MAX9671CTH+T [MAXIM]

Audio/Video Switch, BICMOS, PQCC44,;
MAX9671CTH+T
型号: MAX9671CTH+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Audio/Video Switch, BICMOS, PQCC44,

信息通信管理
文件: 总44页 (文件大小:824K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4653; Rev 2; 12/10  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
General Description  
Features  
The MAX9670/MAX9671 dual SCART matrices route  
audio and video signals between a set-top box  
decoder chip and two external SCART connectors  
under I2C control. Operating from a 3.3V supply and a  
12V supply, the MAX9670/MAX9671 consume 66mW  
during quiescent operation and 300mW during average  
operation when driving typical signals into typical  
loads. Video input detection, video load detection, and  
a 2.8mW standby mode facilitate the design of intelli-  
gent, low-power set-top boxes.  
o 66mW Quiescent Power Consumption  
o 2.8mW Standby Mode Consumption  
o Programmable Audio Gain Control of -62dB to  
0dB (TV Audio Outputs)  
o Clickless, Popless, DirectDrive Audio  
o Video Input and Video Load Detection  
o Video Reconstruction Filter with 10MHz Passband  
and 52dB Attenuation at 27MHz  
The MAX9670/MAX9671 audio section contains a  
buffered crosspoint to route audio inputs to audio out-  
puts and programmable volume control from -62dB to  
0dB in 2dB steps. The DirectDrive® output amplifiers  
o 3.3V and 12V Supply Voltages  
create a 2V  
full-scale audio signal biased around  
RMS  
Ordering Information  
ground, eliminating the need for bulky output capaci-  
tors and reducing click-and-pop noise. The zero-cross  
detection circuitry also further reduces clicks and pops  
by enabling audio sources to switch only during a zero-  
crossing. The MAX9671 offers TV left and right audio  
inputs.  
TV R+L  
AUDIO  
INPUTS  
PIN-  
PACKAGE  
PART  
TEMP RANGE  
MAX9670CTL+  
MAX9671CTH+  
0°C to +70°C 40 TQFN-EP*  
0°C to +70°C 44 TQFN-EP*  
No  
Yes  
The MAX9670/MAX9671 video section contains a  
buffered crosspoint to route video inputs to video out-  
puts. The standard-definition video signals from the set-  
top box decoder chip are lowpass filtered to remove  
out-of-band artifacts.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
System Block Diagram  
The MAX9670/MAX9671 also support slow-switching  
and fast-switching signals. An interrupt signal from the  
MAX9670/MAX9671 informs the microcontroller when  
the system status has changed.  
V
V
V
VID  
AUD  
12  
12V  
3.3V  
3.3V  
STB CHIP  
MAX9670/MAX9671  
Applications  
RGB, Y/C, CVBS  
CVBS  
2
I C  
2
Set-Top Boxes  
TVs  
I C INTERFACE  
L/R AUDIO  
(MAX9671 ONLY)  
REGISTERS AND  
ACTIVITY  
INTERRUPT  
OUTPUT  
µC  
MONITOR  
TV  
SCART  
L/R AUDIO  
(MAX9670 ONLY)  
DVD Players  
SLOW SWITCHING  
FAST SWITCHING  
RGB, Y/C, CVBS  
VIDEO FILTERS AND  
CROSSPOINT  
VIDEO  
ENCODER  
Y/C, CVBS  
SINGLE-ENDED R/L  
STEREO AUDIO  
AUDIO CROSSPOINT  
WITH DIRECTDRIVE  
OUTPUTS, VOLUME  
CONTROL  
STEREO  
AUDIO  
DAC  
RGB, Y/C, CVBS  
L/R AUDIO  
VCR  
SCART  
SLOW SWITCHING  
FAST SWITCHING  
SLOW SWITCHING  
FAST SWITCHING  
Typical Application Circuit appears at end of data sheet.  
CHARGE PUMP  
EP  
GNDVID  
DirectDrive is a registered trademark of Maxim Integrated  
Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
ABSOLUTE MAXIMUM RATINGS  
V
V
V
to GNDVID........................................................-0.3V to +4V  
Audio Outputs to V  
TV_SS, VCR_SS to V , EP......................................Continuous  
Continuous Power Dissipation (T = +70°C)  
A
, EP.....................................Continuous  
VID  
AUD  
12  
to EP.................................................................-0.3V to +14V  
12  
to EP ...............................................................-0.3V to +4V  
AUD  
EP to GNDVID .......................................................-0.1V to +0.1V  
All Video Inputs, VCRIN_FS to GNDVID...................-0.3V to +4V  
40-Pin TQFN-EP (derate 26.3mW/°C above +70°C)...2105.3mW  
44-Pin TQFN-EP (derate 26.3mW/°C above +70°C)...2222.2mW  
All Audio Inputs to EP .......................................-1V to (V + 1V)  
EP  
SDA, SCL, DEV_ADDR, INT to GNDVID ..................-0.3V to +4V  
Junction-to-Case Thermal Resistance (θ ) (Note 1)  
JC  
40/44-pin TQFN-EP .........................................................1°C/W  
TV_SS, VCR_SS to EP .................................-0.3V to (V + 0.3V)  
Current  
All Video/Audio Inputs ................................................... 20mA  
C1P, C1N, CPVSS ......................................................... 50mA  
Output Short-Circuit Current Duration  
Junction-to-Ambient Thermal Resistance (θ ) (Note 1)  
12  
JA  
40/44-pin TQFN-EP .......................................................27°C/W  
Operating Temperature Range...............................0°C to +70°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
Video and Fast-Switching Outputs to V  
,
VID  
GNDVID.................................................................Continuous  
Note 1: Package thermal resistance were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
0/MAX9671  
ELECTRICAL CHARACTERISTICS  
(V = 12V, V  
= V  
= 3.3V, V  
= V = 0V, no load, T = 0°C to +70°C, unless otherwise noted. Typical values are at  
GNDVID  
EP  
12  
VID  
AUD  
A
T = +25°C.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Inferred from video PSRR test at 3V and  
3.6V  
Video Supply Voltage Range  
Audio Supply Voltage Range  
V
3
3.3  
3.6  
V
VID  
Inferred from audio PSRR test at 3V and  
3.6V  
V
3
3.3  
12  
16  
3.6  
12.6  
30  
V
V
AUD  
V
Supply Voltage Range  
V
Inferred from slow-switching levels  
11.4  
12  
12  
Normal operation; all video output  
amplifiers are enabled and muted (Note 3)  
mA  
V
Quiescent Supply Current  
I
VID_Q  
VID  
Standby mode, slow switch inputs low  
Shutdown  
1500  
35  
µA  
Normal operation (Note 3)  
Shutdown  
3.2  
6
mA  
µA  
V
V
Quiescent Supply Current  
I
AUD_Q  
AUD  
35  
Slow-switching output  
0.3  
100  
10  
set to low-level  
Normal operation  
(Note 3)  
µA  
µA  
Quiescent Supply Current  
I
12_Q  
12  
Slow-switching output  
set to medium-level  
475  
Shutdown, T = +25°C  
A
VIDEO CHARACTERISTICS  
DC-COUPLED INPUT  
V
V
V
= 3V  
1.15  
1.3  
R = 75to  
GNDVID or 150Ω  
VID  
VID  
VID  
L
Input Voltage Range  
V
= 3.135V  
= 3.3V  
1.15  
2
V
P-P  
IN  
to V /2; inferred  
VID  
from gain test  
Input Current  
I
V
= 0.3V, T = +25°C  
1
µA  
IN  
IN  
A
Input Resistance  
R
300  
kΩ  
IN  
2
_______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 12V, V  
= V  
= 3.3V, V  
= V = 0V, no load, T = 0°C to +70°C, unless otherwise noted. Typical values are at  
GNDVID  
EP  
12  
VID  
AUD  
A
T = +25°C.) (Note 2)  
A
PARAMETER  
AC-COUPLED INPUT  
Sync-Tip Clamp Level  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
+6  
2
UNITS  
mV  
V
Sync-tip clamp  
Sync-tip clamp; percentage reduction in  
sync pulse (0.3V ); guaranteed by input  
-13  
-4  
CLP  
Sync Crush  
%
P-P  
clamping current measurement, T = +25°C  
A
Input Clamping Current  
Sync-tip clamp, V = 0.3V, T = +25°C  
1
2
µA  
IN  
A
Maximum Input Source  
Resistance  
Input sync-tip circuit must be stable even if  
the source resistance is as high as 300Ω  
300  
0.6  
Bias circuit  
0.57  
0.63  
Input Voltage  
V
0.3 x  
0.36 x  
V
VID  
High-impedance input circuit  
V
VID  
Bias circuit  
10  
Input Resistance  
kΩ  
V/V  
High-impedance input circuit  
222  
DC CHARACTERISTICS  
DC Voltage Gain  
A
Guaranteed by output voltage swing  
1.95  
-2  
2
2.05  
+2  
V
Guaranteed by output voltage swing of  
TV_R/C_OUT, TV_G_OUT, and TV_B_OUT;  
first input signal set is VCR_R/C_IN,  
VCR_G_IN, and VCR_B_IN; second signal  
set is ENC_R/C_IN, ENC_G_IN, and  
ENC_B_IN  
DC Gain Mismatch Among R, G,  
and B Outputs  
%
V
Sync-tip clamp (V = V  
IN  
)
0.1  
1.3  
0.30  
1.5  
0.51  
1.78  
CLP  
Output Level  
Bias circuit  
Sync-tip clamp, measured at output,  
= 3V, V = V to (V +1.15V),  
V
2.3  
2.3  
2.3  
2.3  
VID  
IN  
CLP  
CLP  
R = 150to V /2, R = 75to GNDVID  
L
VID  
L
Measured at output, V  
= 3.135V, V  
=
VID  
IN  
V
V
to (V  
+ 1.15V), R = 150to  
2.243  
2.358  
CLP  
CLP L  
/2, R = 75to GNDVID  
VID  
L
Output Voltage Swing  
V
P-P  
Bias circuit, measured at output, V  
= 3V,  
VID  
V
= (V  
- 0.575V) to (V  
+ 0.575V),  
IN  
BIAS  
BIAS  
R = 150to V /2, R = 75to GNDVID  
L
VID  
L
Measured at output, V  
= 3.135V,  
VID  
V
= (V  
- 0.575V) to (V  
+ 0.575V),  
2.243  
2.358  
170  
IN  
BIAS  
BIAS  
R = 150to V /2, R = 75to GNDVID  
L
VID  
L
Output Short-Circuit Current  
Output Resistance  
100  
0.5  
mA  
R
OUT  
Output Leakage Current  
Power-Supply Rejection Ratio  
Output disabled (load detection not active)  
3V V 3.6V  
µA  
dB  
35  
VID  
_______________________________________________________________________________________  
3
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 12V, V  
= V  
= 3.3V, V  
= V = 0V, no load, T = 0°C to +70°C, unless otherwise noted. Typical values are at  
GNDVID  
EP  
12  
VID  
AUD  
A
T = +25°C.) (Note 2)  
A
PARAMETER  
AC CHARACTERISTICS  
Filter Passband Flatness  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
dB  
V
= 2V , f = 100kHz to 5.5MHz  
P-P  
-1  
3
OUT  
OUT  
f = 9.5MHz  
V
= 2V  
,
P-P  
Filter Attenuation  
dB  
attenuation is  
referred to 100kHz  
f = 27MHz  
f = 54MHz  
40  
55  
Slew Rate  
V
V
= 2V , no filter in video path  
60  
V/µs  
ns  
OUT  
OUT  
P-P  
Settling Time  
Differential Gain  
Differential Phase  
= 2V , settle to 0.1% (Note 4)  
400  
0.15  
0.5  
P-P  
DG  
DP  
5-step modulated staircase, f = 4.43MHz  
5-step modulated staircase, f = 4.43MHz  
%
Degrees  
2T = 200ns, bar time is 18µs, the beginning  
2.5% and the ending 2.5% of the bar time is  
ignored  
2T Pulse-to-Bar K Rating  
2T Pulse Response  
2T Bar Response  
0.3  
0.2  
0.2  
K%  
K%  
K%  
0/MAX9671  
2T = 200ns  
2T = 200ns, bar time is 18µs, the beginning  
2.5% and the ending 2.5% of the bar time is  
ignored  
Nonlinearity  
Group Delay Distortion  
5-step staircase  
100kHz f 5MHz, outputs are 2V  
0.1  
11  
%
ns  
P-P  
Glitch Impulse Caused by  
Charge-Pump Switching  
Measured at outputs  
100  
pV-s  
Peak Signal to RMS Noise  
100kHz f 5MHz  
70  
47  
2
dB  
dB  
Power-Supply Rejection Ratio  
Output Impedance  
f = 100kHz, 100mV  
f = 5MHz  
P-P  
Video Crosstalk  
f = 4.43MHz  
-80  
dB  
VCR SCART inputs to encoder inputs,  
full-power mode with VCR being looped  
through to TV, f = 4.43MHz  
Reverse Isolation  
92  
4.4  
4
dB  
Enable VCR_R/C_OUT pulldown through  
Pulldown Resistance  
7.5  
2
I C interface  
AUDIO CHARACTERISTICS  
Voltage Gain  
V
V
= -0.707V to +0.707V  
= -0.707V to +0.707V  
3.95  
-1.5  
4.05  
+1.5  
V/V  
%
IN  
IN  
Gain Mismatch  
Flatness  
f = 20Hz to 20kHz, 0.25V  
input  
0.006  
230  
dB  
RMS  
0.25V  
input, frequency where output is  
RMS  
Frequency Bandwidth  
Capacitive Drive  
kHz  
pF  
-3dB referenced to 1kHz  
No sustained oscillations; 75series  
resistor on output  
300  
4
_______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 12V, V  
= V  
= 3.3V, V  
= V = 0V, no load, T = 0°C to +70°C, unless otherwise noted. Typical values are at  
GNDVID  
EP  
12  
VID  
AUD  
A
T = +25°C.) (Note 2)  
A
PARAMETER  
Input Resistance  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
500  
+4  
UNITS  
MΩ  
V
= -0.707V to +0.707V  
10  
IN  
IN  
Input Bias Current  
Input Signal Amplitude  
Output DC Level  
V
= 0, T = +25°C  
nA  
A
f = 1kHz, THD < 1%  
0.5  
V
RMS  
No input signal, V grounded  
IN  
-4  
mV  
dB  
dB  
%
DC  
75  
100  
90  
Power-Supply Rejection Ratio  
f = 1kHz  
Signal-to-Noise Ratio  
f = 1kHz, 0.25V  
input, 20Hz to 20kHz  
96  
RMS  
R = 3.33k, f = 1kHz, 0.25V  
input  
RMS  
0.002  
0.001  
0.4  
L
Total Harmonic Distortion Plus  
Noise  
R = 3.33k, f = 1kHz, 0.5V  
input  
RMS  
L
Output Impedance  
f = 1kHz  
Programmable gain to TV SCART volume  
control from -62dB to 0  
Volume Control Attenuation Step  
2
0
dB  
Volume Control Minimum  
Attenuation  
dB  
dB  
Volume Control Maximum  
Attenuation  
62  
