MLX81215LLQAA000TU [MELEXIS]

BLDC Motor Controller;
MLX81215LLQAA000TU
型号: MLX81215LLQAA000TU
厂家: Melexis Microelectronic Systems    Melexis Microelectronic Systems
描述:

BLDC Motor Controller

文件: 总18页 (文件大小:463K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MLX81205/07/10/15  
Features  
Microcontroller: MLX16-FX RISC CPU  
o
o
o
o
16 bit RISC CPU with 20DMIPS and Power-Saving-Modes  
Co-processor for fast multiplication and division  
Flash and EEPROM memory with EEC  
In-circuit debug and emulation  
Supported bus interfaces:  
o
LIN-Interface with integrated LIN transceiver supporting LIN 2.x, certified LIN protocol  
software provided by Melexis  
o
o
o
In-Module-Programming (Flash and EE) via pin LIN using a special Melexis fast protocol  
PWM-Interface  
Full duplex SPI, Master/Slave, double-buffered, speed programmable. DMA access. Flash  
and EEPROM programming also possible via SPI.  
TruSense Motor Control Technology  
o
o
o
Patented algorithms for sensor-less 3-phase sine and trapezoidal motor control  
Phase voltage integration filter for BEMF voltage sensing at lowest speeds  
Position dependent phase inductance sensing via shunt current measurements at stand still  
and low to medium speeds  
o
o
Support of Star and Delta based motor configurations without the need for center star point  
Support of 3-phase switched reluctance motor control  
Voltage Regulator  
o
o
o
o
Direct powered from 12V board net with low voltage detection  
Operating voltage VS = 5V to 18V  
Internal voltage regulator with possibility to use external regulator transistor  
Very low standby current, < 30µA in sleep mode, wake-up possible via LIN or local sources  
Pre-Driver  
o
Pre-driver (~25Rdson) for all 3 N-FET half bridges with programmable Inter-Lock-Delay  
and slope control for optimal EMC and thermal performance during power N-FET switching  
Monitoring of Drain-Source voltages of the N-FETs  
o
Periphery  
o
4 independent 16 bit timer modules with capture and compare, and additional software  
timer  
o
o
o
o
o
o
o
o
3 programmable 12 bit PWM units with programmable frequencies  
10 bit ADC converter (2µs conversion time) and DMA access  
On-chip temperature sensor with ±10K accuracy  
System-clock-independent fully integrated watchdog  
32 MHz ±5% internal RC oscillator with PLL  
Optional crystal oscillator  
Load dump and brown out interrupt function  
Integrated shunt current amplifier with programmable gain  
Product Abstract  
TFR / CPA  
Page 1 of 18  
Rev 3.9  
11-May-2012  
MLX81205/07/10/15  
Applications  
The MLX81205/07/10/15 controls BLDC motors via external FET transistors for:  
o
o
o
Oil-, water-, fuel-pumps  
Blowers, compressors  
Positioning actuators  
Family Concept  
MLX81205  
MLX81207  
MLX81210  
MLX81215  
Flash Memory [kByte]  
RAM [kByte]  
32  
4
32  
4
32  
8
64  
8
EEPROM [Byte]  
Package  
384  
384  
384  
384  
QFN32  
QFN48  
TQFP EP 48  
QFN48  
TQFP EP 48  
QFN48  
TQFP EP 48  
Support of active high side reverse  
polarity protection  
No  
Yes  
Yes  
Yes  
Current shunt measurement  
possibility  
High side  
High side  
Low side,  
High side  
Low side,  
High side  
UART  
SPI  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Support of sensor based BLDC  
motor control  
No  
Support of Switched Reluctance  
(SR) motor control  
No  
No  
32  
No  
No  
37  
No  
Yes  
48  
Yes  
Yes  
48  
5V Regulator support for 5V  
external supplies (CAN support)  
Bonded pins in package  
Pin compatibility  
MLX81210 and MLX81215 are pin compatible  
Table 1 – Family Options  
Product Abstract  
TFR / CPA  
Page 2 of 18  
Rev 3.9  
11-May-2012  
MLX81205/07/10/15  
Ordering Information  
Order Code [1]  
Temp.  
Range  
Package  
Delivery  
Remark  
MLX81205 LLQ-xAA-000-TU  
MLX81205 LLQ-xAA-000-RE  
MLX81207 LLQ-xAA-000-TU  
MLX81207 LLQ-xAA-000-RE  
MLX81207 LPF-xAA-000-TR  
MLX81207 LPF-xAA-000-RE  
MLX81210 LLQ-xAA-000-TU  
MLX81210 LLQ-xAA-000-RE  
