MAX9423EHJ [MAXIM]

LVECL-TO-LVPECL TRANSLATOR|BIPOLAR|TQFP|32PIN|PLASTIC ; LVECL至LVPECL翻译|双极| TQFP | 32引脚|塑料\n
MAX9423EHJ
型号: MAX9423EHJ
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

LVECL-TO-LVPECL TRANSLATOR|BIPOLAR|TQFP|32PIN|PLASTIC
LVECL至LVPECL翻译|双极| TQFP | 32引脚|塑料\n

文件: 总13页 (文件大小:341K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2285; Rev 0; 1/02  
Quad Differential LVECL-to-LVPECL Translators  
General Description  
Features  
The MAX9420–MAX9423 are extremely fast, low-skew  
quad LVECL-to-LVPECL translators designed for high-  
speed signal and clock driver applications. The  
devices feature ultra-low propagation delay of 336ps  
and channel-to-channel skew of 17ps.  
>500mV Differential Output at 3.0GHz Clock  
336ps (typ) Propagation Delay in Asynchronous  
Mode  
17ps (typ) Channel-to-Channel Skew  
The four channels can be operated synchronously with  
an external clock, or in asynchronous mode, deter-  
mined by the state of the SEL input. An enable input  
provides the ability to force all the outputs to a differen-  
tial low state.  
Integrated 50Outputs (MAX9421/MAX9423)  
Integrated 100Inputs (MAX9422/MAX9423)  
Synchronous/Asynchronous Operation  
These devices operate with a negative supply voltage  
of -2.0V to -3.6V, compatible with LVECL input signals.  
The positive supply range is 2.375V to 3.6V for differen-  
tial LVPECL output signals.  
Ordering Information  
TEMP  
RANGE  
PIN-  
DATA  
PART  
OUTPUT  
PACKAGE INPUT  
A variety of input and output terminations are offered for  
maximum design flexibility. The MAX9420 has open  
inputs and open-emitter outputs. The MAX9421 has  
open inputs and 50series outputs. The MAX9422 has  
100differential input impedance and open-emitter  
outputs. The MAX9423 has 100differential input  
impedance and 50series outputs.  
The MAX9420–MAX9423 are specified for operation  
from -40°C to +85°C, and are offered in space-saving  
32-pin 5mm 5mm TQFP and 32-lead 5mm 5mm  
QFN packages.  
MAX9420EHJ -40°C to +85°C 32 TQFP  
MAX9420EGJ* -40°C to +85°C 32 QFN  
MAX9421EHJ -40°C to +85°C 32 TQFP  
MAX9421EGJ* -40°C to +85°C 32 QFN  
MAX9422EHJ -40°C to +85°C 32 TQFP  
MAX9422EGJ* -40°C to +85°C 32 QFN  
MAX9423EHJ -40°C to +85°C 32 TQFP  
MAX9423EGJ* -40°C to +85°C 32 QFN  
Open  
Open  
Open  
Open  
100  
100Ω  
100Ω  
100Ω  
Open  
Open  
50Ω  
50Ω  
Open  
Open  
50Ω  
50Ω  
*Future product—contact factory for availability.  
Applications  
Data and Clock Driver and Buffer  
Central Office Backplane Clock Distribution  
DSLAM Backplane  
Pin Configurations  
TOP VIEW  
Base Station  
32 31 30 29 28 27 26 25  
ATE  
V
1
2
3
4
5
6
7
8
24  
23  
V
CC  
EE  
OUT1  
SEL  
SEL  
CLK  
CLK  
22 OUT1  
21 GND  
20 GND  
19 OUT2  
18 OUT2  
MAX9420  
MAX9421  
MAX9422  
MAX9423  
EN  
EN  
Functional Diagram appears at end of data sheet.  
V
17 V  
CC  
EE  
9
10 11 12 13 14 15 16  
TQFP (5mm x 5mm)  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Quad Differential LVECL-to-LVPECL Translators  
ABSOLUTE MAXIMUM RATINGS  
V
V
to GND...........................................................-0.3V to +4.1V  
to GND............................................................-4.1V to +0.3V  
Junction-to-Ambient Thermal Resistance with 500  
LFPM Airflow  
CC  
EE  
Inputs to GND .............................................(V - 0.3V) to +0.3V  
32-Pin 5mm 5mm TQFP.........................................+73°C/W  
Junction-to-Case Thermal Resistance  
EE  
Differential Input Voltage ....................................................... 3V  
Continuous Output Current.................................................50mA  