Mute Suppression  
f = 1kHz, 0.25V  
f = 1kHz, 0.25V  
input  
input  
110  
100  
dB  
dB  
RMS  
Audio Crosstalk  
RMS  
VIDEO-TO-AUDIO INTERACTION  
Video input: f = 15kHz, 1V  
Audio input: f = 15kHz, 0.5V  
signal  
P-P  
Crosstalk  
92  
dB  
signal  
RMS  
CHARGE PUMP  
Switching Frequency  
FAST SWITCHING  
Input Low  
570  
kHz  
0.4  
V
V
Input High Level  
Input Current  
1
T
= +25°C  
= 0.5mA  
10  
µA  
V
A
Output Low Voltage  
I
0.1  
OL  
V
-
VID  
0.1  
Output High Voltage  
I
= 0.5mA  
V
OH  
Output Resistance  
Rise Time  
7
143to GNDVID  
143to GNDVID  
12  
10  
ns  
ns  
Fall Time  
SLOW SWITCHING  
Input Low Voltage  
Input Medium Voltage  
Input High Voltage  
2
7
V
V
V
4.5  
9.5  
_______________________________________________________________________________________  
5
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 12V, V  
= V  
= 3.3V, V  
= V = 0V, no load, T = 0°C to +70°C, unless otherwise noted. Typical values are at  
GNDVID  
EP  
12  
VID  
AUD  
A
T = +25°C.) (Note 2)  
A
PARAMETER  
Input Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
100  
1.5  
UNITS  
70  
µA  
V
Output Low Voltage  
Output Medium Voltage  
Output High Voltage  
DIGITAL INTERFACE  
10kto EP, 11.4V V 12.6V  
12  
10kto EP, 11.4V V 12.6V  
5
6.5  
V
12  
10kto EP, 11.4V V 12.6V  
10  
V
12  
0.7 x  
Input High Voltage  
Input Low Voltage  
Input Hysteresis  
V
V
V
V
IH  
V
VID  
0.3 x  
V
IL  
V
VID  
0.06 x  
V
HYS  
V
VID  
0/MAX9671  
Input Leakage Current  
Input Capacitance  
I
, I  
IH IL  
T
A
= +25°C  
-1  
+1  
µA  
pF  
6
0.1V  
0.1V  
< SDA < 3.3V,  
< SCL < 3.3V  
VID  
VID  
Input Current  
I/O pins of fast-mode devices must not  
obstruct the SDA and SCL lines if V+ is  
-10  
+10  
µA  
switched off, T = +25°C  
A
Output Low Voltage SDA  
Serial-Clock Frequency  
V
I
= 6mA  
0.4  
V
OL  
SINK  
f
0
400  
kHz  
SCL  
Bus Free Time Between a STOP  
and a START Condition  
t
1.3  
µs  
µs  
BUF  
Hold Time, (Repeated) START  
Condition  
t
t
0.6  
HD, STA  
Low Period of the SCL Clock  
High Period of the SCL Clock  
t
1.3  
0.6  
µs  
µs  
LOW  
t
HIGH  
Setup Time for a Repeated  
START Condition  
0.6  
µs  
SU, STA  
Data Hold Time  
Data Setup Time  
t
t
(Note 5)  
0
0.9  
µs  
ns  
HD, DAT  
HD, DAT  
100  
I
6mA, C = total capacitance of one  
B
SINK  
Fall Time of SDA Transmitting  
t
bus line in pF, t and t measured between  
100  
ns  
F
R
F
0.3V  
and 0.7V  
VID  
VID  
Setup Time for STOP Condition  
Pulse Width of Spike Suppressed  
t
0.6  
0
µs  
ns  
SU, STO  
Input filters on the SDA and SCL inputs  
suppress noise spikes less than 50ns  
t
50  
SP  
6
_______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 12V, V  
= V  
= 3.3V, V  
= V = 0V, no load, T = 0°C to +70°C, unless otherwise noted. Typical values are at  
GNDVID  
EP  
12  
VID  
AUD  
A
T = +25°C.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OTHER DIGITAL I/O  
0.3 x  
DEV_ADDR Low Level  
V
V
V
VID  
0.7 x  
DEV_ADDR High Level  
V
VID  
DEV_ADDR Input Current  
T
= +25°C  
= 0.5mA  
-1  
+1  
0.1  
10  
µA  
V
A
Interrupt Output Low Voltage  
I
OL  
Interrupt Output Leakage Current  
INT high impedance, T = +25°C  
µA  
A
Note 2: All devices are 100% production tested at T = +25°C. Specifications over temperature limits are guaranteed by design.  
A
Note 3: Normal operation mode is full power with input video and load detection active.  
Note 4: The settling time is measured from the 50% of the input swing to the 0.1% of the final value of the output.  
Note 5: A master device must provide a hold time of at least 300ns for the SDA signal (referred to V of the SCL signal) to bridge  
IL  
the undefined region of SCL’s falling edge.  
Typical Operating Characteristics  
(V  
= V  
= 3.3V, V = 12V, V  
= V = 0V, video load is 150to GNDVID, audio load is 10kto EP, T = +25°C, unless  
GNDVID  
EP  
VID  
AUD  
12  
A
otherwise noted.)  
SMALL-SIGNAL GAIN  
vs. FREQUENCY  
SMALL-SIGNAL GAIN FLATNESS  
vs. FREQUENCY  
LARGE-SIGNAL GAIN  
vs. FREQUENCY  
2
1
10  
0
10  
0
V
= 100mV  
V
= 100mV  
OUT P-P  
OUT  
P-P  
V
= 2V  
OUT P-P  
0
-10  
-20  
-30  
-40  
-50  
-60  
-10  
-20  
-30  
-40  
-50  
-60  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
NO FILTER  
NO FILTER  
NO FILTER  
FILTER  
FILTER  
FILTER  
1M  
10M  
FREQUENCY (Hz)  
100M  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
_______________________________________________________________________________________  
7
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
Typical Operating Characteristics (continued)  
(V  
= V  
= 3.3V, V = 12V, V  
= V = 0V, video load is 150to GNDVID, audio load is 10kto EP, T = +25°C, unless  
GNDVID  
EP  
VID  
AUD  
12  
A
otherwise noted.)  
LARGE-SIGNAL GAIN FLATNESS  
VIDEO CROSSTALK  
vs. FREQUENCY  
GROUP DELAY  
vs. FREQUENCY  
vs. FREQUENCY  
0
-20  
-40  
-60  
-80  
2
1
140  
120  
100  
80  
V
= 100mV  
P-P  
OUT  
V
OUT  
= 2V  
P-P  
NO FILTER  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
FILTER  
ALL HOSTILE  
60  
FILTER  
40  
-100  
-120  
20  
NO FILTER  
0
100k  
1M  
10M  
100M  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
0/MAX9671  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
VIDEO POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
VIDEO VOLTAGE GAIN  
vs. TEMPERATURE  
VIDEO OUTPUT VOLTAGE  
vs. INPUT VOLTAGE  
2.04  
2.03  
2.02  
2.01  
2.00  
1.99  
1.98  
1.97  
1.96  
0
-5  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
FILTER  
NO FILTER  
0
25  
50  
75  
100k  
1M  
10M  
100M  
0
0.4  
0.8  
1.2  
1.6  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
INPUT VOLTAGE (V)  
2T WITH FILTER  
DIFFERENTIAL GAIN AND PHASE  
DIFFERENTIAL GAIN AND PHASE  
MAX9670 toc12  
0.3  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
VIDEO INPUT  
200mV/div  
0
1
2
3
4
5
0
1
2
3
4
5
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
VIDEO OUTPUT  
500mV/div  
0
1
2
3
4
5
80ns/div  
0
1
2
3
4
5
8
_______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
Typical Operating Characteristics (continued)  
(V  
= V  
= 3.3V, V = 12V, V  
= V = 0V, video load is 150to GNDVID, audio load is 10kto EP, T = +25°C, unless  
GNDVID  
EP  
VID  
AUD  
12  
A
otherwise noted.)  
2T NO FILTER  
12.5T WITH FILTER  
MAX9670 toc13  
MAX9670 toc14  
VIDEO INPUT  
200mV/div  
VIDEO INPUT  
200mV/div  
VIDEO OUTPUT  
500mV/div  
VIDEO OUTPUT  
500mV/div  
80ns/div  
1µs/div  
12.5T NO FILTER  
NTC7 WITH FILTER  
MAX9670 toc15  
MAX9670 toc16  
VIDEO INPUT  
200mV/div  
VIDEO INPUT  
500mV/div  
VIDEO OUTPUT  
500mV/div  
VIDEO OUTPUT  
1V/div  
1µs/div  
10µs/div  
NTC7 NO FILTER  
FIELD SQUARE WAVE  
MAX9670 toc17  
MAX9670 toc18  
VIDEO INPUT  
500mV/div  
VIDEO INPUT  
500mV/div  
VIDEO OUTPUT  
1V/div  
VIDEO OUTPUT  
1V/div  
10µs/div  
2ms/div  
_______________________________________________________________________________________  
9
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
Typical Operating Characteristics (continued)  
(V  
= V  
= 3.3V, V = 12V, V  
= V = 0V, video load is 150to GNDVID, audio load is 10kto EP, T = +25°C, unless  
GNDVID EP  
A
VID  
AUD  
12  
otherwise noted.)  
VIDEO INPUT SYNC-TIP CLAMP VOLTAGE  
vs. TEMPERATURE  
VIDEO INPUT BIAS VOLTAGE  
vs. TEMPERATURE  
2
1
620  
615  
610  
605  
600  
595  
590  
585  
580  
0
-1  
-2  
-3  
-4  
-5  
-6  
0
25  
50  
75  
0
25  
50  
75  
0/MAX9671  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
VIDEO INPUT SYNC-TIP CLAMP CURRENT  
vs. TEMPERATURE  
VIDEO INPUT SYNC-TIP CLAMP CURRENT  
vs. INPUT VOLTAGE  
8
7
6
5
4
3
2
1
0
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0
25  
50  
75  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
VIDEO OUTPUT BIAS VOLTAGE  
vs. TEMPERATURE  
AUDIO LARGE-SIGNAL GAIN  
vs. FREQUENCY  
1.50  
1.49  
1.48  
1.47  
1.46  
1.45  
1.44  
1.43  
1.42  
10  
5
0
-5  
-10  
-15  
-20  
0
25  
50  
75  
10  
100  
1k  
10k  
100k  
1M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
10 ______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
Typical Operating Characteristics (continued)  
(V  
= V  
= 3.3V, V = 12V, V  
= V = 0V, video load is 150to GNDVID, audio load is 10kto EP, T = +25°C, unless  
GNDVID  
EP  
VID  
AUD  
12  
A
otherwise noted.)  
AUDIO CROSSTALK  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. FREQUENCY  
0
-20  
-40  
-60  
-80  
0.1  
0.01  
V
= 0.25V  
RMS  
IN  
TVIN TO  
TVOUT  
TVIN TO  
VCROUT  
0.001  
0.0001  
-100  
-120  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
V
AUD  
POWER-SUPPLY REJECTION RATIO  
(INPUT REFERRED) vs. FREQUENCY  
V
QUIESCENT SUPPLY CURRENT  
vs. TEMPERATURE  
VID  
0
-20  
30  
25  
20  
15  
10  
5
V
= 3.3V + 100mV  
P-P  
AUD  
-40  
-60  
-80  
-100  
-120  
0
0
25  
50  
75  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
TEMPERATURE (°C)  
V
QUIESCENT SUPPLY CURRENT  
vs. TEMPERATURE  
V
QUIESCENT SUPPLY CURRENT  
vs. TEMPERATURE  
AUD  
12  
800  
700  
600  
500  
400  
300  
200  
100  
0
5
4
3
2
1
0
0
25  
50  
75  
0
25  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
______________________________________________________________________________________ 11  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX9670  
MAX9671  
1
2
3
1
2
3
SDA  
SCL  
Bidirectional I2C Data I/O. Output is open drain and tolerates up to 3.6V.  
I2C Clock Input  
DEV_ADDR  
Device Address Set Input. Connect to GNDVID, V , SDA or SCL. See Table 3.  
VID  
Interrupt Output. This is an open-drain output that pulls down to GNDVID to  
indicate a change in the VCR slow switching or fast switching input, the activity  
status of the composite video inputs, or the load status of the composite video  
outputs.  
4
4
INT  
Audio Supply. Connect to a 3.3V supply. Bypass with a 10µF aluminum  
electrolytic capacitor and a 0.47µF ceramic capacitor to EP.  
5
6
7
5
6
7
V
AUD  
Charge-Pump Flying Capacitor Positive Terminal. Connect a 0.47µF capacitor  
from C1P to C1N.  
C1P  
C1N  
Charge-Pump Flying Capacitor Negative Terminal. Connect a 0.47µF capacitor  
from C1P to C1N.  
0/MAX9671  
8
8
CPVSS  
ENC_INL  
ENC_INR  
TV_INL  
Charge-Pump Negative Power Supply. Bypass with a 1µF ceramic capacitor to EP.  
Encoder Left-Channel Audio Input  
9
9
10  
11  
12  
13  
14  
15  
16  
17  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
Encoder Right-Channel Audio Input  
TV SCART Left-Channel Audio Input  
TV_INR  
TV SCART Right-Channel Audio Input  
VCR_INL  
VCR_INR  
TV_OUTL  
VCR_OUTL  
VCR_OUTR  
TV_OUTR  
TV_SS  
VCR SCART Left-Channel Audio Input  
VCR SCART Right-Channel Audio Input  
TV SCART Left-Channel Audio Output  
VCR SCART Left-Channel Audio Output  
VCR SCART Right-Channel Audio Output  
TV SCART Right-Channel Audio Output  
TV SCART Bidirectional Slow-Switch Signal  
+12V Supply for the Slow Switching Circuit. Bypass with a 10µF + 0.47µF ceramic  
capacitor to EP.  
18  
20  
V
12  
19  
20  
21  
22  
VCR_SS  
TVOUT_FS  
N.C.  
VCR SCART Bidirectional Slow-Switch Signal  
TV SCART Fast-Switching Logic Output  
No Connection. Leave unconnected.  
VCR SCART Fast-Switching Logic Input  
Encoder Blue Video Input  
23, 44  
24  
21  
22  
23  
24  
25  
26  
27  
VCRIN_FS  
ENC_B_IN  
ENC_G_IN  
VCR_B_IN  
VCR_G_IN  
TV_B_OUT  
TV_G_OUT  
25  
26  
Encoder Green Video Input  
27  
VCR SCART Blue Video Input  
28  
VCR SCART Green Video Input  
TV SCART Blue Video Output  
29  
30  
TV SCART Green Video Output  
12 ______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX9670  
MAX9671  
28  
29  
31  
32  
GNDVID  
Video Ground  
VCR_R/C_IN  
VCR SCART Red/Chroma Video Input  
Video and Digital Supply. Connect to a 3.3V supply. Bypass with parallel 1µF and  
0.1µF ceramic capacitors to GNDVID. V  
I C interface.  
also serves as a digital supply for the  
30  
33  
V
VID  
VID  
2
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
ENC_C_IN  
ENC_R/C_IN  
TV_R/C_OUT  
VCR_R/C_OUT  
Encoder Chroma Video Input  
Encoder Red/Chroma Video Input  
TV SCART Red/Chroma Video Output  
VCR SCART Red/Chroma Video Output  
VCR_Y/CVBS_OUT VCR SCART Luma/Composite Video Output  
TV_Y/CVBS_OUT TV SCART Luma/Composite Video Output  