MLX81210 LPF-xAA-000-TR  
MLX81210 LPF-xAA-000-RE  
MLX81215 LLQ-xAA-000-TU  
MLX81215 LLQ-xAA-000-RE  
MLX81215 LPF-xAA-000-TR  
MLX81215 LPF-xAA-000-RE  
-40 - 150 °C  
-40 - 150 °C  
-40 - 150 °C  
-40 - 150 °C  
-40 - 150 °C  
-40 - 150 °C  
-40 - 150 °C  
-40 - 150 °C  
-40 - 150 °C  
-40 - 150 °C  
-40 - 150 °C  
-40 - 150 °C  
-40 - 150 °C  
-40 - 150 °C  
QFN32 5x5  
QFN32 5x5  
QFN48 7x7  
QFN48 7x7  
TQFP EP 48 7x7  
TQFP EP 48 7x7  
QFN48 7x7  
Tube  
Reel  
Tube  
Reel  
Tray  
Reel  
Tube  
Reel  
Tray  
Reel  
Tube  
Reel  
Tray  
Reel  
QFN48 7x7  
TQFP EP 48 7x7  
TQFP EP 48 7x7  
QFN48 7x7  
QFN48 7x7  
TQFP EP 48 7x7  
TQFP EP 48 7x7  
Table 2 – Ordering Information  
[1].See Marking/Order Code.  
Product Abstract  
TFR / CPA  
Page 3 of 18  
Rev 3.9  
11-May-2012  
MLX81205/07/10/15  
Contents  
1.  
2.  
3.  
FUNCTIONAL DIAGRAM ........................................................................................................................ 5  
PIN DESCRIPTION .................................................................................................................................. 6  
ELECTRICAL CHARACTERISTICS........................................................................................................ 7  
3.1  
3.2  
O
PERATING ONDITIONS .................................................................................................................... 7  
C
ABSOLUTE MAXIMUM RATINGS ............................................................................................................ 7  
4.  
APPLICATION EXAMPLES..................................................................................................................... 8  
4.1  
SENSOR-LESS BLDC MOTOR CONTROL ON THE LIN-BUS OR VIA PWM-INTERFACE WITH REVERSE  
POLARITY PROTECTION AND CURRENT SENSING................................................................................................. 8  
4.2 LESS BLDC MOTOR  
POLARITY PROTECTION IN THE HIGH SIDE PATH................................................................................................ 10  
S
ENSOR  
-
CONTROL ON THE LIN-BUS OR VIA PWM-INTERFACE WITH REVERSE  
4.3  
4.4  
4.5  
S
S
S
ENSOR BASED BLDC MOTOR CONTROL .......................................................................................... 11  
ENSOR  
-
-
LESS BLDC MOTOR  
LESS BLDC MOTOR  
C
C
ONTROL WITH ABSOLUTE POSITION SENSING ....................................... 12  
ONTROL VIA A CAN-BUS-INTERFACE.................................................. 13  
ENSOR  
5.  
6.  
MECHANICAL SPECIFICATION........................................................................................................... 14  
5.1  
QFN................................................................................................................................................ 14  
5.1.1. QFN32 5x5 (32 leads)...............................................................................................................................14  
5.1.2. QFN48 7x7 (48 leads)...............................................................................................................................14  
5.2  
TQFP EP 48 7X7 (48 LEADS)........................................................................................................... 15  
MARKING/ORDER CODE ..................................................................................................................... 16  
6.1  
6.2  
M
ARKING MLX81205/07/10/15........................................................................................................ 16  
O
RDER CODE MLX81205/07/10/15 ................................................................................................. 16  
7.  
8.  
ASSEMBLY INFORMATION.................................................................................................................. 17  
