MAX864EEE [MAXIM]

Dual-Output Charge Pump with Shutdown; 双输出电荷泵,带有关断
MAX864EEE
型号: MAX864EEE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual-Output Charge Pump with Shutdown
双输出电荷泵,带有关断

文件: 总12页 (文件大小:124K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0478; Rev 0; 3/96  
Du a l-Ou t p u t Ch a rg e P u m p w it h S h u t d o w n  
MAX864  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Requires Only Four Capacitors  
The MAX864 CMOS, charge-pump, DC-DC voltage  
converter produces a positive and a negative output  
from a single positive input, and requires only four  
capacitors. The charge pump first doubles the input  
voltage, then inverts the doubled voltage. The input  
voltage ranges from +1.75V to +6.0V.  
Dual Outputs (Positive and Negative)  
Low Input Voltages: +1.75V to +6.0V  
1µA Logic-Controlled Shutdown  
The internal oscillator can be pin-programmed from  
7kHz to 185kHz, allowing the quiescent current, capac-  
itor size, and switching frequency to be optimized. The  
55output impedance permits useful output currents  
up to 20mA. The MAX864 also has a 1µA logic-con-  
trolled shutdown.  
Selectable Frequencies Allow Optimization  
of Capacitor Size and Supply Current  
The MAX864 comes in a 16-pin QSOP package that  
uses the same board area as a standard 8-pin SOIC.  
For more space-sensitive applications, the MAX865 is  
available in an 8-pin µMAX package, which uses half  
the board area of the MAX864.  
______________Ord e rin g In fo rm a t io n  
PART  
MAX864C/D  
MAX864EEE  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
Dice*  
________________________Ap p lic a t io n s  
Low-Voltage GaAsFET Bias in Wireless Handsets  
VCO and GaAsFET Supply  
-40°C to +85°C  
16 QSOP  
* Contact factory for dice specifications.  
Split Supply from 2 to 4 Ni Cells or 1 Li+ Cell  
Low-Cost Split Supply for Low-Voltage  
Data-Acquisition Systems  
Split Supply for Analog Circuitry  
LCD Panels  
__________Typ ic a l Op e ra t in g Circ u it  
__________________P in Co n fig u ra t io n  
V
IN  
+2V  
IN  
IN  
V+  
TOP VIEW  
(+1.75V TO +6.0V)  
C1+  
C1-  
C2+  
GND  
C2-  
1
2
3
4
5
6
7
8
C1+  
V+  
16  
15  
14  
MAX864  
C1-  
N.C.  
MAX864  
13 N.C.  
12 IN  
C2+  
V-  
-2V  
IN  
V-  
SHDN  
FC1  
FC0  
11 GND  
C2-  
10  
9
N.C.  
N.C.  
FC0 FC1 SHDN GND  
V
IN  
V
IN  
V
IN  
QSOP  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
Du a l-Ou t p u t Ch a rg e P u m p w it h S h u t d o w n  
ABSOLUTE MAXIMUM RATINGS  
V+ to GND..............................................................-0.3V to +12V  
SHDN, FC0, FC1 to GND .............................-0.3V to (V+ + 0.3V)  
IN to GND..............................................................-0.3V to +6.2V  
V- to GND ...............................................................+0.3V to -12V  
V- Output Current .............................................................100mA  
V- Short Circuit to GND .................................................Indefinite  
Operating Temperature Range  
MAX864EEE......................................................-40°C to +85°C  
Continuous Power Dissipation (T = +70°C)  
QSOP (derate 8.70mW/°C above +70°C).....................696mW  
Storage Temperature Range ............................ -65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
A
MAX864  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS (Note 1)  
(V = 5V, SHDN = V , circuit of Figure 1, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX  
A
IN  
A
MIN  
IN  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
T
= +25°C  
1.75  
2.00  
1.25  
A
Minimum Start-Up Voltage  
Maximum Supply Voltage  
R
R
= 10k  
V
V
LOAD  
LOAD  
T
A
= T to T  
MIN MAX  
= 10kΩ  
6.0  
1.0  
3.65  
11  
FC1 = FC0 = GND, f = 7kHz  