VCR_Y/CVBS_IN VCR SCART Luma/Composite Video Input  
TV_Y/CVBS_IN  
ENC_Y_IN  
TV SCART Luma/Composite Video Input  
Encoder Luma Video Input  
ENC_Y/CVBS_IN Encoder Luma/Composite Video Input  
Exposed Pad. The exposed pad is the internal ground for the audio amplifiers and  
charge pump. A low-impedance connection between ground and EP is required  
for proper isolation.  
EP  
ation of lower power set-top boxes, televisions, and  
Detailed Description  
DVD players. Unlike competing SCART ICs, the audio  
and video circuits of the MAX9670/MAX9671 operate  
entirely from 3.3V rather than from 5V and 12V. Only the  
slow-switch circuit of the MAX9670/MAX9671 requires a  
12V supply. The MAX9670/MAX9671 also have circuits  
that detect activity on the CVBS inputs, loads on the  
CVBS outputs, and the level of the slow-switch signals.  
The INT signal informs the microcontroller if there are  
any changes so that the microcontroller can intelli-  
gently decide whether to power up or power down  
the equipment.  
The MAX9670/MAX9671 represents Maxim’s third gen-  
eration of SCART audio/video (A/V) switches. Under I2C  
control, these devices route audio, video, and control  
information between the set-top box decoder chip and  
two SCART connectors. The audio signals are left audio  
and right audio. The video signals are composite video  
with blanking and sync (CVBS) and component video  
(red, green, blue). S-video (Y/C) can be transported  
across the SCART interface if CVBS is reassigned to  
luma (Y) and red is reassigned to chroma (C). Support  
for S-video is optional. The slow-switch signal and the  
fast-switch signal carry control information. The slow-  
switch signal is a 12V, three-level signal that indicates  
whether the picture aspect ratio is 4:3 or 16:9 or causes  
the television to use an internal A/V source such as an  
antenna. The fast-switch signal indicates whether the  
television should display CVBS or RGB signals.  
In addition, the MAX9670/MAX9671 have DirectDrive  
audio circuitry to eliminate click-and-pop noise. With  
DirectDrive, the DC bias of the audio line outputs is  
always at ground, no matter whether the MAX9670/  
MAX9671 are being powered up or powered down.  
Conventional audio line output drivers that operate from a  
single supply require series AC-coupling capacitors.  
During power-up, the DC bias on the AC-coupling capac-  
itor moves from ground to a positive voltage, and during  
power-down, the opposite occurs. The changing DC bias  
usually causes an audible transient.  
CVBS, left audio, and right audio are full duplex. All the  
other signals are half duplex. Therefore, one device on  
the link must be designated as the transmitter, and the  
other device must be designated as the receiver.  
The low power consumption and the advanced monitor-  
ing functions of the MAX9670/MAX9671 enable the cre-  
______________________________________________________________________________________ 13  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
ZCD  
MUTE  
ENC_INL  
VCR_INL  
*TV_INL  
VOLUME  
CONTROL  
0dB TO -62dB  
x4  
TV_OUTL  
TV_OUTR  
MUTE  
(0.5V  
FULL-SCALE INPUT)  
RMS  
(2V  
RMS  
FULL-SCALE OUTPUT)  
x4  
MUTE  
VOLUME  
CONTROL  
0dB TO -62dB  
MUTE  
x4  
VCR_OUTL  
VCR_OUTR  
0/MAX9671  
MUTE  
MUTE  
ENC_INR  
(2V  
RMS  
FULL-SCALE OUTPUT)  
x4  
VCR_INR  
*TV_INR  
SCL  
SDA  
REGISTER  
CONTROL  
DEV_ADDR  
V
AUD  
C1P  
EP  
CHARGE  
PUMP  
C1N  
CPVSS  
MAX9670/MAX9671  
*MAX9671 ONLY.  
Figure 1. MAX9670/MAX9671 Audio Section Functional Diagram  
nonblocking audio crosspoint with TV as the third input  
source.  
Audio Section  
The MAX9670 audio circuit is essentially a stereo,  
2-by-2, nonblocking, audio crosspoint with output dri-  
vers. The encoder (stereo audio DAC) and the VCR are  
the two input sources, and the two outputs go to the TV  
SCART connector and the VCR SCART connector. See  
Figure 1. The MAX9671 audio circuit is similar to that of  
the MAX9670 except that it is a stereo, 3-by-2,  
The integrated charge pump inverts the +3.3V supply  
to create a -3.3V supply. The audio circuit operates  
from bipolar supplies so the audio signal is always  
biased to ground.  
14 ______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
Audio Outputs  
The MAX9670/MAX9671 audio output amplifiers feature  
Maxim’s DirectDrive architecture, thereby eliminating  
the need for output-coupling capacitors required by  
V
DD  
/2  
conventional single-supply audio line drivers. An inter-  
nal charge pump inverts the positive supply (V ),  
AUD  
V
V
DD  
DD  
creating a negative supply (CPVSS). The audio output  
amplifiers operate from these bipolar supplies with their  
outputs biased about audio ground (Figure 2). The ben-  
efit of this audio ground bias is that the amplifier out-  
puts do not have a DC component. The DC-blocking  
capacitors required with conventional audio line drivers  
are unnecessary, conserving board space, reducing  
system cost, and improving frequency response.  
GND  
CONVENTIONAL DRIVER-BIASING SCHEME  
Conventional single-supply audio line drivers have their  
outputs biased about a nominal DC voltage (typically  
half the supply) for maximum dynamic range. Large  
coupling capacitors are needed to block this DC bias.  
Clicks and pops are created when the coupling capaci-  
tors are charged during power-up and discharged dur-  
ing power-down.  
+V  
DD  
V
OUT  
2V  
GND  
DD  
The MAX9670/MAX9671 features a low-noise charge  
pump that requires only two small ceramic capacitors.  
The 580kHz switching frequency is well beyond the  
audio range and does not interfere with audio signals.  
The switch drivers feature a controlled switching speed  
that minimizes noise generated by turn-on and turn-off  
transients.  
-V  
DD  
DirectDrive BIASING SCHEME  
Figure 2. Conventional Driver Output Waveform vs. MAX9670/  
MAX9671 Output Waveform.  
The SCART standard specifies 2V  
as the full-scale  
RMS  
Clickless Switching  
The TV audio channel incorporates a zero-crossing  
detect (ZCD) circuit that minimizes click noise due to  
abrupt signal level changes that occur when switching  
between audio signals at an arbitrary moment.  
for audio signals. As the audio circuits process  
0.5V full-scale audio signals internal to the  
RMS  
MAX9670/MAX9671, the gain-of-4 output amplifiers  
restore the audio signals to a full-scale of 2V  
.
RMS  
To select which audio input source is routed to the TV  
SCART connector, write to bits 1 and 0 of the TV Audio  
Control register (01h). To select which audio input  
source is routed to the VCR SCART connector, write to  
bits 3 and 2 of the TV Audio Control register (01h). The  
power-on default is for the TV and VCR audio outputs to  
be muted (the inputs of the output amplifiers are con-  
nected to audio ground). See Tables 10 and 13.  
To implement the zero-crossing function when switch-  
ing audio signals, set the ZCD bit high (Audio Control  
register 00h, bit 6). Then set the mute bit high (Audio  
Control register 00h, bit 0). Next, wait for a sufficient  
period of time for the audio signal to cross zero. This  
period is a function of the audio signal path’s low-fre-  
quency 3dB corner (f  
). Thus, if f  
= 20Hz, the  
L3dB  
L3dB  
time period to wait for a zero-crossing detect is 1/20Hz  
or 50ms.  
Volume Control  
Volume control is programmable from -62dB to 0dB in  
2dB steps through I2C interface. The block consists of  
a resistive ladder network to generate 31 2dB volume  
control steps, a unity gain buffer to isolate the input  
from the resistive ladder, switches (MPLx and MNLx)  
that select 1 of 32 nodes on the resistive ladder, and  
logic to decode the the I2C volume control value. See  
Table 12.  
After the wait period, select a new audio source for the  
TV audio channel by writing to bits 1 and 0 of TV Audio  
Control register (01h). Finally, clear mute (Audio Control  
register, 00h, bit 0), but leave ZCD (Audio Control reg-  
ister 00h, bit 6) high. The MAX9670/MAX9671 switches  
the signal out of mute at the next zero crossing. See  
Tables 12 and 13.  
______________________________________________________________________________________ 15  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
ACTIVITY DETECT  
ACTIVITY DETECT  
MAX9670/MAX9671  
ACTIVITY DETECT  
ACTIVITY DETECT  
TV_Y/CVBS_IN  
VCR_Y/CVBS_IN  
ENC_Y/CVBS_IN  
ENC_Y_IN  
CLAMP  
CLAMP  
CLAMP  
CLAMP  
LOAD SENSE  
A
= 2V/V  
TV_Y/CVBS_OUT  
V
LPF  
LPF  
MUTE  
LOAD SENSE  
A
A
= 2V/V  
= 2V/V  
VCR_Y/CVBS_OUT  
TV_R/C_OUT  
V
V
VCR_R/C_IN  
ENC_R/C_IN  
ENC_C_IN  
CLAMP/BIAS  
CLAMP/BIAS  
CLAMP/BIAS  
LPF  
LPF  
0/MAX9671  
MUTE  
A
= 2V/V  
VCR_R/C_OUT  
V
VCR_G_IN  
ENC_G_IN  
CLAMP  
CLAMP  
A
A
= 2V/V  
= 2V/V  
TV_G_OUT  
TV_B_OUT  
V
V
LPF  
LPF  
MUTE  
MUTE  
VCR_B_IN  
ENC_B_IN  
CLAMP  
CLAMP  
V
VID  
A
A
= 1V/V  
= 1V/V  
TVOUT_FS  
TV_SS  
V
V
GNDVID  
VCRIN_FS  
0.7V  
V
12  
+6V  
EP  
2
TO I C  
x1  
V
12  
A
= 1V/V  
VCR_SS  
V
+6V  
EP  
2
TO I C  
x1  
Figure 3. MAX9670/MAX9671 Video Section Function Diagram  
the VCR SCART connector. It also routes slow-switch  
and fast-switch control information. See Figure 3.  
Video Section  
The video circuit routes different video formats between  
the set-top box decoder, the TV SCART connector, and  
16 ______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
Video Inputs  
Whether the incoming video signal is AC-coupled or  
DC-coupled into the MAX9670/MAX9671 depends  
upon the origin, format, and voltage range of the video  
signal. Table 1 below shows the recommended con-  
nections. Always AC-couple an external video signal  
through a 0.1µF capacitor because its voltage is not  
well defined (see the Typical Application Circuit). For  
example, the video transmitter circuit might have a dif-  
ferent ground than the video receiver, thereby level  
shifting the DC bias. 60Hz power line hum might cause  
the video signal to change DC bias slowly.  
In high-impedance mode, the inputs to the MAX9670/  
MAX9671 do not distort the video signal in case the out-  
puts of the video DAC are also connected to another  
video circuit such as a high-definition video filter amplifi-  
er. See the SCART Set-Top Box with Analog HD Outputs  
section. The inputs in high-impedance mode are biased  
at V /3, which is sufficiently above ground so that the  
VID  
ESD diodes never forward biases as the video signal  
changes. The input resistance is 222k, which presents  
negligible loading on the video current DAC.  
Video Reconstruction Filter  
The video DAC outputs of the set-top box decoder chip  
need to be lowpass-filtered to reject the out-of-band  
noise. The MAX9670/MAX9671 integrate sixth-order,  
Butterworth filters. The filter passband ( 1dB) is typical-  
ly 5.5MHz, and the attenuation at 27MHz is 52dB. The  
filters are suited for standard-definition video.  
Internal video signals that are between 0 and 1V can be  
DC-coupled. Most video DACs generate video signals  
between 0 and 1V because the video DAC sources cur-  
rent into a ground-referenced resistor. For the minority  
of video DACs that generate video signals between  
2.3V and 3.3V because the video DAC sinks current  
from a V -referenced resistor, AC-couple the video  
VID  
signal to the MAX9670/MAX9671.  
Video Outputs  
The video output amplifiers can both source and sink  
load current, allowing output loads to be DC- or AC-  
coupled. The amplifier output stage needs around  
300mV of headroom from either supply rail. For video  
signals with a sync pulse, the sync tip is typically at  
300mV, as shown in Figure 4. For a chroma signal, the  
blank level is typically at 1.5V, as shown in Figure 5.  
The MAX9670/MAX9671 restore the DC level of incom-  
ing, AC-coupled video signals with either transparent  
sync-tip clamps or bias circuits. When using an AC-  
coupled input, the transparent sync-tip clamp automati-  
cally clamps the input signal minimum to ground,  
preventing it from going lower. A small current of 1µA  
pulls down on the input to prevent an AC-coupled sig-  
nal from drifting outside the input range of the part. Use  
