  
and R  
are the resistive divider  
DITHER  
DCLMP1  
DCLMP2  
values shown in the Typical Application Circuits and V is  
S
the input supply voltage.  
Maxim Integrated  
21  
www.maximintegrated.com  
 
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Programmable Slope Compensation  
Applications Information  
The device generates a current ramp at CSSC such that  
its peak is 50µA at 80% duty cycle of the oscillator. An  
external resistor connected from CSSC to the CS then  
converts this current ramp into programmable slope-  
compensation amplitude, which is added to the current-  
sense signal for stability of the peak current-mode control  
loop. The ramp rate of the slope compensation signal is  
given by:  
Startup Time Considerations  
The bypass capacitor at IN, C , supplies current imme-  
IN  
diately after the devices wake up (see the Typical  
Application Circuits). Large values of C increase the  
startup time, but also supply gate charge for more cycles  
during initial startup. If the value of C is too small, V  
drops below 7V because NDRV does not have enough  
time to switch and build up sufficient voltage across the  
tertiary output (MAX5974C/MAX5974D) or coupled induc-  
tor output (MAX5974A/MAX5974B), which powers the  
device. The device goes back into UVLO and does not  
IN  
IN  
IN  
R
× 50µA × f  
CSSC  
SW  
m =  
80%  
start. Use a low-leakage capacitor for C .  
IN  
where m is the ramp rate of the slope-compensation sig-  
nal, R is the value of the resistor connected between  
Typically, offline power supplies keep startup times to less  
than 500ms even in low-line conditions (85V AC input  
for universal offline or 36V DC for telecom applications).  
CSSC  
CSSC and CS used to program the ramp rate, and f  
the switching frequency.  
is  
SW  
Size the startup resistor, R , to supply both the maxi-  
mum startup bias of the device (150µA) and the charg-  
IN  
Error Amplifier  
The MAX5974A/MAX5974B include an internal error  
amplifier with a sample-and-hold input. The feedback  
input of the MAX5974C/MAX5974D is continuously con-  
nected. The noninverting input of the error amplifier is  
connected to the internal reference and feedback is  
provided at the inverting input. High open-loop gain and  
unity-gain bandwidth allow good closed-loop bandwidth  
and transient response. Calculate the power-supply out-  
put voltage using the following equation:  
ing current for C . C must be charged to 16V within  
IN  
IN  
the desired 500ms time period. C must store enough  
IN  
charge to deliver current to the device for at least the  
soft-start time (t ) set by C . To calculate the approxi-  
SS  
SS  
mate amount of capacitance required, use the following  
formula:  
I
= Q  
f
GTOT SW  
G
(I + I )(t  
)
IN  
G
SS  
C
=
IN  
V
HYST  
R
+ R  
FB1  
R
FB2  
V
= V  
×
OUT  
REF  
FB2  
where I is the ICs’ internal supply current (1.8mA) after  
IN  
startup, Q  
and p-channel FETs, f  
is the total gate charge for the n-channel  
GTOT  
where V  
= 1.52V for the MAX5974A/MAX5974B and  
REF  
is the ICs’ switching frequency,  
SW  
V
REF  
= 1.215V for the MAX5974C/MAX5974D. The  
V
is the bootstrap UVLO hysteresis (9V typ), and t  
HYST  
SS  
amplifier’s noninverting input is internally connected to a  
soft-start circuit that gradually increases the reference  
voltage during startup. This forces the output voltage to  
come up in an orderly and well-defined manner under all  
load conditions.  
is the soft-start time. R is then calculated as follows:  
IN  
V
V  
S(MIN)  
INUVR  
R
IN  
I
START  
where V  
is the minimum input supply voltage for the  
S(MIN)  
application (36V for telecom), V  
UVLO wake-up level (16V), and I  
current at startup (150µA max).  
is the bootstrap  
is the IN supply  
INUVR  
START  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Choose a higher value for R than the one calculated  
IN  
above if a longer startup time can be tolerated in order to  
The AUX driver controls the p-channel FET through a  
level shifter. The level shifter consists of an RC network  
minimize power loss on this resistor.  
(formed by C  
and R  
) and diode D5, as shown in  
AUX  
AUX  
the Typical Application Circuits. Choose R  
and C  
AUX  
AUX  
Active Clamp Circuit  
Traditional clamp circuits prevent transformer satura-  
tion by channeling the magnetizing current (I ) of the  
transformer onto a dissipative RC network. To improve  
efficiency, the active clamp circuit recycles I between the  
magnetizing inductance and clamp capacitor. V  
given by:  
so that the time constant exceeds 100/f . Diode D5 is  
SW  
a small-signal diode with a voltage rating exceeding 25V.  
M
Additionally, C  
should be chosen such that the  
CLAMP  
complex poles formed with magnetizing inductance  
(L ) and C are 2x to 4x away from the loop  
M
MAG  
CLAMP  
is  
