Z86L9808HSG [MAXIM]

Microcontroller, 8-Bit, MROM, 8MHz, CMOS, PDSO28, LEAD FREE, SSOP-28;
Z86L9808HSG
型号: Z86L9808HSG
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Microcontroller, 8-Bit, MROM, 8MHz, CMOS, PDSO28, LEAD FREE, SSOP-28

微控制器和处理器 外围集成电路 光电二极管 时钟
文件: 总88页 (文件大小:500K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage  
Infrared Microcontrollers  
Product Specification  
Maxim Integrated Products Inc.  
120 San Gabriel Drive, Sunnyvale CA 94086  
Maxim Integrated Products  
120 San Gabriel Drive  
Sunnyvale, CA 94086  
United States  
408-737-7600  
www.maxim-ic.com  
Copyright © 2009 Maxim Integrated Products  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. Maxim retains  
the right to make changes to its products or specifications to improve performance, reliability or manufacturability. All information in  
this document, including descriptions of features, functions, performance, technical specifications and availability, is subject to  
change without notice at any time. While the information furnished herein is held to be accurate and reliable, no responsibility will be  
assumed by Maxim for its use. Furthermore, the information contained herein does not convey to the purchaser of microelectronic  
devices any license under the patent right of any manufacturer.  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  
All other products or service names used in this publication are for identification purposes only, and may be trademarks or registered  
trademarks of their respective companies. All other trademarks or registered trademarks mentioned herein are the property of their  
respective holders.  
Z8 is a registered trademark of Zilog, Inc.  
Crimzon is a registered trademark of Universal Electronics Inc.  
19-4615; REV 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
iii  
Table of Contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Standard Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Additional Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Standard Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Expanded Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Counter/Timer Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Counter/Timer Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Expanded Register File Control Registers (0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Expanded Register File Control Registers (0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
iv  
List of Figures  
Figure 1. Counter/Timers Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2. Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 3. 28-Pin DIP/SOIC/SSOP Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 4. Test Load Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 5. Additional Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 6. Port 0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 7. Port 2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 8. Port 3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 9. Port 3 Counter/Timer Output Configuration . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 10. Program Memory Map (64 KB ROM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 11. Expanded Register File Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 12. Register Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 13. Register Pointer—Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 14. Glitch Filter Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 15. Transmit Mode Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 16. 8-Bit Counter/Timer Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 17. T8_OUT in Single-Pass Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 18. T8_OUT in Modulo-N Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 19. Demodulation Mode Count Capture Flowchart . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 20. Demodulation Mode Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 21. 16-Bit Counter/Timer Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 22. T16_OUT in Single-Pass Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 23. T16_OUT in Modulo-N Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 24. Ping-Pong Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 25. Output Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 26. Interrupt Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 27. Oscillator Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 28. Port Configuration Register (PCON) (Write Only) . . . . . . . . . . . . . . . . . . . 54  
Figure 29. Stop-Mode Recovery Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 30. SCLK Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 31. Stop-Mode Recovery Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 32. Stop-Mode Recovery Register 2 ((0F) DH:D2–D4, D6 Write Only) . . . . . . 59  
Figure 33. Watch-Dog Timer Mode Register (Write Only) . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 34. Resets and WDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
v
Figure 35. T8 Control Register ((0D) OH: Read/Write Except Where Noted) . . . . . . . 64  
Figure 36. T8 and T16 Common Control Functions ((0D) 1h: Read/Write) . . . . . . . . . 65  
Figure 37. T16 Control Register ((0D) 2h: Read/Write Except Where Noted) . . . . . . . 67  
Figure 38. Low-Voltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 39. Stop-Mode Recovery Register ((0F) 0Bh: D6–D0=Write Only, D7=Read Only)  
69  
Figure 40. Stop-Mode Recovery Register 2 ((0F) 0Dh:D2–D4, D6 Write Only) . . . . . 70  
Figure 41. Watch-Dog Timer Register ((0F) 0Fh: Write Only) . . . . . . . . . . . . . . . . . . . 71  
Figure 42. Port Configuration Register (PCON) ((0F) 0h: Write Only) . . . . . . . . . . . . . 72  
Figure 43. Port 2 Mode Register (F6h: Write Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 44. Port 3 Mode Register (F7h: Write Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 45. Port 0 and 1 Mode Register (F8h: Write Only) . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 46. Interrupt Priority Register (F9h: Write Only) . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 47. Interrupt Request Register (FAh: Read/Write) . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 48. Interrupt Mask Register (FBh: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 49. Flag Register (FCh: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 50. Register Pointer (FDh: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 51. Stack Pointer High (FEh: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 52. Stack Pointer Low (FFh: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 53. 28-Pin DIP Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 54. 28-Pin SOIC Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 55. 28-Pin SSOP Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
vi  
List of Tables  
Table 1. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table 2. Power Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Table 3. 28-Pin DIP, SOIC, and SSOP Pin Identification . . . . . . . . . . . . . . . . 6  
Table 4. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 5. Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 6. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 7. Additional Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 8. Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 9. Expanded Register Group D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 10. CTR0 (D)00 Counter/Timer8 Control Register . . . . . . . . . . . . . . . . 30  
Table 11. CTR(D)01h Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 12. CTR2 (D)02h: Counter/Timer16 Control Register . . . . . . . . . . . . . . 34  
Table 13. SMR2(F)0Dh: Stop-Mode Recovery Register 2 . . . . . . . . . . . . . . . 36  
Table 14. Interrupt Types, Sources, and Vectors . . . . . . . . . . . . . . . . . . . . . . 50  
Table 15. IRQ Register* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 16. Stop-Mode Recovery Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 17. WDT Time Select* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 18. Mask Selectable Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
1
Features  
Table 1 shows the features of the Z86L81/86/98.  
Table 1. Features  
Device  
ROM (KB) RAM* (Bytes) I/O Lines Voltage Range  
Z86L81  
Z86L86  
Z86L98  
24  
32  
64  
237  
237  
237  
23  
23  
23  
2.0 V–3.6 V  
2.0 V–3.6 V  
2.0 V–3.6 V  
Note: *General purpose  
Low power consumption–40 mW (typical)  
Three standby modes  
Stop—2 A (typical)  
Halt—0.8 mA (typical)  
Low voltage  
Special architecture to automate both generation and reception of complex  
pulses or signals:  
One programmable 8-bit counter/timer with two capture registers and two  
load registers  
One programmable 16-bit counter/timer with one 16-bit capture register  
pair and one 16-bit load register pair  
Programmable input glitch filter for pulse reception  
Six priority interrupts  
Three external  
Two assigned to counter/timers  
One low-voltage detection interrupt  
Low-voltage detection with flag  
Programmable watch-dog/power-on reset circuits  
Two independent comparators with programmable interrupt polarity  
Mask selectable transistor pull-ups on ports 0, 2, 3  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
2
Programmable mask options  
Oscillator selection: RC oscillator or crystal/other clock source  
Oscillator operational mode: normal high-frequency operation enabled or  
32-KHz operation enabled  
Port 0: 0–3 pull-ups  
Port 0: 4–7 pull-ups  
Port 2: 0–7 pull-ups  
Port 3: pull-ups  
Port 0: 0–3 mouse mode: normal mode (.5VDD input threshold) versus  
mouse mode (.4VDD input threshold)  
Note:  
The mask option pull-up transistor has a typical equivalent  
resistance of 200 K±50% at VCC=3 V and 450 K±50% at  
VCC=2 V.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
3
General Description  
Based on the Z8 MCU single-chip family of IR microcontrollers, the Z86L81/86/98  
features 237 bytes of general-purpose RAM and 24/32/64 KB of ROM. The Maxim  
CMOS microcontrollers offer fast executing, efficient use of memory, sophisticated  
interrupts, input/output bit manipulation capabilities, automated pulse generation/  
reception, and internal key-scan pull-up transistors.  
The Z86L81/86/98 architecture is based on the Maxim 8-bit microcontroller core  
with an Expanded Register File to allow access to register-mapped peripherals,  
input/output (I/O) circuits, and powerful counter/timer circuitry. The Z8 offers a  