sync-tip clamps with CVBS, RGB, and luma signals.  
If the supply voltage is greater than 3.135V (5% below  
a 3.3V supply), each amplifier can drive two DC-cou-  
pled video loads to ground. If the supply is less than  
3.135V, each amplifier can drive only one DC-coupled  
or AC-coupled video load.  
The transparent sync-tip clamp is transparent when the  
incoming video signal is DC-coupled and at or above  
ground. Under such conditions, the clamp never acti-  
vates. Therefore, the outputs of video DACs that gener-  
ate signals between 0 and 1V can be directly  
connected to the MAX9670/MAX9671 inputs.  
The SCART standard allows for video signals to have a  
superimposed DC component within 0 and 2V.  
Therefore, most video signals are DC-coupled at the  
output. In the unlikely event that the video signal needs  
to be AC-coupled, the coupling capacitors should be  
220µF or greater to keep the highpass filter formed by  
the 37.5equivalent resistance of the video transmis-  
sion line to a corner frequency of 4.8Hz or below to keep  
it well below the 25Hz frame rate of the PAL standard.  
The bias circuit accepts AC-coupled chroma, which is  
a subcarrier with the color information modulated onto  
it. The bias voltage of the bias circuits is around  
600mV.  
ENC_R/C_IN and VCR_R/C_IN can receive either a red  
video signal or a chroma video signal. Set the input con-  
figuration by writing to bits 7 and 3 of the VCR Video  
Input Control register (08h). See Tables 10 and 16.  
The CVBS outputs have load sense circuits. If enabled,  
each load sense circuit checks for a load eight times  
per second by connecting an internal 15kpullup  
resistor to the output for 1ms. If the output is pulled up,  
no load is present. If the output stays low, a load is con-  
nected. Read bits 1 and 3 of the Video Activity Status  
register (0Fh) to determine load status. See Table 21.  
The MAX9670/MAX9671 also have video input detec-  
tion. When activated, activity detect circuits check if  
sync is present on incoming CVBS and luma (Y) sig-  
nals. If so, then there is a valid video signal. Read bits  
0, 2, 4, and 5 of the Video Activity Status register (0Fh)  
to determine the status of the CVBS and luma (Y)  
inputs. See Table 21.  
The selection of video sources that are sent to the TV  
SCART connector are controlled by bits 0 to 4 of the TV  
Video Input Control register (06h) while the selection of  
______________________________________________________________________________________ 17  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
video sources that are sent to the VCR SCART connec-  
tor are controlled by bits 0 to 2 of the VCR Video Input  
Control register (08h). See Tables 10, 14, and 16. The  
video outputs can be enabled or disabled by bits 2  
through 7 of the Output Enable register (0Dh). See  
Table 18.  
the fast-switching signal is just used to switch between  
CVBS and RGB signal sources.  
Set the source of the fast-switching signal by writing to  
bits 4 and 3 of the TV Video Output Control register  
(07h). The fast-switching signal to the TV SCART con-  
nector can be enabled or disabled by bit 1 of the Output  
Enable register (0Dh). See Tables 10, 15, and 18.  
Slow Switching  
The MAX9670/MAX9671 support the IEC 933-1,  
Amendment 1, three-level slow switching that selects  
the aspect ratio for the display (TV). Under I2C control,  
the MAX9670/MAX9671 set the slow-switching output  
voltage level. Table 2 shows the valid input levels of the  
slow-switching signal and the corresponding operating  
modes of the display device.  
I2C Serial Interface  
The MAX9670/MAX9671 feature an I2C/SMBus™-com-  
patible, 2-wire serial interface consisting of a serial-data  
line (SDA) and a serial-clock line (SCL). SDA and SCL  
facilitate communication between the MAX9670/  
MAX9671 and the master at clock rates up to 400kHz.  
Figure 6 shows the 2-wire interface timing diagram. The  
master generates SCL and initiates data transfer on the  
bus. A master device writes data to the MAX9670/  
MAX9671 by transmitting a START (S) condition, the  
proper slave address with the R/W bit set to 0, followed  
by the register address and then the data word. Each  
transmit sequence is framed by a START and a STOP  
(P) condition. Each word transmitted to the  
MAX9670/MAX9671 is 8 bits long and is followed by an  
acknowledge clock pulse. A master reads from the  
MAX9670/MAX9671 by transmitting the slave address  
with the R/W bit set to 0, the register address of the reg-  
ister to be read, a REPEATED START (Sr) condition, the  
slave address with the R/W bit set to 1, followed by a  
series of SCL pulses. The MAX9670/MAX9671 transmit  
data on SDA in sync with the master-generated SCL  
pulses. The master acknowledges receipt of each byte  
of data. Each read sequence is framed by a START or  
Two bidirectional ports are available for slow-switching  
signals for the TV and VCR. The slow-switching input  
status is continuously read and stored in the Status reg-  
ister (0Eh). The slow-switching outputs can be set to a  
logic level or high impedance by writing to the TV Video  
Output Control register (07h) and the VCR Video Output  
Control register (09h). When enabled, INT becomes  
active low if the voltage level changes on TV_SS or  
VCR_SS. See Tables 10, 15, 17, and 20.  
0/MAX9671  
Fast Switching  
The fast-switching signal was originally used to switch  
between CVBS and RGB signals on a pixel-by-pixel  
basis so that on-screen display (OSD) information  
could be inserted. Since modern set-top box decoder  
chips have integrated OSD circuitry, there is no need to  
create OSD information using the older technique. Now,  
MAX9670 fig05  
MAX9670 fig04  
INPUT  
200mV/div  
INPUT  
500mV/div  
OUTPUT  
500mV/div  
OUTPUT  
200mV/div  
10µs/div  
20µs/div  
Figure 5. MAX9670/MAX9671 Video Output with Chroma (C)  
Signal, Multiburst Video Test Signal Shown  
Figure 4. MAX9670/MAX9671 Video Output with CVBS Signal,  
Multiburst Video Test Signal Shown  
18 ______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
SDA  
SCL  
t
BUF  
t
t
SU, STA  
SU, DAT  
t
t
SP  
HD, STA  
t
t
SU, STO  
t
HD, DAT  
LOW  
t
HIGH  
t
HD, STA  
t
t
F
R
REPEATED  
START CONDITION  
STOP  
CONDITION  
START  
CONDITION  
START  
CONDITION  
Figure 6. I2C Serial-Interface Timing Diagram  
REPEATED START condition, an acknowledge or a not  
acknowledge, and a STOP condition. SDA operates as  
both an input and an open-drain output. A pullup resis-  
tor, typically greater than 500, is required on the SDA  
bus. SCL operates as only an input. A pullup resistor,  
typically greater than 500, is required on SCL if there  
are multiple masters on the bus, or if the master in a  
single-master system has an open-drain SCL output.  
Series resistors in line with SDA and SCL are optional.  
Series resistors protect the digital inputs of the  
MAX9670/MAX9671 from high-voltage spikes on the  
bus lines, and minimize crosstalk and undershoot of the  
bus signals.  
S
Sr  
P
SCL  
SDA  
Figure 7. START, STOP, and REPEATED START Conditions  
Bit Transfer  
One data bit is transferred during each SCL cycle. The  
data on SDA must remain stable during the high period  
of the SCL pulse. Changes in SDA while SCL is high  
are control signals (see the START and STOP  
Conditions section). SDA and SCL idle high when the  
I2C bus is not busy.  
Early STOP Conditions  
The MAX9670/MAX9671 recognize a STOP condition at  
any point during data transmission except if the STOP  
condition occurs in the same high pulse as a START  
condition. For proper operation, do not send a STOP  
condition during the same SCL high pulse as the  
START condition.  
START and STOP Conditions  
SDA and SCL idle high when the bus is not in use. A  
master initiates communication by issuing a START  
condition. A START condition is a high-to-low transition  
on SDA with SCL high. A STOP condition is a low-to-  
high transition on SDA while SCL is high (Figure 7). A  
START condition from the master signals the beginning  
of a transmission to the MAX9670/MAX9671. The mas-  
ter terminates transmission, and frees the bus, by issu-  
ing a STOP condition. The bus remains active if a  
REPEATED START condition is generated instead of a  
STOP condition.  
Slave Address  
The slave address is defined as the 7 most significant  
bits (MSBs) followed by the read/write (R/W) bit. Set the  
R/W bit to 1 to configure the MAX9670/MAX9671 to  
read mode. Set the R/W bit to 0 to configure the  
MAX9670/MAX9671 to write mode. The slave address  
is always the first byte of information sent to the  
MAX9670/MAX9671 after a START or a REPEATED  
START condition. The MAX9670/MAX9671 slave  
address is configurable with DEV_ADDR. Table 3  
shows the possible slave addresses for the  
MAX9670/MAX9671.  
______________________________________________________________________________________ 19  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
Acknowledge  
The acknowledge bit (ACK) is a clocked 9th bit that the  
MAX9670/MAX9671 use to handshake receipt of each  
byte of data when in write mode (see Figure 8). The  
MAX9670/MAX9671 pull down SDA during the entire  
master-generated ninth clock pulse if the previous byte  
is successfully received. Monitoring ACK allows for  
detection of unsuccessful data transfers. An unsuc-  
cessful data transfer occurs if a receiving device is  
busy or if a system fault has occurred. In the event of  
an unsuccessful data transfer, the bus master may retry  
communication. The master pulls down SDA during the  
ninth clock cycle to acknowledge receipt of data when  
the MAX9670/MAX9671 are in read mode. An acknowl-  
edge is sent by the master after each read byte to allow  
data transfer to continue. A not acknowledge is sent  
when the master reads the final byte of data from the  
MAX9670/MAX9671, followed by a STOP condition.  
Write Data Format  
A write to the MAX9670/MAX9671 consists of transmit-  
ting a START condition, the slave address with the R/W  
bit set to 0, one data byte to configure the internal reg-  
ister address pointer, one or more data bytes, and a  
STOP condition. Figure 9 illustrates the proper frame  
format for writing one byte of data to the  
MAX9670/MAX9671. Figure 10 illustrates the frame for-  
mat for writing n bytes of data to the MAX9670/  
MAX9671.  
CLOCK PULSE FOR  
ACKNOWLEDGMENT  
START  
The slave address with the R/W bit set to 0 indicates  
that the master intends to write data to the MAX9670/  
MAX9671. The MAX9670/MAX9671 acknowledge  
receipt of the address byte during the master-generat-  
ed ninth SCL pulse.  
CONDITION  
SCL  
1
2
8
9
0/MAX9671  
NOT ACKNOWLEDGE  
The second byte transmitted from the master config-  
ures the MAX9670/MAX9671’s internal register address  
pointer. The pointer tells the MAX9670/MAX9671 where  
to write the next byte of data. An acknowledge pulse is  
sent by the MAX9670/MAX9671 upon receipt of the  
address pointer data.  
SDA  
ACKNOWLEDGE  
Figure 8. Acknowledge  
ACKNOWLEDGE FROM MAX9670/MAX9671  
B7 B6 B5 B4 B3 B2 B1 B0  
ACKNOWLEDGE FROM MAX9670/MAX9671  
ACKNOWLEDGE FROM MAX9670/MAX9671  
REGISTER ADDRESS  
A
P
S
SLAVE ADDRESS  
0
A
A
DATA BYTE  
1 BYTE  
R/W  
Figure 9. Writing a Byte of Data to the MAX9670/MAX9671  
ACKNOWLEDGE FROM  
MAX9670/MAX9671  
ACKNOWLEDGE FROM  
MAX9670/MAX9671  
ACKNOWLEDGE FROM MAX9670/MAX9671  
ACKNOWLEDGE FROM MAX9670/MAX9671  
B7 B6 B5 B4 B3 B2 B1 B0  
B7 B6 B5 B4 B3 B2 B1 B0  
S
SLAVE ADDRESS  
0
A
A
A
REGISTER ADDRESS  
DATA BYTE 1  
1 BYTE  
DATA BYTE n  
1 BYTE  
A
P
R/W  
AUTOINCREMENT INTERNAL  
REGISTER ADDRESS POINTER  
Figure 10. Writing n Bytes of Data to the MAX9670/MAX9671  
20 ______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
NOT ACKNOWLEDGE FROM MASTER  
ACKNOWLEDGE FROM  
MAX9670/MAX9671  
ACKNOWLEDGE FROM  
MAX9670/MAX9671  
ACKNOWLEDGE FROM  
MAX9670/MAX9671  
A
P
S
SLAVE ADDRESS  
0
A
REGISTER ADDRESS  
A
Sr  
SLAVE ADDRESS  
R/W  
1
A
DATA BYTE  
1 BYTE  
R/W  
REPEATED START  
AUTOINCREMENT INTERNAL  
REGISTER ADDRESS POINTER  
Figure 11. Reading One Indexed Byte of Data from the MAX9670/MAX9671  
ACKNOWLEDGE FROM  
