MAX77640EWV+ [MAXIM]

Power Supply Support Circuit,;
MAX77640EWV+
型号: MAX77640EWV+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Support Circuit,

文件: 总53页 (文件大小:2352K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here for production status of specific part numbers.  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
General Description  
Benefits and Features  
The MAX77640/MAX77641 are a low-I power solution  
Q
● Compact, High-Efficiency Power Solution  
• 3-Output Single-Inductor Multiple-Output (SIMO)  
Buck-Boost Regulator  
for applications where size and efficiency are critical. The  
device integrates a 3-output single-inductor multiple-out-  
put (SIMO) buck-boost regulator, a 150mA LDO, and a  
3-channel current-sink driver.  
• 150mA LDO  
• 3-Channel Current-Sink Driver  
• Flexible Power Sequencing  
• GPIO and Reset Output  
The SIMO operates on an input between 2.7V and 5.5V.  
The outputs are independently programmable between  
0.8V and 5.25V depending on ordering option. Each out-  
put is a buck-boost with glitchless transition between buck  
and boost operation. The SIMO can support >300mA  
● 3-Output SIMO Extends Battery Life  
• 2.7V to 5.5V Input Voltage Range from Single Cell  
Li-Ion  
loads (1.8V  
, 3.7V ).  
• 0.8V to 5.25V Output Voltage Range (Table 1)  
OUT  
IN  
• Supports >300mA loads (1.8V  
• Improves Overall System Efficiency while Reducing  
Size  
• Maintains Regulation without Dropout unlike  
Traditional Bucks  
• Glitchless Buck-Boost Operation  
, 3.7V )  
OUT  
IN  
The 150mA LDO provides ripple rejection for noise-sen-  
sitive applications. The current sinks can be programmed  
to blink LEDs in custom patterns. The device integrates  
a power sequencer to control power-up/down order of  
each output. Default output voltages and sequence order  
2
are factory-programmable. An I C serial interface further  
configures the device.  
● Low Quiescent Current  
• 300nA Shutdown Current  
• 5.6μA Operating Current (3 SIMO Channels and  
LDO On)  
The MAX77640/MAX77641 are available in a 30-bump  
wafer-level package (WLP). Total solution size is 16mm .  
For a similar product with a battery charger, refer to the  
MAX77650.  
2
● Small Size  
• 2.75mm x 2.15mm (0.7mm max heigh) WLP  
• 30-Bump, 0.4mm Pitch, 6 x 5 Array  
• 16mm Total Solution Size  
Applications  
2
● Hearables: Bluetooth Headphones and Earbuds  
● Wearables: Fitness, Health, and Activity Monitors  
● Action Cameras, Wearable/Body Cameras  
● Internet of Things (IoT) Gadgets  
Ordering Information appears at end of data sheet.  
Simplified Application Circuit  
2.7V TO 5.5V  
DC INPUT  
MAX77640  
IN_SBB  
2
16mm SOLUTION SIZE  
SYS  
V
SYS  
4.15mm  
IN_LDO  
SBB0  
2.05V  
1.2V  
3.3V  
GND  
C
LDO  
SBB1  
SBB2  
V
SYS  
C
SBB0  
C
SBB1  
C
SBB2  
SYSTEM  
RESOURCES  
ONKEY  
nEN  
PGND  
GPIO  
GPIO  
1.5µH  
LXA  
LXB  
V
IO  
C
SYS  
LDO  
1.85V  
BST  
SYS  
V
/POWER  
IO  
L
SDA  
SCL  
nRST  
SDA  
SCL  
nRST  
nIRQ  
LED0  
LED1  
LED2  
nIRQ  
● 0.2mm COMPONENT PITCH  
● PULLUP RESISTORS NOT DRAWN  
PROCESSOR  
PWR_HLD  
PWR_HLD  
19-100307; Rev 2; 8/18  
 
 
 
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
TABLE OF CONTENTS  
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
30 WLP 0.4mm Pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Characteristics—Top Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Characteristics—SIMO Buck-Boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical Characteristics—LDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Electrical Characteristics—Current Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2
Electrical Characteristics—I C Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Bump Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
MAX77640/MAX77641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Bump Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Detailed Description—Top Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Support Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Top-Level Interconnect Simplified Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Voltage Monitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
SYS POR Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
SYS Undervoltage-Lockout Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SYS Overvoltage-Lockout Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
nEN Enable Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
nEN Manual Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
nEN Dual-Functionality: Push-Button vs. Slide-Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Interrupts (nIRQ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Reset Output (nRST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Power Hold Input (PWR_HLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
General-Purpose Input Output (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
On/Off Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Flexible Power Sequencer (FPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Debounced Inputs (nEN and GPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Thermal Alarms and Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Register Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Detailed Description—SIMO Buck-Boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
SIMO Features and Benefits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
www.maximintegrated.com  
Maxim Integrated | 2  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
TABLE OF CONTENTS (CONTINUED)  
SIMO Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
SIMO Soft-Start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
SIMO Output Voltage Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
SIMO Active Discharge Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
SIMO Available Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Inductor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Boost Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
SIMO Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Unused SIMO Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Detailed Description—LDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Features and Benefits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
LDO Active-Discharge Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
LDO Dropout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
LDO Soft-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Current Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Using the LDO as a Load Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Input and Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Detailed Description—Current Sinks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
LED Assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Unused Current Sink Ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
2
Detailed Description—I C Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
www.maximintegrated.com  
Maxim Integrated | 3  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
LIST OF FIGURES  
Figure 1. Top-Level Interconnect Simplified Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 2. nEN Usage Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 3. GPIO Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 4. Top-Level On/Off Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 5. Power-Up/Power-Down Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 6. Flexible Power Sequencer Basic Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 7. Startup Timing Diagram Due to nEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 8. Debounced Inputs Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 9. SIMO Detailed Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 10. SIMO Switching Frequency Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 11. PCB Top-Metal and Component Layout Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 12. LDO Simplified Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 13. LDO Capacitance for Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 14. Current Sink Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
2
Figure 15. I C Simplified Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 16. Slave Address Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
www.maximintegrated.com  
Maxim Integrated | 4  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
LIST OF TABLES  
Table 1. Regulator Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 2. On/Off Controller Transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 3. SIMO Available Output Current for Common Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 4. Example Inductors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
2
Table 5. I C Slave Address Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
www.maximintegrated.com  
Maxim Integrated | 5  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Absolute Maximum Ratings  
nEN, PWR_HLD, nIRQ, nRST to GND .......-0.3V to V  
SCL, SDA, GPIO to GND ...............................-0.3V to V + 0.3V  
SYS to GND .......................................................... -0.3V to +6.0V  
SYS to IN_SBB ..................................................... -0.3V to +0.3V  
nIRQ, nRST, SDA, GPIO Continous Current .................... ±20mA  
+ 0.3V  
BST to LXB ............................................................-0.3V to +6.0V  
SBB0, SBB1, SBB2 Short-Circuit Duration.................Continuous  
PGND to GND........................................................-0.3V to +0.3V  
LGND to GND........................................................-0.3V to +0.3V  
Operating Temperature Range.............................-40°C to +85°C  
Junction Temperature.......................................................+150°C  
Storage Temperature Range ..............................-65°C to +150°C  
Soldering Temperature (reflow) ........................................+260°C  
Continuous Power Dissipation (Multilayer Board)  
SYS  
IO  
LDO to GND (Note 1) ............................ -0.3V to V  
+ 0.3V  
+ 0.3V  
SYS  
IN_LDO  
IN_LDO, V to GND...................................-0.3V to V  
IO  
LED0, LED1, LED2 to LGND ................................ -0.3V to +6.0V  
IN_SBB to PGND .................................................. -0.3V to +6.0V  
LXA Continuous Current (Note 1) ..................................1.2A  
LXB Continuous Current (Note 2) ..................................1.2A  
(T = +70°C, derate 20.4mW/°C above +70°C)..........1632mW  
A
RMS  
RMS  
SBB0, SBB1, SBB2 to PGND (Note 3) ................. -0.3V to +6.0V  
BST to IN_SBB...................................................... -0.3V to +6.0V  
Note 1: LXA has internal clamping diodes to PGND and IN_SBB. It is normal for these diodes to briefly conduct during switching  
events. Avoid steady-state conduction of these diodes.  
Note 2: Do not externally bias LXB. LXB has an internal low-side clamping diode to PGND, and an internal high-side clamping diode  
that dynamically shifts to the selected SIMO output. It is normal for these internal clamping diodes to briefly conduct during  
switching events. When the SIMO regulator is disabled, the LXB to PGND absolute maximum voltage is -0.3V to V  
+0.3V.  
SBB0  
Note 3: When the active discharge resistor is engaged, limit its power dissipation to an average of 10mW.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may  
affect device reliability.  
Package Information  
30 WLP 0.4mm Pitch  
Package Code  
W302H2+1  
Outline Number  
21-100047  
Land Pattern Number  
Thermal Resistance, Four-Layer Board:  
Refer to Application Note 1891  
Junction to Ambient (θ  
)
49°C/W (2s2p board)  
JA  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
www.maximintegrated.com  
Maxim Integrated | 6  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Electrical Characteristics—Top Level  
(V  
= V  
= V  
= 3.7V, V = 1.8V, limits are 100% production tested at T = +25°C, Min/Max limits over the operating  
IN_LDO IO A  
SYS  
IN_SBB  
temperature range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Voltage  
Range  
V
SYS  
2.7  
5.5  
V
Main bias is off  
(SBIA_EN = 0).  
This is the standby  
state  
0.3  
1.0  
1
Current measured  
into SYS, IN_SBB,  
and IN_LDO, all  
resources are off  
(LDO, SBB0,  
Main bias is on in  
low-power mode  
(SBIA_EN = 1,  
SBIA_LPM = 1)  
Shutdown Supply  
Current  
I
μA  
SHDN  
SBB1, SBB2,  
LED0, LED1,  
Main bias is on in  
normal mode  
(SBIA_EN = 1,  
SBIA_LPM = 0)  
LED2), T  
+25°C  
=
A
28.0  
5.6  
Current measured  
Main bias is in low-  
into SYS, IN_SBB, power mode  
and IN_LDO. LDO, (SBIA_LPM = 1)  
SBB0, SBB1, and  
13  
60  
Quiescent Supply  
Current  
I
μA  
Q
Main bias is  
normal-power  
SBB2 are enabled  
with no load. LED0,  
40  
mode (SBIA_LPM  
LED1, and LED2  
= 0)  
are disabled  
POWER-ON RESET (POR)  
POR Threshold  
V
V
SYS  
falling  
1.6  
1.9  
2.1  
V
POR  
POR Threshold  
Hysteresis  
100  
mV  
UNDERVOLTAGE LOCKOUT (UVLO)  
V
V
falling, UVLO_F[3:0] = 0xA  
falling, UVLO_F[3:0] = 0xF  
2.5  
2.6  
2.7  
SYS  
UVLO Threshold  
V
V
SYSUVLO  
2.75  
2.85  
2.95  
SYS  
UVLO Threshold  
Hysteresis  
V
SYSUVLO_HY  
S
UVLO_H[3:0] = 0x5  
300  
mV  
OVERVOLTAGE LOCKOUT (OVLO)  
OVLO Threshold  
V
V
SYS  
rising  
5.70  
5.85  
6.00  
V
SYSOVLO  
THERMAL MONITORS  
Overtemperature-  
Lockout Threshold  
T
T rising  
165  
80  
°C  
°C  
°C  
°C  
OTLO  
J
Thermal Alarm  
Temperature 1  
T
T rising  
J
JAL1  
JAL2  
Thermal Alarm  
Temperature 2  
T
T rising  
J
100  
15  
Thermal Alarm  
Temperature Hysteresis  
www.maximintegrated.com  
Maxim Integrated | 7  
 