flexible I/O scheme, an efficient register and address space structure, and a num-  
ber of ancillary features that are useful in many consumer, automotive, computer  
peripheral, and battery-operated hand-held applications.  
There are three basic address spaces available to support a wide range of config-  
urations: Program Memory, Register File, and Expanded Register File. The regis-  
ter file is composed of 256 bytes of RAM. It includes 3 I/O port registers, 16  
control and status registers, and 236 general-purpose registers. Register FEh  
(SPH) can be used as a general-purpose register. The Expanded Register File  
consists of two additional register groups (F and D).  
To unburden the program from coping with such real-time problems as generating  
complex waveforms or receiving and demodulating complex waveform/pulses, the  
Z86L81/86/98 offers a new intelligent counter/timer architecture with 8-bit and  
16-bit counter/timers (see Figure 1, Figure 2, Figure 3, and Table 3). Also included  
are a large number of user-selectable modes, and two on-board comparators to  
process analog signals with separate reference voltages (Figure 9 on page 20).  
Power connections use the conventional descriptions listed in Table 2.  
Table 2. Power Connections  
Connection  
Power  
Circuit  
Device  
V
V
V
CC  
DD  
SS  
Ground  
GND  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
4
LO16  
8
HI16  
8
16-Bit  
T16  
Timer 16  
16  
2 4 8  
1
8
8
SCLK  
Clock  
Divider  
TC16H  
TC16L  
And/Or  
Logic  
Timer 8/16  
HI8  
8
LO8  
8
Edge  
Detect  
Circuit  
Input  
Glitch  
Filter  
8-Bit  
T8  
Timer 8  
8
8
TC8H  
TC8L  
Figure 1. Counter/Timers Diagram  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
5
Register File  
256 x 8-Bit  
P00  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
Pref1  
4
4
P31  
P32  
P33  
P34  
P35  
P36  
P37  
Port 0  
Port 3  
Internal  
Address  
Bus  
I/O Nibble Programmable  
ROM  
24/32/64K x 8  
Z8 Core  
Internal  
Address Bus  
XTAL  
Machine  
Timing and  
Instruction  
Control  
P20  
P21  
P22  
Expanded  
Register Bus  
Expanded  
Register File  
Port 2  
P24  
P25  
P26  
P27  
VDD  
VSS  
Power  
I/O Bit Programmable  
Counter/Timer 8  
8-Bit  
Counter/Timer 16  
16-Bit  
Figure 2. Functional Block Diagram  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
6
Pin Description  
The pins are shown in Figure 3 and described in Table 3.  
1
28  
P25  
P26  
P27  
P04  
P05  
P06  
P07  
P24  
P23  
P22  
P21  
P20  
P03  
Z86L81/86/98  
DIP/SOIC/  
SSOP  
V
SS  
V
P02  
P01  
P00  
Pref1  
P36  
P37  
P35  
DD  
XTAL2  
XTAL1  
P31  
P32  
P33  
P34  
14  
15  
Figure 3. 28-Pin DIP/SOIC/SSOP Pin Assignment  
Table 3. 28-Pin DIP, SOIC, and SSOP Pin Identification  
28-Pin DIP, SOIC, and SSOP  
Standard Mode Direction  
Description  
19  
20  
21  
23  
4
P00  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P20  
P21  
P22  
P23  
P24  
Input/Output Port 0 is Nibble Programmable  
Input/Output Port 0-3 can be configured as a  
Input/Output mouse/trackball input  
Input/Output  
Input/Output  
5
Input/Output  
6
Input/Output  
7
Input/Output  
24  
25  
26  
27  
28  
Input/Output Port 2 pins are individually  
Input/Output configurable as input or output.  
Input/Output  
Input/Output  
Input/Output  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
7
Table 3. 28-Pin DIP, SOIC, and SSOP Pin Identification (Continued)  
28-Pin DIP, SOIC, and SSOP  
Standard Mode Direction  
Description  
1
P25  
Input/Output  
Input/Output  
Input/Output  
Input  
2
P26  
3
P27  
18  
11  
12  
13  
14  
15  
17  
16  
10  
9
Pref1  
P31  
Analog Ref Input  
IRQ2/Modulator input  
IRQ0  
Input  
P32  
Input  
P33  
Input  
IRQ1  
P34  
Output  
Output  
Output  
Output  
Input  
T8 output  
P35  
T16 output  
P36  
T8/T16 output  
P37  
XTAL1  
XTAL2  
Crystal, Oscillator Clock  
Crystal, Oscillator Clock  
Power Supply  
Output  
8
V
V
DD  
SS  
22  
Ground  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
8
Absolute Maximum Ratings  
Stresses greater than those listed in Table 4 might cause permanent damage to  
the device. This rating is a stress rating only. Functional operation of the device at  
any condition above those indicated in the operational sections of these specifica-  
tions is not implied. Exposure to absolute maximum rating conditions for an  
extended period might affect device reliability.  
Table 4. Absolute Maximum Ratings  
Symbol  
Description  
Min  
–0.3  
–65°  
Max  
+7.0  
Units  
V
Supply Voltage (*)  
V
C
C
CC  
T
Storage Temperature  
Oper. Ambient Temperature.  
+150°  
STG  
T
A
Notes:  
*
Voltage on all pins with respect to GND.  
See Ordering Information on page 82.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
9
Standard Test Conditions  
The characteristics listed in this product specification apply for standard test con-  
ditions as noted. All voltages are referenced to GND. Positive current flows into  
the referenced pin (see Figure 4).  
From Output  
Under Test  
I
Figure 4. Test Load Diagram  
Capacitance  
The capacitances are listed in Table 5.  
Table 5. Capacitance  
Parameter  
Max  
Input capacitance  
Output capacitance  
I/O capacitance  
12 pF  
12 pF  
12 pF  
Note: TA = 25 °C, VCC = GND = 0 V, f = 1.0 MHz, unmeasured  
pins returned to GND  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
10  
DC Characteristics  
Table 6 lists the DC characteristics.  
Table 6. DC Characteristics  
T = 0°C to +70°C  
A
V
Sym  
Parameter  
Min  
Max  
7
Units Conditions  
Notes  
CC  
Max Input Voltage  
2.0 V  
3.6 V  
V
V
V
I
I
<250 A  
<250 A  
IN  
IN  
7
V
V
Clock Input High Voltage 2.0 V  
0.8 V  
0.8 V  
V
V
+0.3  
Driven by External  
Clock Generator  
CH  
CL  
CC  
CC  
3.6 V  
Clock Input Low Voltage 2.0 V  
3.6 V  
+0.3  
V
V
V
Driven by External  
Clock Generator  
CC  
CC  
V
V
–0.3  
–0.3  
0.2 V  
0.2 V  
Driven by External  
Clock Generator  
SS  
SS  
CC  
Driven by External  
Clock Generator  
CC  
V
V
V
V
Input High Voltage  
Input Low Voltage  
Output High Voltage  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
0.7 V  
0.7 V  
V
V
+0.3  
+0.3  
V
V
V
V
V
V
V
IH  
CC  
CC  
CC  
CC  
V
V
–0.3  
–0.3  
–0.4  
–0.4  
–0.8  
0.2 V  
0.2 V  
IL  
SS  
SS  
CC  
CC  
CC  
CC  
CC  
V
V
V
I
I
I
= –0.5 mA  
= –0.5 mA  
= –7 mA  
OH1  
OH2  
OH  
OH  
OH  
Output High Voltage  
(P36, P37,P00, P01)  
3.6 V  
V
–0.8  
V
I
= –7 mA  
CC  
OH  
V
V
V
Output Low Voltage  
Output Low Voltage  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
0.4  
0.4  
0.8  
0.8  
0.8  
V
V
V
V
V
I
I
I
I
I
= 1.0 mA  
= 4.0 mA  
= 5.0 mA  
= 7.0 mA  
= 10 mA  
OL1  
OL2*  
OL2  
OL  
OL  
OL  
OL  
OL  
Output Low Voltage (P00, 2.0 V  
P01, P36,P37)  
3.6 V  
0.8  
25  
V
I
= 10 mA  
OL  
V
I
Comparator Input Offset 2.0 V  
Voltage  
mV  
OFFSET  
3.6 V  
25  
1
mV  
Input Leakage  
2.0 V  
3.6 V  
–1  
–1  
V
V
= 0 V, V  
CC  
A  
IL  
IN  
IN  
1
= 0 V, V  
CC  
A  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
11  
Table 6. DC Characteristics (Continued)  
T = 0°C to +70°C  
A
V
Sym  
Parameter  
Min  
–1  
Max  
1
Units Conditions  
Notes  
CC  
I
Output Leakage  
2.0 V  
3.6 V  
2.0 V  
V
V
= 0 V, V  
= 0 V, V  
A  
A  
OL  
IN  
IN  
CC  
CC  
–1  
1
I
Supply Current  
10  
mA at 8.0 MHz  
mA at 8.0 MHz  
1, 2  
CC  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
15  
250  
850  
3
1, 2  
1, 2, 3  
1, 2, 3  
1, 2  
at 32 kHz  
at 32 kHz  
A  
A  
mA  
I
Standby Current (HALT  
Mode)  
V
= 0 V, V  
IN  
at  
CC  
CC1  
8.0 MHz  
mA Same as above  
3.6 V  
2.0 V  
5
2
1, 2  
mA Clock Divide-by-16 1, 2  
at 8.0 MHz  
3.6 V  
2.0 V  
4
8
mA Same as above  
1, 2  
I
Standby Current (STOP  
Mode)  
V
= 0 V, V  
4, 5, 8  
A  
CC2  
IN  
CC  
WDT is not  
Running  
3.6 V  
2.0 V  
10  
Same as above  
V = 0 V, V  
IN  
4, 5, 8  
4, 5, 8  
A  
A  
500  
CC  
WDT is Running  
Same as above  
3.6 V  
2.0 V  
3.6 V  
800  
75  
4, 5, 8  
A  
ms  
T
Power-On Reset  
12  
5
POR  
20  
ms  
V
V
V
V
Low Voltage  
CC  
2.0  
8 MHz max  
7
BO  
Ext. CLK Freq.  
Protection (Reset)  
Vcc Low Voltage  
Detection  
2.55  
V
LVD  
Notes:  
1. All outputs unloaded, inputs at rail.  
2. CL1 = CL2 = 100 pF.  
3. 32-kHz clock driver input.  
4. Same as note 1, except inputs at VCC  
.
5. Oscillator stopped.  
6. Not applicable  
7. The VBO is measured at room temperature and typically is 1.6 V. V  
8. WDT, Comparators, Low Voltage Detection, and ADC (if applicable) are disabled. The IC might draw more cur-  
rent if any of the about peripherals is enabled.  
increases as the temperature decreases.  
BO  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
12  
Additional Timing  
Figure 5 and Table 7 describe additional timing characteristics.  
1
3
Clock  
2
2
3
7
4
7
T
IN  
5
6
IRQ  
N
8
9
Clock  
Setup  
11  
Stop  
Mode  
Recovery  
Source  
10  
Figure 5. Additional Timing  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
13  
Table 7. Additional Timing  
T = 0°C to +70°C  
A
Stop-Mode  
Recovery  
8.0 MHz  
V
No Sym  
Parameter  
Min  
Max  
Units Notes (D1, D0)  
CC  
1
2
3
4
5
6
7
TpC  
Input Clock Period  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
121  
121  
DC  
DC  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
1
TrC,TfC  
TwC  
Clock Input Rise and  
Fall Times  
1
25  
1
Input Clock Width  
37  
37  
1
1
TwTinL  
TwTinH  
TpTin  
Timer Input  
Low Width  
100  
1
70  
1
Timer Input High  
Width  
3TpC  
3TpC  
8TpC  
8TpC  
1
1
Timer Input Period  
1
1
TrTin,TfTin Timer Input Rise and  
Fall Timers  
100  
100  
ns  
ns  
ns  
ns  
1
1
8A TwIL  
8B TwIL  
Interrupt Request  
Low Time  
100  
70  
1,2  
1,2  
1,3  
1,3  
1,2  
1,2  
Interrupt Request  
Low Time  
5TpC  
5TpC  
5TpC  
5TpC  
12  
9
TwIH  
Interrupt Request  
Input High Time  
10 Twsm  
11 Tost  
Stop-Mode  
Recovery Width  
Spec  
ns  
ns  
12  
Oscillator  
Start-Up Time  
2.0 V  
3.6 V  
5TpC  
5TpC  
4
4
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
14  
Table 7. Additional Timing (Continued)  
T = 0°C to +70°C  
A
Stop-Mode  
Recovery  
8.0 MHz  
V
No Sym  
Parameter  
Min  
Max  
Units Notes (D1, D0)  
CC  
12 Twdt  
Watch-Dog Timer Delay Time  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
12  
5
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
5
5
5
5
5
5
5
5
0, 0  
0, 1  
1, 0  
1, 1  
25  
10  
50  
20  
200  
80  
Notes:  
1. Timing Reference uses 0.9 VCC for a logic 1 and 0.1 VCC for a logic 0.  
2. Interrupt request through Port 3 (P33–P31).  
3. Interrupt request through Port 3 (P30).  