MAX9670/MAX9671  
ACKNOWLEDGE FROM  
MAX9670/MAX9671  
ACKNOWLEDGE FROM  
MAX9670/MAX9671  
NOT ACKNOWLEDGE FROM MASTER  
A
P
S
SLAVE ADDRESS  
0
A
REGISTER ADDRESS  
A
Sr  
SLAVE ADDRESS  
1
A
DATA BYTE  
1 BYTE  
R/W  
REPEATED START  
R/W  
AUTOINCREMENT INTERNAL  
REGISTER ADDRESS POINTER  
Figure 12. Reading n Bytes of Indexed Data from the MAX9670/MAX9671  
The third byte sent to the MAX9670/MAX9671 contains  
the data that is written to the chosen register. An  
acknowledge pulse from the MAX9670/MAX9671 sig-  
nals receipt of the data byte. The address pointer  
autoincrements to the next register address after each  
received data byte. This autoincrement feature allows a  
master to write to sequential register address locations  
within one continuous frame. The master signals the  
end of transmission by issuing a STOP condition.  
addresses higher than 10h results in repeated reads  
from a dummy register containing FFh data. The master  
acknowledges receipt of each read byte during the  
acknowledge clock pulse. The master must acknowl-  
edge all correctly received bytes except the last byte.  
The final byte must be followed by a not acknowledge  
from the master and then a STOP condition. Figures 11  
and 12 illustrate the frame format for reading data from  
the MAX9670/MAX9671.  
Read Data Format  
The master presets the address pointer by first sending  
the MAX9670/MAX9671’s slave address with the R/W  
bit set to 0 followed by the register address after a  
START condition. The MAX9670/MAX9671 acknowl-  
edges receipt of its slave address and the register  
address by pulling SDA low during the ninth SCL clock  
pulse. A REPEATED START condition is then sent fol-  
lowed by the slave address with the R/W bit set to 1.  
The MAX9670/MAX9671 transmits the contents of the  
specified register. Transmitted data is valid on the ris-  
ing edge of the master-generated serial clock (SCL).  
The address pointer autoincrements after each read  
data byte. This autoincrement feature allows all regis-  
ters to be read sequentially within one continuous  
frame. A STOP condition can be issued after any num-  
ber of read data bytes. If a STOP condition is issued  
followed by another read operation, the first data byte  
to be read is from the register address location set by  
the previous transaction and not 00h and subsequent  
reads autoincrement the address pointer until the next  
STOP condition. Attempting to read from register  
Interrupt Output  
When interrupt is enabled in modes 1 and 2, INT, which  
is an open-drain output, pulls low under the following  
conditions: slow-switch signals change value, CVBS  
input signals are detected or disappear, and CVBS out-  
put loads are added or removed.  
When interrupt is enabled in mode 3, INT pulls low only  
when the slow-switch signal changes value.  
Enable INT by writing a 1 into bit 4 of register 01h. See  
Table 13.  
The interrupt can be cleared by reading register 0Eh  
and 0Fh.  
Applications Information  
Audio Inputs  
The maximum full-scale audio signal that can be  
applied to the audio inputs is 0.5V  
biased at  
RMS  
ground. The recommended application circuit to atten-  
uate and bias an incoming audio signal is shown in  
Figure 13.  
______________________________________________________________________________________ 21  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
considers this condition to be illegal and does not loop  
through any signals.  
STEREO  
AUDIO  
DACS  
A finite state machine (Figure 14) controls the operation  
MAX9670  
1µF  
of the MAX9670/MAX9671. State 0 is always the initial  
state when the MAX9670/MAX9671 enter standby  
mode. Table 4 shows the values of the I2C registers in  
state 0. The state machine sets the other I2C registers  
to the correct values to loop through the audio/video  
signals in states 1 and 2 (see Tables 5 and 6). When  
the MAX9670/MAX9671 leaves standby mode, the val-  
ues in all of the I2C registers except register 10h are  
preserved so that the operation is not disturbed. For  
example, if in standby mode, the MAX9670 is looping  
through the audio/video signals from VCR SCART to TV  
SCART, and if the microcontroller changes the operat-  
ing mode from standby mode to full-power mode, the  
audio/video signals continue to be looped through dur-  
ing and after the mode change. The user does not  
experience any disruption in audio or video service.  
6.65kΩ  
6.65kΩ  
ENC_INL  
R1*  
R1*  
1µF  
ENC_INR  
*R1 VALUES  
DAC = CS4334/5/8/9: R1 = 4.53k, 1%  
DAC = PCM1742: R1 = 5.57k, 1%  
Figure 13. Application circuit to connect audio source to audio  
inputs. The 1µF capacitor connected to the ground-referenced  
resistors biases the audio signal at ground. The resistors atten-  
uate the audio signal.  
0/MAX9671  
The microcontroller can be turned off in standby mode  
because the MAX9670/MAX9671 operate autonomous-  
ly. Upon power-up, the default operating mode is  
standby mode.  
The audio path has a gain of 4V/V so that the full scale  
of the audio output signal is 2V  
. If less than 2V  
,
RMS  
RMS  
full scale is desired at the audio outputs, and the full  
scale of the audio input signal should be proportionate-  
Full-Power Mode with Video Input Detection  
and Video Load Detection  
ly decreased below 0.5V  
.
RMS  
In this mode, the MAX9670/MAX9671 are fully on. If  
interrupt is enabled, INT goes active low whenever the  
slow-switch signal changes; a CVBS signal appears or  
disappears; or a CVBS load appears or disappears.  
The microcontroller can decide whether to change the  
routing configuration or operating mode of the  
MAX9670/MAX9671.  
Operating Modes  
The MAX9670/MAX9671 has four operating modes,  
which can be set by writing to bits 6 and 7 of register  
10h. See Table 19.  
Shutdown  
All circuitry is shutdown in the MAX9670/MAX9671  
except for the I2C interface, which is designed with sta-  
tic CMOS logic. Except for register 10h, which sets the  
operating mode, the values in all of the other I2C regis-  
ters are preserved while entering, during, and leaving  
shutdown mode.  
Full-Power Mode Without Video Input Detection  
and Video Load Detection  
This mode is similar to the above mode except that  
video input detection and video load detection are not  
active. If interrupt is enabled, INT goes active low only  
when the slow-switch signal changes.  
Standby Mode  
In standby mode, the MAX9670/MAX9671 monitor the  
slow-switch signals and decide whether to loop through  
the audio/video signals. If the VCR slow switch input  
has activity (6V or 12V at the input), the audio/video sig-  
nals are looped through from the VCR SCART to the TV  
SCART. If the TV slow-switch input has activity, the  
audio/video signals are looped through from the TV  
SCART to the VCR SCART. If neither the VCR slow-  
switch input nor the TV slow switch input show activity,  
i.e., both inputs are at ground, no signals are looped  
through. If both the VCR slow-switch input and the TV  
slow-switch input have activity, the MAX9670/MAX9671  
Power Consumption  
The quiescent power consumption and average power  
consumption of the MAX9670/MAX9671 are very low  
because of 3.3V operation and low-power circuit design.  
Quiescent power consumption is defined when the  
MAX9670/MAX9671 are operating without loads and  
without any audio or video signals. Table 7 shows the  
quiescent power consumption in all 4 operating modes.  
Average power consumption is defined when the MAX9670/  
MAX9671 drives typical signals into typical loads. Table 8  
shows the average power consumption in full-power  
mode and Table 9 shows the input and output conditions.  
22 ______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
TV_SS ACTIVE  
TV_SS NOT ACTIVE  
VCR_SS ACTIVE  
VCR_SS NOT ACTIVE  
STATE 0  
SEARCH  
AUDIO: INACTIVE  
VIDEO: INACTIVE  
SLOW SWITCH: LISTENING FOR ACTIVITY  
FAST SWITCH: INACTIVE  
TV_SS ACTIVE  
VCR_SS NOT ACTIVE  
TV_SS NOT ACTIVE  
VCR_SS ACTIVE  
TV_SS NOT ACTIVE  
VCR_SS NOT ACTIVE  
TV_SS NOT ACTIVE  
VCR_SS NOT ACTIVE  
TV_SS ACTIVE  
VCR_SS NOT ACTIVE  
TV_SS NOT ACTIVE  
VCR_SS ACTIVE  
STATE 1  
TV-TO-VCR  
STATE 2  
VCR-TO-TV  
AUDIO: TV TO VCR  
VIDEO: TV TO VCR  
SLOW SWITCH: TV TO VCR  
FAST SWITCH: NOT APPLICABLE  
AUDIO: VCR TO TV  
VIDEO: VCR TO TV  
SLOW SWITCH: VCR TO TV  
FAST SWITCH: VCR TO TV  
TV_SS ACTIVE  
VCR_SS ACTIVE  
TV_SS ACTIVE  
VCR_SS ACTIVE  
TV_SS NOT ACTIVE  
VCR_SS ACTIVE  
TV_SS ACTIVE  
VCR_SS NOT ACTIVE  
Figure 14. Standby mode finite state machine. TV_SS is active when either 6V or 12V are present. VCR_SS is active when either 6V  
or 12V are present.  
red signal. The pins that can carry both CVBS and luma  
have Y/CVBS in their names, and the pins that can  
carry red and chroma have R/C in their names.  
S-Video  
The MAX9670/MAX9671 support S-video from the set-  
top box to the TV, set-top box to the VCR, and VCR to  
the set-top box. S-video was not included in the original  
SCART specifications but was added afterwards. As a  
consequence, the luma (Y) signal of S-video shares the  
same SCART pin as the CVBS signal. Likewise, the  
chroma (C) signal shares the same SCART pin as the  
Now, the Y/CVBS signals are full duplex while the R/C  
signals are half duplex. Therefore, S-video is limited to  
being half duplex. The MAX9670/MAX9671 have to  
transmit a chroma signal and receive a chroma signal  
______________________________________________________________________________________ 23  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0.1µF  
VCR_R/C_IN  
75Ω  
BIAS  
BIAS  
BIAS  
TV_R/C_OUT  
TV  
SCART  
A
= 2V/V  
V
ENC_R/C_IN  
ENC_C_IN  
LPF  
LPF  
75Ω  
VCR_R/C_OUT  
VCR  
SCART  
A
= 2V/V  
ON  
V
MAX9670/MAX9671  
0/MAX9671  
Figure 15. Gain-of-2 amplifier on VCR_R/C_OUT outputs chroma signal to VCR SCART connector. Notice that the pulldown switch on  
VCR_R/C_OUT is open.  
0.1µF  
VCR_R/C_IN  
75Ω  
75Ω  
BIAS  
BIAS  
BIAS  
TV_R/C_OUT  
TV  
SCART  
A = 2V/V  
V
ENC_R/C_IN  
ENC_C_IN  
LPF  
LPF  
VCR_R/C_OUT  
VCR  
SCART  
A = 2V/V  
V
MAX9670/MAX9671  
OFF  
Figure 16. VCR_R/C_IN receives chroma signal from VCR SCART connector. Notice that the pulldown switch on VCR_R/C_OUT is  
closed and that the gain-of-2 amplifier is off. The chroma signal from VCR SCART is looped through to the TV SCART in the above  
configuration.  
on the same SCART pin, but not at the same time. The  
75resistor connected to VCR_R/C_OUT must act as a  
back termination resistor when the MAX9670/MAX9671  
is transmitting chroma signal and as an input termina-  
tion resistor when it is receiving a chroma signal. Figure  
15 shows how the MAX9670/MAX9671 transmits a  
chroma signal to the VCR SCART connector while  
Figure 16 shows how the MAX9670/MAX9671 receives  
a chroma from the VCR SCART connector.  
Write a 0 into bit 2 of register 09h to open the pulldown  
switch at VCR_R/C_OUT. To close the pulldown switch,  
write a 0 into bit 6 of register 0Dh to turn off the output  
amplifier, and then write a 1 into bit 2 of register 09h.  
See Tables 17 and 18.  
24 ______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
TV_OUTR  
10kΩ  
MAX9670/MAX9671  
MONO AUDIO  
10kΩ  
TV  
SCART  
TV_OUTL  
75Ω  
TV_Y/CVBS_OUT  
75OR GREATER  
75OR GREATER  
RF  
MODULATOR  
Figure 17. Application Circuit to Connect CVBS and Mono Audio from TV SCART to RF Modulator  
To better protect the MAX9670/MAX9671 against  
Interfacing to an RF Modulator  
If the set-top box modulates CVBS and mono audio  
onto an RF carrier (for example, channel 3), a simple  
application circuit can provide the needed signals (see  
Figure 17). 10kresistor summer circuit between  
TV_OUTR and TV_OUTL creates the mono audio sig-  
nal. The resistor-divider to ground on TV_Y/CVBS_OUT  
creates a video signal with normal amplitude. The  
unique feature of the MAX9670/MAX9671 that facilitates  
this application circuit is that the audio and video out-  
put amplifiers of the MAX9670/MAX9671 can drive mul-  
excess voltages during the cable discharge condition  
or ESD events, add series resistors to all inputs and  