CLAMP  
bandwidth:  
1-D  
× C  
> 3× f  
V
S
1D  
BW  
V
=
2π L  
CLAMP  
MAG  
CLAMP  
Bias Circuit  
where V is the voltage of the power source and D is  
S
the duty cycle. To select n-channel and p-channel FETs  
with adequate breakdown voltages, use the maximum  
Optocoupler Feedback (MAX5974C/MAX5974D)  
An in-phase tertiary winding is needed to power the bias  
circuit when using optocoupler feedback. The voltage  
value of V  
. V  
occurs when the input  
CLAMP CLAMP(MAX)  
voltage is at its minimum and the duty cycle is at its  
maximum. V during normal opera-  
across the tertiary V during the on-time is:  
T
CLAMP(MAX-NORMAL)  
tion is therefore:  
N
N
T
S
V
= V  
×
OUT  
T
V
S(MIN)  
V
=
CLAMP(MAX-NORMAL)  
where V  
is the output voltage and N /N is the turns  
T S  
ratio from the tertiary to the secondary winding. Select the  
turns ratio so that V is above the UVLO shutdown level  
(7.35V max) by a margin determined by the holdup time  
needed to “ride through” a brownout.  
OUT  
N
× V  
P
O
1N × V  
S
S(MIN)  
T
where V  
is the minimum voltage of the power  
S(MIN)  
source, N /N is the primary to secondary turns ratio, and  
P
S
V
is the output voltage. The clamp capacitor, n-channel,  
O
Coupled-Inductor Feedback (MAX5974A/MAX5974B)  
and p-channel FETs must have breakdown voltages  
exceeding this level.  
When using coupled-inductor feedback, the power for  
the devices can be taken from the coupled inductor dur-  
ing the off-time. The voltage across the coupled inductor,  
If feed-forward maximum duty-cycle clamp is used then:  
V
, during the off-time is:  
COUPLED  
V
V
MIN  
DCLMP  
2.43  
D
=
×
= 1−  
MAX-FF  
2.43  
N
N
C
O
V
= V  
×
OUT  
COUPLED  
V
S
2.43  
R
DCLMP2  
+ R  
DCLMP1 DCLMP2  
= 1−  
R
where V  
is the output voltage and N /N is the turns  
C O  
OUT  
ratio from the coupled output to the main output winding.  
Therefore, V  
mum duty clamp is:  
during feed-forward maxi-  
CLAMP(MAX-FF)  
Select the turns ratio so that V is above the  
COUPLED  
UVLO shutdown level (7.5V max) by a margin determined  
V
by the holdup time needed to “ride through” a brownout.  
S
V
=
CLAMP(MAX-FF)  
1D  
This voltage appears at the input of the devices, less  
MAXFF  
a diode drop. An RC network consisting of R  
and  
SNUB  
2.43× R  
+ R  
(
)
DCLMP1  
DCLMP2  
=
C
is for damping the reverse recovery transients of  
SNUB  
R
DCLMP2  
diode D6.  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
During on-time, the coupled output is:  
Layout Recommendations  
Typically, there are two sources of noise emission in a  
switching power supply: high di/dt loops and high dV/dt  
surfaces. For example, traces that carry the drain current  
often form high di/dt loops. Similarly, the heatsink of the  
main MOSFET presents a dV/dt source; therefore, mini-  
mize the surface area of the MOSFET heatsink as much  
as possible. Keep all PCB traces carrying switching cur-  
rents as short as possible to minimize current loops. Use  
a ground plane for best results.  
N
N
N
N
S
P
C
O
V
= −(V  
×
V  
)
OUT  
COUPLED-ON  
S
where V is the input supply voltage.  
S
Care must be taken to ensure that the voltage at FB  
(equal to V attenuated by the feedback  
resistive divider) is not more than 5V:  
COUPLED-ON  
R
FB2  
For universal AC input design, follow all applicable safety  
regulations. Offline power supplies can require UL, VDE,  
and other similar agency approvals.  
V
= V  
×
COUPLED-ON  
< 5V  
FB-ON  
R
(
+ R  
)
FB1  
FB2  
If this condition is not met, a signal diode should be  
placed from GND (anode) to FB (cathode).  
Refer to the MAX5974A and MAX5974C Evaluation Kit  
data sheets for recommended layout and component  
values.  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Typical Application Circuits  
V
S
L1  
3.3mH  
36V TO 57V  
D1  
C
BULK  
33µF  
N
T
R
IN  
100k  
D2  
L2  
C
IN  
6.8µH  
1µF  
25V  
5V, 5A  
R
7.5kΩ  
1%  
FB1  
D3  
R
C
OUT5  
0.1µF  
GATE2  
10Ω  
C
C
C
C
OUT1 OUT2 OUT3 OUT4  
T1  
R
GATE1  
10Ω  
N
N
S
P
RDCLMP1  
IN  
N2  
5i412DP  
30.1kΩ  
N
R
FB2  
1%  
R
EN  
100kΩ  
2.49kΩ  
1%  
D4  
PGOOD  
EN  
RDCLMP2  
7501%  
N
DCLMP  
N1  
5i412DP  
C
SS  
0.1µF  
MAX5974C  
MAX5974D  
SS  
DT  
IN  
(OPTOCOUPLER  
FEEDBACK)  
R
DT  
16.9k1%  
N3  
FDS3692  
R
OPTO3  
R
4.99kΩ  
OPTO1  
825Ω  
1%  
C
COMP1  
2.2nF  
C
CLAMP  
47nF  
R
1%  
C
GATE3  
10Ω  
DITHER  
10nF  
R
COMP2  
499Ω  
1%  
DITHER/  
SYNC  
U1  
FOD817CSD  
NDRV  
N
R
GATE4  
10Ω  
R
RT  
14.7k1%  
C
COMP2  
6.8pF  
N4  
IRF6217  
P
AUXDRV  
RT  
R
BIAS  
C
47nF  
AUX  
4.02kΩ  
1%  
R
FFB  
R
F
C
INT  
0.1µF  
10.0k1%  
4991%  
FFB  
FB  
CS  
C
F
R
COMP2  
330pF  
R
G1  
R
G2  
2.00kΩ  
R
AUX  
10kΩ  
121k1% 200k1%  
D5  
CS  
1%  
COMP  
CSSC  
R
CSSC  
4.02k1%  
GND  
PGND  
U2  
TLV4314AIDBVT-1.24V  
R
OPTO2  
R
1kΩ  
1%  
0.2Ω  
Maxim Integrated  
25  
www.maximintegrated.com  
 
