KSZ8081MNXCA [MICREL]

10Base-T/100Base-TX Physical Layer Transceiver;
KSZ8081MNXCA
型号: KSZ8081MNXCA
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

10Base-T/100Base-TX Physical Layer Transceiver

文件: 总69页 (文件大小:1501K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KSZ8081MNX/KSZ8081RNB  
10Base-T/100Base-TX  
Physical Layer Transceiver  
Revision 1.4  
General Description  
Features  
The KSZ8081 is a single-supply 10Base-T/100Base-TX  
Ethernet physical-layer transceiver for transmission and  
reception of data over standard CAT-5 unshielded twisted  
pair (UTP) cable.  
Single-chip 10Base-T/100Base-TX IEEE 802.3  
compliant Ethernet transceiver  
MII interface support (KSZ8081MNX)  
RMII v1.2 Interface support with a 50MHz reference  
clock output to MAC, and an option to input a 50MHz  
reference clock (KSZ8081RNB)  
The KSZ8081 is a highly-integrated PHY solution. It  
reduces board cost and simplifies board layout by using  
on-chip termination resistors for the differential pairs and  
by integrating a low-noise regulator to supply the 1.2V  
core.  
Back-to-back mode support for a 100Mbps copper  
repeater  
MDC/MDIO management interface for PHY register  
configuration  
The KSZ8081MNX offers the Media Independent Interface  
(MII) and the KSZ8081RNB offers the Reduced Media  
Independent Interface (RMII) for direct connection with  
MII/RMII-compliant Ethernet MAC processors and  
switches.  
Programmable interrupt output  
LED outputs for link, activity, and speed status indication  
On-chip termination resistors for the differential pairs  
Baseline wander correction  
HP Auto MDI/MDI-X to reliably detect and correct  
straight-through and crossover cable connections with  
disable and enable option  
A 25MHz crystal is used to generate all required clocks,  
including the 50MHz RMII reference clock output for the  
KSZ8081RNB.  
The KSZ8081 provides diagnostic features to facilitate  
system bring-up and debugging in production testing and  
in product deployment. Parametric NAND tree support  
enables fault detection between KSZ8081 I/Os and the  
board. Micrel LinkMD® TDR-based cable diagnostics  
identify faulty copper cabling.  
Auto-negotiation to automatically select the highest link-  
up speed (10/100Mbps) and duplex (half/full)  
Power-down and power-saving modes  
LinkMD TDR-based cable diagnostics to identify faulty  
copper cabling  
Parametric NAND Tree support for fault detection  
The KSZ8081MNX and KSZ8081RNB are available in 32-  
pin, lead-free QFN packages (see “Ordering Information”).  
Datasheets and support documentation are available on  
website at: www.micrel.com.  
between chip I/Os and the board  
HBM ESD rating (6kV)  
Functional Diagram  
LinkMD is a registered trademark of Micrel, Inc.  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
Revision 1.4  
August 19, 2015  
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Features (Continued)  
Applications  
Game console  
IP phone  
IP set-top box  
IP TV  
LOM  
Printer  
Loopback modes for diagnostics  
Single 3.3V power supply with VDD I/O options for  
1.8V, 2.5V, or 3.3V  
Built-in 1.2V regulator for core  
Available in 32-pin (5mm × 5mm) QFN package  
Ordering Information  
Temperature  
Lead  
Part Number  
Package  
Description  
Range  
Finish  
Pb-Free  
Pb-Free  
KSZ8081MNXCA  
KSZ8081MNXIA(1)  
0°C to +70°C  
40°C to +85°C  
32-Pin QFN  
32-Pin QFN  
MII, Commercial Temperature.  
MII, Industrial Temperature.  
RMII with 25MHz crystal/clock input and 50MHz  
RMII REF_CLK output (power-up default),  
Commercial Temperature.  
KSZ8081RNBCA  
KSZ8081RNBIA(1)  
0°C to +70°C  
32-Pin QFN  
32-Pin QFN  
Pb-Free  
Pb-Free  
RMII with 25MHz crystal/clock input and 50MHz  
RMII REF_CLK output (power-up default),  
Industrial Temperature.  
40°C to +85°C  
KSZ8081MNX Evaluation Board  
KSZ8081MNX-EVAL  
KSZ8081RNB-EVAL  
(Mounted with KSZ8081MNX device in commercial  
temperature)  
KSZ8081RNB Evaluation Board  
(Mounted with KSZ8081RNB device in commercial  
temperature)  
Note:  
1. Contact factory for lead time.  
Revision 1.4  
August 19, 2015  
2
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Revision History  
Revision  
Date  
Summary of Changes  
1.0  
11/5/12  
Initial release of datasheet.  
Removed copper wire bonding part numbers from Ordering Information.  
Added note for TXC (Pin 22) and Register 16h, Bit [15] regarding a Reserved Factory Mode for  
KSZ8081MNX device.  
1.1  
2/6/14  
Corrected TXC (Pin 22) pin type for KSZ8081MNX device.  
Removed TXC and RXC clock connections for MII Back-to-Back mode. This is a datasheet correction.  
There is no change to the silicon.  
Added series resistance and load capacitance for the crystal selection criteria.  
Added silver wire bonding part numbers to Ordering Information.  
Updated Ordering Information to include Ordering Part Number and Device Marking.  