DISCLAIMER.......................................................................................................................................... 18  
Product Abstract  
TFR / CPA  
Page 4 of 18  
Rev 3.9  
11-May-2012  
MLX81205/07/10/15  
1. Functional Diagram  
RTG  
VDDA  
CLKO  
OSC1  
OSC2  
VREF  
VBAT_S1  
VBAT_S2  
VS  
VDDD  
fmain  
V5IN  
V5R  
VS  
VREF  
ISENSH  
ISENSL  
TEMP  
VBAT_S1  
VBAT_S2  
GND_S1  
GND_S2  
U
GND_S1  
GND_S2  
V
W
T
IOHV  
PHASEINT  
IOHV  
IO1  
...  
IO9  
......  
fmain  
......  
IO1  
IO2  
IO3  
CP0  
HS0  
LS0  
U
SHU  
IO4  
IO5  
CP1  
HS1  
IO6  
IO7  
IO8  
IO9  
ADC  
SPI  
LS1  
V
SHV  
CP2  
HS2  
LS2  
LIN  
W
GNDA  
SHW  
GNDD  
GNDCAP  
GNDDRV  
T
TO  
TI0 TI1  
Figure 1 - Block Diagram  
Black: common for all versions,  
Blue: additional pins / functionality for MLX81207,  
Blue + red: additional pins / functionality for MLX81210 / MLX81215  
Product Abstract  
TFR / CPA  
Page 5 of 18  
Rev 3.9  
11-May-2012  
MLX81205/07/10/15  
2. Pin Description  
Name  
Type  
Function  
MLX81205  
MLX81207  
MLX81210  
MLX81215  
Battery Supply  
VS  
P
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
3.3V External MOS Gate Control  
3.3V Supply  
RTG  
O
VDDA  
V5R  
P
5V Regulator Output for external NFET  
5V Regulator Input  
P
V5IN  
VDDD  
GNDD  
I
1.8V Regulator output  
P
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Digital ground  
GND  
Digital ground  
GNDCAP GND  
GNDDRV GND  
Driver ground  
X
X
X
X
X
X
X
X
X
X
X
Analog ground  
GNDA  
LIN  
GND  
HVIO  
HVIO  
I
Connection to LIN bus or PWM interface  
General purpose IO pin  
IOHV  
TI0  
Test input, debug interface  
Test input, debug interface  
TI1  
I
Test output, debug interface  
TO  
O
Quarz interface input  
OSC1  
OSC2  
IO1  
I
Quarz interface ouput  
O
General purpose IO pin (Low voltage 3.3V)  
General purpose IO pin (Low voltage 3.3V)  
General purpose IO pin (Low voltage 3.3V)  
General purpose IO pin (Low voltage 3.3V)  
General purpose IO pin (Low voltage 3.3V)  
General purpose IO pin (Low voltage 3.3V)  
General purpose IO pin (Low voltage 3.3V)  
General purpose IO pin (Low voltage 3.3V)  
General purpose IO pin (Low voltage 3.3V)  
Switchable 250kHz clock output to VREF level  
Phase U input to BEMF sensing blocks  
Phase V input to BEMF sensing blocks  
Phase W input to BEMF sensing blocks  
Reference input to BEMF sensing blocks  
Clamped 8V or 12V ref. voltage for bootstrap  
High side bootstrap capacitor driver 2  
N-FET high side gate driver 2  
LVIO  
LVIO  
LVIO  
LVIO  
LVIO  
LVIO  
LVIO  
LVIO  
LVIO  
HVO  
HVI  
IO2  
IO3  
IO4  
IO5  
IO6  
IO7  
IO8  
IO9  
CLKO  
SHU  
SHV  
SHW  
T
X
HVI  
HVI  
HVI  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
VREF  
CP2  
HS2  
W
P
HVIO  
HVIO  
HVI  
Phase W input to HS2 buffer and BEMF sensing blocks  
N-FET low side gate driver 2  
LS2  
CP1  
HS1  
V
HVO  
HVIO  
HVIO  
HVI  
High side bootstrap capacitor driver 1  
N-FET high side gate driver 1  
Phase V input to HS1 buffer and BEMF sensing blocks  
N-FET low side gate driver 1  
LS1  
CP0  
HS0  
U
HVO  
HVIO  
HVIO  
HVI  
High side bootstrap capacitor driver 0  
N-FET high side gate driver 0  
Phase U input to HS0 buffer and BEMF sensing blocks  
N-FET low side gate driver 0  
LS0  
HVO  
VS high side input for current sensing  
VS low side input for current sensing  
VBAT_S1 HVI  
VBAT_S2 HVI  
Product Abstract  
TFR / CPA  
Page 6 of 18  
Rev 3.9  
11-May-2012  
MLX81205/07/10/15  
GND high side input for current sensing  
GND low side input for current sensing  
GND_S1  
GND_S2  
Pin count  
LVI  
LVI  
X
X
X
X
32  
37  
48  
48  
Table 3 - Pin Description MLX81205 / MLX81207 / MLX81210 / MLX81215  
3. Electrical Characteristics  
All voltages are referenced to ground (GND). Positive currents flow into the IC. The absolute maximum  
ratings given in the table below are limiting values that do not lead to a permanent damage of the device but  
exceeding any of these limits may do so. Long term exposure to limiting values may affect the reliability of  