Surge Output Current........................................................100mA  
32-Pin 5mm 5mm TQFP.........................................+25°C/W  
32-Lead 5mm 5mm QFN .........................................+2°C/W  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
ESD Protection  
Human Body Model (IN_, IN_) ........................................500V  
Others.............................................................................1.2kV  
Lead Temperature (soldering, 10s) .................................+300°C  
Continuous Power Dissipation (T = +70°C)  
A
Single-Layer PC Board  
32-Pin 5mm 5mm TQFP  
(derate 9.5mW/°C above +70°C)................................761mW  
32-Lead 5mm 5mm QFN  
(derate 21.3mW/°C above +70°C).................................1.7W  
Junction-to-Ambient Thermal Resistance in Still Air  
32-Pin 5mm 5mm TQFP......................................+105°C/W  
32-Lead 5mm 5mm QFN ......................................+47°C/W  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V = -2.0V to -3.6V, V = 2.375V to 3.6V, GND = 0, MAX9420/MAX9422 outputs terminated with 501ꢀ to V - 2.0V. Typical val-  
EE  
CC  
CC  
CC  
ues are at V = -3.3V, V = 3.3V, T = +25°C, V  
= -0.9V, V = -1.7V, unless otherwise noted.) (Notes 1, 2, and 3)  
EE  
A
IHD  
ILD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LVECL INPUTS (IN_, IN_, CLK, CLK, EN, EN, SEL, SEL)  
V
+
1.4  
EE  
Differential Input High Voltage  
Differential Input Low Voltage  
Differential Input Voltage  
V
Figure 1  
Figure 1  
Figure 1  
0
V
V
V
IHD  
V
V
-0.2  
3.0  
ILD  
EE  
V
V
-3.0V  
0.2  
0.2  
EE  
EE  
V
ID  
> -3.0V  
V
EE  
MAX9420/  
MAX9421  
EN, EN, SEL, SEL , IN_, IN_,  
CLK, or CLK = V or V  
-10  
-10  
86  
25  
IHD  
ILD  
Input Current  
I
, I  
µA  
IH IL  
MAX9422/  
MAX9423  
EN, EN, SEL, SEL, CLK, or  
CLK = V or V  
25  
IHD  
ILD  
Differential Input Resistance  
(IN, IN)  
R
MAX9422/MAX9423  
100  
114  
IN  
LVPECL OUTPUTS (OUT_, OUT_)  
V
V
-
OH  
Differential Output Voltage  
Figure 1  
Figure 1  
600  
660  
mV  
V
OL  
V
-
V
1.25  
-
V
-
CC  
CC  
CC  
Output Common-Mode Voltage  
V
OCM  
1.5  
1.1  
Internal Current Source  
Output Impedance  
I
MAX9421/MAX9423, Figure 2  
MAX9421/MAX9423, Figure 2  
6.5  
40  
8.2  
50  
10.0  
60  
mA  
SINK  
R
OUT  
2
_______________________________________________________________________________________  
Quad Differential LVECL-to-LVPECL Translators  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V = -2.0V to -3.6V, V = 2.375V to 3.6V, GND = 0, MAX9420/MAX9422 outputs terminated with 501ꢀ to V - 2.0V. Typical val-  
EE  
CC  
CC  
CC  
ues are at V = -3.3V, V = 3.3V, T = +25°C, V  
= -0.9V, V = -1.7V, unless otherwise noted.) (Notes 1, 2, and 3)  
EE  
A
IHD  
ILD  
PARAMETER  
POWER SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OUT_, OUT_  
open  
MAX9421/MAX9422/  
MAX9423  
Negative Supply Current  
Positive Supply Current  
I
7
10  
mA  
mA  
EE  
MAX9421/MAX9423  
MAX9420/MAX9422  
153  
87  
-180  
105  
OUT_, OUT_  
open  
I
CC  
AC ELECTRICAL CHARACTERISTICS  
(V = -2.0V to -3.6V, V  
= 2.375V to 3.6V, GND = 0, outputs terminated with 501ꢀ to V  
- 2.0V. For SEL = high, CLK = high  
CC  
EE  
CC  
or low, f = 2.0GHz. For SEL = low, F = 1.5GHz, CLK = 3.0GHz, input transition time = 125ps (20ꢀ to 80ꢀ), V  
= V + 1.4V to  
IN  
IN  
IHD  
EE  
0, V  
= +25°C, V  
= V to -0.2V, V  
- V  
= 0.2V to the smaller of 3.0V or |V |. Typical values are at V = -3.3V, V  
= 3.3V, GND = 0, T  
CC A  
ILD  
ILD  
EE  
IHD  
ILD  
EE  
EE  
= -0.9V, V  
= -1.7V, unless otherwise noted.) (Note 4)  