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Electrical Characteristics—Top Level (continued)  
(V  
= V  
= V  
= 3.7V, V = 1.8V, limits are 100% production tested at T = +25°C, Min/Max limits over the operating  
IN_LDO IO A  
SYS  
IN_SBB  
temperature range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ENABLE INPUT (nEN)  
V
V
5.5V  
= 5.5V,  
= 0V, and  
SYS  
T
T
= +25°C  
= +85°C  
-1  
±0.001  
±0.01  
+1  
nEN  
A
nEN Input Leakage  
Current  
I
μA  
nEN_LKG  
V
V
= 5.5V,  
= 0V and  
SYS  
nEN  
A
5.5V  
nEN Input Falling  
Threshold  
V
-
V
V
-
-
SYS  
1.4  
SYS  
1.0  
V
V
nEN falling  
nEN falling  
V
V
TH_nEN_F  
nEN Input Rising  
Threshold  
V
SYS  
0.6  
-
SYS  
0.9  
TH_nEN_F  
DBEN_nEN = 0  
DBEN_nEN = 1  
MRT_OTP = 0  
MRT_OTP = 1  
100  
30  
16  
8
μs  
nEN Debounce Time  
t
DBNC_nEN  
ms  
14  
7
20  
nEN Manual Reset Time  
t
s
MRST  
10.5  
POWER HOLD INPUT (PWR_HLD)  
V
V
= V = 5.5V,  
T
T
= +25°C  
= +85°C  
-1  
±0.001  
±0.01  
+1  
SYS  
IO  
A
PWR_HLD Input  
Leakage Current  
I
PWR_HLD_LK  
G
= 0V,  
μA  
PWR_HLD  
A
and 5.5V  
PWR_HLD Input  
Voltage Low  
V
V
V
V
= 1.8V  
= 1.8V  
= 1.8V  
0.3 x V  
V
V
IL  
IO  
IO  
IO  
IO  
PWR_HLD Input  
Voltage High  
V
IH  
0.7 x V  
IO  
PWR_HLD Input  
Hysteresis  
V
HYS  
50  
mV  
μs  
PWR_HLD Glitch Filter  
t
Both rising and falling edges are filtered  
100  
PWR_HLD_GF  
Maximum time for PWR_HLD input to  
assert after nRST deasserts during the  
power-up sequence  
t
PWR_HLD_WA  
IT  
PWR_HLD Wait Time  
3.5  
4.0  
5.0  
0.4  
+1  
s
OPEN-DRAIN INTERRUPT OUTPUT (nIRQ)  
nIRQ Output Voltage  
Low  
V
OL  
I
= 2mA  
= 25pF  
V
SINK  
nIRQ Output Falling  
Edge Time  
t
C
2
ns  
f_nIRQ  
IRQ  
V
= V = 5.5V,  
T
T
= +25°C  
= +85°C  
-1  
±0.001  
SYS  
IO  
A
nIRQ set to be high  
impedance (i.e., no  
interrupts), V  
0V and 5.5V  
nIRQ Output High  
Leakage Current  
I
μA  
V
nIRQ_LKG  
±0.01  
A
=
nIRQ  
OPEN-DRAIN RESET OUTPUT (nRST)  
nRST Output Voltage  
Low  
V
OL  
I
= 2mA  
0.4  
SINK  
www.maximintegrated.com  
Maxim Integrated | 8  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Electrical Characteristics—Top Level (continued)  
(V  
= V  
= V  
= 3.7V, V = 1.8V, limits are 100% production tested at T = +25°C, Min/Max limits over the operating  
IN_LDO IO A  
SYS  
IN_SBB  
temperature range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
nRST Output Falling  
Edge Time  
t
C
RST  
= 25pF  
2
ns  
f_nRST  
nRST Deassert Delay  
Time  
t
See Figure 5 for more information  
See Figure 5 for more information  
5.12  
ms  
ms  
RSTODD  
nRST Assert Delay  
Time  
t
10.24  
RSTOAD  
V
SYS  
= V  
=
T
A
= +25°C  
-1  
±0.001  
+1  
IO  
5.5V, nRST set to  
be high impedance  
(i.e., not reset),  
nRST Output High  
Leakage Current  
I
μA  
nRST_LKG  
T
A
= +85°C  
±0.01  
V
nRST  
= 0V and  
5.5V  
GENERAL-PURPOSE INPUT/OUTPUT (GPIO)  
Input Voltage Low  
Input Voltage High  
V
V
V
= 1.8V  
0.3 x V  
+1  
V
V
IL  
IO  
IO  
V
IH  
= 1.8V  
0.7 x V  
-1  
IO  
IO  
IO  
DIR = 1, V  
5.5V, V  
and 5.5V  
=
= 0V  
T
T
= +25°C  
= +85°C  
±0.001  
±0.01  
IO  
A
Input Leakage Current  
I
μA  
GPI_LKG  
GPIO  
A
Output Voltage Low  
Output Voltage High  
Input Debounce Time  
V
OL  
I
I
= 2mA  
0.4  
V
V
SINK  
V
OH  
= 1mA  
0.8 x V  
SOURCE  
t
DBEN_GPI = 1  
30  
3
ms  
DBNC_GPI  
Output Falling Edge  
Time  
t
C
= 25pF  
= 25pF  
ns  
ns  
f_GPIO  
GPIO  
GPIO  
Output Rising Edge  
Time  
t
C
3
r_GPIO  
FLEXIBLE POWER SEQUENCER  
Power-Up Event Periods  
t
See Figure 6 for more information  
See Figure 6 for more information  
1.28  
2.56  
ms  
ms  
EN  
Power-Down Event  
Periods  
t
DIS  
Electrical Characteristics—SIMO Buck-Boost  
(V  
= 3.7V, V  
= 3.7V, C  
= 10μF, L = 1.5μH, limits are 100% production tested at T = +25°C, Min/Max limits over the  
SBBx A  
SYS  
IN_SBB  
operating temperature range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OUTPUT VOLTAGE RANGE (SBB0)  
Minimum Output  
Voltage  
0.8  
V
Maximum Output  
Voltage  
2.375  
6
V
Output DAC Bits  
bits  
www.maximintegrated.com  
Maxim Integrated | 9  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Electrical Characteristics—SIMO Buck-Boost (continued)  
(V  
= 3.7V, V  
= 3.7V, C  
= 10μF, L = 1.5μH, limits are 100% production tested at T = +25°C, Min/Max limits over the  
SBBx A  
SYS  
IN_SBB  
operating temperature range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output DAC LSB Size  
25  
mV  
OUTPUT VOLTAGE RANGE (SBB1)  
MAX77640  
MAX77641  
MAX77640  
MAX77641  
0.8  
2.4  
Minimum Output  
Voltage  
V
1.5875  
5.25  
6
Maximum Output  
Voltage  
V
Output DAC Bits  
bits  
mV  
MAX77640  
MAX77641  
12.5  
50  
Output DAC LSB Size  
OUTPUT VOLTAGE RANGE (SBB2)  
MAX77640  
MAX77641  
MAX77640  
MAX77641  
0.8  
2.4  
3.95  
5.25  
6
Minimum Output  
Voltage  
V
V
Maximum Output  
Voltage  
Output DAC Bits  
bits  
mV  
Output DAC LSB Size  
50  
STATIC OUTPUT VOLTAGE ACCURACY  
V
falling,  
T
T
= +25°C  
= -40°C  
-2.5  
-4.0  
+2.5  
+4.0  
SBBx  
A
threshold where  
LXA switches high.  
Specified as a  
percentage of  
target output  
Output Voltage  
Accuracy  
%
A
to +85°C  
voltage.  
TIMING CHARACTERISTICS  
Delay time from the SIMO receiving its  
first enable signal to when it begins to  
switch in order to service that output.  
Enable Delay  
60  
μs  
Soft-Start Slew Rate  
dV/dt  
3.3  
5.0  
6.6  
mV/μs  
SS  
POWER STAGE CHARACTERISTICS  
SBB0, SBB1,  
SBB2 are disabled,  
T
T
T
= +25°C  
= +85°C  
= +25°C  
-1.0  
±0.1  
±1.0  
±0.1  
+1.0  
A
A
A
LXA Leakage Current  
μA  
V
V
= 5.5V,  
= 0V, or 5.5V  
IN_SBB  
LXA  
SBB0, SBB1,  
SBB2 are disabled,  
-1.0  
+1.0  
+1.0  
LXB Leakage Current  
BST Leakage Current  
V
V
= 5.5V,  
= 0V or 5.5V,  
μA  
μA  
IN_SBB  
T
A
= +85°C  
±1.0  
LXA  
all V  
= 5.5V  
SBBx  
V
V
V
= 5.5V,  
= 5.5V,  
= 11V  
T
T
= +25°C  
= +85°C  
+0.01  
+0.1  
IN_SBB  
A
LXB  
BST  
A
www.maximintegrated.com  
Maxim Integrated | 10  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Electrical Characteristics—SIMO Buck-Boost (continued)  
(V  
= 3.7V, V  
= 3.7V, C  
= 10μF, L = 1.5μH, limits are 100% production tested at T = +25°C, Min/Max limits over the  
SBBx A  
SYS  
IN_SBB  
operating temperature range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SBB0, SBB1,  
T
T
= +25°C  
= +85°C  
+0.1  
+1.0  
A
SBB2 are disabled,  
active-discharge  
disabled  
Disabled Output  
Leakage Current  
(ADE_SBBx = 0),  
μA  
+0.2  
140  
A
V
V
V
= 5.5V,  
SBBx  
= 0V, V  
=
LXB  
SYS  
= V  
=
BST  
IN_SBB  
5.5V  
Active Discharge  
Impedance  
SBB0, SBB1, SBB2 are disabled, active  
discharge enabled (ADE_SBBx = 1)  
R
80  
260  
Ω
A
AD_SBBx  
CONTROL SCHEME  
IP_SBBx = 0b11  
IP_SBBx = 0b10  
IP_SBBx = 0b01  
IP_SBBx = 0b00  
0.414  
0.589  
0.713  
0.892  
0.500  
0.707  
0.866  
1.000  
0.586  
0.806  
0.947  
1.108  
Peak Current Limit  
(Note 5)  
I
P_SBB  
Note 4: Guaranteed by design and characterization but not directly production tested. Production test coverage is provided by the  
Shutdown Supply Current and Quiescent Supply Current specification in the Electrical Characteristics—Top Level table.  
Note 5: Typical values align with bench observations using the stated conditions. Minimum and maximum values are tested in  
production with DC currents. See the Typical Operating Characteristics SIMO switching waveforms to gain more insight on  
this specification.  
Electrical Characteristics—LDO  
(V  
= 3.7V, V  
= 2.05V, V  
= 1.85V, C  
= 10μF, limits are 100% production tested at T = +25°C, Min/Max limits over  
LDO A  
SYS  
IN_LDO  
LDO  
the operating temperature range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL CHARACTERISTICS  
IN_LDO cannot exceed SYS voltage  
(Note 6)  
Input Voltage  
V
1.8  
5.5  
1
V
IN_LDO  
Current measured into IN_LDO, LDO  
output disabled (Note 4)  
LDO Shutdown Current  
I
I
0.1  
1.7  
μA  
IN_LDO  
LDO output  
enabled and in  
regulation,  
5.15  
V
=
IN_LDO  
2.05V, V  
1.85V  
=
Current measured  
LDO  
LDO Quiescent Supply  
Current (Note 4)  
into IN_LDO, I  
0mA  
=
LDO  
μA  
IN_LDO  
LDO output  
enabled and in  
dropout, V  
=
2.3  
IN_LDO  
1.8V, V  
target  
LDO  
is 1.85V  
Maximum Output  
Current  
I
150  
mA  
OUT  
www.maximintegrated.com  
Maxim Integrated | 11  
 