the device. Reliable operation of the MLX81205/07/10/15 is only specified within the limits shown in  
Operating conditions.  
3.1 Operating Conditions  
Parameter  
Symbol  
Min  
5
Max  
18  
Unit  
V
IC supply voltage  
VS  
Operating ambient temperature  
Tamb  
-40  
+150 [1]  
°C  
Table 4 - Operating Conditions  
[1] Target temperature specification after qualification. With temperature applications at TA>125°C a reduction of chip internal power  
dissipation with external supply transistor is mandatory. The extended temperature range is only allowed for a limited period of time,  
customer’s mission profile has to be agreed by Melexis as a mandatory part of the Part Submission Warrant.  
3.2 Absolute Maximum Ratings  
Parameter  
Symbol Condition  
Min Max  
Unit  
T = 2 min  
-0.3  
28  
45  
IC supply voltage  
VS  
V
T < 500 ms  
Maximum reverse current into any pin  
-10  
+10  
+10  
mA  
mA  
V
Maximum sum of reverse currents into all pins  
DC voltage on LVIO pins, OSC<2:1>, GND_S<2:1>  
DC voltage on HV I/O pin, V5R pin  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
VDDA+0.3  
VS+0.3  
18  
V
DC voltage on drivers supply pin VREF  
V
DC voltage on drivers control pins (CLKO, LS<2:0>)  
DC voltage on drivers CP<2:0>, HS<2:0> pins  
VREF+0.3  
VS + VREF  
V
V
DC voltage on phases related pins (U, V, W, SHU,  
SHV, SHW, T, VBAT_S<2:1>)  
-0.3  
-6  
VS+1.5  
+6  
V
Human body model, equivalent to  
discharge 100pF with 1.5k,  
ESD capability of pin LIN  
ESDBUSHB  
ESDHB  
kV  
kV  
Human body model, equivalent to  
discharge 100pF with 1.5k,  
ESD capability of any other pins  
-2  
+2  
Maximum latch–up free current at any Pin  
Junction temperature [1]  
Storage temperature  
Rthjc QFN32  
ILATCH  
Tvj  
-250  
+250  
+155  
+150  
10  
mA  
°C  
Tstg  
-55  
°C  
K / W  
K / W  
K / W  
Rthjc  
Rthjc QFN48  
5
Rthjc TQFP48  
5.5  
Table 5 - Absolute Maximum Ratings  
Product Abstract  
TFR / CPA  
Page 7 of 18  
Rev 3.9  
11-May-2012  
MLX81205/07/10/15  
[1] Target temperature specification after qualification. With temperature applications at TA>125°C a reduction of chip internal power  
dissipation with external supply transistor is mandatory. The extended temperature range is only allowed for a limited period of time,  
customer’s mission profile has to be agreed by Melexis as a mandatory part of the Part Submission Warrant.  
4. Application Examples  
The following sections show typical application examples[1].  
4.1 Sensor-less BLDC Motor Control on the LIN-Bus or via PWM-Interface with  
reverse polarity protection and current sensing  
In the sample application of Figure 2, the MLX81205 can realize the sensor-less driving of a BLDC motor via  
three external power N-FET half bridges with only a few external components. The high side N-FET driving is  
done with a bootstrap output stage. Reverse polarity protection of the bridge is realized with an external  
power FET in the ground path. An external temperature sensor is connected to the 10 bit ADC via pin IO1.  
The integrated watchdog with a dedicated separate RC-oscillator is monitoring application integrity. The  
communication interface could be LIN or a PWM interface. The pin LIN can also be used as wake-up source  
and to program the Flash memory.  
The motor currents are measured by a shunt resistor in the high side path. In case the current exceeds the  
programmed threshold, the bridge can be switched off automatically and / or a software interrupt can be  
generated. The motor current can also be measured by the 10-bit ADC converter.  
The patented Melexis TruSense technology combines two methods to determine the rotor position:  
- The measurement of the induced BEMF voltage at medium and high speeds.  
- The measurement of position dependent coil inductance variations at stand-still and low speeds.  
As a result TruSense allows operation of the motor in the widest dynamic speed range. The motor can be  