0.6  
2.4  
7
FC1 = GND, FC0 = IN, f = 33kHz  
FC1 = IN, FC0 = GND, f = 100kHz  
FC1 = FC0 = IN, f = 185kHz  
Supply Current  
mA  
µA  
12  
18  
Shutdown Current  
Oscillator Frequency  
0.1  
7
1
FC1 = FC0 = IN or GND, SHDN = GND  
FC1 = FC0 = GND  
5
10  
FC1 = GND, FC0 = IN  
FC1 = IN, FC0 = GND  
FC1 = FC0 = IN  
24  
33  
48  
kHz  
70  
100  
185  
140  
260  
130  
INPUTS AND OUTPUTS  
Logic Input Low Voltage  
2.2  
2.8  
1.0  
V
V
SHDN, FC0, FC1  
Logic Input High Voltage  
Logic Input Bias Current  
V+ to IN Shutdown Resistance  
V- to GND Shutdown Resistance  
3.5  
-1  
SHDN, FC0, FC1  
1
µA  
SHDN, FC0 = FC1 = GND or IN  
I
= 10mA  
= 10mA  
22  
6
100  
50  
V+  
I
V-  
T
= +25°C  
55  
75  
A
I
= 10mA, I = 0mA  
V-  
V+  
T
A
= T  
to T  
100  
50  
MIN  
MAX  
Output Resistance  
(Note 1)  
T
A
= +25°C  
34  
V+ = 10V, I = 10mA (forced)  
V-  
T
A
= T  
to T  
60  
MIN  
MAX  
V+, R =  
95  
95  
99  
99  
L
Voltage Conversion Efficiency  
%
V-, R = ∞  
L
Note 1: Measured using the capacitor values in Table 1. Capacitor ESR contributes approximately 10% of the output impedance  
[ESR + 1 / (pump frequency x capacitance)].  
2
_______________________________________________________________________________________  
Du a l-Ou t p u t Ch a rg e P u m p w it h S h u t d o w n  
MAX864  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = 5.0V, capacitor values in Table 1, T = +25°C, unless otherwise noted.)  
IN  
A
EFFICIENCY vs. OUTPUT CURRENT  
@ 7kHz PUMP FREQUENCY  
EFFICIENCY vs. OUTPUT CURRENT  
@ 33kHz PUMP FREQUENCY  
EFFICIENCY vs. OUTPUT CURRENT  
@ 100kHz PUMP FREQUENCY  
90  
100  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3.3V  
V
= 5.0V  
IN  
V
IN  
= 3.3V  
V+  
IN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
V+  
V-  
V+  
V-  
V+  
V-  
V+  
V-  
V
IN  
= 5.0V  
V
= 5.0V  
IN  
V-  
V+  
V-  
V
= 3.3V  
IN  
C1C4 = 2.2µF  
FC1 = 0, FC0 = 0  
C1C4 = 6.8µF  
FC1 = 0, FC0 = 1  
C1C4 = 33µF  
FC1 = 0, FC0 = 0  
0
0
5
10 15  
20  
25  
30  
35  
0
5
10 15  
20  
25  
30  
35  
0
5
10 15  
20  
25  
30  
35  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
EFFICIENCY vs. OUTPUT CURRENT  
@ 185kHz PUMP FREQUENCY  
OUTPUT RESISTANCE  
vs. TEMPERATURE  
OUTPUT RESISTANCE  
vs. SUPPLY VOLTAGE  
140  
125  
80  
160  
140  
120  
100  
80  
V
IN  
= 3.3V  
V+  
FC1 = 1, FC0 = 1  
(185kHz @ 5V)  
V+  
V-, V = 3.0V  
IN  
70  
60  
50  
40  
30  
20  
10  
0
V-, V = 4.5V  
IN  
110  
95  
V
= 5.0V  
IN  
V-  
V-  
V+, V = 3.0V  
R
IN  
OUT-  
80  
R
OUT+  
C1C4 = 1µF  
FC1 = 1, FC0 = 1  
65  
50  
35  
60  
V+, V = 4.5V  
IN  
40  
-35  
0
5
10 15  
20  
25  
30  
35  
-55  
-15  
5
25 45 65 85 105 125  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
OUTPUT VOLTAGE  
OUTPUT CURRENT vs. PUMP CAPACITANCE  
OUTPUT CURRENT vs. PUMP CAPACITANCE  
vs. OUTPUT CURRENT  
(V = 1.9V, V+ + V- = 6V)  
IN  
(V = 3.15V, V+ + V- = 10V)  
IN  
10  
8
4.5  
4.0  
9
8
f = 33kHz  
V+ LOADED  
V- LOADED  
6
f = 100kHz  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
7
6
5
4
3
2
1
0
f = 185kHz  
f = 100kHz  
f = 33kHz  
4
2
f = 185kHz  
C1C4 = 1µF  
= 4.75V  
f = 7kHz  
V
BOTH V+ AND  
IN  
FC1 = 1  
V- LOADED EQUALLY  
0
f = 7kHz  
FC0 = 1 (185kHz)  
-2  
-4  
-6  
-8  
V- LOADED  
V+ LOADED  
C1 = C2 = C3 = C4  
C1 = C2 = C3 = C4  
-10  
10  
OUTPUT CURRENT (mA)  
0
5
15 20 25 30 35 40  
0
5
10 15 20 25 30 35 40 45 50  
0
5
10 15 20 25 30 35 40 45 50  
PUMP CAPACITANCE (µF)  
PUMP CAPACITANCE (µF)  
_______________________________________________________________________________________  
3
Du a l-Ou t p u t Ch a rg e P u m p w it h S h u t d o w n  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = 5.0V, capacitor values in Table 1, T = +25°C, unless otherwise noted.)  
IN  
A