outputs to the SCART connector if series resistors are  
not already present in the application circuit. Also, add  
external ESD protection diodes (for example, BAV99)  
on all inputs and outputs to the SCART connector.  
SCART Set-Top Box  
with Analog HD Outputs  
In set-top boxes with SCART connectors and cinch  
connectors for high-definition YPbPr outputs, a triple-  
video DAC usually outputs either standard-definition  
RGB signals that are routed to the MAX9670/MAX9671  
or high-definition YPbPr signals that are routed through  
a high-definition filter amplifier like the MAX9653 (see  
Figure 19). The set-top box devices have a limited num-  
ber of video DACs, and hence, one bank of triple-video  
DACs switches video format depending upon whether  
standard-definition RGB or high-definition YPbPr sig-  
nals are required.  
tiple loads if V  
3.135V.  
and V  
are both greater than  
VID  
AUD  
Unconnected-Chassis Discharge  
Protection and ESD  
Some set-top boxes are not connected to earth ground.  
As a result, the chassis can charge up to 500V. When a  
SCART cable is connected to the SCART connector,  
the charged chassis can discharge through a signal  
pin. The equivalent circuit is a 2200pF capacitor  
charged to 311V connected through less than 0.1to a  
signal pin. The MAX9670/MAX9671 are soldered on the  
PCB when it experiences such a discharge. Therefore,  
the current spike flows through both external and inter-  
nal ESD protection devices and is absorbed by the  
supply bypass capacitors, which have high capaci-  
tance and low ESR.  
When RGB signals are desired, the high-definition filter  
amplifier should be turned off so that the RGB signals  
do not appear on the YPbPr connectors. The  
MAX9653/MAX9654 are well-suited for this application  
because their video inputs are in high-impedance  
mode when in shutdown.  
______________________________________________________________________________________ 25  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
12V  
3.3V  
3.3V  
0.1µF  
0.1µF  
0.1µF  
V
AUD  
V
V
VID  
V
12  
AUD  
1µF  
1µF  
7.68kΩ  
TV_INL  
(MAX9671 ONLY)  
CPVSS  
V
AUD  
2.55kΩ  
7.68kΩ  
+3.3 V  
TV_INR  
(MAX9671 ONLY)  
STB CHIP  
V
AUD  
CPVSS  
2.55kΩ  
75Ω  
SDA  
SCL  
TV_OUTR  
TV_OUTL  
MICRO-  
CONTROLLER  
V
AUD  
75Ω  
75Ω  
CPVSS  
INT  
V
12  
DEV_ADDR  
CPVSS  
TV_SS  
V
VID  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
TV  
SCART  
EP  
TV_B_OUT  
TV_G_OUT  
TV_R/C_OUT  
TVOUT_FS  
VIDEO ENCODER  
V
VID  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
ENC_Y/CVBS_IN  
ENC_R/C_IN  
GNDVID  
V
VID  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
GNDVID  
V
VID  
0/MAX9671  
GNDVID  
ENC_G_IN  
ENC_B_IN  
ENC_Y_IN  
ENC_C_IN  
V
VID  
GNDVID  
TV_Y/CVBS_OUT  
TV_Y/CVBS_IN  
V
VID  
0.1µF  
75Ω  
GNDVID  
MAX9670  
MAX9671  
75Ω  
AUD  
GNDVID  
V
GNDVID  
75Ω  
VCR_OUTR  
V
AUD  
1µF  
1µF  
7.68kΩ  
CPVSS  
VCR_INR  
CPVSS  
V
STEREO  
AUDIO DACS  
AUD  
2.55kΩ  
75Ω  
1µF  
6.65kΩ  
VCR_OUTL  
VCR_INL  
ENC_INL  
ENC_INR  
V
AUD  
7.68kΩ  
CPVSS  
R1*  
CPVSS  
V
12  
2.55kΩ  
75Ω  
1µF  
VCR  
SCART  
6.65kΩ  
VCR_SS  
V
VID  
0.1µF  
75Ω  
EP  
R1*  
VCR_B_IN  
75Ω  
75Ω  
GNDVID  
V
VID  
0.1µF  
75Ω  
75Ω  
VCR_G_IN  
GNDVID  
V
VID  
0.1µF  
VCR_R/C_IN  
VCR_R/C_OUT  
VCRIN_FS  
V
VID  
GNDVID  
V
*R1 VALUES  
DAC = CS4334/5/8/9: R1 = 4.53k1%  
DAC = PCM1742: R1 = 5.57k1%  
VID  
75Ω  
GNDVID  
V
VID  
75Ω  
75Ω  
GNDVID  
VCR_Y/CVBS_OUT  
VCR_Y/CVBS_IN  
V
VID  
GNDVID  
0.1µF  
EP  
C1P  
C1N CPVSS  
75Ω  
75Ω  
GNDVID  
1µF  
1µF  
Figure 18. Application Circuit to Connect Series Resistors and External ESD Protection Diodes at MAX9670/MAX9671 Outputs  
26 ______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
MAX9670/MAX9671  
MAX9670/MAX9671  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
ENC_R/C_IN TV_R/C_OUT  
ENC_R/C_IN TV_R/C_OUT  
SCART  
SCART  
CONNECTOR  
ENC_G_IN  
ENC_B_IN  
TV_G_OUT  
TV_B_OUT  
ENC_G_IN  
ENC_B_IN  
TV_G_OUT  
TV_B_OUT  
CONNECTOR  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
SET-TOP BOX  
CHIP  
SET-TOP BOX  
CHIP  
INPUTS SET TO SYNC-TIP CLAMP  
INPUTS SET TO HIGH IMPEDANCE  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
MAX9653  
MAX9654  
MAX9653  
MAX9654  
0.1µF  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
YOUT  
YIN  
YOUT  
YIN  
0.1µF  
0.1µF  
PBOUT  
PBOUT  
YPbPr OUTPUTS  
PBIN  
PBIN  
YPbPr OUTPUTS  
PRIN  
PROUT  
PRIN  
PROUT  
3.3V  
SHDN  
SHDN  
OFF  
ON  
(A)  
(B)  
Figure 19. Triple DAC is connected to both a MAX9670/MAX9671 and a MAX9653/MAX9654 high-definition video-filter amplifier. (A)  
The MAX9670/MAX9671 are transmitting standard-definition RGB signals while the MAX9653/MAX9654 are in shutdown mode. (B)  
The MAX9670/MAX9671 are not transmitting RGB signals, but the MAX9653/MAX9654 are transmitting high-definition YPbPr signals.  
Similarly, when YPbPr signals are desired, ENC_R/C_IN,  
ENC_G_IN, and ENC_B_IN of the MAX9670/MAX9671  
should be set to high-impedance mode by setting bit 4 in  
register 08h to high if those video inputs are AC-coupled.  
The high-impedance mode has higher priority whether  
ENC_R/C_IN is in sync-tip clamp or bias circuit mode  
(set by bit 3 in register 08h). If ENC_R/C_IN, ENC_G_IN,  
and ENC_B_IN are DC-coupled, the inputs should be left  
in sync-tip clamp mode. The RGB outputs of the  
MAX9670/MAX9671 should be muted or shut down.  
and stripes appear on the television screen, increase  
the supply bypass capacitance. An additional, smaller  
capacitor in parallel with the main bypass capacitor  
can reduce digital supply noise because the smaller  
capacitor has lower equivalent series resistance (ESR)  
and equivalent series inductance (ESL).  
Layout and Grounding  
For optimal performance, use controlled-impedance  
traces for video signal paths and place input termina-  
tion resistors and output back-termination resistors  
close to the MAX9670/MAX9671. Avoid routing video  
traces parallel to high-speed data lines.  
In either case, the inactive device should not distort the  
video signals generated by the DACs.  
Power-Supply Bypassing  
The MAX9670/MAX9671 feature single 3.3V and 12V  
supply operation and require no negative supply. The  
The MAX9670/MAX9671 provide separate ground con-  
nections for video and audio supplies. For best perfor-  
mance, use separate ground planes for each of the  
ground returns and connect all ground planes together  
at a single point. See the MAX9670/MAX9671 evalua-  
tion kit for a proven circuit board layout example.  
12V supply V is for the SCART switching function. For  
12  
V
12  
, place a 0.1µF bypass capacitor as close as possi-  
ble. Connect all V  
pins together to 3.3V and bypass  
AUD  
with a 10µF electrolytic capacitor in parallel with a  
0.1µF ceramic capacitor to audio ground. Bypass each  
VID  
If the MAX9670/MAX9671 are mounted using flow sol-  
dering or wave soldering, the ground via(s) for the EP  
pad should have a finished hole size of at least 14mils  
to insure adequate wicking of soldering onto the  
exposed pad. If the MAX9670/MAX9671 are mounted  
using solder mask technique, the via requirement does  
not apply. In either case, a good connection between  
the exposed pad and ground is required to minimize  
noise from coupling onto the outputs.  
V
to video ground with a 0.1µF ceramic capacitor.  
Using a Digital Supply  
The MAX9670/MAX9671 are designed to operate from  
noisy digital supplies. The high PSRR (49dB at 100kHz)  
allows the MAX9670/MAX9671 to reject the noise from  
the digital power supplies (see the Typical Operating  
Characteristics). If the digital power supply is very noisy  
______________________________________________________________________________________ 27  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
Table 1. Recommended Coupling for Incoming Video Signals and Input Circuit  
Configuration*  
VIDEO ORIGIN  
External  
External  
External  
External  
Internal  
FORMAT  
CVBS  
RGB  
Y
VOLTAGE RANGE  
Unknown  
Unknown  
Unknown  
Unknown  
0 to 1V  
COUPLING  
AC  
INPUT CIRCUIT CONFIGURATION  
Transparent sync-tip clamp  
Transparent sync-tip clamp  
Transparent sync-tip clamp  
Bias circuit  
AC  
AC  
C
AC  
CVBS  
RGB  
Y/C  
DC  
Transparent sync-tip clamp  
Transparent sync-tip clamp  
Transparent sync-tip clamp  
Transparent sync-tip clamp  
Transparent sync-tip clamp  
Transparent sync-tip clamp  
Transparent sync-tip clamp  
Bias circuit  
Internal  
0 to 1V  
DC  
Internal  
0 to 1V  
DC  
Internal  
YPbPr  
CVBS  
RGB  
Y
0 to 1V  
DC  
Internal  
2.3V to 3.3V  
2.3V to 3.3V  
2.3V to 3.3V  
2.3V to 3.3V  
AC  
Internal  
AC  
Internal  
AC  
0/MAX9671  
Internal  
C
AC  
*Use a 0.1µF capacitor to AC-couple a video signal into the MAX9670/MAX9671.  
Table 2. Slow-Switching Modes  
SLOW-SWITCHING  
SIGNAL VOLTAGE  
(V)  
MODE  
Display device uses an internal  
source such as a built-in tuner to  
provide a video signal.  
0 to 2  
Display device uses a video signal  
from the SCART connector and sets  
the display to 16:9 aspect ratio.  
4.5 to 7.0  
9.5 to 12.6  
Display device uses a signal from the  
SCART connector and sets the  
display to 4:3 aspect ratio.  
28 ______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
Table 3. Slave Address  
WRITE ADDRESS  
READ ADDRESS  
DEV_ADDR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
(hex)  
94h  
96h  
98h  
9Ah  
(hex)  
95h  
97h  
99h  
9Bh  
GNDVID  
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
1
1
0
0
0
1
0
1
R/W  
R/W  
R/W  
R/W  
V
VID  
SCL  
SDA  
2
2
Table 4. I C Register Values in State 0*  
Table 5. I C Register Values in State 1*  
REGISTER ADDRESS  
VALUE (binary)  
REGISTER ADDRESS  
VALUE (binary)  
(hexadecimal)  
(hexadecimal)  
00h  
01h  
06h  
07h  
08h  
09h  
0Dh  
uuuu uuu0  
uuuu 1011  
uuuu uuuu  
uuu0 0u10  
uuuu u011  
uuuu u0MM  
1100 001u  
00h  
01h  
06h  
07h  
08h  
09h  
0Dh  
uuuu uuuu  
uuuu 1111  
uuuu uuuu  
uuuu uu10  
uuuu uuuu  
uuuu u010  
0000 000u  
*u indicates that the bit is unchanged from its previous state.  
*u indicates that the bit is unchanged from its previous state;  
MM = Register 0Eh (bit 1, bit 0)  
2
Table 6. I C Register Values in State 2*  
REGISTER ADDRESS  
VALUE (binary)  
(hexadecimal)  
00h  
01h  
06h  
07h  
08h  
09h  
0Dh  
uuuu uuu0  
uuuu 1101  
uuu0 1010  
uuu0 0uNN  
uuuu uuuu  
uuuu u110  
0011 111u  
*u indicates that the bit is unchanged from its previous state;  
NN = Register 0Eh (bit 3, bit 2)  
______________________________________________________________________________________ 29  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
Table 7. Quiescent Power Consumption  
Table 8. Average Power Consumption  
POWER CONSUMPTION  
POWER CONSUMPTION  
OPERATING MODE  
(mW)  
OPERATING MODE  
(mW)  
Shutdown  
0.13  
Full-power mode with input video  
Standby mode with no video  
activity (i.e., TV slow-switch and  
VCR slow-switch inputs are at  
ground). Standby mode is the  
power-on default.  
detection and video load  
detection active.  
300  
300  
2.83  
Full-power mode without input  
video detection and video load  
detection active.  
Full-power mode with input video  
detection and video load  
detection active.  
66  
65  
Full-power mode without input  
video detection and video load  
detection active.  
0/MAX9671  
Table 9. Conditions for Average Power Consumption Measurement  
PIN (MAX9670)  
NAME  
TYPE  
Supply  
Input  
SIGNAL  
LOAD  
5
V
3.3V  
N/A  
AUD  
9
ENC_INL  
ENC_INR  
VCR_INL  
VCR_INR  
TV_OUTL  
VCR_OUTL  
VCR_OUTR  
TV_OUTR  
TV_SS  
0.25V  
, 1kHz  
N/A  
RMS  
RMS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
Input  
0.25V  
, 1kHz  
N/A  
Input  
None  
None  
N/A  
Input  
N/A  
10kto ground  
10kto ground  
10kto ground  
10kto ground  
10kto ground  
N/A  
Output  
Output  
Output  
Output  
Output  
Supply  
Input  
1V  
1V  
1V  
1V  
, 1kHz  
RMS  
RMS  
RMS  
RMS  
, 1kHz  
, 1kHz  
, 1kHz  
12V  
V
12V  
0
12  
VCR_SS  
TVOUT_FS  
VCRIN_FS  
ENC_B_IN  
ENC_G_IN  
VCR_B_IN  
VCR_G_IN  
TV_B_OUT  
TV_G_OUT  
GNDVID  
N/A  
Output  
Input  
3.3V  
0
150to ground  
N/A  
Input  
50% flat field  