IHD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
250  
350  
TYP  
336  
506  
MAX  
450  
UNITS  
ps  
IN-to-OUT Differential  
CLK-to-OUT Differential  
t
t
SEL = high, Figure 3  
SEL = low, Figure 4  
PLH1, PHL1  
t
t
575  
ps  
PLH2, PHL2  
IN-to-OUT Channel-to-Channel  
Skew (Note 5)  
t
SEL = high  
SEL = low  
17  
17  
60  
55  
ps  
ps  
SKD1  
SKD2  
CLK-to-OUT Channel-to-  
Channel Skew (Note 5)  
t
Maximum Clock Frequency  
Maximum Data Frequency  
f
V
V
-V 500mV, SEL = low  
OH OL  
3.0  
2
GHz  
GHz  
CLK(MAX)  
f
-V 400mV, SEL = high  
OH OL  
IN(MAX)  
SEL = low, f  
= 3.0GHz, f = 1.5GHz  
0.65  
0.53  
1.0  
1.0  
ps  
CLK  
IN  
(RMS)  
(RMS)  
Added Random Jitter (Note 6)  
t
RJ  
SEL = high, f = 2GHz  
ps  
IN  
SEL = low, f  
= 3.0GHz, IN_ = 3.0Gbps,  
CLK  
28  
23  
45  
45  
223 - 1 PRBS pattern  
Added Deterministic Jitter  
(Note 6)  
t
DJ  
ps  
(P-P)  
SEL = high, IN_ = 3.0Gbps 223 - 1 PRBS  
pattern  
IN-to-CLK Setup Time  
CLK-to-IN Hold Time  
Output Rise Time  
t
Figure 4  
Figure 4  
Figure 3  
80  
80  
ps  
ps  
ps  
S
t
H
t
R
90  
120  
_______________________________________________________________________________________  
3
Quad Differential LVECL-to-LVPECL Translators  
AC ELECTRICAL CHARACTERISTICS (continued)  
(V = -2.0V to -3.6V, V  
= 2.375V to 3.6V, GND = 0, outputs terminated with 501ꢀ to V  
- 2.0V. For SEL = high, CLK = high  
CC  
EE  
CC  
or low, f = 2.0GHz. For SEL = low, F = 1.5GHz, CLK = 3.0GHz, input transition time = 125ps (20ꢀ to 80ꢀ), V  
= V + 1.4V to  
IN  
IN  
IHD  
EE  
0, V  
= +25°C, V  
= V to -0.2V, V  
- V  
= 0.2V to the smaller of 3.0V or |V |. Typical values are at V = -3.3V, V  
= 3.3V, GND = 0, T  
CC A  
ILD  
ILD  
EE  
IHD  
ILD  
EE  
EE  
= -0.9V, V  
= -1.7V, unless otherwise noted.) (Note 4)  
IHD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Fall Time  
t
Figure 3  
90  
120  
ps  
F
Propagation Delay Temperature  
Coefficient  
t  
T  
/
PD  
0.2  
1
ps/°C  
Note 1: Measurements are made with the device in thermal equilibrium.  
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.  
Note 3: DC parameters are production tested at +25°C. DC limits are guaranteed by design and characterization over the full oper-  
ating temperature range.  
Note 4: Guaranteed by design and characterization. Limits are set to 6 sigma.  
Note 5: Measured between outputs of the same part at the signal crossing points for a same-edge transition.  
Note 6: Device jitter added to the input signal.  
Typical Operating Characteristics  
(V = -3.3V, V  
= 3.3V, GND = 0, MAX9420/MAX9422 outputs terminated with 501ꢀ to V  
- 2.0V, SEL = high, f  
= 3.0GHz,  
EE  
CC  
CC  
CLK  
f
IN  
= 1.5GHz, input transition time = 125ps (20ꢀ to 80ꢀ), V  
= -0.9V, V  
= -1.7V, T = +25°C, unless otherwise noted.)  
ILD A  
IHD  
OUTPUT AMPLITUDE (V - V  
OH  
)
SUPPLY CURRENT (I  
vs. TEMPERATURE  
)
SUPPLY CURRENT (I  
vs. TEMPERATURE  
)
OL  
CC  
EE  
vs. FREQUENCY  
1000  
800  
100  
95  
90  
85  
80  
75  
70  
9
8
7
6
5
4
MAX9420/MAX9422  
SEL = HIGH  
MAX9420/MAX9422  
MAX9420/MAX9422  
SEL = HIGH  
SEL = HIGH  
OUTPUTS NOT TERMINATED  
OUTPUTS NOT TERMINATED  
600  
400  
200  
0
0
500 1000 1500 2000 2500 3000 3500  
IN_ FREQUENCY (MHz)  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
IN-TO-OUT PROPAGATION DELAY  
vs. TEMPERATURE  
CLK-TO-OUT PROPAGATION DELAY  
vs. TEMPERATURE  
OUTPUT RISE/FALL TIME  
vs. TEMPERATURE  
100  
95  
90  
85  
80  
75  
370  
360  
350  
340  
330  
320  
310  
300  
290  
600  
575  
550  
525  
500  
475  
450  
425  
MAX9420/MAX9422  
SEL = HIGH  
MAX9420/MAX9422  