driven with block, trapezoidal or sine-wave currents. The motor start-up can be made independent of the  
load conditions according to the application requirements.  
In this example application the motor star point is not available. It is modeled with external resistors from the  
motor phases and connected to T input. Alternatively an artificial IC internal reference point can be chosen  
as shown in the block diagram of the MLX81205/07/10/15.  
[1] The application examples are principal application schematics only. The details need to be worked out for each application schematic  
separately, depending on the application requirements.  
Product Abstract  
TFR / CPA  
Page 8 of 18  
Rev 3.9  
11-May-2012  
MLX81205/07/10/15  
Figure 2 - Typical Sensor-less BLDC Motor Control Application Example with MLX81205  
Product Abstract  
TFR / CPA  
Page 9 of 18  
Rev 3.9  
11-May-2012  
MLX81205/07/10/15  
4.2 Sensor-less BLDC Motor Control on the LIN-Bus or via PWM-Interface with  
reverse polarity protection in the high side path  
In the sample application of Figure 3, the MLX81207 has been selected in order to benefit from the external  
high side reverse polarity protection possibility compared to the application shown in section 4.1.  
All other remarks from the previous application example remain valid.  
Figure 3 – Typical Sensor-less BLDC Motor Control Application Example with MLX81207  
Product Abstract  
TFR / CPA  
Page 10 of 18  
Rev 3.9  
11-May-2012  
MLX81205/07/10/15  
4.3 Sensor based BLDC Motor Control  
In the sample application of, Figure 4, the MLX81207 can realize the driving of a BLDC motor with three Hall  
sensors. An external P-FET is used to derive the 3.3V supply with a higher current capability in order to bring  
power consumption outside the MLX81207.  
VBAT  
CLKO  
VS  
VHIGH  
VBAT_S1  
RTG  
VCC3  
SHUNT  
VBAT_S2  
VREF  
VDDA  
VPROT  
CP2  
CP1  
CP0  
VDDD  
VCC3  
HS0  
U
IO1  
U
LIN / PWM  
LIN  
IO2  
LS0  
VPROT  
MLX81207  
HS1  
V
IO3  
V
IOHV  
LS1  
OSC1  
VPROT  
OSC2  
HS2  
W
W
IO4  
IO5  
LS2  
T
VCC3  
TI0  
TI1  
TO  
VCCHALL  
HALL1  
HALL2  
HALL3  
GND  
GNDA  
GNDD  
GNDCAP  
GNDDRV  
GND  
Figure 4 – Typical Sensor based BLDC Motor Control Application Example with MLX81207  
Product Abstract  
TFR / CPA  
Page 11 of 18  
Rev 3.9  
11-May-2012  
MLX81205/07/10/15  
4.4 Sensor-less BLDC Motor Control with absolute position sensing  
In the sample application of Figure 5, the MLX81210 is working with an absolute position sensor in order to  
measure the position of the gear shaft in throttle valve application systems or any other similar applications,  
where absolute precise position sensing is requested.  
Figure 5 – Typical Sensor-less BLDC Motor Control Application Example with MLX81210 and Triaxis®  
absolute position sensing  
Product Abstract  
TFR / CPA  
Page 12 of 18  
Rev 3.9  
11-May-2012  
MLX81205/07/10/15  
4.5 Sensor-less BLDC Motor Control via a CAN-Bus-Interface  
In this sample application the MLX81215 can realize the sensor-less driving of a BLDC motor via a CAN-Bus  
Interface. System wake-up on CAN-bus traffic is possible. The 5V and a 3.3V voltage supply needed for the  
CAN-Bus, is generated via external N-FET control in order to limit the power dissipation in the package.  
The motor current can be monitored via shunt resistors in the ground and battery path in case the application  
requests a double side monitoring for security reasons.  
Application programming on module level via the CAN-Bus is supported by the SPI-Interface.  
Figure 6 – Typical BLDC Motor Control Application Example on the CAN-Bus with MLX81215  
Product Abstract  
TFR / CPA  
Page 13 of 18  
Rev 3.9  
11-May-2012  
MLX81205/07/10/15  
5. Mechanical Specification  
5.1 QFN  
Figure 7 – QFN Drawing  
5.1.1. QFN32 5x5 (32 leads)  
Symbol [1][2]  
A
A1 A3  
b
D
D2  
E
E2  
e
L
N [3] ND [4] NE [4]  
0.80 0.00  