OUTPUT VOLTAGE RIPPLE  
vs. PUMP CAPACITANCE  
OUTPUT VOLTAGE RIPPLE  
vs. PUMP CAPACITANCE  
OUTPUT CURRENT vs. PUMP CAPACITANCE  
(V = 1.9V, V+ + V- = 6V)  
IN  
(V = 4.75V, V+ + V- = 16V)  
IN  
(V = 3.15V, V+ + V- = 10V)  
IN  
14  
400  
350  
300  
600  
500  
400  
33kHz  
C1 = C2 = C3 = C4  
C1 = C2 = C3 = C4  
12  
10  
8
MAX864  
OUTPUT RIPPLE IS  
MEASURED FOR THE  
LOAD CURRENT INDICATED  
IN THE "OUTPUT CURRENT  
vs. PUMP CAPACITANCE"  
OUTPUT RIPPLE IS  
MEASURED FOR THE  
LOAD CURRENT INDICATED  
IN THE "OUTPUT CURRENT  
vs. PUMP CAPACITANCE"  
100kHz  
185kHz  
250  
200  
150  
100  
50  
GRAPH AT V = 3.15V.  
IN  
7kHz  
GRAPH AT V = 1.9V.  
300  
200  
100  
0
IN  
7kHz  
6
100kHz  
33kHz  
185kHz  
100kHz  
4
2
0
33kHz  
7kHz  
185kHz  
C1 = C2 = C3 = C4  
0
0
5
10 15 20 25 30 35 40 45 50  
0
5
10 15 20 25 30 35 40 45 50  
0
5
10 15 20 25 30 35 40 45 50  
PUMP CAPACITANCE (µF)  
PUMP CAPACITANCE (µF)  
PUMP CAPACITANCE (µF)  
OUTPUT VOLTAGE RIPPLE  
vs. PUMP CAPACITANCE  
(V = 4.75V, V+ + V- = 16V)  
IN  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
800  
700  
600  
500  
400  
300  
200  
100  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
600  
500  
400  
300  
200  
100  
0
C1 = C2 = C3 = C4  
OUTPUT RIPPLE IS  
MEASURED FOR THE  
LOAD CURRENT INDICATED  
IN THE "OUTPUT CURRENT  
vs. PUMP CAPACITANCE"  
GRAPH AT V = 4.75V.  
IN  
7kHz  
100kHz  
185kHz  
33kHz  
V
IN  
= 5.0V  
V
IN  
= 3.3V  
0
5
10 15 20 25 30 35 40 45 50  
-55 -35 -15 5 25 45 65 85 105 125  
TEMPERATURE (°C)  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
PUMP CAPACITANCE (µF)  
SUPPLY VOLTAGE (V)  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
PUMP FREQUENCY  
vs. TEMPERATURE  
(V = 3.3V)  
IN  
(V = 5V)  
IN  
7
6
14  
12  
200  
180  
FC1 = 1, FC0 = 1  
FC1 = 1, FC0 = 0  
FC1 = 1, FC0 = 1  
FC1 = 1, FC0 = 1  
FC1 = 1, FC0 = 0  
160  
140  
120  
100  
80  
5
4
3
2
1
0
10  
8
FC1 = 1, FC0 = 0  
6
60  
4
FC1 = 0, FC0 = 1  
FC1 = 0, FC0 = 0  
FC1 = 0, FC0 = 1  
FC1 = 0, FC0 = 0  
FC1 = 0, FC0 = 1  
FC1 = 0, FC0 = 0  
40  
20  
0
2
0
-55 -35 -15 5 25 45 65 85 105 125  
TEMPERATURE (°C)  
-55 -35 -15 5 25 45 65 85 105 125  
TEMPERATURE (°C)  
-55 -35 -15 5 25 45 65 85 105 125  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
Du a l-Ou t p u t Ch a rg e P u m p w it h S h u t d o w n  
MAX864  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = 5.0V, capacitor values in Table 1, T = +25°C, unless otherwise noted.)  
IN  
A
TIME TO EXIT SHUTDOWN  
+5V  
0V  
FC0 = FC1 = IN (185kHz), C1–C4 = 1µF  
FC0 = FC1 = GND (7kHz), C1–C4 = 33µF  
+10V  
0V  
-10V  
1ms/div  
_____________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
Negative Terminal of the Flying Boost  
Capacitor  
C1-  
1
V
CC  
IN  
Positive Terminal of the Flying  
Inverting Capacitor  
2
3, 11  
4
C2+  
GND  
C2-  
Ground (connect pins 3 and 11 together)  
C1  
Negative Terminal of the Flying  
Inverting Capacitor  
MAX864  
16  
15  
1
2
3
C1-  
C1+  
V+  
5
V-  
Output of the Inverting Charge Pump  
V+ OUT  
C2+  
GND  
Active-Low Shutdown Input. With  
SHDN low, the part is in shutdown  
mode and its supply current is less  
than 1µA. In shutdown mode, V+  
connects to IN through a 22switch,  
and V- connects to GND through a  
6switch.  
14  
13  
C2  
N.C.  
C3  
C4  
4
C2-  
N.C.  
R
L+  
I
L+  
12  
11  
5
6
6
SHDN  
V-  
IN  
GND  
N.C.  
SHDN  
+5V  
10  
9
7
8
FC1  
FC0  
N.C.  
7
8
FC1  
FC0  
Frequency Select, MSB (see Table 1)  
Frequency Select, LSB (see Table 1)  
R
L-  
I
L-  
No Connect—no internal connection.  
Connect these to ground to improve  
thermal dissipation.  
9, 10,  
13, 14  
V- OUT  
N.C.  
SEE TABLE 1 FOR CAPACITOR VALUES.  
12  
15  
IN  
Positive Power-Supply Input  
V+  
Output of the Boost Charge Pump  