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Electrical Characteristics—LDO (continued)  
(V  
= 3.7V, V  
= 2.05V, V  
= 1.85V, C  
= 10μF, limits are 100% production tested at T = +25°C, Min/Max limits over  
LDO A  
SYS  
IN_LDO  
LDO  
the operating temperature range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
Current Limit  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
V
LDO  
externally forced to 1.3V  
165  
255  
375  
mA  
LIM_LDO  
GENERAL CHARACTERISTICS / OUTPUT VOLTAGE RANGE  
Programmable with TV_LDO[6:0] in  
12.5mV steps  
Output Voltage Range  
1.3500  
2.9375  
V
Output DAC Bits  
7
bits  
mV  
Output DAC LSB Size  
STATIC CHARACTERISTICS  
12.5  
Initial Output Voltage  
Accuracy  
I
= 75mA, T = +25°C  
-2.5  
-3  
+2.5  
+3  
%
%
LDO  
A
V
programmed from 1.35V to  
LDO  
Output Voltage  
Accuracy  
2.9375V, V  
not in dropout, I  
= 1.8V to 5.5V, LDO  
IN_LDO  
= 0mA to 150mA,  
LDO  
T
A
= -5°C to +85°C  
Main bias circuits  
are in normal-  
power mode  
f = 10Hz to  
100kHz, I  
550  
800  
=
=
=
OUT  
(SBIA_LPM = 0)  
15mA, V  
SYS  
Output Noise  
μV  
RMS  
3.7V, V  
IN_LDO  
Main bias circuits  
are in low-power  
mode (SBIA_LPM  
= 1)  
2.05V, V  
1.85V  
=
LDO  
TIMING CHARACTERISTICS  
Enable Delay  
T
= +25°C  
0.6  
1.25  
2.50  
ms  
A
V
from 10% to 90% of final  
LDO  
Soft-Start Slew Rate  
dV/dt  
0.5  
1.25  
mV/μs  
SS  
value, T = +25°C  
A
POWER STAGE CHARACTERISTICS  
V
SYS  
= 3.7V, 1.85V programmed output  
Dropout Voltage  
V
voltage (TV_LDO[6:0] = 0x20),  
90  
180  
0.9  
mV  
LDO_DO  
V
= 1.7V, I  
= 150mA (Note 1)  
LDO  
IN_LDO  
V
SYS  
= 3.7V, 1.85V  
programmed output  
voltage  
(TV_LDO[6:0] =  
T
A
= +25°C  
0.6  
0x20), V  
=
IN_LDO  
1.7V, I  
=
LDO  
I
(Note 1)  
MAX  
Dropout On-Resistance  
R
DSON  
Ω
V
=3.7V, 1.85V  
SYS  
programmed output  
voltage  
(TV_LDO[6:0] =  
T
A
= +85°C  
1.2  
0x20), V  
=
IN_LDO  
1.7V, I  
=
LDO  
I
(Note 1)  
MAX  
www.maximintegrated.com  
Maxim Integrated | 12  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Electrical Characteristics—LDO (continued)  
(V  
= 3.7V, V  
= 2.05V, V  
= 1.85V, C  
= 10μF, limits are 100% production tested at T = +25°C, Min/Max limits over  
LDO A  
SYS  
IN_LDO  
LDO  
the operating temperature range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Active-Discharge  
Impedance  
Regulator disabled, active discharge  
enabled (ADE_LDO = 1)  
R
50  
100  
200  
Ω
AD_LDO  
Regulator disabled,  
active discharge  
disabled  
T
7)  
= +25°C (Note  
T = +85°C  
A
A
+0.1  
+1.0  
+1.0  
Disabled Output  
Leakage Current  
(ADE_LDO = 0),  
μA  
V
SYS  
= V  
=
IN_LDO  
5.5V, V  
= 5.5V  
LDO  
and 0V  
Note 6: Dropout is the condition where the input voltage is in its valid input range but the output cannot be properly regulated because  
the input voltage is not sufficiently higher than the output voltage. See the LDO Dropout section for more information.  
Note 7: Guaranteed by design and characterization but not directly production tested. The ability to disconnect the active discharge  
resistance is functionally checked in a production test.  
Electrical Characteristics—Current Sinks  
(V  
= V  
= 3.7V, V = 1.8V, limits are 100% production tested at T = +25°C, Min/Max limits over the operating temperature  
IN_SBB IO A  
SYS  
range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µA  
GENERAL CHARACTERISTICS  
Change in supply current at SYS when  
one channel is enabled and delivering  
Current-Sink Quiescent  
Current  
I
6
12  
Q
12.8mA, V  
= 0.2V  
LEDx  
All current-sink  
drivers combined,  
outputs disabled,  
T
= +25ºC  
= +85ºC  
+0.1  
+1.0  
+1.0  
A
A
Current-Sink Leakage  
µA  
T
V
LEDx  
= 5.5V  
3.2mA CURRENT-SINK RANGE (LED_FSx[1:0] = 0b01, VLEDx = 0.2V)  
Minimum Sink Current  
Maximum Sink Current  
Current-Sink DAC Bits  
Current-Sink DAC LSB  
BRT_LEDx[4:0] = 0b00000  
BRT_LEDx[4:0] = 0b11111  
0.1  
3.2  
5
mA  
mA  
bits  
mA  
0.1  
3.20  
T
T
= +25ºC  
3.10  
3.03  
3.25  
3.36  
A
BRT_LEDx[4:0] =  
0b11111  
Current-Sink Accuracy  
mA  
mV  
= -40ºC to  
A
3.20  
35  
+85ºC  
BRT_LEDx[4:0] = 0b11111, I  
2.9mA  
=
LEDx  
Dropout Voltage  
V
DO  
70  
6.4mA CURRENT-SINK RANGE (LED_FSx[1:0] = 0b10, VLEDx = 0.2V)  
Minimum Sink Current  
Maximum Sink Current  
Current-Sink DAC Bits  
Current-Sink DAC LSB  
BRT_LEDx[4:0] = 0b00000  
BRT_LEDx[4:0] = 0b11111  
0.2  
6.4  
5
mA  
mA  
bits  
mA  
0.2  
www.maximintegrated.com  
Maxim Integrated | 13  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Electrical Characteristics—Current Sinks (continued)  
(V  
= V  
= 3.7V, V = 1.8V, limits are 100% production tested at T = +25°C, Min/Max limits over the operating temperature  
IN_SBB IO A  
SYS  
range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
T
= +25ºC  
6.30  
6.40  
6.50  
A
A
BRT_LEDx[4:0] =  
0b11111  
Current-Sink Accuracy  
mA  
T
= -40ºC to  
6.06  
6.40  
35  
6.72  
70  
+85ºC  
LED_FSx[1:0] = 0b11, BRT_LEDx[4:0] =  
0b11111, I = 5.75mA  
Dropout Voltage  
V
DO  
mV  
LEDx  
12.8mA CURRENT-SINK RANGE (LED_FSx[1:0] = 0b11, VLEDx = 0.2V)  
Minimum Sink Current  
Maximum Sink Current  
Current-Sink DAC Bits  
Current-Sink DAC LSB  
BRT_LEDx[4:0] = 0b00000  
BRT_LEDx[4:0] = 0b11111  
0.4  
12.8  
5
mA  
mA  
bits  
mA  
0.4  
12.8  
T
T
= +25ºC  
12.6  
13.0  
A
BRT_LEDx[4:0] =  
0b11111  
Current-Sink Accuracy  
mA  
mV  
= -40ºC to  
A
12.16  
12.80  
35  
13.44  
+85ºC  
BRT_LEDx[4:0] = 0b11111, I  
11.5mA  
=
LEDx  
Dropout Voltage  
V
DO  
70  
TIMING CHARACTERISTICS  
Root Clock Frequency  
25.6  
32.0  
38.4  
Hz  
TIMING CHARACTERISTICS / BLINK PERIOD SETTINGS  
0.5  
16  
s
Minimum Blink Period  
Maximum Blink Period  
Blink Period LSB  
P_LEDx[3:0] = 0b0000  
clocks  
s
8
P_LEDx[3:0] = 0b1111  
256  
0.5  
16  
clocks  
s
clocks  
TIMING CHARACTERISTICS / BLINK DUTY CYCLE  
Minimum Blink Duty  
Cycle  
D_LEDx[3:0] = 0b0000  
D_LEDx[3:0] = 0b1111  
6.25  
%
Maximum Blink Duty  
Cycle  
100  
%
%
Blink Duty Cycle LSB  
6.25  
2
Electrical Characteristics—I C Serial Interface  
(V  
= V  
= 3.7V, V = 1.8V, limits are 100% production tested at T = +25°C, Min/Max limits over the operating temperature  
IN_SBB IO A  
SYS  
range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY  
V
IO  
Voltage Range  
V
1.7  
1.8  
3.6  
V
IO  
www.maximintegrated.com  
Maxim Integrated | 14  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
2
Electrical Characteristics—I C Serial Interface (continued)  
(V  
= V  
= 3.7V, V = 1.8V, limits are 100% production tested at T = +25°C, Min/Max limits over the operating temperature  
IN_SBB IO A  
SYS  
range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
-1  
TYP  
0
MAX  
+1  
UNITS  
V
V
= 3.6V, V  
= 1.7V, V  
= V  
= V  
= 0V or 3.6V  
= 0V or 1.7V  
IO  
SDA  
SDA  
SCL  
SCL  
V
IO  
Bias Current  
μA  
-1  
0
+1  
IO  
SDA AND SCL I/O STAGE  
SCL, SDA Input High  
Voltage  
V
V
V
= 1.7V to 3.6V  
= 1.7V to 3.6V  
0.7 x V  
IO  
V
V
IH  
IO  
SCL, SDA Input Low  
Voltage  
V
0.3 x V  
IL  
IO  
IO  
SCL, SDA Input  
Hysteresis  
0.05 x  
V
HYS  
V
V
IO  
SCL, SDA Input  
Leakage Current  
I
V
= 3.6V, V  
= V  
= 0V and 3.6V  
-10  
+10  
0.4  
μA  
V
I
IO  
SCL  
SDA  
SDA Output Low  
Voltage  
V
OL  
Sinking 20mA  
SCL, SDA Pin  
Capacitance  
C
10  
pF  
ns  
I
Output Fall Time from  
t
120  
OF  
V
IH  
to V (Note 1)  
IL  
2
I C-COMPATIBLE INTERFACE TIMING (STANDARD, FAST, AND FAST-MODE PLUS) (Note 8)  
Clock Frequency  
f
0
1000  
kHz  
μs  
SCL  
Hold Time (REPEATED)  
START Condition  
t
0.26  
HD_STA  
SCL Low Period  
SCL High Period  
t
0.5  
μs  
μs  
LOW  
t
0.26  
HIGH  
Setup Time REPEATED  
START Condition  
t
0.26  
μs  
SU_STA  
HD_DAT  
Data Hold Time  
Data Setup Time  
t
0
μs  
ns  
t
50  
SU_DAT  
Setup Time for STOP  
Condition  
t
0.26  
0.5  
μs  
μs  
ns  
SU_STO  
Bus Free Time between  
STOP and START  
Condition  
t
BUF  
Pulse Width of  
Suppressed Spikes  
Maximum pulse width of spikes that must  
be suppressed by the input filter  
t
50  
SP  
2
I C-COMPATIBLE INTERFACE TIMING (HIGH-SPEED MODE, CB = 100pF) (Note 8)  
Clock Frequency  
f
3.4  
MHz  
ns  
SCL  
Setup Time REPEATED  
START Condition  
t
160  
SU_STA  
Hold Time (REPEATED)  
START Condition  
t
160  
160  
ns  
ns  
HD_STA  
SCL Low Period  
t
LOW  
www.maximintegrated.com  
Maxim Integrated | 15  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
2
Electrical Characteristics—I C Serial Interface (continued)  
(V  
= V  
= 3.7V, V = 1.8V, limits are 100% production tested at T = +25°C, Min/Max limits over the operating temperature  
IN_SBB IO A  
SYS  
range (T = -40°C to +85°C) are guaranteed by design and characterization, unless otherwise noted.)  
A
PARAMETER  
SCL High Period  
Data Setup Time  
Data Hold Time  
SCL Rise Time  
SYMBOL  
CONDITIONS  
MIN  
60  
10  
0
TYP  
MAX  
UNITS  
ns  
t
HIGH  
t
ns  
SU_DAT  
HD_DAT  
t
70  
40  
ns  
t
T
T
= +25°C  
= +25°C  
10  
ns  
rCL  
A
Rise Time of SCL Signal  
after REPEATED  
START Condition and  
after Acknowledge Bit  
t
10  
80  
ns  
rCL1  
A
SCL Fall Time  
SDA Rise Time  
SDA Fall Time  
t
T
A
T
A
T
A
= +25°C  
= +25°C  
= +25°C  
10  
10  
10  
40  
80  
80  
ns  
ns  
ns  
fCL  
t
rDA  
t
fDA  
Setup Time for STOP  
Condition  
t
160  
ns  
pF  
ns  
SU_STO  
Bus Capacitance  
C
100  
1.7  
B
Pulse Width of  
Suppressed Spikes  
Maximum pulse width of spikes that must  
be suppressed by the input filter  
t
10  
SP  
2
I C-COMPATIBLE INTERFACE TIMING (HIGH-SPEED MODE, CB = 400pF) (Note 8)  
Clock Frequency  
f
MHz  
ns  
SCL  
Setup Time REPEATED  
START Condition  
t
160  
160  
SU_STA  
Hold Time (REPEATED)  
START Condition  
t
ns  
HD_STA  
SCL Low Period  
SCL High Period  
Data Setup Time  
Data Hold Time  
SCL Rise Time  
t
320  
120  
10  
0
ns  
ns  
ns  
ns  
ns  
LOW  
t
HIGH  
t
SU_DAT  
HD_DAT  
t
150  
80  
t
T
T
= +25°C  
= +25°C  
20  
RCL  
A
Rise Time of SCL Signal  
after REPEATED  
START Condition and  
after Acknowledge Bit  
t
20  
80  
ns  
RCL1  
A
SCL Fall Time  
SDA Rise Time  
SDA Fall Time  
t
T
A
T
A
T
A
= +25°C  
= +25°C  
= +25°C  
20  
20  
20  
80  
ns  
ns  
ns  
FCL  
t
160  
160  
RDA  
t
FDA  
Setup Time for STOP  
Condition  
t
160  
ns  
pF  
ns  
SU_STO  
Bus Capacitance  
C
400  
B
Pulse Width of  
Suppressed Spikes  
Maximum pulse width of spikes that must  
be suppressed by the input filter  
t
10  
SP  
Note 8: Design guidance only. Not production tested.  
www.maximintegrated.com  
Maxim Integrated | 16  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Typical Operating Characteristics  
(Typical Applications Circuit, V  
= V  
= 3.7V, V = 1.8V, T = +25°C, unless otherwise noted.)  
IN_SBB IO A  
SYS  
www.maximintegrated.com  
Maxim Integrated | 17  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Typical Operating Characteristics (continued)  
(Typical Applications Circuit, V  
= V  
= 3.7V, V = 1.8V, T = +25°C, unless otherwise noted.)  
IN_SBB IO A  
SYS  
(Inductor = Toko DFE201210S-2R2M, 2.2μH, 127mΩ, ISAT = 1.5A, 2.0x1.2x1.0mm)  
www.maximintegrated.com  
Maxim Integrated | 18  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Typical Operating Characteristics (continued)  
(Typical Applications Circuit, V  
= V  
= 3.7V, V = 1.8V, T = +25°C, unless otherwise noted.)  
IN_SBB IO A  
SYS  
(Inductor = Toko DFE201210S-2R2M, 2.2μH, 127mΩ, ISAT = 1.5A, 2.0x1.2x1.0mm)  
www.maximintegrated.com  
Maxim Integrated | 19  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Typical Operating Characteristics (continued)  
(Typical Applications Circuit, V  
= V  
= 3.7V, V = 1.8V, T = +25°C, unless otherwise noted.)  
IN_SBB IO A  
SYS  
(Inductor = Toko DFE201210S-2R2M, 2.2μH, 127mΩ, ISAT = 1.5A, 2.0x1.2x1.0mm)  
www.maximintegrated.com  
Maxim Integrated | 20  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Typical Operating Characteristics (continued)  
(Typical Applications Circuit, V  
= V  
= 3.7V, V = 1.8V, T = +25°C, unless otherwise noted.)  
IN_SBB IO A  
SYS  
(Inductor = Toko DFE201210S-2R2M, 2.2μH, 127mΩ, ISAT = 1.5A, 2.0x1.2x1.0mm)  
www.maximintegrated.com  
Maxim Integrated | 21  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Typical Operating Characteristics (continued)  
(Typical Applications Circuit, V  
= V  
= 3.7V, V = 1.8V, T = +25°C, unless otherwise noted.)  
IN_SBB IO A  
SYS  
www.maximintegrated.com  
Maxim Integrated | 22  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Typical Operating Characteristics (continued)  
(Typical Applications Circuit, V  
= V  
= 3.7V, V = 1.8V, T = +25°C, unless otherwise noted.)  
IN_SBB IO A  
SYS  
www.maximintegrated.com  
Maxim Integrated | 23  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Typical Operating Characteristics (continued)  
(Typical Applications Circuit, V  
= V  
= 3.7V, V = 1.8V, T = +25°C, unless otherwise noted.)  
IN_SBB IO A  
SYS  
www.maximintegrated.com  
Maxim Integrated | 24  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Bump Configuration  
MAX77640/MAX77641  
TOP VIEW  
(BUMP SIDE DOWN)  
1
2
3
4
5
6
+
PWR_HLD nEN  
SDA  
LED2  
LED1  
LED0  
A
B
GPIO  
NC  
nRST  
nIRQ  
GND  
SYS  
LGND  
GND  
NC  
SCL  
LDO  
BST  
LXB  
IN_LDO  
SBB0  
V
IO  
C
GND  
GND  
LXA  
SBB1  
D
SYS  
IN_SBB PGND  
SBB2  
E
WLP  
(2.75mm x 2.15mm x 0.7mm)  
Bump Descriptions  
PIN  
NAME  
FUNCTION  
TYPE  
TOP LEVEL  
Active-High Power Hold Input. Assert PWR_HLD to keep the on/off controller in its on state.  
PWR_HLD If PWR_HLD is not needed, connect it to SYS and use the SFT_RST bits to power the  
device down.  
digital  
input  
A1  
Active-Low Enable Input. nEN supports push-button or slide-switch configurations. An  
external pullup resistor (10kΩ to 100kΩ) to SYS is required.  
digital  
input  
A2  
A3  
B4  
B1  
B2  
nEN  
2
SDA  
SCL  
I C Data  
digital i/o  
digital  
input  
2
I C Clock  
GPIO  
nRST  
General Purpose Input/Output. The GPIO I/O stage is internally biased with V  
.
digital i/o  
IO  
Active-Low, Open-Drain Reset Output. Connect a 100kΩ pullup resistor between nRST and  
a voltage equal to or less than V  
digital  
output  
.
SYS  
Active-Low, Open-Drain Interrupt Output. Connect a 100kΩ pullup resistor between  
nIRQ and a voltage equal to or less than V  
digital  
output  
C2  
nIRQ  
SYS  
GND  
.
SYS  
System Power Output. SYS provides power to the system resources as well as the control  
logic of the device. Connect to IN_SBB and bypass to GND with a 22μF ceramic capacitor.  
power  
input  
E2, E3  
C3, D1,  
D2, E1  
Quiet Ground. Connect GND to PGND, LGND, and the low-impedance ground plane of the  
PCB.  
ground  
www.maximintegrated.com  
Maxim Integrated | 25  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Bump Descriptions (continued)  
PIN  
C4  
NAME  
FUNCTION  
TYPE  
power  
input  
2
V
I C Interface and GPIO Driver Power  
IO  
C1, D3  
N.C.  
No Connection. Leave this pin unconnected.  
LDO  
power  
output  
B5  
B6  
LDO  
Linear Regulator Output. Connect to GND if unused.  
Linear Regulator Input. Connect to GND if unused.  
power  
input  
IN_LDO  
RGB LED DRIVER  
Current Sink Port 0. LED0 is typically connected to the cathode of an LED and is capable  
of sinking up to 12.5mA. Connect to ground if unused.  
A6  
A5  
A4  
B3  
LED0  
power  
power  
power  
ground  
Current Sink Port 1. LED1 is typically connected to the cathode of an LED and is capable  
of sinking up to 12.5mA. Connect to ground if unused.  
LED1  
LED2  
LGND  
Current Sink Port 2. LED2 is typically connected to the cathode of an LED and is capable  
of sinking up to 12.5mA. Connect to ground if unused.  
Current Sink Ground. Connect LGND to GND, PGND, and the low-impedance ground  
plane of the PCB.  
SIMO BUCK-BOOST  
SIMO Power Input. Connect IN_SBB to SYS and bypass to PGND with a 22μF ceramic  
capacitor as close as possible to the IN_SBB pin.  
power  
input  
E4  
C6  
D6  
E6  
C5  
IN_SBB  
SBB0  
SBB1  
SBB2  
BST  
SIMO Buck-Boost Output 0. SBB0 is the power output for channel 0 of the SIMO buck-  
boost. Bypass SBB0 to PGND with a 10μF ceramic capacitor.  
power  
output  
SIMO Buck-Boost Output 1. SBB1 is the power output for channel 1 of the SIMO buck-  
boost. Bypass SBB1 to PGND with a 10μF ceramic capacitor.  
power  
output  
SIMO Buck-Boost Output 2. SBB2 is the power output for channel 2 of the SIMO buck-  
boost. Bypass SBB2 to PGND with a 10μF ceramic capacitor.  
power  
output  
SIMO Power Input for the High-Side Output NMOS Drivers. Connect a 3300pF ceramic  
capacitor between BST and LXB.  
power  
input  
Switching Node A. LXA is driven between PGND and IN_SBB when any SIMO channel is  
enabled. LXA is driven to PGND when all SIMO channels are disabled. Connect a 1.5μH  
inductor between LXA and LXB.  
D4  
LXA  
power i/o  
Switching Node B. LXB is driven between PGND and SBBx when SBBx is enabled. LXB is  
driven to PGND when all SIMO channels are disabled. Connect a 1.5μH inductor between  
LXA and LXB.  
D5  
E5  
LXB  
power i/o  
ground  
Power ground for the SIMO low-side FETs. Connect PGND to GND, LGND, and the low-  
impedance ground plane of the PCB.  
PGND  
www.maximintegrated.com  
Maxim Integrated | 26  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Detailed Description—Top Level  
The MAX77640/MAX77641 provide highly-integrated power solutions for low-power applications where small size, low-  
quiescent current, and efficiency are critical. These devices integrate a single-inductor, multiple-output (SIMO) buck-  
boost regulator with three output channels. See Table 1. The three outputs of the SIMO regulator share capacity and are  
typically capable of providing 300mA total to the system.  
A 150mA LDO is available to post-regulate SIMO outputs for audio, sensors, or other noise-sensitive applications. The  
LDO can also operate directly from SYS.  
These devices also integrate 3-channel LED current sink drivers with individual pattern control, and a general-purpose  
2
input/output (GPIO). A bidirectional I C serial interface allows for configuring and checking the status of the device.  
An internal on/off controller interfaces to either a momentary push-button on-key or an on-key slider switch. The on/off  
controller provides regulator power-up/down sequencing as well as other functions such as manual reset.  
Table 1. Regulator Summary  
V
IN  
REGULATOR  
NAME  
REGULATOR  
TOPOLOGY  
MAXIMUM  
(mA)  
MAX77640 V  
RANGE/  
MAX77641 V  
RANGE/  
OUT  
OUT  
RANGE  
(V)  
I
RESOLUTION  
RESOLUTION  
OUT  
SBB0  
SBB1  
SBB2  
LDO  
SIMO  
SIMO  
up to 300*  
up to 300*  
up to 300*  
150  
2.5 to 5.5  
2.5 to 5.5  
2.5 to 5.5  
1.8 to 5.5  
0.8 to 2.375V in 25mV steps  
0.8 to 2.375V in 25mV steps  
2.4 to 5.25V in 50mV steps  
2.4 to 5.25V in 50mV steps  
0.8 to 1.5875V in 12.5mV  
steps  
SIMO  
0.8 to 3.95V in 50mV steps  
1.35 to 2.9375V in 12.5mV  
steps  
1.35 to 2.9375V in 12.5mV  
steps  
PMOS LDO  
*Shared capacity with other SBBx channels. See the SIMO Available Output Current section for more information.  
Support Materials  
The following support materials are available for these devices:  
AN6516: MAX77640/MAX77641 Programmer's Guide provides a description of all device registers and software  
advice.  
2
2
AN6515: MAX77640/MAX77641 I C Implementer's Guide provides a detailed look at the I C serial interface and  
standard read/write patterns.  
MAX77640/MAX77641 SIMO Calculator details the SIMO design procedure. See the SIMO Available Output  
Current section of the data sheet for more information.  
Visit the product page at www.maximintegrated.com/MAX77640 and/or contact Maxim for more information.  
www.maximintegrated.com  
Maxim Integrated | 27  
 