4. SMR – D5 = 0.  
5. For internal RC oscillator.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
15  
Pin Functions  
Standard Mode  
XTAL1 Crystal 1 (Time-Based Input)  
This pin connects a parallel-resonant crystal, ceramic resonator, LC, or RC net-  
work to the on-chip oscillator input. An external single-phase clock to the on-chip  
oscillator input is also an option.  
XTAL2 Crystal 2 (Time-Based Output)  
This pin connects a parallel-resonant crystal, ceramic resonant, LC, or RC net-  
work to the on-chip oscillator output.  
Port 0 (P07–P00)  
Port 0 is an 8-bit, bidirectional, CMOS-compatible port (see Figure 6). These eight  
I/O lines are configured under software control as a nibble I/O port. The output  
drivers are push-pull or open drain controlled by bit D2 in the PCON register. If  
one or both nibbles are required for I/O operation, they must be configured by writ-  
ing to the Port 0 mode register. After a hardware reset, Port 0 is configured as an  
input port.  
A mask option is available to program 0.4 VDD CMOS trip inputs on P00–P03.  
This option allows direct interface to mouse/trackball IR sensors.  
An optional pull-up transistor is available as a mask option on all Port 0 bits with  
nibble select.  
Note: Internal pull-ups are disabled on any given pin or group of port  
pins when programmed into output mode.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
16  
4
4
Port 0 (I/O)  
Z89L98  
MCU  
V
CC  
Resistive  
Mask  
Option  
Open-Drain  
I/O  
transistor  
pull-up  
Pad  
Out  
In  
In  
*Mask Selectable  
(P00 to P03 only)  
0.4 V  
Trip Point Buffer  
DD  
Figure 6. Port 0 Configuration  
Port 2 (P27–P20)  
Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port (see Figure 7). These  
eight I/O lines can be independently configured under software control as inputs  
or outputs. Port 2 is always available for I/O operation. A mask option is available  
to connect eight pull-up transistors on this port. Bits programmed as outputs are  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
17  
globally programmed as either push-pull or open-drain. The POR resets with the  
eight bits of Port 2 configured as inputs.  
Port 2 also has an 8-bit input OR and AND gate, which can be used to wake up  
the part. P20 can be programmed to access the edge-detection circuitry in  
demodulation mode.  
Port 2 (I/O)  
Z89L98  
MCU  
V
CC  
Resistive  
Mask  
Option  
Open-Drain  
I/O  
transistor  
pull-up  
Pad  
Out  
In  
Figure 7. Port 2 Configuration  
Port 3 (P37–P31)  
Port 3 is a 7-bit, CMOS-compatible fixed I/O port (see Figure 8). Port 3 consists of  
three fixed input (P33–P31) and four fixed output (P37–P34), and each can be  
configured under software control for interrupt and output from the counter/timers.  
P31, P32, and P33 are standard CMOS inputs; P34, P35, P36 and P37 are push-  
pull outputs.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
18  
Pref1  
P31  
P32  
Z89L98  
MCU  
P33  
Port 3 (I/O)  
P34  
P35  
P36  
P37  
R247 = P3M  
1 = Analog  
0 = Digital  
D1  
Dig.  
P31 (AN1)  
IRQ2, P31 Data Latch  
Comp1  
+
-
An.  
Pref  
P32 (AN2)  
IRQ0, P32 Data Latch  
IRQ1, P33 Data Latch  
Comp2  
+
-
P33 (REF2)  
From Stop-Mode Recovery Source of SMR  
Figure 8. Port 3 Configuration  
Two on-board comparators process analog signals on P31 and P32, with refer-  
ence to the voltage on Pref1 and P33. The analog function is enabled by program-  
ming the Port 3 Mode Register (bit 1). P31 and P32 are programmable as rising,  
falling, or both edge triggered interrupts (IRQ register bits 6 and 7). Pref1 and P33  
are the comparator reference voltage inputs. Access to the Counter Timer edge-  
detection circuit is through P31 or P20 (see “CTR1 Register Description” on  
page 32). Other edge detect and IRQ modes are described in Table 8.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
19  
Table 8. Pin Assignments  
Pin  
I/O  
C/T  
Comp.  
Int.  
Pref1  
P31  
P32  
P33  
P34  
P35  
P36  
P37  
P20  
RF1  
AN1  
AN2  
RF2  
AO1  
IN  
IN  
IRQ2  
IRQ0  
IRQ1  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
I/O  
T8  
T16  
T8/16  
AO2  
IN  
Port 3 also provides output for each of the counter/timers and the AND/OR Logic  
(see Figure 9). Control is performed by programming bits D5-D4 of CTR1, bit 0 of  
CTR0 and bit 0 of CTR2.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
20  
CTR0, D0  
MU  
PCON, D0  
P34 data  
T8_Out  
V
DD  
MUX  
Pad  
P34  
P31  
Pref  
+
-
1
Comp  
1
CTR2, D0  
MUX  
V
DD  
Out 35  
T16_Out  
Pad  
P35  
CTR1, D6  
MUX  
V
DD  
Out 36  
T8/T16_Out  
Pad  
P36  
PCON, D0  
MUX  
V
DD  
P37 data  
Pad  
P37  
P32  
Pref  
+
-
2
Comp  
2
Figure 9. Port 3 Counter/Timer Output Configuration  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
21  
Comparator Inputs  
In analog mode, P31 and P32 have a comparator front end. The comparator refer-  
ence is supplied to P33 and Pref1. In this mode, the P33 internal data latch and its  
corresponding IRQ1 is diverted to the SMR sources (excluding P31, P32, and  
P33) as indicated in Figure 8 on page 18. In digital mode, P33 is used as D3 of  
the Port 3 input register, which then generates IRQ1.  
Note: Comparators are powered down by entering Stop Mode. For  
P31–P33 to be used in a Stop-Mode Recovery source, these  
inputs must be placed into digital mode.  
Comparator Outputs  
These outputs can be programmed to be output on P34 and P37 through the  
PCON register.  
Functional Description  
The Z86L81/86/98 incorporates special functions to enhance the Z8’s functionality  
in consumer and battery-operated applications.  
Program Memory  
The Z86L81/86/98 family addresses 24/32/64 KB of internal program memory.  
The first twelve bytes are reserved for interrupt vectors. These locations contain  
the five 16-bit vectors, which correspond to the five available interrupts.  
RAM  
The Z86L81/86/98 device has 237 bytes of RAM, which make up the register file.  
See Figure 10.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
22  
65535  
Location of  
first byte of  
instruction  
executed  
On-Chip  
ROM  
after RESET  
Reset Start Address  
IRQ5  
12  
11  
IRQ5  
IRQ4  
10  
9
IRQ4  
8
7
IRQ3  
IRQ3  
Interrupt Vector  
(Lower Byte)  
6
5
4
IRQ2  
IRQ2  
IRQ1  
Interrupt Vector  
(Upper Byte)  
3
2
1
IRQ1  
IRQ0  
IRQ0  
0
Figure 10. Program Memory Map (64 KB ROM)  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
23  
Expanded Register File  
The register file has been expanded to allow for additional system control regis-  
ters, and for mapping of additional peripheral devices into the register address  
area. The Z8 register address space R0 through R15 has been implemented as  
16 banks, with 16 registers per bank. These register groups are known as the  
ERF (Expanded Register File). Bits 7–4 of register RP select the working register  
group. Bits 3–0 of register RP select the expanded register file bank.  
Note: An expanded register bank is also referred to as an expanded  
register group (see Figure 11).  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
24  
®
Reset Condition  
D7 D6 D5 D4 D3 D2 D1 D0  
Z8 Standard Control Registers  
Register* *  
FF SPL  
U
U
0
U
U
0
U
U
0
U
U
0
U
U
0
U
U
0
U
U
0
U
U
0
FE SPH  
FD RP  
Register Pointer  
FC FLAGS  
FB IMR  
U
0
U
U
0
U
U
0
U
U
0
U
U
0
U
U
0
U
U
0
U
U
0
7
6
5
4
3
2
1
0
FA IRQ  
0
Working Register  
Group Pointer  
Expanded Register  
Bank Pointer  
F9 IPR  
U
0
U
1
U
0
U
0
U
1
U
1
U
0
U
1
F8 P01M  
F7 P3M  
0
0
0
0
0
0
0
1
*
F6 P2M  
1
1
1
1
1
1
1
1
F5 Reserved  
F4 Reserved  
F3 Reserved  
F2 Reserved  
F1 Reserved  
F0 Reserved  
U
U
U
U
0
U
U
U
U
0
U
U
U
U
0
U
U
U
U
0
U
U
U
U
0
U
U
U
U
0
U
U
U
U
0
U
U
U
U
0
Z8 Register File (Bank 0) * *  
FF  
F0  
0
U
U
0
0
0
0
0
Expanded Reg. Bank/Group (F)  
Register* *  
Reset Condition  
(F) 0F WDTMR  
(F) 0E Reserved  
(F) 0D SMR2  
0
0
0
0
0
1
1
0
1
*
U
U
0
0
0
U
U
(F) 0C Reserved  
(F) 0B SMR  
0
0
1
0
0
0
U
0
7F  
(F) 0A Reserved  
(F) 09 Reserved  
(F) 08 Reserved  
(F) 07 Reserved  
(F) 06 Reserved  
(F) 05 Reserved  
(F) 04 Reserved  
(F) 03 Reserved  
(F) 02 Reserved  
(F) 01 Reserved  
(F) 00 PCON  
Reserved  
Reserved  
0F  
00  
*
1
1
1
1
1
1
1
0
Expanded Reg. Bank/Group (D)  
Register* *  
Reset Condition  
Expanded Reg. Bank/Group (0)  
Register* *  
(D) 0C LVD  
(D) 0B HI8  
0
0
0
0
0
0
0
0
Reset  
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
(0) 03 P3  
0
U
U
U
0
U
U
U
0
U
U
U
0
U
U
U
U
U
U
U
U
U
U
U
U
U
*
*
(D) 0A LO8  
(D) 09 HI16  
(D) 08 LO16  
(D) 07 TC16H  
(D) 06 TC16L  
(D) 05 TC8H  
(D) 04 TC8L  
(D) 03 Reserved  
(D) 02 CTR2  
(D) 01 CTR1  
(D) 00 CTR0  
(0) 02 P2  
U
U
U
U
U
U
(0) 01 P1  
(0) 00 P0  
U = Unknown  
* Is not reset with a Stop-Mode Recovery  
** All addresses are in hexadecimal  
Is not reset with a Stop-Mode Recovery,  
except Bit 0  
0
U
U
U
U
U
U
0
0
0
0
U
U
U
U
U
U
U
U
U
U
U
0
U
Figure 11. Expanded Register File Architecture  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
25  
The upper nibble of the register pointer (see Figure 12) selects which working reg-  
ister group, of 16 bytes in the register file, is accessed out of the possible 256. The  
lower nibble selects the expanded register file bank and, in the case of the  
Z86L81/86/98 family, banks 0, F, and D are implemented. A 0hin the lower nibble  
allows the normal register file (bank 0) to be addressed, but any other value from  
1hto Fhexchanges the lower 16 registers to an expanded register bank.  
R253 RP  
D7 D6 D5 D4 D3 D2 D1 D0  
Expanded Register  
File Pointer  
Working Register  
Pointer  
Default Setting After Reset = 0000 0000  
Figure 12. Register Pointer  
Example: Z86L81/86/98: (See Figure 11 on page 24)  
R253 RP = 00h  
R0 = Port 0  
R1 = Port 1  
R2 = Port 2  
R3 = Port 3  
But if:  
R253 RP = 0Dh  
R0 = CTRL0  
R1 = CTRL1  
R2 = CTRL2  
R3 = Reserved  
The counter/timers are mapped into ERF group D. Access is easily performed  
using the following:  
LD  
RP, #0Dh  
; Select ERF D for access to bank D  
(working register group 0)  
LD  
LD  
LD  
R0,#xx  
1, #xx  
R1, 2  
; load CTRL0  
; load CTRL1  
; CTRL2CTRL1  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
26  
LD  
RP, #0Dh  
; Select ERF D for access to bank D  
(working register group 0)  
LD RP, #7Dh ; Select expanded register bank D and working  
register group 7 of bank 0 for access.  
LD  
LD  
71h, 2  
R1, 2  
; CTRL2register 71h  
; CTRL2register 71h  
Register File  
The register file (bank 0) consists of 4 I/O port registers, 237 general-purpose reg-  