Positive Terminal of the Flying Boost  
Capacitor  
Figure 1. Test Circuit  
16  
C1+  
_______________________________________________________________________________________  
5
Du a l-Ou t p u t Ch a rg e P u m p w it h S h u t d o w n  
Ch a rg e -P u m p Fre q u e n c y  
_______________De t a ile d De s c rip t io n  
a n d Ca p a c it o r S e le c t io n  
The MAX864 offers four different charge-pump frequen-  
cies. To select a desired frequency, define pins FC0 and  
FC1 as shown in Table 1. Lower charge-pump frequen-  
cies produce lower average supply currents, while high-  
er charge-pump frequencies require smaller capacitors.  
The MAX864 requires only four external capacitors to  
implement a voltage doubler/inverter. These may be  
ceramic or polarized capacitors (electrolytic or tanta-  
lum) with values ranging from 0.47µF to 100µF.  
Figure 2a illustrates the ideal operation of the positive  
voltage doubler. The on-chip oscillator generates a  
50% duty-cycle clock signal. During the first half cycle,  
switches S2 and S4 open, switches S1 and S3 close,  
Ta b le 1 a ls o lis ts the re c omme nd e d c ha rg e -p ump  
capacitor values for each pump frequency. Using val-  
ues larger than those recommended will have little  
effect on the output current. Using values smaller than  
those recommended will reduce the available output  
current and increase the output ripple. To cut the out-  
put ripple in half, double the values of C3 and C4.  
MAX864  
and capacitor C1 charges to the input voltage (V ).  
IN  
During the s e c ond ha lf c yc le , s witc he s S1 a nd S3  
open, switches S2 and S4 close, and capacitor C1 is  
le ve l s hifte d up wa rd b y V volts . As s uming id e a l  
IN  
switches and no load on C3, charge transfers into C3  
To maintain the lowest output resistance, use capacitors  
with low effective series resistance (ESR). At each switch-  
ing frequency, the charge-pump output resistance is a  
function of C1, C2, C3, and C4s ESR. Minimizing the  
charge-pump capacitors ESR minimizes output resis-  
tance. Use ceramic capacitors for best results.  
from C1 such that the voltage on C3 will be 2V , gen-  
erating the positive supply output (V+).  
IN  
Figure 2b illustrates the ideal operation of the negative  
converter. The switches of the negative converter are  
out of phase from the positive converter. During the  
s e c ond ha lf c yc le , s witc he s S6 a nd S8 op e n, a nd  
s witc he s S5 a nd S7 c los e , c ha rg ing C2 from V+  
Table 1. Frequency Selection  
(pumped up to 2V by the positive charge pump) to  
IN  
CAPACITORS  
GND. In the first half of the clock cycle, switches S5  
a nd S7 op e n, s witc he s S6 a nd S8 c los e , a nd the  
charge on capacitor C2 transfers to C4, generating the  
negative supply. The eight switches are CMOS power  
MOSFETs. Switches S1, S2, S4, and S5 are P-channel  
devices, while switches S3, S6, S7, and S8 are N-chan-  
nel devices.  
FREQUENCY  
FC1  
FC0  
C1–C4  
(µF)  
(kHz)  
0
0
1
1
0
1
0
1
7
33  
6.8  
2.2  
1
33  
100  
185  
a)  
b)  
V+  
V+  
S6  
S1  
S3  
C1+ S2  
S5  
C2+  
IN  
GND  
V-  
C2  
C3  
C1  
R +  
L
I +  
L
R -  
L
I -  
L
C4  
S4  
S7  
S8  
IN  
GND  
GND  
C1-  
C2-  
Figure 2. Idealized Voltage Quadrupler: a) Positive Charge Pump; b) Negative Charge Pump  
_______________________________________________________________________________________  
6
Du a l-Ou t p u t Ch a rg e P u m p w it h S h u t d o w n  
MAX864  
Ch a rg e -P u m p Ou t p u t  
The MAX864 is not a voltage regulator: the output  
source resistance of either charge pump is approxi-  
S h u t d o w n  
The MAX864 features a shutdown mode that reduces  
the maximum supply current to 1µA over temperature.  
The SHDN pin is an active-low TTL logic-level input. If  