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Top-Level Interconnect Simplified Diagram  
Figure 1 shows simplified internal signal routing.  
VREF  
VIREF  
SYS_RST  
FPS  
SBB0  
SBB1  
SBB2  
MAX77640  
MAX77641  
SYS_RST  
SIMO  
CLK  
VREF  
VIREF  
COMM  
SYSUVLO  
VREF  
VIREF  
SYS_RST  
FPS  
IN_LDO  
LDO  
MAIN BIAS AND  
SYSOVLO  
CLOCK  
OTLO  
POR  
BOK  
LDO  
FPS  
COMM  
BIAS_EN  
SYS  
nEN  
SBIA_LPM  
LED0  
LED1  
CLK  
VREF  
VIREF  
SYS_RST  
COMM  
100µs/30ms  
DEBOUNCE  
TIMER  
DBEN_nEN  
DBNEN  
CURRENT  
SINK  
TOP-LEVEL  
DIGITAL  
CONTROL  
tDBNC_nEN  
LED1  
nRST  
V
IO  
V
IO  
RST  
100µs  
PWR_HLD  
GLITCH FILTER  
tPWR_HLD_GF  
PWR_HLD2  
nIRQ  
V
IO  
IRQ_TOP  
10ns/30ms  
DEBOUNCE  
TIMER  
DBEN_GPI  
DI  
tDBNC_nEN  
GPIO  
SDA  
SCL  
COMM  
I2C  
DO  
Figure 1. Top-Level Interconnect Simplified Diagram  
Voltage Monitors  
SYS POR Comparator  
The SYS POR comparator monitors V  
and generates a power-on reset signal (POR). When V  
is below V  
,
POR  
SYS  
SYS  
the device is held in reset (SYSRST = 1). When V  
rises above V  
, internal signals and on-chip memory  
SYS  
POR  
stabilize and the device is released from reset (SYSRST = 0).  
www.maximintegrated.com  
Maxim Integrated | 28  
 
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
SYS Undervoltage-Lockout Comparator  
The SYS undervoltage lockout (UVLO) comparator monitors V  
and generates a SYSUVLO signal when the V  
SYS  
SYS  
falls below UVLO threshold. The SYSUVLO signal is provided to the top-level digital controller. See Figure 4 and Table  
2 for additional information regarding the UVLO comparator:  
● When the device is in the STANDBY state, the UVLO comparator is disabled.  
● When transitioning out of the STANDBY state, the UVLO comparator is enabled allowing the device to check for  
sufficient input voltage. If the device has sufficient input voltage, it can transition to the on-state; if there is insufficient  
input voltage, the device transitions back to the STANDBY state.  
SYS Overvoltage-Lockout Comparator  
These devices are rated for 5.5V maximum operating voltage (V  
) with an absolute maximum input voltage of 6.0V.  
SYS  
An overvoltage-lockout monitor increases the robustness of the device by inhibiting operation when the supply voltage is  
greater than V . See Figure 4 and Table 2 for additional information regarding the OVLO comparator:  
SYSOVLO  
● When the device is in the STANDBY state, the OVLO comparator is disabled.  
nEN Enable Input  
nEN is an active-low internally debounced digital input that typically comes from the system’s on-key. The debounce time  
is programmable with DBEN_nEN. The primary purpose of this input is to generate a wake-up signal for the PMIC that  
turns on the SIMO and/or LDO. Maskable rising/falling interrupts are available for nEN (nEN_R and nEN_F) for alternate  
functionality. nEN requires and external pullup resistor (10kΩ to 100kΩ) to SYS.  
The nEN input can be configured to work either with a momentary push-button (nEN_MODE = 0) or a persistent slide-  
switch (nEN_MODE = 1). See Figure 2 for more information. In both push-button mode and slide-switch mode, the on/  
off controller looks for a falling edge on the nEN input to initiate a power-up sequence.  
nEN Manual Reset  
nEN works as a manual reset input when the on/off controller is in the on via on/off controller state. The manual reset  
function is useful for forcing a power-down in case the communication with the processor fails. When nEN is configured  
for a push-button mode and the input is asserted (nEN = low) for an extended period (t  
), the on/off controller initiates  
MRST  
a power-down sequence and goes to standby mode. When nEN is configured for a slide-switch mode and the input is  
deasserted (nEN = high) for an extended period (t  
to standby mode.  
), the on/off controller initiates a power-down sequence and goes  
MRST  
A dedicated internal oscillator is used to create the 30ms (t  
) and 8s/16s (t  
) timers for nEN. Whenever  
MRST  
DBNC_nEN  
the device is actively counting either of these times, the supply current increases by the oscillator's supply current (65μA  
when the battery voltage is at 3.7V). As soon as the event driving the timer goes away or is fulfilled, the oscillator  
automatically turns off and its supply current goes away.  
nEN Dual-Functionality: Push-Button vs. Slide-Switch  
The nEN digital input can be configured to work with a push-button switch or a slide-switch. Figure 2 shows nEN's dual  
functionality for power-on sequencing and manual reset. The default configuration of the device is push-button mode  
(nEN_MODE = 0) and no additional programming is necessary. Applications that use a slide-switch on-key configuration  
must set nEN_MODE = 1 within t  
.
MRST  
www.maximintegrated.com  
Maxim Integrated | 29  
 