isters, and 16 control and status registers (R0–R3, R4–R239, and R240–R255,  
respectively). Additionally, there are two expanded registers groups in Banks D  
(see Table 9) and F. Instructions can access registers directly or indirectly through  
an 8-bit address field, thereby allowing a short, 4-bit register address to use the  
Register Pointer (Figure 13). In the 4-bit mode, the register file is divided into 16  
working register groups, each occupying 16 continuous locations. The Register  
Pointer addresses the starting location of the active working register group.  
Counter/Timer Register Description  
Table 9. Expanded Register Group D  
(D)0Ch  
(D)0Bh  
(D)0Ah  
(D)09h  
(D)08h  
(D)07h  
(D)06h  
(D)05h  
(D)04h  
(D)03h  
(D)02h  
(D)01h  
(D)00h  
LVD  
HI8  
LO8  
HI16  
LO16  
TC16H  
TC16L  
TC8H  
TC8L  
Reserved  
CTR2  
CTR1  
CTR0  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
27  
R253  
r
r
r
r
r
r
r
r
1 0  
7
6
5
4
3
2
The upper nibble of the register file address  
provided by the register pointer specifies the  
active working-register group.  
7F  
{
{
{
{
{
{
{
{
70  
6F  
60  
5F  
50  
4F  
The lower nibble of the  
40  
3F  
Specified Working  
Register Group  
register file address provided  
by the instruction points to  
the specified register.  
30  
2F  
20  
1F  
Register Group 1  
R15 to R0  
10  
0F  
R15 to R4 *  
R3 to R0 *  
Register Group 0  
I/O Ports  
00  
* RP = 00: Selects Register Group 0, Working Register 0  
Figure 13. Register Pointer—Detail  
Note: Working register group E0–EF can only be accessed through  
working registers and indirect addressing modes.  
Stack  
The Z86L81/86/98 internal register file is used for the stack. An 8-bit Stack Pointer  
(R255) is used for the internal stack that resides in the general-purpose registers  
(R4–R239). SPH is used as a general-purpose register only when using internal  
stacks.  
Note: When SPH is used as a general-purpose register, and Port 0 is  
in address mode, the contents of SPH are loaded into Port 0  
whenever the internal stack is accessed.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
28  
Register Description  
LVD (D) 0Ch. Low-Voltage Detection Register  
Bit 0 enables/disables the Low-Voltage Detection Circuit. Bit 1 flags if low voltage  
is detected. Interrupt 5 is triggered when the flag bit is set, given that IRQ5 is not  
masked.  
Note:  
The LVD flag will be valid after enabling the detection for 20 S (design  
estimation, not tested in production). LVD does not work at STOP mode. It  
must be disabled during STOP mode in order to reduce current.  
Field  
Bit Position  
Description  
LVD  
765432--  
Reserved  
No Effect  
------1-  
-------0  
R
1
0*  
LV flag set  
LV flag reset  
R/W  
1
0*  
Enable LVD  
Disable LVD  
Note:  
*Default after POR  
HI8(D)0Bh  
This register holds the captured data from the output of the 8-bit Counter/Timer0.  
Typically, this register is used to hold the number of counts when the input signal  
is 1.  
Field  
Bit Position  
Description  
T8_Capture_HI 76543210  
R
W
Captured Data  
No Effect  
L08(D)0Ah  
This register holds the captured data from the output of the 8-bit Counter/Timer0.  
Typically, this register is used to hold the number of counts when the input signal  
is 0.  
Field  
Bit Position  
Description  
T8_Capture_L0 76543210  
R
W
Captured Data  
No Effect  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
29  
HI16(D)09h  
This register holds the captured data from the output of the 16-bit Counter/  
Timer16, while also holding the MS-Byte of the data.  
Field  
Bit Position  
Description  
T16_Capture_HI 76543210  
R
W
Captured Data  
No Effect  
L016(D)08h  
This register holds the captured data from the output of the 16-bit Counter/  
Timer16, while also holding the LS-Byte of the data.  
Field  
Bit Position  
Description  
T16_Capture_LO 76543210  
R
W
Captured Data  
No Effect  
TC16H(D)07h  
Counter/Timer2 MS-Byte Hold Register.  
Field  
Bit Position  
Description  
R/W Data  
T16_Data_HI  
76543210  
TC16L(D)06h  
Counter/Timer2 LS-Byte Hold Register.  
Field  
Bit Position  
Description  
R/W Data  
T16_Data_LO  
76543210  
TC8H(D)05h  
Counter/Timer8 High Hold Register.  
Field  
Bit Position  
Description  
R/W Data  
T8_Level_HI  
76543210  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
30  
TC8L(D)04h  
Counter/Timer8 Low Hold Register.  
Field  
Bit Position  
Description  
R/W Data  
T8_Level_LO  
76543210  
CTR0 Counter/Timer8 Control Register  
Table 10 lists and briefly describes the fields for this register.  
Table 10.CTR0 (D)00 Counter/Timer8 Control Register  
Field  
Bit Position  
Value  
0*  
Description  
T8_Enable  
7-------  
R
Counter Disabled  
Counter Enabled  
Stop Counter  
1
0
1
W
Enable Counter  
Single/Modulo-N  
Time_Out  
-6-------  
--5------  
R/W  
0
1
Modulo-N  
Single Pass  
R
0
1
0
1
No Counter Time-Out  
Counter Time-Out Occurred  
No Effect  
W
Reset Flag to 0  
T8 _Clock  
---43---  
R/W  
0 0  
0 1  
1 0  
1 1  
SCLK  
SCLK/2  
SCLK/4  
SCLK/8  
Capture_INT_MASK  
Counter_INT_Mask  
P34_Out  
-----2--  
------1-  
-------0  
R/W  
R/W  
R/W  
0
1
Disable Data Capture Int.  
Enable Data Capture Int.  
0
1
Disable Time-Out Int.  
Enable Time-Out Int.  
0*  
1
P34 as Port Output  
T8 Output on P34  
Note:  
*Indicates the value upon Power-On Reset.  
T8 Enable  
This field enables T8 when set (written) to 1.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
31  
Single/Modulo-N  
When set to 0 (modulo-N), the counter reloads the initial value when the terminal  
count is reached. When set to 1 (single pass), the counter stops when the terminal  
count is reached.  
Timeout  
This bit is set when T8 times out (terminal count reached). To reset this bit, a 1  
should be written to its location.  
Caution: Writing a 1 is the only way to reset the Terminal Count  
status condition. Therefore, reset this bit before using/  
enabling the counter/timers.  
The first clock of T8 might not feature complete clock width  
and can occur any time when enabled.  
Note: Care must be taken when using the OR or AND commands to  
manipulate CTR0, bit 5 and CTR1, bits 0 and 1 (Demodulation  
Mode). These instructions use a Read-Modify-Write sequence  
in which the current status from the CTR0 and CTR1 registers  
is ORed or ANDed with the designated value and then written  
back into the registers.  
Example  
When the status of bit 5 is 1, a timer reset condition occurs.  
T8 Clock  
This bit defines the frequency of the input signal to T8.  
Capture_INT_Mask  
Set this bit to allow an interrupt when data is captured into either LO8 or HI8 upon  
a positive or negative edge detection in demodulation mode.  
Counter_INT_Mask  
Set this bit to allow an interrupt when T8 has a timeout.  
P34_Out  
This bit defines whether P34 is used as a normal output pin or the T8 output.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
32  
CTR1(D)01h  
This register controls the functions in common with the T8 and T16.  
CTR1 Register Description  
Table 11 lists and briefly describes the fields for this register.  
Table 11. CTR(D)01h Register Descriptions  
Field  
Bit Position  
Value  
Description  
Mode  
7-------  
R/W  
R/W  
0*  
Transmit Mode  
Demodulation Mode  
P36_Out/  
Demodulator_Input  
-6------  
Transmit Mode  
Port Output  
T8/T16 Output  
Demodulation Mode  
P31  
0*  
1
0
1
P20  
T8/T16_Logic/  
Edge _Detect  
--54----  
R/W  
Transmit Mode  
AND  
OR  
NOR  
NAND  
00  
01  
10  
11  
Demodulation Mode  
Falling Edge  
Rising Edge  
Both Edges  
Reserved  
00  
01  
10  
11  
Transmit_Submode/  
Glitch_Filter  
----32--  
R/W  
Transmit Mode  
Normal Operation  
Ping-Pong Mode  
T16_Out = 0  
00  
01  
10  
11  
T16_Out = 1  
Demodulation Mode  
No Filter  
4 SCLK Cycle  
8 SCLK Cycle  
Reserved  
00  
01  
10  
11  
Initial_T8_Out/  
Rising Edge  
------1-  
Transmit Mode  
R/W  
0
1
T8_OUT is 0 Initially  
T8_OUT is 1 Initially  
Demodulation Mode  
No Rising Edge  
Rising Edge Detected  
No Effect  
R
0
1
0
1
W
Reset Flag to 0  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
33  
Table 11. CTR(D)01h Register Descriptions (Continued)  
Field  
Bit Position  
Value  
Description  
Initial_T16_Out/  
Falling_Edge  
-------0  
Transmit Mode  
R/W  
0
1
T16_OUT is 0 Initially  
T16_OUT is 1 Initially  
Demodulation Mode  
No Falling Edge  
Falling Edge Detected  
No Effect  
R
0
1
0
1
W
Reset Flag to 0  
Note:  
*Default upon Power-On Reset  
Mode  
If it is 0, the counter/timers are in the transmit mode; otherwise, they are in the  
demodulation mode.  
P36_Out/Demodulator_Input  
In Transmit Mode, this bit defines whether P36 is used as a normal output pin or  
the combined output of T8 and T16.  
In Demodulation Mode, this bit defines whether the input signal to the Counter/  
Timers is from P20 or P31.  
T8/T16_Logic/Edge _Detect  
In Transmit Mode, this field defines how the outputs of T8 and T16 are combined  
(AND, OR, NOR, NAND).  
In Demodulation Mode, this field defines which edge should be detected by the  
edge detector.  
Transmit_Submode/Glitch Filter  
In Transmit Mode, this field defines whether T8 and T16 are in the Ping-Pong  
mode or in independent normal operation mode. Setting this field to “Normal  
Operation Mode” terminates the “Ping-Pong Mode” operation. When set to 10,  
T16 is immediately forced to a 0; a setting of 11 forces T16 to output a 1.  
In Demodulation Mode, this field defines the width of the glitch that must be fil-  
tered out.  
Initial_T8_Out/Rising_Edge  
In Transmit Mode, if 0, the output of T8 is set to 0 when it starts to count. If 1, the  
output of T8 is set to 1 when it starts to count. When the counter is not enabled  
and this bit is set to 1 or 0, T8_OUT is set to the opposite state of this bit. This  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
34  
measure ensures that when the clock is enabled, a transition occurs to the initial  
state set by CTR1, D1.  
In Demodulation Mode, this bit is set to 1 when a rising edge is detected in the  
input signal. In order to reset it, a 1 should be written to this location.  
Initial_T16 Out/Falling _Edge  
In Transmit Mode, if it is 0, the output of T16 is set to 0 when it starts to count. If it  
is 1, the output of T16 is set to 1 when it starts to count. This bit is effective only in  
Normal or Ping-Pong Mode (CTR1, D3, D2). When the counter is not enabled and  
this bit is set, T16_OUT is set to the opposite state of this bit. This measure  