0.85 0.02  
0,90 0.05  
0.18  
0.25  
0.30  
3.50  
3.60  
3.70  
3.50  
3.60  
3.70  
0.35  
0.40  
0.45  
Min  
QFN32 Nom  
Max  
0.20  
5.00  
5.00  
0.50  
32  
8
8
Table 6 – QFN32 5x5 Package Dimensions  
5.1.2. QFN48 7x7 (48 leads)  
Symbol [1][2]  
A
A1 A3  
b
D
D2  
E
E2  
e
L
N [3] ND [4] NE [4]  
0.80  
0
0.18  
0.25  
0.30  
5.00  
5.10  
5.20  
5.00  
5.10  
5.20  
0.45  
0.50  
0.55  
Min  
QFN48 Nom  
Max  
0.20  
7.00  
7.00  
0.50  
48  
12  
12  
0.85 0.02  
0.90 0.05  
Table 7 - QFN48 7x7 Package Dimensions  
[1] Dimensions and tolerances conform to ASME Y14.5M-1994  
[2] All dimensions are in Millimeters. All angels are in degrees  
[3] N is the total number of terminals  
[4] ND and NE refer to the number of terminals on each D and E side respectively  
Product Abstract  
TFR / CPA  
Page 14 of 18  
Rev 3.9  
11-May-2012  
MLX81205/07/10/15  
5.2 TQFP EP 48 7x7 (48 leads)  
Exposed pad need best  
possible contact to ground for  
exlectrical and thermal reasons  
Figure 8 – TQFP EP 7x7 Drawing  
A
-
-
A1  
0.05 0.95 0.17 0.17  
1.00 0.22 0.20  
A2  
b
b1  
D
D1  
D2  
E
E1  
E2  
e
L
N
Ccc ddd  
Min  
Nom  
0.45  
0.60  
0.75  
-
-
-
-
9.00 7.00 4.00 9.00 7.00 4.00 0.50  
48  
-
Max 1.20 0.15 1.05 0.27 0.23  
0.08 0.08  
Table 8 – TQFP EP 7x7 Package Dimensions  
Notes:  
1. All Dimensioning and Tolerances conform to ASME Y14.5M-1994,  
2. Datum Plane [-|-|-] located at Mould Parting Line and coincident with Lead, where Lead exists, plastic body at bottom of parting line.  
3. Datum [A-B] and [-D-] to be determined at centerline between leads where leads exist, plastic body at datum plane [-|-|-]  
4. To be determined at seating plane [-C-]  
5. Dimensions D1 and E1 do not include Mould protrusion. Dimensions D1 and E1 do not include mould protrusion. Allowable mould  
protrusion is 0.254 mm on D1 and E1 dimensions.  
6. 'N' is the total number of terminals  
7. These dimensions to be determined at datum plane [-|-|-]  
8. Package top dimensions are smaller than bottom dimensions and top of package will not overhang bottom of package.  
9. Dimension b does not include dam bar protrusion, allowable dam bar protrusion shall be 0.08mm total in excess of the "b"  
dimension at maximum material condition, dam bar can not be located on the lower radius of the foot.  
10. Controlling dimension millimeter.  
11. Maximum allowable die thickness to be assembled in this package family is 0.38mm  
12. This outline conforms to JEDEC publication 95 Registration MS-026, Variation ABA, ABC & ABD.  
13. A1 is defined as the distance from the seating plane to the lowest point of the package body.  
14. Dimension D2 and E2 represent the size of the exposed pad. The actual dimensions are specified ion the bonding diagram, and  
are independent from die size.  
15. Exposed pad shall be coplanar with bottom of package within 0.05.  
Product Abstract  
TFR / CPA  
Page 15 of 18  
Rev 3.9  
11-May-2012  
MLX81205/07/10/15  
6. Marking/Order Code  
6.1 Marking MLX81205/07/10/15  
IC Version: 07/10 or 15  
Silicon Revision: Character [A...Z]  
Lot Number  
Assembly Date Code: Week number  
Firmware Revision: Characters [AA...ZZ]  
Assembly Date Code: Year  
Silicon Revision: Character [A...Z]  
Lot Number  
Assembly Date Code: Week number  
Firmware Revision: Characters [AA...ZZ]  
Assembly Date Code: Year  
6.2 Order Code MLX81205/07/10/15  
Product Abstract  
TFR / CPA  
Page 16 of 18  
Rev 3.9  
11-May-2012  
MLX81205/07/10/15  
7. Assembly Information  
This Melexis device is classified and qualified regarding soldering technology, solder ability and moisture  
sensitivity level, as defined in this specification, according to following test methods:  
IPC/JEDEC J-STD-020  
Moisture/Reflow Sensitivity Classification For No hermetic Solid State Surface Mount Devices  
(classification reflow profiles according to table 5-2)  
EIA/JEDEC JESD22-A113  