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Typical Application Circuits (continued)  
D6  
R
FB1  
54.9k1%  
C
R
SNUB  
SNUB  
V
S
10pF 69.81%  
36V TO 57V  
TO FB  
R
FB2  
C
33µF  
63V  
BULK  
10k1%  
R
IN  
L
COUPLED  
100kΩ  
N
C
4 x 47µF  
6.3V  
C
1µF  
25V  
IN  
5V, 5A  
OUT5  
N
O
R
R
D3  
GATE2  
10Ω  
DCLMP1  
T1  
30.1kΩ  
C
C
C
C
OUT1 OUT2 OUT3 OUT4  
R
GATE1  
10Ω  
N
P
N
S
C
1%  
0.1µF  
N2  
5i412DP  
N
IN  
R
EN  
100kΩ  
D4  
PGOOD  
EN  
N
RDCLMP2  
7501%  
DCLMP  
N1  
5i412DP  
C
SS  
0.1µF  
MAX5974A  
MAX5974B  
SS  
(COUPLED INDUCTOR  
FEEDBACK)  
DT  
R
DT  
16.9k1%  
N3  
FDS3692  
C
CLAMP  
R
C
GATE3  
DITHER  
47nF  
10Ω  
10nF  
DITHER/  
SYNC  
NDRV  
N
R
GATE4  
10Ω  
R
RT  
14.7k1%  
N4  
IRF6217  
P
AUXDRV  
RT  
C
AUX  
47nF  
R
FFB  
10k1%  
R
F
FFB  
FB  
4991%  
CS  
C
330pF  
F
C
COMP  
4.7nF  
R
Z
R
AUX  
10kΩ  
D5  
CS  
2k1%  
COMP  
CSSC  
R
CSSC  
4.02k1%  
GND  
PGND  
C
INT  
47nF  
R
0.2Ω  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Typical Application Circuits (continued)  
L1  
D1  
V
S
N
T
C
D2  
BULK  
R
IN  
L2  
C
IN  
T1  
D3  
R
R
R
FB1  
FB2  
GATE2  
C
C C C  
OUT2 OUT3 OUT4  
N
P
N
OUT1  
S
R
GATE1  
N
IN  
N2  
R
R
DCLMP1  
R
EN  
100k  
D4  
PGOOD  
N
EN  
DCLMP2  
N1  
DCLMP  
MAX5974C  
MAX5974D  
C
SS  
SS  
DT  
R
DT  
R
C
CLAMP  
DITHER  
R
GATE3  
C
DITHER  
NDRV  
N
DITHER/  
SYNC  
N3  
R
GATE4  
R
RT  
P
N4  
AUXDRV  
RT  
C
AUX  
R
FFB  
FFB  
CS  
CSSC  
FB  
D5  
CS  
R
AUX  
R
CSSC  
COMP  
R
z
GND  
PGND  
R
C
COMP  
C
HF  
Ordering Information/Selector Guide  
UVLO  
THRESHOLD (V)  
PART  
TOP MARK  
PIN-PACKAGE  
TEMP RANGE  
FEEDBACK MODE  
MAX5974AETE+  
MAX5974BETE+  
MAX5974CETE+  
MAX5974DETE+  
MAX5974DATE+  
+AHY  
+AHZ  
+AIA  
+AIB  
+AIB  
16 TQFN-EP*  
16 TQFN-EP*  
16 TQFN-EP*  
16 TQFN-EP*  
16 TQFN-EP*  
-40°C to +105°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +125°C  
16  
8.4  
16  
Sample/Hold  
Sample/Hold  
Continuously Connected  
Continuously Connected  
Continuously Connected  
8.4  
8.4  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Chip Information  
PROCESS: BiCMOS  
Maxim Integrated  
27  
www.maximintegrated.com  
 