ensures that when the clock is enabled, a transition occurs to the initial state set  
by CTR1, D0.  
In Demodulation Mode, this bit is set to 1 when a falling edge is detected in the  
input signal. In order to reset it, a 1 should be written to this location.  
Note: Modifying CTR1, (D1 or D0) while the counters are enabled  
causes unpredictable output from T8/16_OUT.  
CTR2 Counter/Timer 16 Control Register  
Table 12 lists and briefly describes the fields for this register.  
Table 12.CTR2 (D)02h: Counter/Timer16 Control Register  
Field  
Bit Position  
Value  
Description  
T16_Enable  
7-------  
R
0*  
1
0
Counter Disabled  
Counter Enabled  
Stop Counter  
W
1
Enable Counter  
Single/Modulo-N  
-6------  
--5-----  
R/W  
Transmit Mode  
Modulo-N  
Single Pass  
Demodulation Mode  
T16 Recognizes Edge  
T16 Does Not  
0
1
0
1
Recognize Edge  
Time_Out  
R
0
1
0
1
No Counter Timeout  
Counter Timeout  
Occurred  
W
No Effect  
Reset Flag to 0  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
35  
Table 12.CTR2 (D)02h: Counter/Timer16 Control Register (Continued)  
Field  
Bit Position  
Value  
Description  
T16 _Clock  
---43---  
R/W  
R/W  
00  
01  
10  
11  
SCLK  
SCLK/2  
SCLK/4  
SCLK/8  
Capture_INT_Mask  
-----2--  
0
1
Disable Data Capture  
Int.  
Enable Data Capture  
Int.  
Counter_INT_Mask  
P35_Out  
------1-  
-------0  
R/W  
R/W  
0
Disable Timeout Int.  
Enable Timeout Int.  
0*  
1
P35 as Port Output  
T16 Output on P35  
Note:  
*Indicates the value upon Power-On Reset.  
T16_Enable  
This field enables T16 when set to 1.  
Single/Modulo-N  
In Transmit Mode, when set to 0, the counter reloads the initial value when termi-  
nal count is reached. When set to 1, the counter stops when the terminal count is  
reached.  
In Demodulation Mode, when set to 0, T16 captures and reloads on detection of  
all the edges. When set to 1, T16 captures and detects on the first edge, but  
ignores the subsequent edges. For details, see the description of T16 Demodula-  
tion Mode on page 45.  
Time_Out  
This bit is set when T16 times out (terminal count reached). To reset the bit, write  
a 1 to this location.  
T16_Clock  
This bit defines the frequency of the input signal to Counter/Timer16.  
Capture_INT_Mask  
This bit is set to allow an interrupt when data is captured into LO16 and HI16.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
36  
Counter_INT_Mask  
This bit is set to allow an interrupt when T16 times out.  
P35_Out  
This bit defines whether P35 is used as a normal output pin or T16 output.  
SMR2 Stop-Mode Recovery Register 2  
Table 13 lists and briefly describes the fields for this register.  
Table 13.SMR2(F)0Dh: Stop-Mode Recovery Register 2  
Field  
Bit Position  
7-------  
Value  
Description  
Reserved  
Recovery Level  
0
Reserved (Must be 0)  
-6------  
W
W
0*  
1
Low  
High  
Reserved  
Source  
--5-----  
0
Reserved (Must be 0)  
---432--  
000*  
001  
010  
011  
100  
101  
110  
111  
A. POR Only  
B. NAND of P23–P20  
C. NAND of P27–P20  
D. NOR of P33–P31  
E. NAND of P33–P31  
F. NOR of P33-P31, P00, P07  
G. NAND of P33-P31, P00, P07  
H. NAND of P33-P31, P22–P20  
Reserved  
------10  
00  
Reserved (Must be 0)  
Notes:  
* Indicates the value upon Power-On Reset  
Counter/Timer Functional Blocks  
Input Circuit  
The edge detector monitors the input signal on P31 or P20. Based on CTR1 D5–  
D4, a pulse is generated at the Pos Edge or Neg Edge line when an edge is  
detected. Glitches in the input signal that have a width less than specified (CTR1  
D3, D2) are filtered out (see Figure 14).  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
37  
CTR1 D5,D4  
Pos Edge  
Neg Edge  
P31  
P20  
MUX  
Glitch Filter  
Edge Detector  
CTR1 D6  
CTR1 D3,D2  
Figure 14. Glitch Filter Circuitry  
T8 Transmit Mode  
Before T8 is enabled, the output of T8 depends on CTR1, D1. If it is 0, T8_OUT is  
1; if it is 1, T8_OUT is 0. See Figure 15.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
38  
T8 (8-Bit)  
Transmit Mode  
No  
T8_Enable Bit Set  
CTR0, D7  
Yes  
Reset T8_Enable Bit  
1
0
CTR1, D1  
Value  
Load TC8H  
Set T8_OUT  
Load TC8L  
Reset T8_OUT  
Set Timeout Status Bit  
(CTR0 D5) and Generate  
Timeout_Int if Enabled  
Enable T8  
No  
T8_Timeout  
Yes  
Single Pass  
Single  
Pass?  
Modulo-N  
T8_OUT Value  
1
0
Load TC8L  
Reset T8_OUT  
Load TC8H  
Set T8_OUT  
Enable T8  
Set Timeout Status Bit  
(CTR0 D5) and Generate  
Timeout_Int if Enabled  
No  
T8_Timeout  
Yes  
Figure 15. Transmit Mode Flowchart  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
39  
When T8 is enabled, the output T8_OUT switches to the initial value (CTR1, D1).  
If the initial value (CTR1, D1) is 0, TC8L is loaded; otherwise, TC8H is loaded into  
the counter. In Single-Pass Mode (CTR0, D6), T8 counts down to 0 and stops,  
T8_OUT toggles, the timeout status bit (CTR0, D5) is set, and a timeout interrupt  
can be generated if it is enabled (CTR0, D1). In Modulo-N Mode, upon reaching  
terminal count, T8_OUT is toggled, but no interrupt is generated. From that point,  
T8 loads a new count (if the T8_OUT level now is 0), TC8L is loaded; if it is 1,  
TC8H is loaded. T8 counts down to 0, toggles T8_OUT, sets the timeout status bit  
(CTR0, D5) and generates an interrupt if enabled (CTR0, D1). One cycle is thus  
completed. T8 then loads from TC8H or TC8L according to the T8_OUT level, and  
repeats the cycle. See Figure 16.  
CTR0 D2  
Z8 Data Bus  
Positive Edge  
Negative Edge  
IRQ4  
HI8  
LO8  
CTR0 D1  
CTR0 D4, D3  
SCLK  
Clock  
Clock  
Select  
8-Bit  
Counter T8  
T8_OUT  
TC8H  
TC8L  
Z8 Data Bus  
Figure 16. 8-Bit Counter/Timer Circuits  
You can modify the values in TC8H or TC8L at any time. The new values take  
effect when they are loaded.  
Caution: Do not write these registers at the time the values are to be  
loaded into the counter/timer to ensure known operation. An  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
40  
initial count of “1” is not allowed (a non-function occurs). An  
initial count of “0” causes TC8 to count from 0 to FFhto FEh.  
Note: The letter his used for hexadecimal values.  
Transition from 0 to FFhis not a timeout condition.  
Caution: Using the same instructions for stopping the counter/timers  
and setting the status bits is not recommended.  
Two successive commands are necessary. First, the counter/timers must be  
stopped. Second, the status bits must be reset. These commands are required  
because it takes one counter/timer clock interval for the initiated event to actually  
occur. See Figure 17 and Figure 18.  
TC8H  
Count  
Counter Enable  
T8_OUT Toggles;  
Timeout Interrupt  
Command; T8_OUT  
Switches to Its Initial  
Value (CTR1 D1)  
Figure 17. T8_OUT in Single-Pass Mode  
T8_OUT  
. . .  
T8_OUT  
TC8L  
TC8H  
TC8L  
TC8H  
TC8L  
Counter Enable  
Command; T8_OUT  
Switches to Its  
Timeout  
Interrupt  
Timeout  
Interrupt  
Initial Value (CTR1 D1)  
Figure 18. T8_OUT in Modulo-N Mode  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
41  
T8 Demodulation Mode  
Program TC8L and TC8H to FFh. After T8 is enabled, when the first edge (rising,  
falling, or both depending on CTR1, D5; D4) is detected, it starts to count down.  
When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is  
detected during counting, the current value of T8 is complemented and put into  
one of the capture registers. If it is a positive edge, data is put into LO8, if negative  
edge, HI8. One of the edge detect status bits (CTR1, D1; D0) is set, and an inter-  
rupt can be generated if enabled (CTR0, D2). Meanwhile, T8 is loaded with FFh  
and starts counting again. If T8 reaches 0, the timeout status bit (CTR0, D5) is set,  
an interrupt can be generated if enabled (CTR0, D1), and T8 continues counting  
from FFh(see Figure 19 and Figure 20).  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
42  
T8 (8-Bit)  
Count Capture  
T8 Enable  
(Set by User)  
No  
No  
Yes  
Edge Present  
Yes  
What Kind  
of Edge  
Positive  
Negative  
T8 LO8  
T8 HI8  
FFhT8  
Figure 19. Demodulation Mode Count Capture Flowchart  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
43  
T8 (8-Bit)  
Demodulation Mode  
T8 Enable  
CTR0, D7  
No  
Yes  
FFhTC8  
First  
Edge Present  
No  
Yes  
Enable TC8  
Disable TC8  
T8_Enable  
Bit Set  
No  
Yes  
No  
Edge Present  
Yes  
No  
T8 Timeout  
Yes  
Set Edge Present Status  
Bit and Trigger Data  
Capture Int. If Enabled  
Set Timeout Status  
Bit and Trigger  
Timeout Int. If Enabled  
Continue Counting  
Figure 20. Demodulation Mode Flowchart  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
44  
T16 Transmit Mode  
In Normal or Ping-Pong Mode, the output of T16 when not enabled, is dependent  
on CTR1, D0. If the result is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You  
can force the output of T16 to either a 0 or 1 whether it is enabled or not by pro-  
gramming CTR1 D3, D2 to a 10 or 11.  
When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched  
to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled  
(in Normal or Ping-Pong Mode), an interrupt (CTR2, D1) is generated (if enabled),  
and a status bit (CTR2, D5) is set. See Figure 21.  
CTR2 D2  
Z8 Data Bus  
Positive Edge  
Negative Edge  
IRQ3  
HI16  
LO16  
CTR2 D1  
CTR2 D4, D3  
SCLK  
Clock  
Clock  
Select  
16-Bit  
Counter T16  
T16_OUT  
TC16H  
TC16L  
Z8 Data Bus  
Figure 21. 16-Bit Counter/Timer Circuits  
Note: Global interrupts override this function as described in  
“Interrupts” on page 48.  
If T16 is in Single-Pass Mode, it is stopped at this point (see Figure 22). If it is in  
Modulo-N Mode, it is loaded with TC16H * 256 + TC16L, and the counting contin-  
ues (see Figure 23).  
You can modify the values in TC16H and TC16L at any time. The new values take  
effect when they are loaded.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
45  
Caution: Do not load these registers at the time the values are to be  
loaded into the counter/timer to ensure known operation.  
An initial count of 1 is not allowed. An initial count of 0  
causes T16 to count from 0 to FFFFhto FFFEh. Transition  
from 0 to FFFFhis not a timeout condition.  
TC16H*256+TC16L Counts  
“Counter Enable” Command  
T16_OUT Switches to Its  
Initial Value (CTR1 D0)  
T16_OUT Toggles,  
Timeout Interrupt  
Figure 22. T16_OUT in Single-Pass Mode  
TC16H*256+TC16L  
TC16H*256+TC16L  
. . .  
TC16_OUT  
TC16H*256+TC16  
“Counter Enable” Command,  
T16_OUT Switches to Its  
Initial Value (CTR1 D0)  
T16_OUT Toggles,  
Timeout Interrupt  