Preconditioning of No hermetic Surface Mount Devices Prior to Reliability Testing (Reflow profiles  
according to table 2)  
CECC00802  
Standard Method For The specification of Surface Mounting Components (SMD’s) of Assessed  
Quality  
EIA/JEDEC JESD22-B106  
Resistance to soldering temperature for through-hole mounted devices  
EN60749-15  
Resistance to soldering temperature for through-hole mounted devices  
MIL 883 Method 2003 / EIA/JEDEC JESD22-B102  
Solder ability  
For all soldering technologies deviating from above mentioned standard conditions (regarding peak  
temperature, temperature gradient, temperature profile etc) additional classification and qualification tests  
have to be agreed upon with Melexis. The application of Wave Soldering for SMD’s is allowed only after  
consulting Melexis regarding assurance of adhesive strength between device and board.  
Based on Melexis commitment to environmental responsibility, European legislation (Directive on the  
restriction of the use of certain hazardous substances, RoHS) and customer requests, Melexis has installed  
a roadmap to qualify their package families for lead free processes also. Various lead free generic  
qualifications are running, current results on request.  
For more information on Melexis lead free statement see quality page at our website:  
http://www.melexis.com/html/pdf/MLXleadfree-statement.pdf  
Product Abstract  
TFR / CPA  
Page 17 of 18  
Rev 3.9  
11-May-2012  
MLX81205/07/10/15  
8. Disclaimer  
The product abstract just provides an overview of the described devices. Please consult the complete  
product specification/datasheet in its latest revision for any detailed information.  
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its  
Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the  
information set forth herein or regarding the freedom of the described devices from patent infringement.  
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore,  
prior to designing this product into a system, it is necessary to check with Melexis for current information.  
This product is intended for use in normal commercial applications. Applications requiring extended  
temperature range, unusual environmental requirements, or high reliability applications, such as military,  
medical life-support or life-sustaining equipment are specifically not recommended without additional  
processing by Melexis for each application.  
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be  
liable to recipient or any third party for any damages, including but not limited to personal injury, property  
damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential  
damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical  
data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering  
of technical or other services.  
© Melexis NV. All rights reserved  
For the latest version of this document, go to our website at  
www.melexis.com  
Or for additional information contact Melexis Direct:  
Europe, Africa, Asia:  
America:  
Phone: +32 1367 0495  
Phone: +1 248 306 5400  
E-mail: sales_usa@melexis.com  
E-mail: sales_europe@melexis.com  
ISO/TS16949 and ISO14001 Certified  
Product Abstract  
TFR / CPA  
Page 18 of 18  
Rev 3.9  
11-May-2012  

相关型号:

MLX81215LPFAA000RE

BLDC Motor Controller
MELEXIS

MLX81215LPFAA000TR

BLDC Motor Controller
MELEXIS

MLX83100

MLX83100 Automotive 2-Phase DC Pre-Driver
MELEXIS

MLX83100LGODBA-000RE

MLX83100 Automotive 2-Phase DC Pre-Driver
MELEXIS

MLX83202

Automotive NFET pre-drivers
MELEXIS

MLX83202KLWDBA-000RE

MLX83203-MLX83202 Automotive 3-Phase BLDC Pre-Driver
MELEXIS

MLX83203

Automotive NFET pre-drivers
MELEXIS

MLX83203KLWDBA-000RE

MLX83203-MLX83202 Automotive 3-Phase BLDC Pre-Driver
MELEXIS

MLX83203_16

MLX83203-MLX83202 Automotive 3-Phase BLDC Pre-Driver
MELEXIS

MLX90109

125kHz RFID Transceiver
MELEXIS

MLX90109CDCAAA-000RE

125kHz RFID Transceiver
MELEXIS

MLX90109CDCAAA-000TU

125kHz RFID Transceiver
MELEXIS