SEL = HIGH  
MAX9420/MAX9422  
SEL = LOW  
t
R
t
PLH1  
t
PLH2  
t
F
t
PHL1  
t
PHL2  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
Quad Differential LVECL-to-LVPECL Translators  
Pin Description  
PIN  
NAME  
FUNCTION  
Negative Supply Voltage. Bypass V to GND with 0.1µF and 0.01µF ceramic capacitors. Place the  
EE  
capacitors as close to the device as possible with the smaller value capacitor closest to the device.  
1, 8  
V
EE  
Noninverting Differential Select Input. Setting SEL = high and SEL = low (differential high) enables all four  
channels to operate asynchronously. Setting SEL = low and SEL = high (differential low) enables all four  
channels to operate in synchronous mode.  
2
SEL  
3
4
5
6
SEL  
CLK  
CLK  
EN  
Inverting Differential Select Input  
Inverting Differential Clock Input. A rising edge on CLK (and falling on CLK) transfers data from the inputs to  
the outputs when SEL = differential low.  
Noninverting Differential Clock Input  
Noninverting Differential Output Enable Input. Setting EN = high and EN = low (differential high) enables the  
outputs. Setting EN = low and EN = high (differential low) drives the output low.  
7
9
EN  
IN3  
IN3  
Inverting Differential Output Enable Input  
Noninverting Differential Input 3  
Inverting Differential Input 3  
10  
11, 17,  
24, 30  
Positive Supply Voltage. Bypass V  
capacitors as close to the device as possible with the smaller value capacitor closest to the device.  
to GND with 0.1µF and 0.01µF ceramic capacitors. Place the  
CC  
V
CC  
12  
13  
OUT3  
Inverting Differential Output 3  
OUT3  
Noninverting Differential Output 3  
14, 20,  
21, 27  
GND  
Ground  
15  
16  
18  
19  
22  
23  
25  
26  
28  
29  
31  
32  
IN2  
IN2  
Noninverting Differential Input 2  
Inverting Differential Input 2  
OUT2  
OUT2  
OUT1  
OUT1  
IN1  
Inverting Differential Output 2  
Noninverting Differential Output 2  
Noninverting Differential Output 1  
Inverting Differential Output 1  
Inverting Differential Input 1  
IN1  
Noninverting Differential Input 1  
Noninverting Differential Output 0  
Inverting Differential Output 0  
Inverting Differential Input 0  
OUT0  
OUT0  
IN0  
IN0  
Noninverting Differential Input 0  
EP  
Exposed Paddle (MAX942_EGJ only). Connected to V internally. See package dimensions.  
EE  
_______________________________________________________________________________________  
5
Quad Differential LVECL-to-LVPECL Translators  
Outputs  
Detailed Description  
The MAX9421/MAX9423 have internal 50series out-  
The MAX9420MAX9423 are extremely fast, low-skew  
put termination resistors and 8mA internal pulldown  
quad LVECL-to-LVPECL translators designed for high-  
current sources. Using integrated resistors reduces  
speed signal and clock driver applications. The  
external component count.  
devices feature ultra-low propagation delay of 336ps  
and channel-to-channel skew of 17ps.  
The MAX9420/MAX9422 have open-emitter outputs. An  
external termination is required. See the Output  
Termination section.  
The four channels can be operated synchronously with  
an external clock, or in asynchronous mode, deter-  
mined by the state of the SEL input. An enable input  
provides the ability to force all the outputs to a differen-  
tial low state.  
Enable  
Setting EN = high and EN = low enables the device.  
Setting EN = low and EN = high forces the outputs to a  
differential low. All changes on CLK, SEL, and IN_ are  
ignored.  
These devices operate with a negative supply voltage  
of -2.0V to -3.6V, compatible with LVECL input signals.  
The positive supply range is 2.375V to 3.6V for differen-  