the shutdown feature is unused, connect SHDN to IN.  
In shutdown mode, V+ connects to IN through a 22Ω  
switch and V- connects to GND through a 6switch.  
mately 55at room temperature (with V = 5V); and V+  
IN  
and V- approach +10V and -10V, respectively, when  
lightly loaded. Both V+ and V- will droop toward GND as  
the current draw from either V+ or V- increases, since V-  
is derived from V+. Treating each converter separately,  
_________Effic ie n c y Co n s id e ra t io n s  
the droop of the negative supply (V ) is the prod-  
DROOP-  
uct of the current draw from V- (I ) and the source  
resistance of the negative converter (RS-):  
Theoretically, a charge-pump voltage multiplier can  
approach 100% efficiency under the following condi-  
tions:  
V-  
V
= I x RS -  
V-  
DROOP -  
The charge-pump switches have virtually no offset,  
The droop of the positive sup ply (V  
) is the  
and extremely low on-resistance.  
DROOP+  
product of the current draw from the positive supply  
(I ) and the source resistance of the positive con-  
The drive circuitry consumes minimal power.  
LOAD+  
The impedances of the reservoir and pump capaci-  
verter (RS+), where I  
is the combination of I  
LOAD+  
V-  
tors are negligible.  
and the external load on V+ (I ):  
V+  
For the MAX864, the energy loss per clock cycle is the  
sum of the energy loss in the positive and negative  
converters, as follows:  
V
= I  
x RS+ = I + I  
x RS+  
(
)
DROOP+  
LOAD+  
V+  
V-  
Determine V+ and V- as follows:  
V+ = 2V - V  
IN  
DROOP+  
LOSS  
= LOSS  
1
+ LOSS  
2
CYCLE  
POS  
NEG  
V- = (V+ - V  
)
DROOP  
= -(2V - V  
- V  
)
=
C1 V+ − 2 V+  
V
IN  
IN DROOP+  
DROOP -  
(
)
(
) (  
)
2
The output resistances for the positive and negative  
charge pumps are tested and specified separately. The  
positive charge pump is tested with V- unloaded. The  
negative charge pump is tested with V+ supplied from  
an external source, isolating the negative charge pump.  
1
2
2
2
+
C2 V+  
V−  
(
)
(
)
where V+ and V- are the actual measured output volt-  
ages.  
The average power loss is simply:  
Resulting in an efficiency of:  
Current draw from either V+ or V- is supplied by the  
reservoir capacitor alone during one half cycle of the  
clock. Calculate the resulting ripple voltage on either  
output as follows:  
P
= LOSS  
x f  
CYCLE PUMP  
LOSS  
1
V
=
I
(1 / f  
) (1 / C  
)
RESERVOIR  
η = Total Output Power / Total Output Power P  
RIPPLE  
LOAD  
PUMP  
(
)
LOSS  
2
where I  
ple, with an f  
is the load on either V+ or V-. For exam-  
There will be a substantial voltage difference between  
(V+ - V ) and V for the positive pump, and between  
LOAD  
of 33kHz and 6.8µF reservoir capaci-  
PUMP  
IN  
IN  
tors , the rip p le is 26mV whe n I  
Remember that, in most applications, the total load on  
is 12mA.  
V+ and V- if the impedances of the pump capacitors  
(C1 and C2) are large with respect to their respective  
output loads.  
LOAD  
V+ is the V+ load current (I ) and the current taken by  
V+  
the negative charge pump (I ).  
V-  
La rg e r re s e rvoir c a p a c itor (C3 a nd C4) va lue s will  
reduce output ripple. Larger values of both pump and  
reservoir capacitors will improve efficiency.  
_______________________________________________________________________________________  
7
Du a l-Ou t p u t Ch a rg e P u m p w it h S h u t d o w n  
P a ra lle lin g De vic e s  
__________Ap p lic a t io n s In fo rm a t io n  
Paralleling multiple MAX864s reduces the output resis-  
tance of both the positive and negative converters  
(Figure 4). The effective output resistance is the output  
resistance of one device divided by the total number of  
devices. Separate C1 and C2 charge-pump capacitors  