50% flat field  
None  
N/A  
Input  
N/A  
Input  
N/A  
Input  
None  
N/A  
Output  
Output  
Supply  
Input  
50% flat field  
50% flat field  
0
150to ground  
150to ground  
N/A  
VCR_R/C_IN  
None  
N/A  
V
Supply  
3.3V  
N/A  
VID  
30 ______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
Table 9. Conditions for Average Power Consumption Measurement (continued)  
PIN (MAX9670)  
NAME  
TYPE  
Input  
SIGNAL  
None  
LOAD  
N/A  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
ENC_C_IN  
ENC_R/C_IN  
Input  
50% flat field  
50% flat field  
50% flat field  
50% flat field  
50% flat field  
None  
N/A  
TV_R/C_OUT  
Output  
Output  
Output  
Output  
Input  
150to ground  
150to ground  
150to ground  
150to ground  
N/A  
VCR_R/C_OUT  
VCR_Y/CVBS_OUT  
TV_Y/CVBS_OUT  
VCR_Y/CVBS_IN  
TV_Y/CVBS_IN  
ENC_Y_IN  
Input  
None  
N/A  
Input  
None  
N/A  
ENC_Y/CVBS_IN  
Input  
50% flat field  
N/A  
Table 10. Data Format for Write Mode  
REGISTER  
ADDRESS (hex)  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
TV volume control  
BIT 2  
BIT 1  
BIT 0  
TV audio  
output mute  
00h  
Not used  
TV ZCD  
Interrupt  
enable  
01h  
Not used  
VCR audio selection  
TV audio selection  
02h  
03h  
04h  
05h  
06h  
07h  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
TV G and B video switch  
Set TV fast switching  
ENC R/G/B  
TV video switch  
Not used  
Set TV slow switching  
VCR_R/C_IN  
clamp  
ENC_R/C_IN  
clamp  
high-  
impedance  
bias  
08h  
Not used  
VCR video switch  
VCR_R/C_OUT  
ground  
Set VCR slow  
switching  
09h  
Not used  
0Ah  
0Bh  
0Ch  
Not used  
Not used  
Not used  
VCR_Y/  
CVBS_OUT  
enable  
VCR_R/  
C_OUT  
enable  
TV_R/  
C_OUT  
enable  
TV_Y/  
CVBS_OUT  
enable  
TV_G_OUT TV_B_OUT  
TVOUT_FS  
enable  
0Dh  
10h  
Not used  
enable  
enable  
Operating mode  
Not used  
______________________________________________________________________________________ 31  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
Table 11. Data Format for Read Mode  
REGISTER  
ADDRESS (hex)  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Power-on  
reset  
VCR slow-switch input  
status  
TV slow switch input  
status  
0Eh  
Not used  
Not used  
ENC_Y/  
CVBS_IN  
input video  
detection  
ENC_Y_IN  
input video  
detection  
VCR CVBS  
VCR CVBS  
TV CVBS  
TV CVBS  
input video  
input video  
0Fh  
Not used  
output load  
output load  
detection  
detection  
Table 12. Register 00h: Audio Control  
BIT  
DESCRIPTION  
COMMENTS  
7
6
5
4
3
2
1
0
0
1
Off  
TV Audio Mute  
On (power-on default)  
0dB gain (power-on default)  
-2dB gain  
0/MAX9671  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
-4dB gain  
-6dB gain  
-8dB gain  
-10dB gain  
TV Volume Control  
1
1
1
1
1
1
1
1
0
1
-60dB gain  
-62dB gain  
Off  
0
1
TV Zero-Crossing Detector  
On (power-on default)  
Table 13. Register 01h: TV Audio  
BIT  
DESCRIPTION  
COMMENTS  
7
6
5
4
3
2
1
0
0
1
1
0
0
1
0
1
Encoder audio  
VCR audio  
Input Source for TV Audio  
TV audio (MAX9671 only)  
Mute (power-on default)  
Encoder audio  
0
0
1
1
0
1
0
1
VCR audio  
Input Source for VCR Audio  
Interrupt Enable  
TV audio (MAX9671 only)  
Mute (power-on default)  
Disabled (power-on default)  
Enabled  
0
1
32 ______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
Table 14. Register 06h: TV Video Input Control  
BIT  
DESCRIPTION  
COMMENTS  
TV_Y/CVBS_OUT  
7
6
5
4
3
2
1
0
TV_R/C_OUT  
ENC_R/C_IN  
ENC_C_IN  
VCR_R/C_IN  
Mute  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
ENC_Y/CVBS_IN  
ENC_Y_IN  
VCR_Y/CVBS_IN  
TV_Y/CVBS_IN  
Not used  
Input Sources for TV Video  
Not used  
Mute  
Mute  
Mute  
Mute  
Mute (power-on  
default)  
Mute (power-on  
default)  
1
1
1
TV_G_OUT  
ENC_G_IN  
VCR_G_IN  
Mute  
TV_B_OUT  
ENC_B_IN  
VCR_B_IN  
Mute  
0
0
1
0
1
0
Input Sources for TV_G_OUT and TV_B_OUT  
Mute (power-on  
default)  
Mute (power-on  
default)  
1
1
Table 15. Register 07h: TV Video Output Control  
BIT  
DESCRIPTION  
COMMENTS  
7
6
5
4
3
2
1
0
0
0
Low (< 2V) internal source  
Medium (4.5V to 7V); external SCART  
source with 16:9 aspect ratio  
0
1
1
1
0
1
Set TV Slow Switching  
Set TV Fast Switching  
High impedance (power-on default)  
High (> 9.5V); external SCART source  
with 4:3 aspect ratio  
0
0
1
1
0
1
0
1
GNDVID (power-on default)  
Not used  
Same level as VCRIN_FS  
V
VID  
______________________________________________________________________________________ 33  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
Table 16. Register 08h: ENC and VCR Video Input/Output Control  
BIT  
DESCRIPTION  
COMMENTS  
VCR_Y/CVBS_OUT  
7
6
5
4
3
2
1
0
VCR_R/C_OUT  
ENC_R/C_IN  
ENC_C_IN  
VCR_R/C_IN  
Mute  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
ENC_Y/CVBS_IN  
ENC_Y_IN  
VCR_Y/CVBS_IN  
TV_Y/CVBS_IN  
Not used  
Input Sources for VCR Video  
Not used  
Mute  
Mute  
Mute  
Mute  
Mute (power-on  
default)  
Mute (power-on  
default)  
1
1
1
DC restore clamp active at input  
(power-on default)  
0
1
0/MAX9671  
ENC_R/C_IN Clamp/Bias  
Chrominance bias applied at input  
High-impedance bias off  
(power-on default)  
0
1
ENC R/C, G, and B inputs high-impedance  
bias (in HD application)  
Biases the R/C, G, and B inputs to high  
impedance (overwrites the ENC_R/C_IN  
clamp and bias bit)  
DC restore clamp active at input  
(power-on default)  
0
1
VCR_R/C_IN Clamp/Bias  
Chrominance bias applied at input  
34 ______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
Table 17. Register 09h: VCR Video Output Control  
BIT  
DESCRIPTION  
COMMENTS  
7
6
5
4
3
2
1
0
0
0
Low (< 2V) internal source  
Medium (4.5V to 7V); external SCART  
source with 16:9 aspect ratio  
0
1
1
1
0
1
Set VCR Slow Switching  
High impedance (power-on default)  
High (> 9.5V); external SCART source  
with 4:3 aspect ratio  
Normal operation; pulldown on  
VCR_R/C_OUT is off (power-on  
default)  
0
1
VCR_R/C_OUT Ground  
Ground; pulldown on VCR_R/C_OUT  
is on; the output amplifier driving  
VCR_R/C_OUT is off  
Table 18. Register 0Dh: Output Enable  
BIT  
DESCRIPTION  
COMMENTS  
7
6
5
4
3
2
1
0
1
0
Off (power-on default)  
TVOUT_FS Enable  
On  
0
1
Off (power-on default)  
TV_Y/CVBS_OUT Enable  
TV_B_OUT Enable  
On  
0
1
Off (power-on default)  
On  
0
1
Off (power-on default)  
TV_G_OUT Enable  
On  
0
1
Off (power-on default)  
TV_R/C_OUT Enable  
VCR_R/C_OUT Enable  
VCR_Y/CVBS_OUT Enable  
On  
0
1
Off (power-on default)  
On  
0
1
Off (power-on default)  
On  
______________________________________________________________________________________ 35  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
Table 19. Register 10h: Operating Modes  
BIT  
DESCRIPTION  
COMMENTS  
7
6
5
4
3
2
1
0
0
0
Shutdown  
Standby mode (power-on default).  
Input video detection circuits are  
active. Audio circuitry is off unless  
video is detected. Once slow switch  
is detected, the signal paths between  
the VCR and TV SCART are  
0
1
connected.  
Operating Mode  
Full-power mode with input video  
detection and video-load detection  
active.  
1
1
0
1
Full-power mode without input video  
detection and video-load detection  
active.  
0/MAX9671  
Table 20. Register 0Eh: Status  
BIT  
DESCRIPTION  
COMMENTS  
7
6
5
4
3
2
1
0
0
0
0 to 2V; internal source  
4.5V to 7V; external source with 16:9  
aspect ratio  
0
1
1
1
0
1
TV Slow-Switching Input Status  
Not used  
9.5V to 12.6V; external source with  
4:3 aspect ratio  
0
0
1
1
0
1
0
1
0 to 2V; internal source  
4.5V to 7V; external source with 16:9  
aspect ratio  
VCR Slow-Switching Input Status  
Not used  
9.5V to 12.6V; external source with  
4:3 aspect ratio  
V
is too low for digital logic to  
VID  
0
1
operate  
Power-On Reset  
V
is high enough for digital logic to  
VID  
operate  
36 ______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
Table 21. Register 0Fh: Video Activity Status  
BIT  
DESCRIPTION  
TV CVBS Input Video Detection  
TV CVBS Output Load  
COMMENTS  
No video detected.  
7
6
5
4
3
2
1
0
0
1
Video detected.  
0
1
No video detected.  
Video detected.  
0
1
No video detected.  
Video detected.  
VCR CVBS Input Video Detection  
VCR CVBS Output Load  
0
1
No load connected.  
Load connected.  
No video detected.  
Video detected.  
0
1
ENC_Y/CVBS_IN Input Video Detection  
ENC_Y_IN Input Video Detection  
0
1
No video detected.  
Video detected.  
______________________________________________________________________________________ 37  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
Typical Application Circuit  
12V  
3.3V  
3.3V  
0.1µF  
0.1µF  
0.1µF  
V
V
VID  
V
12  
AUD  
7.68kΩ  
TV_INL  
(MAX9671 ONLY)  
+3.3 V  
2.55kΩ  
7.68kΩ  
TV_INR  
(MAX9671 ONLY)  
STB CHIP  
2.55kΩ  
75Ω  
SDA  
SCL  
TV_OUTR  
TV_OUTL  
MICRO-  
CONTROLLER  
INT  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
DEV_ADDR  
TV_SS  
TV_B_OUT  
TV_G_OUT  
TV_R/C_OUT  
TVOUT_FS  
TV  
SCART  
VIDEO ENCODER  
0/MAX9671  
ENC_Y/CVBS_IN  
ENC_R/C_IN  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
ENC_G_IN  
ENC_B_IN  
ENC_Y_IN  
ENC_C_IN  
TV_Y/CVBS_OUT  
TV_Y/CVBS_IN  
0.1µF  
75Ω  
MAX9670  
MAX9671  
GNDVID  
VCR_OUTR  
75Ω  
1µF  
1µF  
7.68kΩ  
VCR_INR  
2.55kΩ  
VCR_OUTL  
VCR_INL  
STEREO  
AUDIO DACS  
75Ω  
1µF  
1µF  
6.65kΩ  
7.68kΩ  
ENC_INL  
ENC_INR  
R1*  
2.55kΩ  
75Ω  
VCR_SS  
0.1µF  
VCR  
SCART  
6.65kΩ  
VCR_B_IN  
75Ω  
75Ω  
75Ω  
0.1µF  
0.1µF  
R1*  
VCR_G_IN  
VCR_R/C_IN  
VCR_R/C_OUT  
VCRIN_FS  
75Ω  
75Ω  
VCR_Y/CVBS_OUT  
VCR_Y/CVBS_IN  
*R1 VALUES  
0.1µF  
DAC = CS4334/5/8/9: R1 = 4.53k1%  
DAC = PCM1742: R1 = 5.57k1%  
EP  
C1P  
C1N CPVSS  
75Ω  
1µF  
1µF  
38 ______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
Pin Configurations  
TOP VIEW  
TOP VIEW  
30 29 28 27 26 25 24 23 22 21  
20  
31  
32  
33  
TVOUT_FS  
19 VCR_SS  
18  
17 TV_SS  
16  
ENC_C_IN  
ENC_R/C_IN  
TV_R/C_OUT  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
ENC_C_IN  
ENC_R/C_IN  
TVOUT_FS  
VCR_SS  
V
12  
TV_R/C_OUT  
V
12  
TV_SS  
VCR_R/C_OUT  
VCR_Y/CVBS_OUT  
TV _Y/CVBS_OUT  
VCR_Y/CVBS_IN  
TV_Y/CVBS_IN  
ENC_Y_IN  
VCR_R/C_OUT 34  
TV_OUTR  
VCR_OUTR  
VCR_OUTL  
TV_OUTL  
VCR_INR  
VCR_INL  
TV_INR  
35  
36  
37  
38  
39  
40  
TV_OUTR  
15 VCR_OUTR  
14  
VCR _Y/CVBS_OUT  
TV_Y/CVBS_OUT  
VCR_Y/CVBS_IN  
TV_Y/CVBS_IN  
ENC_Y_IN  
MAX9670  
MAX9671  
VCR_OUTL  
13 TV_OUTL  
12  
*EP  
*EP  
ENC_Y/CVBS_IN  
N.C.  
VCR_INR  
11 VCR_INL  
ENC_Y/CVBS_IN  
1
2
3
4
5
6
7
8
9
10  
44 TQFN  
40 TQFN  
*EP = EXPOSED PAD  
*EP = EXPOSED PAD  
Chip Information  
PROCESS: BiCMOS  
______________________________________________________________________________________ 39  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
Package Information  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
PACKAGE TYPE  
40 TQFN  
PACKAGE CODE  
T4066+3  
OUTLINE NO.  
21-0141  
LAND PATTERN NO.  
90-0054  
44 TQFN  
T4477+2  
21-0144  
90-0127  
0/MAX9671  
40 ______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
Package Information (continued)  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
______________________________________________________________________________________ 41  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
Package Information (continued)  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
0/MAX9671  
42 ______________________________________________________________________________________  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
0/MAX9671  
Package Information (continued)  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
______________________________________________________________________________________ 43  
Low-Power Audio/Video Switch with Audio  
Volume Control for Dual SCART Connectors  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
7/09  
Initial release  
Added θ and θ information in the Absolute Maximum Ratings section,  
adjusted Note references, updated power consumption Figures, and made  
various corrections  
JA  
JC  
1–8, 17, 20, 21, 22,  
24–29, 33, 35, 36, 37  
1
2
3/10  
12/10  
Updated Table 14  
33  
0/MAX9671  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
44 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9672