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
STANDBY  
POWER-ON SEQUENCE  
ON  
POWER-DOWN SEQUENCE  
STATE  
BATTERY  
INSERTION  
VSYS  
SYS  
t
DBNC_nEN  
nEN  
t
t
t
DBNC_nEN  
DBNC_nEN  
t
t
MRST  
MRST  
PUSH-BUTTON MODE  
SYS  
t
DBNC_nEN  
nEN  
DBNC_nEN  
nEN  
SLIDE-SWITCH MODE  
NOT DRAWN TO SCALE  
Figure 2. nEN Usage Timing Diagram  
Interrupts (nIRQ)  
nIRQ is an active-low, open-drain output that is typically routed to the host processor's interrupt input to signal an  
important change in the device's status. Refer to the Programmer's Guide for a comprehensive list of all interrupt bits and  
status registers.  
A pullup resistor to a voltage less than or equal to V  
interrupt bits in the register map.  
is required for this node. nIRQ is the logical NOR of all unmasked  
SYS  
All interrupts are masked by default. Masked interrupt bits do not cause the nIRQ pin to change. Unmask the interrupt  
bits to allow nIRQ to assert.  
Reset Output (nRST)  
nRST is an open-drain, active-low output that is typically used to hold the processor in a reset state when the device  
is powered down. During a power-up sequence, the nRST deasserts after the last regulator in the power-up chain is  
enabled (t  
). During a power-down sequence, the nRST output asserts before any regulator is powered down  
RSTODD  
(t  
). See Figure 5 for nRST timing.  
RSTOAD  
A pullup resistor to a voltage less than or equal to V  
is required for this node.  
SYS  
Power Hold Input (PWR_HLD)  
PWR_HLD is an active-high digital input. PWR_HLD has a 100μs glitch filter (t  
). As shown in Figure 1, the  
PWR_HLD_GF  
output of this glitch filter is PWR_HLD2 that drives the top-level digital control. Figure 4 and its associated transition Table  
2 shows how PWR_HLD is processed by the top-level digital control.  
● After the power-up sequence, the system processor must assert PWR_HLD within the PWR_HLD wait time  
(t  
) to hold the power supply in the on-state. If the PWR_HLD input is not asserted within  
PWR_HLD_WAIT  
the t  
period, a power-down sequence is initiated.  
PWR_HLD_WAIT  
● While in the on-state, the system processor must assert PWR_HLD as long as power is required. If the system  
processor wants to turn off, it can either pull PWR_HLD low or it can write the SFT_RST bits to execute the software  
cold reset (SFT_CRST) or software off (SFT_OFF) functions to execute the power-down sequence.  
If the power hold function is not used, connect PWR_HLD to SYS and use the SFT_RST bits to power the device down.  
www.maximintegrated.com  
Maxim Integrated | 30  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
General-Purpose Input Output (GPIO)  
A general-purpose input/output (GPIO) is provided to increase system flexibility. See Figure 3 for the GPIO block  
diagram.  
Clear DIR to configure GPIO as a general-purpose output (GPO). The GPO can either be in push-pull mode (DRV = 1)  
or open-drain mode (DRV = 0).  
● The push-pull output mode is ideal for applications that need fast (~2ns) edges and low-power consumption.  
● The open-drain mode requires an external pullup resistor (typically 10kΩ to 100kΩ). Connect the external pullup  
resistor to a bias voltage that is less than or equal to V  
.
IO  
• The open-drain mode can be used to communicate to different logic domains. For example, to send a signal from  
the GPO on a 1.8V logic domain (V = 1.8V) to a device on a 1.2V logic domain, connect the external pullup  
IO  
resistor to 1.2V.  
• The open-drain mode can be used to connect several open-drain (or open-collector) devices together on the same  
bus to create wired logic (wired AND logic is positive-true; wired OR logic is negative-true).  
● The general-purpose input (GPI) functions are still available while the pin is configured as a GPO. In other words, the  
DI (input status) bit still functions properly and does not collide with the state of the DIR bit.  
Set DIR to disable the output drivers associated with the GPO and have the device function as a GPI. The GPI features  
a 30ms debounce timer (t  
) that can be enabled or disabled with DBEN_GPI.  
DBNC_GPI  
● Enable the debounce timer (DBEN_GPI = 1) if the GPI is connected to a device that can bounce or chatter (like a  
mechanical switch).  
● If the GPI is connected to a circuit with clean logic transitions and no risk of bounce, disable the debounce timer  
(DBEN_GPI = 0) to eliminate unnecessary logic delays. With no debounce timer, the GPI input logic propagates  
to nIRQ in 10ns.  
A dedicated internal oscillator is used to create the 30ms (t  
) debounce timer. Whenever the device is actively  
DBNC_GPI  
counting this time, the supply current increases by the oscillator's supply current (65μA when the battery voltage is at  
3.7V). As soon as the event driving the timer goes away or is fulfilled, the oscillator automatically turns off and its supply  
current goes away.  
Maskable rising and falling interrupts (GPI_R and GPI_F) are available to signal a change in the GPI's status.  
● To interrupt on a rising edge only: unmask the rising edge interrupt and mask the falling edge interrupt (GPI_RM = 0,  
GPI_FM = 1).  
● To interrupt on a falling edge only: unmask the falling edge interrupt and mask the rising edge interrupt (GPI_RM = 1,  
GPI_FM = 0).  
● To interrupt on either rising or falling edge: unmask both rising and falling edge interrupts (GPI_RM = 0, GPI_FM = 0).  
Refer to the Programmer's Guide for more details.  
www.maximintegrated.com  
Maxim Integrated | 31  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
SYS  
                                                                                                                                                                                                           
MAX77640  
                                                                                                                                                                                                              
                                                                                                                                                                                                                
                                                                                                                                                                                                                   
                                                                                                                                                                                                                     
                                                                                                                                                                                                                       
                                                                                                                                                                                                                         
                                                                                                                                                                                                                           
DRV  
MAX77641  
DIR  
DO  
GPI_RM  
GPI_FM  
DBNC_EN  
DI  
V
IO  
COMM  
CNFG_GPIO  
GPI_R  
GPI_F  
GPI_R  
GPI_RM  
Q
Q
D
R
1
1
DRV  
nIRQ  
DBNC_EN  
READ  
(GPI_R)  
IRQ  
GPIO  
GND  
0
1
30ms DEBOUNCE  
DI  
(t  
)
DBNC_GPI  
GPI_FM  
GPI_F  
D
R
DIR  
DO  
LOGIC  
OTHER nIRQ ASSERTION  
SOURCES NOT SHOWN  
READ  
(GPI_F)  
Figure 3. GPIO Block Diagram  
On/Off Controller  
The on/off controller monitors multiple power-up (wakeup) and power-down (shutdown) conditions to enable or disable  
the SIMO channels and LDO.  
The basic function of the on/off controller is to control the power sequencer (see Figure 4 and Table 2). A typical use  
case is described as follows:  
1. Start in the no-power state.  
2. Apply a battery to the system and transition through path 1 and 2 to the standby state.  
3. Press the system's on-key (nEN = low) and transition through path 3A and 4 to the "PWR_HLD?" state.  
4. The processor boots up and drives PWR_HLD high, which drives the transition through path 4C to the  
on through the on/off controller state.  
5. These devices perform its desired functions in the on through on/off controller state. When it is ready to turn off,  
the processor drives PWR_HLD low that drives the transition through path 5B and 8 to the standby state.  
2
The SIMO can be enabled through the I C interface for systems that do not require a hardware (on-key) input. Connect  
nEN to SYS and follow this procedure:  
1. Start in the no-power state.  
2. Apply a battery to the system and transition through path 1 and 2 to the standby state.  
2
3. Go to the on via software state by writing SBIA_EN = 1 through I C.  
4. In the on via software state, the host controller can now enable/disable SIMO outputs through I C writes.  
2
5. To return to standby state (shutdown), first disable all SIMO outputs then write SBIA_EN = 0.  
www.maximintegrated.com  
Maxim Integrated | 32  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
NO POWER  
SYS<VPOR  
ANY  
STATE  
STATE  
0
V
ACTION  
1
DECISION  
POWER-ON  
RESET (POR)  
2
X
TRANSITION NAME.  
SEE TABLE 2  
2A  
STANDBY  
3
11  
DISABLE MAIN BIAS  
ENABLE MAIN BIAS  
12  
ENABLE MAIN BIAS  
3A  
6
6
8
2B  
9
POWER-UP  
SEQUENCE  
(FIGURE 5)  
POWER-DOWN  
SEQUENCE  
(FIGURE 5)  
IMMEDIATE  
SHUTDOWN  
(FIGURE 5)  
3
4
7
4B  
ANY  
STATE  
PWR_HLD?  
4C  
4A  
10  
3
5A  
ON VIA  
SOFTWARE  
ON VIA ON/OFF  
CONTROLLER  
5B  
10  
2B  
Figure 4. Top-Level On/Off Controller  
Table 2. On/Off Controller Transitions  
TRANSITION/  
STATE  
CONDITION  
System voltage is below the POR threshold (V < V ).  
SYS  
0
1
POR  
System voltage is above the POR threshold (V  
> V  
).  
POR  
SYS  
www.maximintegrated.com  
Maxim Integrated | 33  
 
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Table 2. On/Off Controller Transitions (continued)  
TRANSITION/  
CONDITION  
STATE  
2
Internal signals and on-chip memory stabilize and the device is released from reset.  
2
The device is waiting for a wake-up signal or an I C command to enable the main bias circuits.  
● This is the lowest current state of the device (I = 0.3μA typ).  
Q
● Main bias circuits are off, POR comparator is on.  
STANDBY  
2
● I C is on when V is valid.  
IO  
● Peripheral functions do not operate in this state because the main bias circuits are off. To utilize a function,  
enter the on through software or on through on/off controller states.  
2
2A  
2B  
Main bias circuits enabled through I C (SBIA_EN = 1).  
2
Main bias circuits disabled through I C (SBIA_EN = 0).  
ON VIA  
SOFTWARE  
The main bias circuits are enabled through software and all peripheral functions can be manually enabled or  
disabled through I C.  
2
A wake-up signal has been received.  
● A debounced on-key (nEN) falling edge has been detected (DBNEN = 1)  
or  
3
● Internal wake-up flag has been set due to SFT_RST = 0b01 (WKUP = 1)  
Main bias circuits are OK (BOK = 1)  
3A  
4
Power-up sequence complete.  
4A  
4B  
4C  
PWR_HLD wait time has expired and PWR_HLD2 is low (t > t  
&& PWR_HLD2 = 0).  
PWR_HLD_WAIT  
PWR_HLD wait time has not expired and PWR_HLD2 is low (t < t  
PWR_HLD2 = 1  
&& PWR_HLD2 = 0).  
PWR_HLD_WAIT  
On state.  
ON VIA ON/OFF  
CONTROLLER  
● All flexible power sequencers (FPS) are on.  
● The main bias circuits are enabled.  
● I = 5.6μA (typ) with all regulators enabled (no load) and the main bias circuits in low-power mode.  
Q
5A  
5B  
PWR_HLD2 = 1  
PWR_HLD2 = 0 OR  
System overtemperature lockout (T >T  
) or  
OTLO  
J
Software cold reset (SFT_RST[1:0] = 0b01) or  
Software power off (SFT_RST[1:0] = 0b10) or  
Manual reset occurred. See the nEN Manual Reset section for more information.  
System overtemperature lockout (T >T  
) or  
OTLO  
J
6
7
System undervoltage lockout (V  
< V  
+ V  
) or  
) or  
SYSUVLO_HYS  
SYS  
SYSUVLO  
System overvoltage lockout (V  
> V  
)
SYS  
SYSOVLO  
System undervoltage lockout (V  
System overvoltage lockout (V  
< V  
SYSUVLO  
SYS  
> V  
)
SYS  
SYSOVLO  
Note: The overvoltage-lockout transition does not apply to the ON VIA SOFTWARE state.  
Finished with the power-down sequence.  
8
9
Finished with immediate shutdown.  
10  
11  
12  
System overtemperature lockout (T > T  
J
).  
OTLO  
Done disabling main bias.  
Done enabling main bias.  
www.maximintegrated.com  
Maxim Integrated | 34  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
POWER-UP SEQUENCE  
POWER-DOWN SEQUENCE  
START  
FROM TOP LEVEL #3A  
START FROM TOP LEVEL  
#4A, #5B OR #5C  
CLEAR WAKEUP  
FLAG (WKUP = 0)  
CLEAR WAKEUP FLAGS  
FPS ENABLE PULSE 0  
TEMPERATURE IS  
NOT OKAY  
(T >T  
J
)
OTLO  
OTLO?  
TEMPERATURE IS OKAY  
(T <T  
WAIT t  
EN  
)
OTLO  
J
WAIT 60ms  
FPS ENABLE PULSE 1  
SFT_RST = 0b00  
OR PWR_HLD2 = 1  
WAIT t  
EN  
SFT_RST = 0b01  
FPS ENABLE PULSE 2  
SFT_RST = 0b10  
OR PWR_HLD2 = 0  
SET WAKEUP  
FLAG (WKUP = 1)  
WAIT t  
EN  
FPS ENABLE PULSE 3  
SET THE APPROPRIATE BIT IN THE EVENT  
RECORDER REGISTER (ERCFLAG) TO INDICATE  
THE SOURCE OF THE POWER-DOWN EVENT.  
WAIT t  
RSTODD  
ASSERT nRST  
DE-ASSERT nRST  
WAIT t  
RSTOAD  
END  
TO TOP LEVEL #4  
FPS DISABLE PULSE 3  
WAIT t  
DIS  
IMMEDIATE SHUTDOWN  
FPS DISABLE PULSE 2  
START  
FROM TOP LEVEL #7  
WAIT t  
DIS  
SET THE APPROPRIATE BIT IN THE EVENT  
RECORDER REGISTER (ERCFLAG) TO INDICATE  
THE SOURCE OF THE POWER-DOWN EVENT.  
FPS DISABLE PULSE 1  
WAIT t  
DIS  
ASSERT nRST  
DISABLE FPS3, FPS2, FPS1, FPS0  
FPS DISABLE PULSE 0  
WAIT 125ms  
WAIT 125ms  
RESET DEVICE  
RESET DEVICE  
(PULSE SYSRST FOR 5µs)  
(PULSE SYSRST FOR 5µs)  
END  
END  
RETURN BACK TO  
THE ON STATE  
TO TOP LEVEL #9  
TO TOP LEVEL #8  
Figure 5. Power-Up/Power-Down Sequence  
www.maximintegrated.com  
Maxim Integrated | 35  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Flexible Power Sequencer (FPS)  
The FPS allows SIMO channels to power up under hardware or software control. Additionally, each channel can power  
up independently or together with adjustable power-up and power-down delays (sequencing). Figure 6 shows four  
resources powering up under FPS control.  
The FPS consists of 1 master sequencing timer and 4 slave resources (SBB0, SBB1, SBB2, and LDO). When the FPS is  
enabled, a master timer generates four sequencing events for device power-up and power-down.  
NOT DRAWN TO SCALE  
ENFPS  
t
t
SAME FOR ALL FPS DISABLE PULSES  
DIS  
DIS  
t
SAME FOR ALL FPS ENABLE PULSES  
EN  
= 2x t  
EN  
0
1
2
3
3
2
1
0
PLSFPS  
FPS RESOURCES  
SBB0  
LDO  
SBB1  
SBB2  
Figure 6. Flexible Power Sequencer Basic Timing Diagram  
www.maximintegrated.com  
Maxim Integrated | 36  
 