are required for each MAX864, but the reservoir capac-  
itors C3 and C4 can be shared.  
P o s it ive a n d Ne g a t ive Co n ve rt e r  
The most common application of the MAX864 is as a  
dual charge-pump voltage converter that provides pos-  
itive and negative outputs of two times a positive input  
voltage for biasing analog circuitry (Figure 3). Select a  
charge-pump frequency high enough so it does not  
interfere with other circuitry, but low enough to maintain  
low supply current. See Table 1 for the correct device  
configuration.  
MAX864  
V
IN  
(+1.75V TO +6.0V)  
C1  
MAX864  
16  
1
2
3
C1-  
C1+  
15  
14  
+2 x V  
C2+  
GND  
IN  
V+  
C2  
N.C.  
C3  
13  
4
C2-  
N.C.  
12  
11  
5
6
V-  
IN  
GND  
N.C.  
SHDN  
IN  
10  
9
7
8
FC1  
FC0  
SEE TABLE 1  
N.C.  
C4  
-2 x V  
IN  
Figure 3. Positive and Negative Converter  
8
_______________________________________________________________________________________  
Du a l-Ou t p u t Ch a rg e P u m p w it h S h u t d o w n  
MAX864  
V
IN  
3.3µF  
3.3µF  
3.3µF  
1
2
8
7
1
2
8
7
C1-  
C1-  
V+  
V+ OUT  
V+  
MAX864  
MAX864  
C2+  
C2+  
C1+  
3.3µF  
C1+  
3.3µF  
3
4
3
4
6
5
6
5
V
IN  
IN  
C2-  
V-  
IN  
C2-  
V-  
GND  
GND  
GND  
3.3µF  
V- OUT  
Figure 4. Paralleling Two MAX864s  
He a vy Ou t p u t Cu rre n t Lo a d s  
When under heavy loads, where V+ is sourcing current  
into V- (i.e., load current flows from V+ to V-, rather than  
from supply to ground), do not allow the V- supply to  
pull above ground. In applications where large currents  
flow from V+ to V-, use a Schottky diode (1N5817)  
between GND and V-, with the anode connected to  
GND (Figure 5).  
11  
5
GND  
V-  
La yo u t a n d Gro u n d in g  
Good layout is important, primarily for good noise per-  
formance. To ensure good layout, mount all compo-  
nents as close together as possible, keep traces short  
to minimize parasitic inductance and capacitance, and  
us e a g round p la ne . Conne c ting a ll N.C. p ins to a  
ground plane improves thermal dissipation.  
MAX864  
Figure 5. High V- Load Circuit  
_______________________________________________________________________________________  
9
Du a l-Ou t p u t Ch a rg e P u m p w it h S h u t d o w n  
___________________Ch ip To p o g ra p h y  
C1-  
C1+  
V+  
C2+  
MAX864  
GND  
0. 120"  
(3. 05mm)  
C2-  
V-  
IN  
GND  
SHDN  
FC1 FC0  
0. 080"  
(2. 03mm)  
TRANSISTOR COUNT: 143  
SUBSTRATE CONNECTED TO V+  
10 ______________________________________________________________________________________  
Du a l-Ou t p u t Ch a rg e P u m p w it h S h u t d o w n  
MAX864  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
INCHES  
MILLIMETERS  
DIM  
DIM PINS  
MIN  
0.061  
MAX  
MIN  
MAX  
1.73  
0.25  
1.55  
0.31  
0.25  
MIN MAX MIN  
MAX  
4.98  
0.18  
8.74  
1.40  
8.74  
0.76  
9.98  
A
0.068  
1.55  
16 0.189 0.196 4.80  
16 0.0020 0.0070 0.05  
20 0.337 0.344 8.56  
20 0.0500 0.0550 1.27  
24 0.337 0.344 8.56  
24 0.0250 0.0300 0.64  
28 0.386 0.393 9.80  
28 0.0250 0.0300 0.64  
D
S
D
S
D
S
D
S
D
A1 0.004 0.0098 0.127  
A2 0.055  
0.061  
0.012  
1.40  
0.20  
0.19  
B
C
D
E
e
0.008  
A
0.0075 0.0098  
SEE VARIATIONS  
e
0.150  
0.157  
3.81  
3.99  
A1  
B
0.25 BSC  
0.635 BSC  
0.76  
21-0055A  
H
h
0.230  
0.010  
0.016  
0.244  
0.016  
0.035  
5.84  
0.25  
0.41  
6.20  
0.41  
0.89  
S
L
N
S
α
SEE VARIATIONS  
SEE VARIATIONS  
0°  
8°  
0°  
8°  
E
H
QSOP  
QUARTER  
SMALL-OUTLINE  
PACKAGE  
h x 45°  
α
A2  
N
E
L
C
______________________________________________________________________________________ 11  
Du a l-Ou t p u t Ch a rg e P u m p w it h S h u t d o w n  
MAX864  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1996 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX864EEE+T