T16_OUT Toggles,  
Timeout Interrupt  
Figure 23. T16_OUT in Modulo-N Mode  
T16 Demodulation Mode  
Program TC16L and TC16H to FFh. After T16 is enabled, and the first edge (ris-  
ing, falling, or both depending on CTR1 D5, D4) is detected, T16 captures HI16  
and LO16, reloads, and begins counting.  
If D6 of CTR2 Is 0  
When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is  
detected during counting, the current count in T16 is complemented and put into  
HI16 and LO16. When data is captured, one of the edge detect status bits (CTR1,  
D1; D0) is set and an interrupt is generated if enabled (CTR2, D2). From that  
point, T16 is loaded with FFFFhand starts again.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
46  
This T16 mode is generally used to measure mark time, defined as the length of  
time between carrier signal bursts (marks).  
If D6 of CTR2 Is 1  
T16 ignores the subsequent edges in the input signal and continues counting  
down. A timeout of T8 causes T16 to capture its current value and generate an  
interrupt if enabled (CTR2, D2). In this case, T16 does not reload and continues  
counting. If the D6 bit of CTR2 is toggled (by writing a 0 then a 1 to it), T16 cap-  
tures and reloads on the next edge (rising, falling, or both depending on CTR1,  
D5; D4), thereby continuing to ignore subsequent edges.  
This T16 mode is generally used to measure mark time, defined as the length of  
time between carrier signal bursts (marks).  
If T16 reach 0, T16 continues counting from FFFFh. Meanwhile, a status bit (CTR2  
D5) is set, and an interrupt timeout can be generated if enabled (CTR2 D1).  
Ping-Pong Mode  
This operation mode is only valid in Transmit Mode. T8 and T16 must be pro-  
grammed in Single-Pass Mode (CTR0, D6, CTR2, D6) and Ping-Pong Mode must  
be programmed in CTR1, D3; D2. The user can begin the operation by enabling  
either T8 or T16 (CTR0, D7 or CTR2, D7). For example, if T8 is enabled, T8_OUT  
is set to this initial value (CTR1, D1). According to T8_OUT's level, TC8H or TC8L  
is loaded into T8. After the terminal count is reached, T8 is disabled and T16 is  
enabled. T16_OUT switches to its initial value (CTR1, D0), data from TC16H and  
TC16L is loaded, and T16 starts to count. After T16 reaches the terminal count, it  
stops, T8 is enabled again, and the whole cycle repeats. Interrupts can be allowed  
when T8 or T16 reaches terminal control (CTR0, D1; CTR2, D1). To stop the Ping-  
Pong operation, write 00 to bits D3 and D2 of CTR1. See Figure 24.  
Note: Enabling Ping-Pong operation while the counter/timers are  
running might cause intermittent counter/timer function. Disable  
the counter/timers and then reset the status flags before  
instituting this operation.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
47  
Enable  
Enable  
TC8  
Timeout  
Ping-Pong  
CTR1 D3,D2  
TC16  
Timeout  
Figure 24. Ping-Pong Mode  
Initiating Ping-Pong Mode  
First, make sure both counter/timers are not running. Then, set T8 into Single-  
Pass Mode (CTR0 D6), set T16 into Single-Pass Mode (CTR2 D6), and set the  
Ping-Pong Mode (CTR1 D2, D3). These instructions do not have to be in any par-  
ticular order. Finally, start Ping-Pong Mode by enabling either T8 (CTR0 D7) or  
T16 (CTR2 D7). See Figure 25.  
P34_INTERNAL  
MUX  
P34  
CTR0 D0  
MUX  
P36_INTERNAL  
P35_INTERNAL  
T8_OUT  
MUX  
P36  
P35  
AND/OR/NOR/NAND  
Logic  
T16_OUT  
CTR1, D2  
CTR1 D6  
MUX  
CTR1 D5, D4  
CTR1 D3  
CTR2 D0  
Figure 25. Output Circuit  
The initial value of T8 or T16 must not be 1. If you stop the timer and start the  
timer again, reload the initial value to avoid an unknown previous value.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
48  
During Ping-Pong Mode  
The enable bits of T8 and T16 (CTR0 D7, CTR2 D7) are set and cleared alter-  
nately by hardware. The timeout bits (CTR0 D5, CTR2 D5) are set every time the  
counter/timers reach the terminal count.  
Interrupts  
The Z86L81/86/98 features six different interrupts (Table 14). The interrupts are  
maskable and prioritized (Figure 26). The six sources are divided as follows: three  
sources are claimed by Port 3 lines P33–P31, two by the counter/timers, and one  
by LVD (Table 14). The Interrupt Mask Register globally or individually enables or  
disables the six interrupt requests.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
49  
P3  
P3  
P3  
Low-  
Voltage  
Detection  
Interrupt  
Edge  
Select  
IRQ Register  
D6, D7  
Timer 8  
Timer 16  
IRQ2  
IRQ0  
IRQ1 IRQ3  
IRQ4  
IRQ5  
IRQ  
IMR  
IPR  
5
Global  
Interrupt  
Enable  
Interrupt  
Request  
Priority  
Logic  
Vector Select  
Figure 26. Interrupt Block Diagram  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
50  
Table 14.Interrupt Types, Sources, and Vectors  
Name  
Source  
Vector Location Comments  
IRQ0  
P32  
0,1  
External (P32), Rising Falling Edge  
Triggered  
IRQ1  
IRQ2  
P33  
2,3  
4,5  
External (P33), Falling Edge Triggered  
P31, T  
External (P31), Rising Falling Edge  
Triggered  
IN  
IRQ3  
IRQ4  
IRQ5  
T16  
T8  
6,7  
Internal  
Internal  
Internal  
8,9  
LVD  
10,11  
When more than one interrupt is pending, priorities are resolved by a programma-  
ble priority encoder controlled by the Interrupt Priority Register. An interrupt  
machine cycle is activated when an interrupt request is granted. As a result, all  
subsequent interrupts are disabled, and the Program Counter and Status Flags  
are saved. The cycle then branches to the program memory vector location  
reserved for that interrupt. All Z86L81/86/98 interrupts are vectored through loca-  
tions in the program memory. This memory location, and the next byte, contain the  
16-bit address of the interrupt service routine for that particular interrupt request.  
To accommodate polled interrupt systems, interrupt inputs are masked, and the  
Interrupt Request register is polled to determine which of the interrupt requests  
require service.  
An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is  
mapped into IRQ0. Interrupts IRQ2 and IRQ0 may be rising, falling, or both edge  
triggered; all are programmable by the user. The software can poll to identify the  
state of the pin.  
Programming bits for the Interrupt Edge Select are located in the IRQ Register  
(R250), bits D7 and D6. The configuration is indicated in Table 15.  
Table 15.IRQ Register*  
IRQ  
Interrupt Edge  
D7  
D6  
IRQ2(P31)  
IRQ0 (P32)  
0
0
1
0
1
0
F
F
R
F
R
F
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
51  
Table 15.IRQ Register* (Continued)  
IRQ  
Interrupt Edge  
R/F R/F  
1
1
Notes:  
F = Falling Edge  
R = Rising Edge  
*In stop mode, the comparators are turned off.  
Clock  
The Z86L81/86/98 on-chip oscillator has a high-gain, parallel-resonant amplifier,  
for connection to a crystal, LC, ceramic resonator, or any suitable external clock  
source (XTAL1 = Input, XTAL2 = Output). The crystal must be AT cut, 1 MHz to 8  
MHz maximum, with a series resistance (RS) less than or equal to 100 Ohms. The  
Z86LXX on-chip oscillator can be driven with a low-cost RC network or other suit-  
able external clock source.  
For 32-kHz crystal operation, both an external feedback (Rf) and serial resistor  
(Rd) are required. See Figure 27.  
The crystal must be connected across XTAL1 and XTAL2 using the recommended  
capacitors (capacitance greater than or equal to 22 pF) from each pin to ground.  
The RC oscillator configuration is an external resistor connected from XTAL1 to  
XTAL2, with a frequency-setting capacitor from XTAL1 to ground (Figure 27).  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
52  
XTAL1  
XTAL2  
XTAL1  
XTAL2  
XTAL1  
XTAL2  
C1  
C2  
C1  
C2  
C1  
R
L
Ceramic Resonator or Crystal  
C1, C2 = 47 pF TYP *  
f = 8 MHz  
LC  
RC  
C1, C2 = 22 pF  
L = 130 H *  
f = 3 MHz *  
@ 3V VCC (TYP)  
C1 = 33 pF *  
R = 1K *  
XTAL1  
XTAL1  
C1  
C2  
Rf  
XTAL2  
XTAL2  
Rd  
32 kHz XTAL  
External Clock  
C1 = 20 pF, C = 33 pF  
Rd = 56 - 470K  
Rf = 10 M  
* Preliminary value including pin parasitics  
Figure 27. Oscillator Configuration  
Power-On Reset (POR)  
A timer circuit clocked by a dedicated on-board RC oscillator is used for the  
Power-On Reset (POR) timer function. The POR time allows VCC and the oscilla-  
tor circuit to stabilize before instruction execution begins.  
The POR timer circuit is a one-shot timer triggered by one of three conditions:  
Power Fail to Power OK status, including Waking up from VBO Standby  
Stop-Mode Recovery (if D5 of SMR = 1)  
WDT Timeout  
The POR timer is a nominal 5 ms. Bit 5 of the Stop-Mode Register determines  
whether the POR timer is bypassed after Stop-Mode Recovery (typical for external  
clock, RC, LC oscillators).  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
53  
HALT  
HALT turns off the internal CPU clock, but not the XTAL oscillation. The counter/  
timers and external interrupts IRQ0, IRQ1, IRQ2, IRQ3, and IRQ4 remain active.  
The devices are recovered by interrupts, either externally or internally generated.  
An interrupt request must be executed (enabled) to exit HALT Mode. After the  
interrupt service routine, the program continues from the instruction after the  
HALT.  
STOP  
This instruction turns off the internal clock and external crystal oscillation, thereby  
reducing the standby current to 10 A or less. STOP Mode is terminated only by a  
reset (such as WDT timeout), POR, SMR, or external reset. This termination  
causes the processor to restart the application program at address 000Ch. In  
order to enter STOP (or HALT) mode, first flush the instruction pipeline to avoid  
suspending execution in mid-instruction. Execute a NOP (Op Code = FFh) imme-  
diately before the appropriate sleep instruction, as follows:  
FF  
6F  
NOP  
STOP  
; clear the pipeline  
; enter STOP Mode  
or  
FF  
7F  
NOP  
HALT  
; clear the pipeline  
; enter HALT Mode  
Port Configuration Register (PCON)  
The PCON register (Figure 28) configures the comparator output on Port 3. It is  
located in the expanded register 2 at Bank F, location 00.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
54  
PCON (FH) 00H  
D7 D6 D5 D4 D3 D2 D1 D0  
Comparator Output Port 3  
0 P34, P37 Standard Output*  
1 P34, P37 Comparator Output  
Port 0  
0: Open-Drain  
1: Push-Pull  
Reserved (Must be 1)  
* Default setting after reset  
Figure 28. Port Configuration Register (PCON) (Write Only)  
Comparator Output Port 3 (D0)  
Bit 0 controls the comparator used in Port 3. A 1 in this location brings the compar-  