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
NOT DRAWN TO SCALE  
ENABLE MAIN BIAS  
PWR_HLD?  
DISABLE MAIN BIAS  
STANDBY  
NO  
ON VIA ON/OFF  
CONTROLLER  
STATE  
POR  
STANDBY  
POWER-UP SEQUENCE  
POWER-DOWN SEQUENCE  
POWER  
V
SYS  
V
~1.9V  
POR  
t
~100µs  
POR  
nRST_INT  
(INTERNAL)  
t
~5µs  
RESET  
t
DBNC_nEN  
nEN  
t
SBIA_EN~500µs  
BIAS EN  
(INTERNAL)  
FPS0  
FPS1  
FPS2  
FPS3  
t
t
t
t
t
t
DIS  
EN  
EN  
EN  
DIS  
DIS  
REGULATORS  
tRSTOAD  
tWAIT~125ms  
t
PWR_HLD_WAIT  
t
RSTODD  
nRST  
t
BOOT  
SYSTEM  
SOFTWARE  
t
WAIT~60ms  
t
PWR_HLD_HIGH  
PWR_HLD  
Figure 7. Startup Timing Diagram Due to nEN  
www.maximintegrated.com  
Maxim Integrated | 37  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Debounced Inputs (nEN and GPI)  
nEN is debounced on both rising and falling edges to reject undesired transitions. The input must be at a stable logic  
level for the entire debounce period for the output to change its logic state. Figure 8 shows an example timing diagram  
for the nEN debounce.  
NOT DRAWN TO SCALE  
BOUNCING IS  
REJECTED  
STABLE SIGNAL IS  
ACCEPTED  
BOUNCING IS  
REJECTED  
STABLE SIGNAL IS  
ACCEPTED  
nEN  
t
= 10ns  
t
= 10ns  
DBUF  
DBUF  
EN  
(INTERNAL)  
DBEN  
t
t
DBNCEN  
DBNCEN  
(INTERNAL)  
Figure 8. Debounced Inputs Timing Diagram  
Thermal Alarms and Protection  
These devices have thermal alarms to monitor if the junction temperature rises above 80°C (T  
) and 100ºC (T  
).  
JAL2  
JAL1  
Over-temperature lockout (OTLO) is entered if the junction temperature exceeds T  
(approximately 165ºC typ).  
OTLO  
OTLO causes transition 10 in Figure 4 which causes the SIMO to immediately shutdown from the on via on/off controller  
state. Resources do not enable until the temperature falls below T by approximately 15ºC.  
OTLO  
The TJAL1_S and TJAL2_S status bits continuously indicate the junction temperature alarm status. Maskable interrupts  
are available to singal a change in either of these bits. Refer to the Programmer's Guide for details.  
Register Map  
The register map and register reset conditions are detailed in the Programmer's Guide.  
www.maximintegrated.com  
Maxim Integrated | 38  
 
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Detailed Description—SIMO Buck-Boost  
These devices have a micropower single-inductor, multiple-output (SIMO) buck-boost DC-to-DC converter designed for  
applications that emphasize low supply current and small solution size (Figure 9). A single inductor is used to regulate  
three separate outputs, saving board space while delivering better total system efficiency than equivalent power solutions  
using one buck and linear regulators.  
The SIMO configuration utilizes the entire battery voltage range due to its ability to create output voltages that are above,  
below, or equal to the input voltage. Peak inductor current for each output is programmable to optimize the balance  
between efficiency, output ripple, EMI, PCB design, and load capability.  
SYS  
3300pF  
(0603/0201)  
1.5µH  
22µF  
(1005/0402)  
PGND  
LXA  
LXB  
BST  
IN_SBB  
IN_SBB  
SBB0  
SYNCHRONOUS RECTIFIER  
MAIN POWER STAGE  
M1  
REVERSE  
BLOCKING  
BST  
10µF  
(1005/0402)  
DRV_SBB  
M3_0  
DIS_SBB1  
IZX  
ERROR COMPARATOR  
ACTIVE-DISCHARGE  
ILIM  
DRV_SBB  
M2  
M4  
REG0  
CHG  
DIS  
R
AD_SSB0  
AD_SBB0  
(140Ω)  
SBB1  
SBB2  
I
I
LIM  
SYNCHRONOUS  
RECTIFIER (M3_1)  
AND  
ERROR COMPARATOR  
AND  
CHG  
DIS  
DIS_SBB[2:0]  
BST  
DRV_SBB  
DIS_SBB1  
10µF  
(1005/0402)  
ZX  
SIMO  
CONTROLLER  
REG[2:0]  
REG1  
AD_SBB1  
ACTIVE-DISCHARGE  
DIGITAL AND  
REGISTERS  
CNFG_SBB_TOP,  
CNFG_SBBX_A,  
CNFG_SBBX_B  
SYNCHRONOUS  
RECTIFIER (M3_2)  
AND  
ERROR COMPARATOR  
AND  
DRV_SBB  
AD_SBB[2:0]  
BST  
DRV_SBB  
DIS_SBB2  
10µF  
(1005/0402)  
REG2  
AD_SBB2  
ACTIVE-DISCHARGE  
COMPONENT SIZES ARE LISTED IN METRIC/IMPERIAL FOR CONVENIENCE. FOR EXAMPLE, 1005/0402 IS 1.0X0.5mm OR 0.04X0.02 INCHES.  
Figure 9. SIMO Detailed Block Diagram  
www.maximintegrated.com  
Maxim Integrated | 39  
 
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
SIMO Features and Benefits  
● 3 Output Channels  
● Ideal for Low-Power Designs  
• Delivers > 300mA at 1.8V from a 3.7V Input  
• ±3% Accurate Output Voltage  
● Small Solution Size  
• Multiple Outputs from a Single 1.5μH Inductor  
• Small 10μF (0402) Output Capacitors  
● Flexible and Easy to Use  
• Single Mode of Operation  
• Glitchless Transitions Between Buck, Buck-Boost, and Boost Scenarios  
• Programmable Peak Inductor Current  
• Programmable On-Chip Active Discharge  
● Long Battery Life  
• High-Efficiency, > 87% at 3.3V Output  
• Better Total System Efficient than Buck + LDOs  
• Low Quiescent Current, 1μA per Output  
• Low Input Operating Voltage, 2.7V (min)  
SIMO Control Scheme  
The SIMO buck-boost is designed to service multiple outputs simultaneously. A proprietary controller ensures that all  
outputs get serviced in a timely manner, even while multiple outputs are contending for the energy stored in the inductor.  
When no regulator needs service, the state machine rests in a low-power rest state.  
When the controller determines that a regulator requires service, it charges the inductor (M1 + M4) until the peak current  
limit is reached (I  
= IP_SBB). See Figure 9. The inductor energy then discharges (M2 + M3_x) into the output until  
LIM  
the current reaches zero (I ). In the event that multiple output channels need servicing at the same time, the controller  
ZX  
ensures that no output utilizes all of the switching cycles. Instead, cycles interleave between all the outputs that are  
demanding service, while outputs that do not need service are skipped.  
SIMO Soft-Start  
The soft-start feature of the SIMO limits inrush current during startup. The soft-start feature is achieved by limiting the  
slew rate of the output voltage during startup (dV/dt ).  
SS  
More output capacitance results in higher input current surges during startup. The following set of equations and example  
describes the input current surge phenomenon during startup.  
The current into the output capacitor (I  
) during soft-start is:  
CSBB  
dV  
I
= C  
Equation 1  
CSBB  
SBB  
dt  
(
)
SS  
where C  
is the capacitance on the output of the regulator, and dV/dtSS is the voltage change rate of the output.  
SBB  
The input current (I ) during soft-start is:  
IN  
V
SBBx  
I
+ I  
(
)
CSBB LOAD  
V
IN  
I
=
Equation 2  
IN  
ξ
(
)
www.maximintegrated.com  
Maxim Integrated | 40  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
where I  
is from the calculation above, I  
is current consumed from the external load, V  
is the output  
SBBx  
CSBB  
LOAD  
voltage, V is the input voltage, and ξ is the efficiency of the regulator.  
IN  
For example, given the following conditions, the peak input current (I ) during soft-start is ~71mA:  
IN  
Given:  
● V is 3.5V  
IN  
● V  
● C  
is 3.3V  
= 10µF  
SBB2  
SBB2  
● dV/dt = 5mV/µs  
SS  
● R  
= 330Ω (I  
= 3.3V/330Ω = 10mA)  
LOAD2  
LOAD2  
● ξ is 85%  
Calculation:  
● I  
● I  
= 10µF x 5mV/µs (from Equation 1)  
CSBB  
CSBB  
(
= 50mA  
3.3V  
3.5V  
50mA + 10mA  
)
I  
=
(from Equation 2)  
IN  
0.85  
● I = 71mA  
IN  
SIMO Output Voltage Configuration  
Each SIMO buck-boost channel has a dedicated register to program its target output voltage (TV_SBBx) and its  
peak current limit (IP_SBBx). Additional controls are available for enabling/disabling the active discharge resistors  
(ADE_SBBx), as well as enabling/disabling the SIMO buck-boost channels (EN_SBBx). For a full description of bits,  
registers, default values, and reset conditions, refer to the Programmer's Guide.  
SIMO Active Discharge Resistance  
Each SIMO buck-boost channel has an active-discharge resistor (R  
) that is automatically enabled/disabled  
AD_SBBx  
based on a ADE_SBBx and the status of the SIMO regulator. The active discharge feature may be enabled  
(ADE_SBBx = 1) or disabled (ADE_SBBx = 0) independently for each SIMO channel. Enabling the active discharge  
feature helps ensure a complete and timely power down of all system peripherals. If the active-discharge resistor is  
enabled by default, then the active-discharge resistor is on whenever V  
is below V  
and above V  
.
POR  
SYS  
SYSUVLO  
These resistors discharge the output when ADE_SBBx = 1, and their respective SIMO channel is off. Note if the  
regulator is forced on through EN_SBBx = 0b110 or 0b111, then the resistors do not discharge the output even if  
the regulator is disabled by the main-bias.  
Note that when V  
is less than 1.0V, the NMOS transistors that control the active-discharge resistors lose their  
SYS  
gate drive and become open.  
When the active-discharge resistor is engaged, limit its power dissipation to an average of 10mW. For example,  
consider the case where the active-discharge resistance is discharging the output capacitor each time the regulator  
turns off; the 10mW limit allows discharge of 80μF of capacitance charged to 5V every 100ms (P = 1/2xCxV^2/t =  
1/2x80μFx5V^2/100ms = 10mW).  
www.maximintegrated.com  
Maxim Integrated | 41  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Applications Information  
SIMO Available Output Current  
The available output current on a given SIMO channel is a function of the input voltage, output voltage, the peak current  
limit setting, and the output current of the other SIMO channels. Maxim offers a SIMO calculator that outlines the available  
capacity for specific conditions. Table 3 is an extraction from the calculator.  
Table 3. SIMO Available Output Current for Common Applications  
PARAMETERS  
EXAMPLE 1  
2.7V  
EXAMPLE 2  
3.2V  
EXAMPLE 3  
3.4V  
V.IN.MIN  
R.L.DCR  
SBB1  
0.1Ω  
0.1Ω  
0.12Ω  
1V at 100mA  
1.2V at 75mA  
1.8V at 50mA  
1A  
1.2V at 50mA  
2.05V at 100mA  
3.3V at 30mA  
0.866A  
1.2V at 20mA  
2.05V at 80mA  
3.3V at 10mA  
0.5A  
SBB0  
SBB2  
I.PEAK.0  
I.PEAK.1  
I.PEAK.2  
1A  
0.707A  
0.5A  
1A  
1A  
0.5A  
Utilized Capacity  
73%  
79%  
73%  
*R.C.IN = R.C.OUT = 5mΩ, L = 1.5μH  
Inductor Selection  
Choose an inductance from 1.0μH to 2.2μH (1.5μH inductors is recommended for most designs). Larger inductances  
transfer more energy to the output for each cycle and typically result in larger output voltage ripple and better  
efficiency. See the Output Capacitor Selection section for more information on how to size the output capacitor in order  
to control ripple.  
Choose the inductor saturation current to be greater than or equal to the maximum peak current limit setting that is used  
for all of the SIMO buck-boost channels (I  
). For example, if SBB0 is set for 0.5A, SBB1 is set for 0.866A, and SBB2  
P_SBB  
is set for 1.0A, then choose the saturation current to be greater than or equal to 1.0A.  
Choose the RMS current rating of the inductor (typically the current at which the temperature rises appreciably) based  
on the expected load currents for the system.  
Carefully consider the DC-resistance (DCR), AC-resistance (ACR) and physical size of the inductor. Smaller size  
inductors tend to have higher DCR and ACR which reduces SIMO efficiency. Inductors with low ACR in the 1MHz to  
2MHz range are recommended for best efficiency.  
See Table 4 for examples of inductors that work well with this device. This table was created in 2016. Inductor technology  
advances rapidly. Always consider the most current inductor technology for new designs to achieve the best possible  
performance.  
www.maximintegrated.com  
Maxim Integrated | 42  
 