MAX5974A/MAX5974B/  
MAX5974C/MAX5974D  
Active-Clamped, Spread-Spectrum,  
Current-Mode PWM Controllers  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
6/10  
Initial release  
Introduced the MAX5974B/MAX5974D. Updated the Absolute Maximum  
Ratings, Electrical Characteristics, Pin Description, the p-Channel MOSFET  
Gate Driver, Frequency Foldback for High-Efficiency Light-Load Operation  
sections, and Typical Application Circuits.  
1, 2, 3, 12, 15, 17,  
19, 21, 23, 24, 25  
1
9/10  
2
3
6/11  
Added internal zener diode information  
1–10, 12–17, 19–25  
11, 16, 24–26  
Updated COMP function in Pin Description, corrected pin name in UVLO  
on Power Source section, corrected Figures 1 and 2, corrected Typical  
Application Circuits  
10/13  
Added MAX5974DATE+ option to Ordering Information, Electrical  
Characteristics, and updated Typical Application Circuits  
4
5
6
10/14  
7/15  
7/17  
1, 2–5, 25–27  
Removed EN from 2nd line in Absolute Maximum Ratings and changed the  
1st line under Maximum Input/Output Current (continuous) from IN, NDRV,  
AUXDRV to EN  
2
Updated Absolute Maximum Ratings section, Electrical Characteristics table,  
and Ordering Information table,  
2–6, 27  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2017 Maxim Integrated Products, Inc.  
28  

相关型号:

MAX5974AETE+T

暂无描述
MAXIM

MAX5974A_11

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers
MAXIM

MAX5974B

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers
MAXIM

MAX5974BETE

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers
MAXIM

MAX5974BETE+

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers
MAXIM

MAX5974C

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers
MAXIM

MAX5974CETE

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers
MAXIM

MAX5974CETE+

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers
MAXIM

MAX5974D

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers
MAXIM

MAX5974DETE

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers
MAXIM

MAX5974DETE+

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers
MAXIM

MAX5974DETE+T

Switching Controller, Current-mode, 600kHz Switching Freq-Max, BICMOS, 3 X 3 MM, ROHS COMPLIANT, TQFN-16
MAXIM