ator outputs to P34 and P37, and a 0 releases the Port to its standard I/O configu-  
ration.  
Port0 Output Mode (D2)  
Bit 2 controls the output mode of port 0. A 1 in this location sets the output to  
push-pull, and a 0 sets the output to open-drain.  
Stop-Mode Recovery Register (SMR)  
This register selects the clock divide value and determines the mode of Stop-  
Mode Recovery (Figure 29). All bits are write only except bit 7, which is read only.  
Bit 7 is a flag bit that is hardware set on the condition of STOP recovery and reset  
by a power-on cycle. Bit 6 controls whether a low level or a high level at the XOR-  
gate input is required from the recovery source. Bit 5 controls the reset delay after  
recovery. Bits D2, D3, and D4, or the SMR register, specify the source of the Stop-  
Mode Recovery signal. Bits D0 determines if SCLK/TCLK are divided by 16 or not.  
The SMR is located in Bank F of the Expanded Register Group at address 0Bh.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
55  
SMR (0F) 0B  
D7 D6 D5 D4 D3 D2 D1 D0  
SCLK/TCLK Divide-by-16  
0 OFF * *  
1 ON  
Reserved (Must be 0)  
Stop-Mode Recovery Source  
000 POR Only *  
001 Reserved  
010 P31  
011 P32  
100 P33  
101 P27  
110 P2 NOR 0-3  
111 P2 NOR 0-7  
Stop Delay  
0 OFF  
1 ON *  
Stop Recovery Level * * *  
0 Low *  
1 High  
Stop Flag  
0 POR *  
1 Stop Recovery * *  
* Default setting after reset  
* * Default setting after reset and stop-mode recovery  
* * * At the XOR gate input  
Figure 29. Stop-Mode Recovery Register  
SCLK/TCLK Divide-by-16 Select (D0)  
D0 of the SMR controls a divide-by-16 prescaler of SCLK/TCLK (Figure 30). The  
purpose of this control is to selectively reduce device power consumption during  
normal processor execution (SCLK control) and/or HALT Mode (where TCLK  
sources interrupt logic). After Stop-Mode Recovery, this bit is set to a 0.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
56  
OSC  
2  
SCLK  
TCLK  
16  
SMR, D0  
Figure 30. SCLK Circuit  
Stop-Mode Recovery Source (D2, D3, and D4)  
These three bits of the SMR specify the wake-up source of the STOP recovery  
(Figure 31 and Table 16).  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
57  
SMR D4 D3 D2  
0 0  
SMR2 D4 D3 D2  
0
0
0 0  
VCC  
SMR2 D4 D3 D2  
0 1  
VCC  
SMR D4 D3 D2  
1 0  
0
0
P20  
P23  
P31  
P32  
S1  
SMR2 D4 D3 D2  
1 0  
SMR D4 D3 D2  
1 1  
0
P20  
P27  
0
S2  
SMR2 D4 D3 D2  
1 1  
SMR D4 D3 D2  
0 0  
0
1
P31  
P32  
P33  
P33  
S3  
To IRQ1  
S4  
SMR2 D4 D3 D2  
0 0  
SMR D4 D3 D2  
0 1  
1
P31  
P32  
P33  
1
P27  
SMR2 D4 D3 D2  
0 1  
SMR D4 D3 D2  
1 0  
P31  
P32  
P33  
P00  
P07  
1
1
P20  
P23  
SMR2 D4 D3 D2  
1 0  
SMR D4 D3 D2  
1 1  
P31  
P32  
P33  
P00  
P07  
1
1
P20  
P27  
SMR2 D4 D3 D2  
1 1  
SMR D6  
P31  
P32  
P33  
P20  
P21  
P22  
1
SMR2 D6  
To RESET and WDT  
Circuitry (Active Low)  
Figure 31. Stop-Mode Recovery Source  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
58  
Table 16.Stop-Mode Recovery Source  
SMR:432  
Operation  
D4  
D3  
D2  
Description of Action  
0
0
0
POR and/or external reset  
recovery  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
Reserved  
P31 transition  
P32 transition  
P33 transition  
P27 transition  
Logical NOR of P20 through P23  
Logical NOR of P20 through P27  
Note: Any Port 2 bit defined as an output drives the corresponding  
input to the default state to allow the remaining inputs to control  
the AND/OR function. Refer to SMR2 register on page 58 for  
other recover sources.  
Stop-Mode Recovery Delay Select (D5)  
This bit, if low, disables the 5 ms RESET delay after Stop-Mode Recovery. The  
default configuration of this bit is 1. If the “fast” wake up is selected, the Stop-  
Mode Recovery source must be kept active for at least 5 TpC.  
Stop-Mode Recovery Edge Select (D6)  
A 1 in this bit position indicates that a High level on any one of the recovery  
sources wakes the Z86L81/86/98 from STOP Mode. A 0 indicates Low level  
recovery. The default is 0 on POR.  
Cold or Warm Start (D7)  
This bit is read only, and it is set to 1 when the device is recovered from stop  
mode. The bit is set to 0 when the device reset is other than Stop Mode Recovery  
(SMR).  
Stop-Mode Recovery Register 2 (SMR2)  
This register determines the mode of Stop-Mode Recovery for SMR2 (Figure 32).  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
59  
SMR2 (0F) DH  
D7 D6 D5 D4 D3 D2 D1 D0  
Reserved (Must be 0)  
Reserved (Must be 0)  
Stop-Mode Recovery Source 2  
000 POR Only *  
001 NAND P20, P21, P22, P23  
010 NAND P20, P21, P22, P23, P24, P25, P26  
011 NOR P31, P32, P33  
100 NAND P31, P32, P33  
101 NOR P31, P32, P33, P00, P07  
110 NAND P31, P32, P33, P00, P07  
111 NAND P31, P32, P33, P20, P21, P22  
Reserved (Must be 0)  
Recovery Level * *  
0 Low  
1 High  
Reserved (Must be 0)  
Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.  
* Default setting after reset  
* * At the XOR gate input  
Figure 32. Stop-Mode Recovery Register 2 ((0F) DH:D2–D4, D6 Write Only)  
If SMR2 is used in conjunction with SMR, either of the specified events causes a  
Stop-Mode Recovery.  
Note: Port pins configured as outputs are ignored as an SMR or  
SMR2 recovery source. For example, if the NAND or P23–P20  
is selected as the recovery source and P20 is configured as an  
output, the remaining SMR pins (P23–P21) form the NAND  
equation.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
60  
Watch-Dog Timer Mode Register (WDTMR)  
The WDT is a retriggerable one-shot timer that resets the Z8 if it reaches its termi-  
nal count. The WDT must initially be enabled by executing the WDT instruction.  
On subsequent executions of the WDT instruction, the WDT is refreshed. The  
WDT circuit is driven by an on-board RC oscillator or external oscillator from the  
XTAL1 pin. The WDT instruction affects the Zero (Z), Sign (S), and Overflow (V)  
flags.  
The POR clock source is selected with bit 4 of the WDT register. Bit 0 and 1 con-  
trol a tap circuit that determines the minimum time-out period. Bit 2 determines  
whether the WDT is active during HALT, and Bit 3 determines WDT activity during  
STOP. Bits 5 through 7 are reserved (Figure 8). This register is accessible only  
during the first 61 processor cycles (122 XTAL clocks) from the execution of the  
first instruction after Power-On-Reset, Watch-Dog Reset, or a Stop-Mode  
Recovery (Figure 33). After this point, the register cannot be modified by any  
means (intentional or otherwise). The WDTMR cannot be read. The register is  
located in Bank F of the Expanded Register Group at address location 0Fh. It is  
organized as shown in Figure 33.  
WDTMR (0F) 0F  
D7 D6 D5 D4 D3 D2 D1 D0  
WDT TAP INT RC OSC  
00  
01*  
10  
11  
5 ms min  
10 ms min  
20 ms min  
80 ms min  
WDT During HALT  
0 OFF  
1 ON *  
WDT During STOP  
0 OFF  
1 ON *  
Reserved (Must be 0)  
Reserved (Must be 0)  
* Default setting after reset  
Figure 33. Watch-Dog Timer Mode Register (Write Only)  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
61  
WDT Time Select (D0, D1)  
Selects the WDT time period. It is configured as indicated in Table 17.  
Table 17.WDT Time Select*  
D1  
D0  
0
Timeout of Internal RC OSC  
5 ms min  
0
0
1
10 ms min  
1
0
20 ms min  
1
1
80 ms min  
Note:  
*TpC = XTAL clock cycle. The default on reset is 10 ms.  
WDTMR During HALT (D2)  
This bit determines whether or not the WDT is active during HALT Mode. A 1 indi-  
cates active during HALT. The default is 1. See Figure 34.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
62  
*CLR2  
CLK  
18 Clock RESET  
RESET  
5 Clock Filter  
Generator  
Internal  
RESET  
Active  
High  
WDT  
TAP SELECT  
CK Source  
Select  
(WDTMR)  
XTAL  
M
U
X
POR  
CLK  
*CLR1  
5 ms 10 ms 20 ms 80 ms  
INTERNAL  
WDT/POR Counter Chain  
RC  
OSC.  
Low Operating  
Voltage Det.  
V
+
-
DD  
VBO/VLV  
2V REF.  
WDT  
V
CC  
From Stop  
Mode  
Recovery  
Source  
12-ns Glitch Filter  
Stop Delay  
Select (SMR)  
* CLR1 and CLR2 enable the WDT/POR and 18 Clock Reset timers upon a Low-to-High input translation.  
Figure 34. Resets and WDT  
WDTMR During STOP (D3)  
This bit determines whether or not the WDT is active during STOP Mode.  
Because the XTAL clock is stopped during STOP Mode, the on-board RC has to  
be selected as the clock source to the WDT/POR counter. A 1 indicates active  
during STOP. The default is 1.  
Clock Source for WDT (D4)  
This bit determines which oscillator source is used to clock the internal POR and  
WDT counter chain. If the bit is a 1, the internal RC oscillator is bypassed and the  
POR and WDT clock source is driven from the external pin, XTAL1. The default  
configuration of this bit is 0, which selects the RC oscillator.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
63  
Mask Selectable Options  
There are seven Mask Selectable Options to choose from based on ROM code  
requirements. These are listed in Table 18.  
Table 18.Mask Selectable Options  
RC/Other  
RC/XTAL  
On/Off  
On/Off  
On/Off  
On/Off  
On/Off  
On/Off  
32 kHz XTAL  
Port 04-07 Pull-Ups  
Port 00-03 Pull-Ups  
Port 20-27 Pull-Ups  
Port 3 Pull-Ups  
Port0: 0-3 Mouse Mode 0.4 V Trip  
DD  
Brown-Out Voltage/Standby  
An on-chip Voltage Comparator checks that the VCC is at the required level for  
correct operation of the device. Reset is globally driven when VCC falls below VBO  
A small further drop in VCC causes the XTAL1 and XTAL2 circuitry to stop the  
crystal or resonator clock. Typical Low-Voltage power consumpion in this Low  
Voltage Standby mode (ILV) is about 20 A. If the VCC is allowed to stay above  
Vram, the RAM content is preserved. When the power level is returned to above  
.
VBO, the device performs a POR and functions normally.  
Low-Voltage Detection and Flag  
A Low-Voltage Detection circuit can be used optionally when the voltage  
decreases to VLVD. Expanded Register Bank 0Dhregister 0Chbit 0 and 1 are used  
for this option.  
Bit D0 is used to enable/disable this function.  
Bit D1 is the status flag bit of the LVD.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
64  
Expanded Register File Control Registers (0D)  
The expanded register file control registers (0D) are shown in Figure 35 through  
Figure 38.  
CTR0 (0D) 0H  
D7 D6 D5 D4 D3 D2 D1 D0  
0 P34 as Port Output *  
1 Timer8 Output  
0 Disable T8 Timeout Interrupt  
1 Enable T8 Timeout Interrupt  
0 Disable T8 Data Capture Interrupt  
1 Enable T8 Data Capture Interrupt  
00 SCLK on T8  
01 SCLK/2 on T8  
10 SCLK/4 on T8  