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Table 4. Example Inductors  
MANUFACTURER  
Samsung  
Murata  
PART  
L (μH)  
2.2  
I
(A)  
I
(A)  
DCR (Ω)  
0.073  
0.117  
0.076  
0.127  
0.086  
0.095  
0.110  
0.170  
X (mm)  
2.0  
Y (mm)  
1.6  
Z (mm)  
1.0  
SAT  
2.9  
RMS  
CIGT201610EH2R2MN  
DFE201610E-2R2M  
DFE201610E-1R5M  
DFE201210S-2R2M  
DFE201210S-1R5M  
CIGT201208EH2R2MN  
DFE201208S-1R5M  
DFE201208S-2R2M  
2.7  
2.2  
2.6  
2.4  
2.3  
2.2  
2.0  
2.4  
2.0  
1.9  
3.2  
2.0  
1.6  
1.0  
Murata  
1.5  
2.0  
1.6  
1.0  
Murata  
2.2  
1.80  
2.6  
1.8  
2.0  
1.6  
2.0  
1.2  
1.0  
Murata  
1.5  
2.0  
1.2  
1.0  
Samsung  
Murata  
2.2  
2.0  
1.25  
1.2  
0.8  
1.5  
2.0  
0.8  
Murata  
2.2  
2.0  
1.2  
0.8  
Input Capacitor Selection  
Bypass IN_SBB to GND with a minimum 10µF ceramic capacitor (CIN_SBB). Larger values of CIN_SBB improve the  
decoupling for the SIMO regulator. CIN_SBB reduces the current peaks drawn from the battery and reduces switching  
noise in the system. The ESR/ESL of the input capacitor should be very low (i.e., ≤ 5mΩ and ≤ 500pH) for frequencies  
up to 2MHz. Ceramic capacitors with X5R or X7R dielectric are highly recommended due to their small size, low ESR,  
and small temperature coefficients. A 6.3V capacitor voltage rating is recommended for the input voltage range of up to  
5.5V.  
Boost Capacitor Selection  
Choose the boost capacitance (C  
) to be 3.3nF. Smaller values of C  
(<1nF) result in insufficient gate drive for M3.  
BST  
BST  
Larger values of C  
(>10nF) have the potential to degrade the startup performance. Ceramic capacitors with 0201 or  
BST  
0402 case size are recommended.  
Output Capacitor Selection  
Choose each output bypass capacitor (C  
) based on the desired output voltage ripple (typically 10μF). Larger  
SBBx  
values of C  
improve output voltage ripple but increase input surge current during soft-start and output voltage  
SBBx  
change. The output voltage ripple is a function of the inductor, output voltage, and peak current limit setting.  
Maxim offers a calculator to aid output capacitance selection. Do not exceed the maximum output capacitance as  
calculated by the SIMO calculator.  
The impedance of the output capacitor (ESR, ESL) should be very low (i.e., ≤ 5mΩ & ≤ 500pH) for frequencies up  
to 2MHz. Ceramic capacitors with X5R or X7R dielectric are highly recommended due to their small size, low ESR,  
and small temperature coefficients. Generally, small case size capacitors derate heavily compared to larger case  
sizes (0603 case size performs better than 0402). Consider the effective capacitance value carefully by consulting  
the manufacturer's data sheet.  
SIMO Switching Frequency  
The SIMO buck-boost regulator utilizes a pulse frequency modulation (PFM) control scheme. The switching frequency for  
each output is a function of the input voltage, output voltage, load current, and inductance. For example, switching  
frequency increases when load is increased and decreases when inductor value is increased. Maxim offers a SIMO  
Calculator to help calculate the switching frequency. See Figure 10 for examples of trends based on these parameters.  
www.maximintegrated.com  
Maxim Integrated | 43  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
SIMO SWITCHING WAVEFORM  
TYPICAL CASE - 115kHz  
toc34  
IP_SBB0 = 500mA,VSBB0 = 1.2V,  
L = 1.5µH, VSYS = 3.6V, IL = 20mA  
VSBB0  
20mV/div  
10μs/div  
INCREASE LOAD  
INCREASE INDUCTOR VALUE  
INCREASE V  
SYS  
SIMO SWITCHING WAVEFORMS  
INCREASED INDUCTANCE - 78.7kHz  
SIMO SWITCHING WAVEFORMS  
INCREASED INPUT VOLTAGE - 102kHz  
SIMO SWITCHING WAVEFORMS  
INCREASED LOAD CURRENT - 230 kHz  
toc34  
toc34  
toc34  
IP_SBB0 = 500mA,VSBB0 = 1.2V,  
L = 2.2µH, VSYS = 3.6V, IL = 20mA  
IP_SBB0 = 500mA,VSBB0 = 1.2V,  
L = 1.5µH, VSYS = 5.5V, IL = 20mA  
IP_SBB0 = 500mA,VSBB0 = 1.2V,  
L = 1.5µH, VSYS = 3.6V, IL = 40mA  
VSBB0  
20mV/div  
VSBB0  
VSBB0  
20mV/div  
20mV/div  
10μs/div  
10μs/div  
10μs/div  
Figure 10. SIMO Switching Frequency Measurements  
Unused SIMO Outputs  
Do not leave unused outputs unconnected. If an output is unconnected and enabled, inductor current discharges  
into that unconnected pin (~50nF parasitic capacitance only), and the output voltage soars above the absolute  
maximum rating, potentially causing damage to the device. If the unused output is always disabled (EN_SBBx =  
0x4 or 0x5), connect that output to ground. If an unused output can be enabled at any point during operation (such  
as startup or accidental software access), then implement one of the following:  
1. Bypass the unused output with a 1μF ceramic capacitor to ground.  
2. Connect the unused output to the power input (IN_SBB). This connection is beneficial because it does  
not require an external component for the unused output. The power input and its capacitance receives  
the energy packets when the regulator is enabled and V  
is below the target output voltage of the  
IN_SBB  
unused output. Circulating the energy back to the power input ensures that the unused output voltage  
does not fly high.  
● Note that some OTP options of the device have the active-discharge resistors enabled by default  
(ADE_SBBx) such that connecting an unused output SBBx to IN_SBB creates a 140Ω (R  
) to  
AD_SBBx  
ground until software can be ran to disable the active-discharge resistor. Connecting an unused SBBx  
to IN_SBB is not recommended if the regulator's active-discharge resistor is enabled by default.  
www.maximintegrated.com  
Maxim Integrated | 44  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
3. Connect the unused output to another power output that is above the target voltage of the unused  
output. In the same way as the option listed above, this connection is beneficial because it does not  
require an external component for the unused output. Unlike the option above, this connection is preferred  
in cases where the unused output voltage bias level is always above the unused output voltage target  
because no energy packages are provided to the unused output.  
● Note that some OTP options of the device have the active-discharge resistors enabled by default  
(ADE_SBBx). If the other power output used to bias the unused output is normally off, then the active-  
discharge resistor of the unused output does not create a continuous current draw. Once the system  
is enabled, it should turn off the unused output's active-discharge resistor (ADE_SBBx = 0).  
PCB Layout  
Use the MAX77640/MAX77641 evaluation kit as a PCB layout reference. Good printed circuit board (PCB) layout is  
necessary to achieve optimal performance. The evaluation kit (EVKIT) provides an example layout that optimizes its  
performance. PCB layouts must:  
1. Minimize parasitic inductance in the SIMO input capacitor loop which is from the IN_SBB pin to the capacitor's  
positive terminal and from the PGND pin to the capacitor's negative terminal.  
2. Minimize the parasitic inductance in the SIMO output capacitor loop which is from SBBx to the capacitor's  
positive terminal and from the PGND pin to the capacitor's negative terminal.  
3. Use wide traces for the inductor connections in order to minimize the resistance. Do not make the traces  
too large. Trace width that doesn't directly lower impedance of the LX connection only increases the fringe  
capacitance of the LX connection to adjacent nodes and therefore increases noise coupling.  
Figure 11 shows an example PCB top-metal layout.  
V
IO  
SCL  
LED0  
LED1  
LED2  
SDA  
nEN  
PWR_HLD  
GPIO  
nRST  
nIRQ  
C
LDO  
SBB0  
SBB1  
SBB2  
LDO  
C
SBB0  
C
SBB1  
C
SBB2  
LEGEND  
0603  
GND  
SYS  
C
SYS  
0402  
0201  
VIAS  
COMPONENT SIZES LISTED IN IMPERIAL.  
L
1.5μH  
(0805)  
LXA  
LXB  
Figure 11. PCB Top-Metal and Component Layout Example  
www.maximintegrated.com  
Maxim Integrated | 45  
 
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Detailed Description—LDO  
2
These devices include a 150mA low-dropout linear regulator (LDO). Output voltage is programmable through I C  
between 1.35V and 2.9375V in 12.5mV steps using the TV_LDO[6:0] bitfield. The LDO input (INLDO) can be connected  
directly to SYS or supplied by an external stepdown regulator for increased power efficiency. A 100Ω (typ) active-  
discharge resistor is available to quickly discharge the LDO's output after the regulator has been disabled. See Figure 12  
for a simplified block diagram.  
IN_LDO  
SBB0  
10µF*  
(0402)  
*THE FLOORPLAN IS SUCH  
VREF  
EN_LDO  
THAT THE SBB0 OUTPUT  
CAPACITOR IS ALSO THE  
IN_LDO INPUT CAPACITOR.  
150mA  
LDO  
ADE_LDO  
LDO  
LDO  
10µF  
(0402)  
R
ADE_LDO  
Figure 12. LDO Simplified Block Diagram  
Features and Benefits  
● 150mA LDO  
● 1.8V to 5.5V Input Volage Range  
● Adjustable Output Voltage  
● 180mV Maximum Dropout Voltage  
● Programmable On-Chip Active Discharge  
LDO Active-Discharge Resistor  
The LDO has a 100Ω active-discharge resistor (R  
) that is enabled based on a configuration bit (ADE_LDO) and  
AD_LDO  
the status of the LDO regulator. Enabling the active discharge feature helps ensure a complete and timely power down  
of all system peripherals. The active-discharge resistance is disabled when V  
< V  
or V  
< 1.0V.  
IN_LDO  
SYS  
POR  
LDO Dropout  
When the LDO input voltage is sufficiently higher than the LDO target regulation voltage, the LDO provides voltage  
regulation, power-supply rejection (PSRR), and noise filtering as specified in the Electrical Characteristics. The LDO  
is in dropout when the input voltage is not sufficiently higher than the output voltage. In dropout, the voltage regulation  
is lost and only minimal PSRR and noise filtering is provided. The Electrical Characteristics table specifies both a  
dropout voltage and a dropout on-resistance for the LDO. Applications should avoid dropout by having an input voltage  
greater than the output voltage plus the dropout voltage. A dropout detection interrupt is available (DOD_R; refer to  
the Programmer's Guide for more information).  
www.maximintegrated.com  
Maxim Integrated | 46  
 