tial LVPECL output signals.  
Asynchronous Operation  
Setting SEL = high and SEL = low enables the four  
channels to operate independently as LVECL-to-  
LVPECL translators. The CLK signal is ignored in this  
mode. In asynchronous mode, the CLK signal should  
be set to either logic low or high state to minimize noise  
coupling.  
A variety of input and output terminations are offered  
for maximum design flexibility. The MAX9420 has open  
inputs and open-emitter outputs. The MAX9421 has  
open inputs and 50series outputs. The MAX9422 has  
100differential input impedance and open-emitter  
outputs. The MAX9423 has 100differential input  
impedance and 50series outputs.  
Synchronous Operation  
Setting SEL = low and SEL = high enables all four  
channels to operate in synchronized mode. In this  
mode, buffered inputs are clocked into flip-flops simul-  
taneously on the rising edge of the differential clock  
input (CLK and CLK).  
Supply Voltages  
For interfacing to differential LVECL input levels, the  
V
range is -2.0V to -3.6V with GND = 0. The V  
CC  
EE  
range is from 2.375V to 3.6V, compatible with LVPECL  
logic. Output levels are referenced to V  
.
CC  
Differential Signal Input Limit  
The maximum signal magnitude of all the differential  
inputs is 3.0V.  
Data Inputs  
The MAX9420/MAX9421 have open inputs and require  
external termination. The MAX9422/MAX9423 have inte-  
grated 100differential input termination resistors from  
IN_ to IN_, reducing external component count.  
GND  
V
IHD  
(MAX)  
V
CC  
V
V = 0  
ID  
ID  
V
V
OH  
V
V
(MAX)  
(MIN)  
ILD  
V - V  
OH OL  
V
OCM  
IHD  
OL  
V
ID  
V = 0  
ID  
V
EE  
GND  
V
ILD  
(MIN)  
INPUT VOLTAGE DEFINITION  
OUTPUT VOLTAGE DEFINITION  
Figure 1. Input and Output Voltage Definitions  
_______________________________________________________________________________________  
6
Quad Differential LVECL-to-LVPECL Translators  
IN_  
IN_  
100k  
IN_  
IN_  
MAX9420/MAX9421  
MAX9422/MAX9423  
V
CC  
V
CC  
R
R
OUT  
OUT_  
OUT_  
OUT_  
OUT_  
OUT  
I
I
SINK  
SINK  
V
EE  
MAX9420/MAX9422  
MAX9421/MAX9423  
Figure 2. Input and Output Configurations  
IN_  
IN_  
V
- V  
ILD  
IHD  
t
t
PHL1  
PLH1  
OUT_  
OUT_  
V
- V  
OH  
OH  
OL  
OL  
V
V
- V  
- V  
80%  
80%  
20%  
20%  
OH  
OL  
DIFFERENTIAL OUTPUT  
WAVEFORM  
OUT_ - OUT_  
t
t
F
R
SEL = HIGH  
EN = HIGH  
Figure 3. IN-to-OUT Propagation Delay Timing Diagram  
_______________________________________________________________________________________  
7
Quad Differential LVECL-to-LVPECL Translators  
CLK  
V
- V  
ILD  
IHD  
CLK  
t
t
t
H
H
S
IN_  
IN_  
V
- V  
ILD  
IHD  
t
t
PHL2  
PLH2  
OUT_  
OUT_  
V
- V  
OL  
OH  
SEL = LOW  
EN = HIGH  
Figure 4. CLK-to-OUT Propagation Delay Timing Diagram  
ple parallel vias for ground-plane connection to mini-  
mize inductance.  
Applications Information  
Input Bias  
Unused inputs should be biased or driven as shown in  
Figure 5. This avoids noise coupling that might cause  
toggling at the unused outputs.  
Circuit Board Traces  
Input and output trace characteristics affect the perfor-  
mance of the MAX9420MAX9423. Connect each of the  
inputs and outputs to a 50characteristic impedance  
trace. Avoid discontinuities in differential impedance  
and maximize common-mode noise immunity by main-  
taining the distance between differential traces and  
avoid sharp corners. Minimize the number of vias to  
prevent impedance discontinuities. Reduce the reflec-  
tions by maintaining 50characteristic impedance  
through connectors and across cables. Minimize skew  