11 SCLK/8 on T8  
R 0 No T8 Counter Timeout  
R 1 T8 Counter Timeout Occurred  
W 0 No Effect  
W 1 Reset Flag to 0  
0 Modulo-N  
1 Single Pass  
R 0 T8 Disabled *  
R 1 T8 Enabled  
W 0 Stop T8  
W 1 Enable T8  
* Default setting after reset  
Figure 35. T8 Control Register ((0D) OH: Read/Write Except Where Noted)  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
65  
CTR1 (0D) 1H  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Transmit Mode  
R/W  
0
1
T16_OUT is 0 initially  
T16_OUT is 1 initially  
Demodulation Mode  
R
R
0
1
No Falling Edge Detection  
Falling Edge Detection  
W
W
0
1
No Effect  
Reset Flag to 0  
Transmit Mode  
R/W  
0
1
T8_OUT is 0 initially  
T8_OUT is 1 initially  
Demodulation Mode  
R
R
0
1
No Rising Edge Detection  
Rising Edge Detection  
W
W
0
1
No Effect  
Reset Flag to 0  
Transmit Mode  
0
0
1
0
1
0
Normal Operation  
Ping-Pong Mode  
T16_OUT = 0  
1 1 T16_OUT = 1  
Demodulation Mode  
No Filter  
0
0
0
1
4 SCLK Cycle Filter  
1
0 8 SCLK Cycle Filter  
1 1 Reserved  
Transmit Mode/T8/T16 Logic  
0
0
1
0
1
0
AND  
OR  
NOR  
1 1 NAND  
Demodulation Mode  
0
0
1
0
1
0
Falling Edge Detection  
Rising Edge Detection  
Both Edge Detection  
1 1 Reserved  
Transmit Mode  
P36 as Port Output *  
P36 as T8/T16_OUT  
Demodulation Mode  
0
1
0
1
P31 as Demodulator Input  
P20 as Demodulator Input  
Transmit/Demodulation Mode  
0
1
Transmit Mode *  
Demodulation Mode  
* Default setting after reset  
Figure 36. T8 and T16 Common Control Functions ((0D) 1h: Read/Write)  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
66  
Notes:  
Care must be taken in differentiating Transmit Mode from  
Demodulation Mode. Depending on which of these two modes  
is operating, the CTR1 bit has different functions.  
Changing from one mode to another cannot be done without  
disabling the counter/timers.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
67  
CTR2 (0D) 02H  
D7 D6 D5 D4 D3 D2 D1 D0  
0 P35 is Port Output *  
1 P35 is TC16 Output  
0 Disable T16 Timeout Interrupt  
1 Enable T16 Timeout Interrupt  
0 Disable T16 Data Capture Interrupt  
1 Enable T16 Data Capture Interrupt  
0 0 SCLK on T16  
0 1 SCLK/2 on T16  
1 0 SCLK/4 on T16  
1 1 SCLK/8 on T16  
R 0 No T16 Timeout  
R 1 T16 Timeout Occurs  
W 0 No Effect  
W 1 Reset Flag to 0  
Transmit Mode  
0 Modulo-N for T16  
0 Single Pass for T16  
Demodulator Mode  
0 T16 Recognizes Edge  
1 T16 Does Not Recognize Edge  
R 0 T16 Disabled *  
R 1 T16 Enabled  
W 0 Stop T16  
* Default setting after reset  
W 1 Enable T16  
Figure 37. T16 Control Register ((0D) 2h: Read/Write Except Where Noted)  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
68  
LVD (0D) 0CH  
D7 D6 D5 D4 D3 D2 D1 D0  
Low-Voltage Detection at V  
0: Disable *  
+ 0.4 V  
BO  
1: Enable  
LVD Flag (Read only)  
0: LVD flag reset *  
1: LVD flag set  
Reserved (Must be 0)  
* Default  
Figure 38. Low-Voltage Detection  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
69  
Expanded Register File Control Registers (0F)  
The expanded register file control registers (0F) are shown in Figure 39 through  
Figure 52.  
SMR (0F) 0B  
D7 D6 D5 D4 D3 D2 D1 D0  
SCLK/TCLK Divide-by-16  
0 OFF *  
1 ON  
Reserved (Must be 0)  
Stop-Mode Recovery Source  
000 POR Only *  
001 Reserved  
010 P31  
011 P32  
100 P33  
101 P27  
110 P2 NOR 0-3  
111 P2 NOR 0-7  
Stop Delay  
0 OFF  
1 ON *  
Stop Recovery Level * * *  
0 Low *  
1 High  
Stop Flag  
0 POR *  
1 Stop Recovery * *  
* Default setting after reset  
* * Default setting after reset and stop-mode recovery  
* * * At the XOR gate input  
Figure 39. Stop-Mode Recovery Register ((0F) 0Bh: D6–D0=Write Only, D7=Read  
Only)  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
70  
SMR2 (0F) DH  
D7 D6 D5 D4 D3 D2 D1 D0  
Reserved (Must be 0)  
Reserved (Must be 0)  
Stop-Mode Recovery Source 2  
000 POR Only *  
001 NAND P20, P21, P22, P23  
010 NAND P20, P21, P22, P23, P24, P25, P26  
011 NOR P31, P32, P33  
100 NAND P31, P32, P33  
101 NOR P31, P32, P33, P00, P07  
110 NAND P31, P32, P33, P00, P07  
111 NAND P31, P32, P33, P20, P21, P22  
Reserved (Must be 0)  
Recovery Level * *  
0 Low  
1 High  
Reserved (Must be 0)  
Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.  
* Default setting after reset  
* * At the XOR gate input  
Figure 40. Stop-Mode Recovery Register 2 ((0F) 0Dh:D2–D4, D6 Write Only)  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
71  
WDTMR (0F) 0F  
D7 D6 D5 D4 D3 D2 D1 D0  
WDT TAP INT RC OSC  
00  
01*  
10  
11  
5 ms min  
10 ms min  
20 ms min  
80 ms min  
WDT During HALT  
0 OFF  
1 ON *  
WDT During STOP  
0 OFF  
1 ON *  
Reserved (Must be 0)  
Reserved (Must be 0)  
* Default setting after reset  
Figure 41. Watch-Dog Timer Register ((0F) 0Fh: Write Only)  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
72  
PCON (FH) 00H  
D7 D6 D5 D4 D3 D2 D1 D0  
Comparator Output Port 3  
0 P34, P37 Standard Output *  
1 P34, P37 Comparator Output  
Reserved (Must be 1)  
Port 0  
0: Open-Drain  
1: Push-Pull *  
Reserved (Must be 1)  
* Default setting after reset  
Figure 42. Port Configuration Register (PCON) ((0F) 0h: Write Only)  
R246 P2M  
D7 D6 D5 D4 D3 D2 D1 D0  
P27–P20 I/O Definition  
0 Defines bit as OUTPUT  
1 Defines bit as INPUT *  
* Default setting after reset  
Figure 43. Port 2 Mode Register (F6h: Write Only)  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
73  
R247 P3M  
D7 D6 D5 D4 D3 D2 D1 D0  
0: Port 2 Open Drain  
1: Port 2 Push-Pull  
0= P31, P32 Digital Mode  
1= P31, P32 Analog Mode  
Reserved (Must be 0)  
* Default setting after reset  
Figure 44. Port 3 Mode Register (F7h: Write Only)  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
74  
R248 P01M  
D7 D6 D5 D4 D3 D2 D1 D0  
P00–P03 Mode  
0: Output  
1: Input *  
Reserved; must be 0  
Reserved; must be 1  
Reserved; must be 0  
P07–P04 Mode  
0: Output  
1: Input *  
Reserved; must be 0  
* Default setting after reset  
Figure 45. Port 0 and 1 Mode Register (F8h: Write Only)  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
75  
R249 IPR  
D7 D6 D5 D4 D3 D2 D1 D0  
Interrupt Group Priority  
000 Reserved  
001 C > A > B  
010 A > B >C  
011 A > C > B  
100 B > C > A  
101 C > B > A  
110 B > A > C  
111 Reserved  
IRQ1, IRQ4, Priority  
(Group C)  
0: IRQ1 > IRQ4  
1: IRQ4 > IRQ1  
IRQ0, IRQ2, Priority  
(Group B)  
0: IRQ2 > IRQ0  
1: IRQ0 > IRQ2  
IRQ3, IRQ5, Priority  
(Group A)  
0: IRQ5 > IRQ3  
1: IRQ3 > IRQ5  
Reserved; must be 0  
Figure 46. Interrupt Priority Register (F9h: Write Only)  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
76  
R250 IRQ  
D7 D6 D5 D4 D3 D2 D1 D0  
IRQ0 = P32 Input  
IRQ1 = P33 Input  
IRQ2 = P31 Input  
IRQ3 = T16  
IRQ4 = T8  
IRQ5 = LVD  
Inter Edge  
P31  
P31  
P31  
P32= 00  
P32= 01  
P32= 10  
P31 P32 = 11  
Figure 47. Interrupt Request Register (FAh: Read/Write)  
R251 IMR  
D7 D6 D5 D4 D3 D2 D1 D0  
1 Enables IRQ5–IRQ0  
(D0 = IRQ0)  
Reserved (Must be 0)  
0 Master Interrupt Disable *  
1 Master Interrupt Enable * *  
* Default setting after reset  
* * Only by using E1, D1 instruction; D1 is required before changing the IMR register  
Figure 48. Interrupt Mask Register (FBh: Read/Write)  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
77  
R252 Flags  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
User Flag F1  
User Flag F2  
Half Carry Flag  
Decimal Adjust Flag  
Overflow Flag  
Sign Tag  
Zero Flag  
Carry Flag  
Figure 49. Flag Register (FCh: Read/Write)  
R253 RP  
D7 D6 D5 D4 D3 D2 D1 D0  
Expanded Register Bank Pointer  
Working Register Pointer  
Default setting after reset = 0000 0000  
Figure 50. Register Pointer (FDh: Read/Write)  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
78  
R254 SPH  
D7 D6 D5 D4 D3 D2 D1 D0  
General-Purpose Register  
Byte (SP15–SP8)  
Figure 51. Stack Pointer High (FEh: Read/Write)  
R255 SPL  
D7 D6 D5 D4 D3 D2 D1 D0  
Stack Pointer Lower  
Byte (SP7–SP0)  
Figure 52. Stack Pointer Low (FFh: Read/Write)  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
79  
Package Information  
Package information is shown in Figure 53, Figure 54, and Figure 55.  
Figure 53. 28-Pin DIP Package Diagram  
Note:  
Please check with Maxim on the actual bonding diagram and  
coordinate for chip-on-board assembly.  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
80  
Controlling dimensions: MM  
Leads are coplanar within  
.004 inch.  
Millimeter  
Inch  
Max  
Symbol  
Min  
Max  
Min  
A
A1  
A2  
B
2.40  
0.10  
2.24  
0.36  
0.23  
17.78  
7.40  
2.64  
0.30  
2.44  
0.46  
0.30  
18.00  
7.60  
.094  
.004  
.088  
.014  
.009  
.700  
.291  
.104  
.012  
.096  
.018  
.012  
.710  
.299  
C
D
E
1.27 typ  
.050 typ  
e
H
h
10.00  
0.30  
0.61  
0.97  
10.65  
0.71  
1.00  
1.07  
0.394  
.419  
.028  
.039  
.042  
.012  
.024  
.038  
L
Q1  
Figure 54. 28-Pin SOIC Package Diagram  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
81  
Figure 55. 28-Pin SSOP Package Diagram  
19-4615; Rev 0; 4/09  
Z86L81/86/98  
28-Pin Low-Voltage Infrared Microcontrollers  
82  
Ordering Information  
Z86L81/86/98—8.0 MHz  
28-Pin DIP  
28-Pin SOIC  
28-Pin SSOP  
Die Form  
Z86L8108PSC  
Z86L8108SSC  
Z86L8108HSC  
Z86L8608PSC  
Z86L8608SSC  
Z86L8608HSC  
Z86L9808PSC  
Z86L9808SSC  
Z86L9808HSC  
Please contact Maxim.  
For fast results, contact your local Maxim sales office for assistance in ordering  
the part required.  
Codes  
P = Plastic DIP  
Package  
S = SOIC (Small Outline Integrated Circuit)  
H = SSOP (Shrink Small Outline Package)  
S = 0 °C to +70 °C  
Temperature  
Speed  
8 = 8.0 MHz  
C = Plastic Standard  
Environmental  
G = Lead Free  
Example  
Z
86L98  
08  
P
S
C
is a Z86L98, 8 MHz, DIP, 0 °C to 70 °C, Plastic Standard  
Flow  
Environmental Flow  
Temperature  
Package  
Speed  
Product Number  
Maxim Prefix  
19-4615; Rev 0; 4/09  

相关型号:

Z86L9808PSC

28-Pin Low-Voltage Infrared Microcontrollers
MAXIM

Z86L9808SSC

28-Pin Low-Voltage Infrared Microcontrollers
MAXIM

Z86L987HZ008SC

Microcontroller, 8-Bit, MROM, Z8 CPU, 8MHz, CMOS, PDIP40,
IXYS

Z86L987PZ008SC

Microcontroller, 8-Bit, MROM, 8MHz, CMOS, PDIP40, PLASTIC, DIP-40
IXYS

Z86L987SZ008SC

Microcontroller, 8-Bit, MROM, Z8 CPU, 8MHz, CMOS, PDIP40,
IXYS

Z86L98ZEM

Z8 In-Circuit Emulator
ZILOG

Z86L99

Low-Voltage Micro controllers with ADC
ZILOG

Z86L990

Low-Voltage Micro controllers with ADC
ZILOG

Z86L9900100ZC0

Evaluation Board IR Controllers
ZILOG
ZILOG

Z86L990FSC

Microcontroller, 8-Bit, MROM, CMOS, PQFP44, QFP-44
ZILOG

Z86L990HZ008SC

Low-Voltage Micro controllers with ADC
ZILOG