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
LDO Soft-Start  
The soft-start feature of the LDO limits inrush current during startup. The soft-start feature is achieved by limiting the slew  
rate of the output voltage during startup (dV/dt ).  
SS  
More output capacitance results in higher input current surges during startup. The following equation and example  
describes the input current surge phenomenon during startup.  
The input current (I ) during soft-start is:  
IN  
dV  
I
= C  
+ I  
LDO  
IN  
LDO  
dt  
SS  
where:  
● C  
is the capacitance on the output of the regulator  
LDO  
● dV/dt is the voltage change rate of the output  
SS  
For example, given the following conditions, the input current (I ) during soft-start is 22.5mA:  
IN  
Given:  
● C  
= 10µF  
LDO  
● dV/dt = 1.25mV/µs  
SS  
● R  
= 185Ω (I  
= 1.85V/185Ω = 10mA)  
LDO  
LDO  
Calculation:  
● I = 10µF x 1.25mV/µs + 10mA  
IN  
● I = 22.5mA  
IN  
Applications Information  
Current Limit  
The LDO is rated for 150mA of output current with a typical current limit of 255mA (I  
). The LDO is a voltage  
LIM_LDO  
regulator when it is enabled and its output current is less than I  
. The LDO becomes a current source when  
LIM_LDO  
overloaded beyond I  
. When overloaded, the LDO continues to source current as long as the LDO is enabled  
LIM_LDO  
and the overload persists. If the overload is removed, the LDO reverts back to operating as a voltage regulator.  
Current limit provides short-circuit protection for the LDO output. A shorted LDO output creates power dissipation (P  
)
DISS  
in the device according to the following equation: P  
= (V  
-V  
) x I  
DISS  
IN_LDO LDO LIM_LDO  
For example, if the LDO input voltage (V  
) is 5V and a hard short is causing the output voltage (V  
) to be 0V,  
LDO  
IN_LDO  
then P  
is typically 1.275W. If this power dissipation causes significant self-heating, then the thermal alarm 1 (TJAL1)  
DISS  
can be used to notify the system's processor of an issue.  
Using the LDO as a Load Switch  
If required, the LDO can be used as a load switch. For example, if a 1.8V load switch is desired, power the LDO input  
(IN_LDO) with 1.8V and program the LDO output voltage to 1.9V (any value 100mV or higher than the input voltage  
works). In this configuration, the LDO is in dropout and its quiescent current typically is 2.3μA (I  
).  
IN_LDO  
Input and Output Capacitor Selection  
Sufficient input bypass capacitance (C  
) and output capacitance (C  
) is required for stable operation of the  
LDO  
IN_LDO  
LDO. Figure 13 provides guidance on capacitor selection, and refers to required effective capacitance which is the actual  
value of capacitance seen by the LDO during operation. Effective capacitance is almost always lower than the nominal  
capacitance and is a commonly overlooked design parameter. Determine the effective capacitance by assessing the  
capacitor's initial tolerance, variation with temperature, and variation with DC bias. Consult the capacitor manufacturer  
for the specific details of derating.  
Choose the input capacitor C  
such that the effective capacitance is equal to or greater than the value found  
IN_LDO  
www.maximintegrated.com  
Maxim Integrated | 47  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
in Figure 13, based on expected load conditions for the application. A single 10μF, 1005/0402 (mm/inch) capacitor is  
recommended for typical applications, but ensure that the load current and derated capacitance does not compromise  
the stability curve in Figure 13. Larger values of C  
improve stability and decoupling for the LDO regulator. The  
IN_LDO  
floorplan of the device is such that SBB0 is adjacent to IN_LDO, and if SBB0 powers the input of the LDO, then the two  
nodes can share the SBB0 output capacitor (C  
power source during LDO regulator operation.  
. C  
reduces the current peaks drawn from the battery or input  
SBB0) IN_LDO  
Choose the output capacitor C  
such that the effective capacitance is equal to or greater than the value found  
LDO  
in Figure 13, based on expected load conditions for the application. A single 10μF, 1005/0402 (mm/inch) capacitor is  
recommended for typical applications, but ensure that the load current and derated capacitance does not compromise  
the stability curve in Figure 13. Larger values of C  
improve stability and output PSRR, but increases the input surge  
LDO  
currents during soft-start and output voltage changes. The effective output capacitance should not exceed 100μF to  
maintain LDO stability.  
For example, consider the case of the MAX77640A where:  
1. Size is very important.  
2. The LDO input is powered by SBB0 which is 2.05V.  
3. The LDO output is 1.85V.  
4. The LDO output current is ≤ 80mA.  
A small 1005/0402 (mm/inch) capacitor such as the GRM155R60J106ME15 (Murata, 10μF, 6.3V X5R) gives 5.7μF at  
60°C and 5.4μF at -20°C and has a ± 20% tolerance, so the worst-case effective capacitance is 4.3μF (5.4μF derated by  
20% tolerance). With just 4.3μF of capacitance at the output, Figure 13 shows the LDO is stable with load currents of ≤  
35mA. To get stability at 80mA, 6μF is required. There are a few options to consider here:  
● Add more capacitors to the design.  
● Replace the 1005/0402 (mm/inch) capacitor with a 1608/0603 (mm/inch) capacitor.  
● Consider point-of-load capacitance in the assessment of effective capacitance. For example, if there is a point-of-  
load capacitor downstream from the LDO that is sufficiently close to the local LDO output capacitor, it can cover  
the gap. The capacitor can be considered 'sufficiently close' if the PCB does not add more than 25nH and 25mΩ  
of extra ESR and ESL (more or less within 1").  
Note the impedance of either the input or output capacitor (ESR, ESL) should be very low (i.e., ≤ 50mΩ + ≤ 5nH) for  
frequencies up to 0.5MHz. Ceramic capacitors with X5R or X7R dielectric are highly recommended due to their small  
size, low ESR, and small temperature coefficients.  
EFFECTIVE LDO CAPACITANCE  
REQUIRED FOR STABILITY  
EFFECTIVE LDO CAPACITANCE  
REQUIRED FOR STABILITY  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
STABLE REGION  
STABLE REGION  
INPUT CAPACITANCE  
OUTPUT CAPACITANCE  
UNSTABLE REGION  
UNSTABLE REGION  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 13. LDO Capacitance for Stability  
www.maximintegrated.com  
Maxim Integrated | 48  
 
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Detailed Description—Current Sinks  
These devices have a 3-channel current sink driver designed to drive LED's in portable devices. This block can  
also be used as a general-purpose current sink driver for other applications. The driver's on-time and frequency  
are independently programmable for each output to achieve a desired blink pattern. Alternatively, the LEDs can be  
continuously on (i.e., not blinking). The blink period is programmable from 0.5s to 8s, with an on-time duty cycle from  
6.25% to 100%.  
Figure 14 utilizes a common set of clock dividers to drive three identical current sink modules. Refer to the Programmer's  
Guide for more information.  
MAX77640  
MAX77641  
BIAS  
CLK_64_S  
CLK  
CLOCK  
DIVIDER  
CLOCK DIVIDER  
AND INVERTER  
CLK_64  
CLK_32  
EN_LED_MSTR  
CURRENT SINK  
LED0  
BRT_LED0[4:0]  
DAC  
INV_LED0  
P_LED0[3:0]  
D_LED0[3:0]  
CLK_32  
EN_LED0  
PWM  
LOGIC  
2/4/8Ω  
LED_FS0[1:0]  
CURRENT SINK  
LED1  
BRT_LED1[4:0]  
INV_LED0  
P_LED1[3:0]  
D_LED1[3:0]  
CLK_32  
LED_FS1[1:0]  
CURRENT SINK  
LED2  
BRT_LED24:0]  
INV_LED0  
P_LED2[3:0]  
D_LED2[3:0]  
CLK_32  
LGND  
LED_FS2[1:0]  
Figure 14. Current Sink Block Diagram  
Applications Information  
LED Assignment  
The three current sinks (LED0, LED1, LED2) are identical. In the typical application where a red, green, blue LED cluster  
is used (RGB), the assignment of the RGB elements to the LED0/1/2 pins should be done in whatever way makes the  
PCB layout the easiest.  
Unused Current Sink Ports  
If a current sink port is not utilized in a given application, connect that port to ground. Additionally, software should ensure  
that the unused current sink is not enabled (EN_LEDx = 0).  
www.maximintegrated.com  
Maxim Integrated | 49  
 
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
2
Detailed Description—I C Serial Interface  
2
The MAX77640/MAX77641 feature a revision 3.0 I C-compatible, 2-wire serial interface consisting of a bidirectional  
2
serial data line (SDA) and a serial clock line (SCL). As shown in Figure 15, the I C SDA and SCL signals are internally  
decoded by the devices used to communicate with the top-level control logic as well as the SIMO, LDO, GPIO, and  
current sinks. The MAX77640/MAX77641 are slave-only devices which rely on an external bus master to generate SCL.  
2
SCL clock rates from 0Hz to 3.4MHz are supported. I C is an open-drain bus and therefore, SDA and SCL require  
pullups.  
2
2
The MAX77640/MAX77641 I C communication controller implements 7-bit slave addressing. An I C bus master initiates  
communication with the slave by issuing a START condition followed by the slave address (Figure 16). The OTP  
address is factory programmable for one of two options (Table 5). All slave addresses not mentioned in Table 5 are not  
acknowledged.  
The devices use 8-bit registers with 8-bit register addressing. They support standard communication protocols: (1)  
writing to a single register (2) writing to multiple sequential registers with an automatically incrementing data pointer  
(3) reading from a single register (4) reading from multiple sequential registers with an automatically incrementing data  
2
2
pointer. For additional information on the I C protocols, refer to the MAX77640/MA77641 I C Implementation Guide and/  
2
or the I C specification that is freely available on the internet.  
COMMUNICATIONS CONTROLLER  
V
IO  
SCL  
SDA  
INTERFACE  
DECODERS  
SHIFT REGISTERS  
BUFFERS  
GND  
TOP  
LEVEL  
CURRENT  
SINKS  
SIMO  
LDO  
GPIO  
2
Figure 15. I C Simplified Block Diagram  
.
www.maximintegrated.com  
Maxim Integrated | 50  
 
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
2
Table 5. I C Slave Address Options  
ADDRESS  
7-BIT SLAVE ADDRESS  
8-BIT WRITE ADDRESS  
8-BIT READ ADDRESS  
Main Address  
(ADDR = 1)*  
0x48, 0b 100 1000  
0x90, 0b 1001 0000  
0x91, 0b 1001 0001  
Main Address  
(ADDR = 0)*  
0x40, 0b 100 0000  
0x49, 0b 100 1001  
0x80, 0b 1000 0000  
0x92, 0b 1001 0010  
0x81, 0b 1000 0001  
0x93, 0b 1001 0011  
Test Mode**  
*Perform all reads and writes on the main address. ADDR is a factory one-time programmable (OTP) option, allowing for  
address changes in the event of a bus conflict. Contact Maxim for more information.  
**When test mode is unlocked, the additional address is acknowledged. Test mode details are confidential. If possible,  
leave the test mode address unallocated to allow for the rare event that debugging needs to be performed in cooperation  
with Maxim.  
S
1
1
0
2
0
3
1
4
0
5
0
6
0
7
R/W  
A
9
SDA  
SCL  
ACKNOWLEDGE  
8
Figure 16. Slave Address Example  
www.maximintegrated.com  
Maxim Integrated | 51  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Typical Application Circuit  
MAX77640  
MAX77641  
SYS  
V
SYS  
IN_SBB  
PGND  
2.7V to 5.5V  
POWER INPUT  
C
SYS  
22µF/6.3V  
(0603)  
SBB0  
V
SBB0  
SIMO BUCK-BOOST  
SBB1  
SBB2  
V
V
SBB1  
SBB2  
1.5µH  
LXA  
LXB  
10µF  
6.3V  
C
BST  
(0402)  
BST  
3300pF/6.3V  
(0201)  
SYSTEM  
RESOURCES  
GPIO  
BIAS  
SUCH AS:  
SYS, SBB2  
IN_LDO  
LDO  
LED0  
LED1  
LED2  
LGND  
CURRENT  
SINKS  
LDO  
V
LDO  
10µF  
6.3V  
(0402)  
V
IO  
V
/POWER  
IO  
SDA  
SCL  
*
*
SDA  
SCL  
GPIO  
GPIO  
GPIO  
2
I C  
PROCESSOR  
nRST  
nIRQ  
*
*
nRST  
nIRQ  
10k  
V
SYS  
nEN  
TOP LEVEL  
PWR_HLD  
PWR_HLD  
MOMENTARY  
ONKEY  
GND  
*THE PROCESSOR HAS AN INTERNAL PULL  
RESISTOR FOR THIS NODE.  
Ordering Information  
PIN-  
PACKAGE  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
OPTIONS  
SBB0/SBB1/SBB2 upper values 2.375V/1.5875V/3.95V,  
samples with various OTP options  
MAX77640EWV+*  
MAX77640AEWV+T  
MAX77641EWV+*  
MAX77641AEWV+T  
30 WLP  
SBB0/SBB1/SBB2 upper values 2.375V/1.5875V/3.95V,  
production device, DIDM = 0b00, CID = 0b0000**  
30 WLP  
30 WLP  
30 WLP  
SBB0/SBB1/SBB2 upper values 2.375V/5.25V/5.25V,  
samples with various OTP options  
SBB0/SBB1/SBB2 upper values 2.375V/5.25V/5.25V,  
production device, DIDM = 0b01, CID = 0b0001**  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
*Custom samples only. Not for production or stock. Contact factory for more information.  
**See the Programmer's Guide for the options associated with a specified DIDM and CID.  
www.maximintegrated.com  
Maxim Integrated | 52  
MAX77640/MAX77641  
Ultra-Low Power PMIC with 3-Output SIMO,  
150mA LDO, and Power Sequencer  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
4/18  
6/18  
8/18  
0
1
2
Initial release  
Updated Ordering Information table  
52  
1
Updated bump pitch in Benefits and Features section  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max  
limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
© 2018 Maxim Integrated Products, Inc.  

相关型号:

MAX77641

Evaluates Both Push-Button and Slider-Switch On-Key Options
MAXIM

MAX77641AEWV+T

Power Supply Support Circuit,
MAXIM

MAX77641EWV+

Power Supply Support Circuit,
MAXIM

MAX77650

Ultra-Low Power PMIC with 3-Output SIMO and Power Path Charger for Small Li
MAXIM

MAX77650AEWV+

Power Supply Support Circuit, Adjustable, 5 Channel, PBGA30, WLP-30
MAXIM

MAX77650AEWVT

Ultra-Low Power PMIC with 3-Output SIMO and Power Path Charger for Small Li
MAXIM

MAX77650BEWVT

Ultra-Low Power PMIC with 3-Output SIMO and Power Path Charger for Small Li
MAXIM

MAX77650CEWVT

Ultra-Low Power PMIC with 3-Output SIMO and Power Path Charger for Small Li
MAXIM

MAX77650EVKIT

GUI Drives I2C Interface
MAXIM

MAX77650EWVT

Ultra-Low Power PMIC with 3-Output SIMO and Power Path Charger for Small Li
MAXIM

MAX77650MEWVT

Ultra-Low Power PMIC with 3-Output SIMO and Power Path Charger for Small Li
MAXIM

MAX77651

GUI Drives I2C Interface
MAXIM