10-Bit, Programmable Gamma Reference Systems with MTP for TFT LCDs
MAXIM

MAX9672ETI+

10-Bit, Programmable Gamma Reference Systems with MTP for TFT LCDs
MAXIM

MAX9672ETI+G0E

Analog Circuit, 1 Func, BICMOS, 5 X 5 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220WHHD-1, TQFN-28
MAXIM

MAX9673

10-Bit, Programmable Gamma Reference Systems with MTP for TFT LCDs
MAXIM

MAX9673ETI+

Analog Circuit, 1 Func, BICMOS, 5 X 5 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220WHHD-1, TQFN-28
MAXIM

MAX9673ETI+G0E

Analog Circuit, 1 Func, BICMOS, 5 X 5 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220WHHD-1, TQFN-28
MAXIM

MAX9673ETI+T

Analog Circuit, 1 Func, BICMOS, 5 X 5 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220WHHD-1, TQFN-28
MAXIM

MAX9674

10-Bit, Programmable Gamma Reference Systems with MTP for TFT LCDs
MAXIM

MAX9674ETI+

Analog Circuit, 1 Func, BICMOS, 5 X 5 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220WHHD-1, TQFN-28
MAXIM

MAX9674ETI+G0E

Analog Circuit, 1 Func, BICMOS, 5 X 5 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220WHHD-1, TQFN-28
MAXIM

MAX9674ETI+TG0E

Analog Circuit, 1 Func, BICMOS, 5 X 5 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220WHHD-1, TQFN-28
MAXIM

MAX9679

12-Channel, 10-Bit Programmable Gamma and VCOM Reference Voltages
MAXIM