by matching the electrical length of the traces.  
Output Termination  
Terminate open-emitter outputs (MAX9420/MAX9422)  
through 50to V  
- 2V or use an equivalent Thevenin  
CC  
termination. Terminate outputs using identical termina-  
tion on each for the lowest output-to-output skew. When  
a single-ended signal is taken from a differential output,  
terminate both outputs. For example, if OUT_ is used as  
a single-ended output, terminate both OUT_ and OUT_.  
Ensure that the output currents do not exceed the cur-  
rent limits as specified in the Absolute Maximum  
Ratings table. Under all operating conditions, the  
devices total thermal limits should be observed.  
Chip Information  
TRANSISTOR COUNT: 927  
PROCESS: Bipolar  
Power-Supply Bypassing  
Adequate power-supply bypassing is necessary to  
maximize the performance and noise immunity. Bypass  
V
to GND and V to GND with high-frequency sur-  
EE  
CC  
face-mount ceramic 0.1µF and 0.01µF capacitors in  
parallel as close to the device as possible, with the  
0.01µF capacitor closest to the device pins. Use multi-  
8
_______________________________________________________________________________________  
Quad Differential LVECL-to-LVPECL Translators  
GND  
V
V
CC  
CC  
IN_  
100Ω  
IN_  
IN_  
IN_  
OUT_  
OUT_  
OUT_  
OUT_  
100Ω  
MAX9420  
MAX9421  
MAX9422  
MAX9423  
1kΩ  
1kΩ  
1/4  
1/4  
V
V
EE  
EE  
Figure 5. Input Bias Circuits for Unused Inputs  
Pin Configurations (continued)  
TOP VIEW  
*
*
V
1
2
3
4
5
6
7
8
24  
V
CC  
EE  
SEL  
SEL  
CLK  
CLK  
EN  
23 OUT1  
22 OUT1  
21 GND  
20 GND  
19 OUT2  
18 OUT2  
MAX9420  
MAX9421  
MAX9422  
MAX9423  
EN  
V
EE  
17  
V
CC  
*
*
QFN-EP*  
*EXPOSED PADDLE AND CORNER PINS ARE CONNECTED TO V  
LEAD UNDER PACKAGE.  
EE  
_______________________________________________________________________________________  
9
Quad Differential LVECL-to-LVPECL Translators  
Functional Diagram  
IN0  
IN0  
1
OUT0  
OUT0  
D
D
Q
Q
0
CK  
CK  
IN1  
IN1  
1
0
OUT1  
OUT1  
D
Q
Q
D
CK  
CK  
IN2  
IN2  
1
0
OUT2  
OUT2  
D
Q
Q
D
CK  
CK  
IN3  
IN3  
1
0
OUT3  
OUT3  
D
Q
Q
D
CK  
CK  
CLK  
CLK  
SEL  
SEL  
EN  
EN  
10 ______________________________________________________________________________________  
Quad Differential LVECL-to-LVPECL Translators  
Package Information  
______________________________________________________________________________________ 11  
Quad Differential LVECL-to-LVPECL Translators  
Package Information (continued)  
12 ______________________________________________________________________________________  
Quad Differential LVECL-to-LVPECL Translators  
Package Information (continued)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX9423EHJ+

暂无描述
MAXIM

MAX9423EHJ+T

ECL to PECL Translator, 4 Func, Complementary Output, BIPolar, PQFP32, 5 X 5 MM, 1 MM HEIGHT, TQFP-32
MAXIM

MAX9424

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM

MAX9424EGJ

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM

MAX9424EGJ-T

PECL to ECL Translator, 4 Func, Complementary Output, BIPolar, CQCC32, 5 X 5 MM, 0.90 MM HEIGHT, QFN-32
MAXIM

MAX9424EHJ

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM

MAX9424EVKIT

Evaluation Kit for the MAX9424/MAX9425/MAX9426/MAX9427
MAXIM

MAX9425

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM

MAX9425EGJ

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM

MAX9425EGJ-T

PECL to ECL Translator, 4 Func, Complementary Output, BIPolar, CQCC32, 5 X 5 MM, 0.90 MM HEIGHT, QFN-32
MAXIM

MAX9425EHJ

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM

MAX9425EHJ+T

PECL to ECL Translator,
MAXIM