Switched Capacitor Converter, 185kHz Switching Freq-Max, CMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX865

Compact, Dual-Output Charge Pump
MAXIM

MAX8650

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency
MAXIM

MAX8650EEG

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency
MAXIM

MAX8650EEG+

Switching Controller, Current-mode, 25A, 1200kHz Switching Freq-Max, BICMOS, PDSO24, 0.150 INCH, 0.250 INCH PITCH, LEAD FREE, MO-137AE, QSOP-24
MAXIM

MAX8653

Dual, 5A, 1.5MHz Step-Down Regulator with Integrated High-Side Switches
MAXIM

MAX8653ETI+T

Switching Regulator/Controller
MAXIM

MAX8654

12V, 8A 1.2MHz Step-Down Regulator
MAXIM

MAX8654ETX

12V, 8A 1.2MHz Step-Down Regulator
MAXIM

MAX8654ETX+

12V, 8A 1.2MHz Step-Down Regulator
MAXIM

MAX8654ETX+T

Switching Regulator, Voltage-mode, 10A, 1200kHz Switching Freq-Max, BICMOS, 6 X 6 MM, 0.80 MM, ROHS COMPLIANT, MO-220WJJD-1, QFN-36
MAXIM

MAX8654ETX-T

Switching Regulator, Voltage-mode, 10A, 1200kHz Switching Freq-Max, BICMOS, 6 X 6 MM, 0.80 MM, MO-220WJJD-1, QFN-36
MAXIM