Updated Table 7, add a note for Table 7.  
1.2  
1.3  
12/18/14  
Updated Table 8, updated NAND tree I/O testing descriptions.  
Add Max frequency for MDC in MII Management (MIIM) Interface section.  
Updated Table 23, add a note for Table 23.  
04/14/15  
Updated Figure 22 and Figure 22 descriptions.  
Updated descriptions under Figure 23 for LED strap pins, add a note for Figure 23.  
Fixed the missing value for maximum junction and thermal resistance (θJC).  
Updated descriptions in local loopback section for data loopback path.  
Updated Table 17 and Table 21.  
Updated Ordering Information Table.  
1.4  
08/19/15  
Updated pin 22 TXC and register 16h bit [15] description for MNX part.  
Updated description and add an equation in LinkMD section.  
Add HBM ESD rating in Features.  
Revision 1.4  
August 19, 2015  
3
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Table of Contents  
List of Figures.......................................................................................................................................................................... 6  
List of Tables........................................................................................................................................................................... 7  
Pin Configuration – KSZ8081MNX ......................................................................................................................................... 8  
Pin Description – KSZ8081MNX............................................................................................................................................. 9  
Strapping Options – KSZ8081MNX ......................................................................................................................................12  
Pin Configuration – KSZ8081RNB........................................................................................................................................14  
Pin Description – KSZ8081RNB ...........................................................................................................................................15  
Strapping Options – KSZ8081RNB.......................................................................................................................................18  
Functional Description: 10Base-T/100Base-TX Transceiver................................................................................................19  
100Base-TX Transmit........................................................................................................................................................19  
100Base-TX Receive.........................................................................................................................................................19  
Scrambler/De-Scrambler (100Base-TX Only) ...................................................................................................................19  
10Base-T Transmit............................................................................................................................................................19  
10Base-T Receive .............................................................................................................................................................20  
SQE and Jabber Function (10Base-T Only)......................................................................................................................20  
PLL Clock Synthesizer ......................................................................................................................................................20  
Auto-Negotiation................................................................................................................................................................20  
MII Interface (KSZ8081MNX Only) .......................................................................................................................................22  
MII Signal Definition...........................................................................................................................................................22  
Transmit Clock (TXC)........................................................................................................................................................22  
Transmit Enable (TXEN) ...................................................................................................................................................22  
Transmit Data[3:0] (TXD[3:0]) ...........................................................................................................................................23  
Receive Clock (RXC).........................................................................................................................................................23  
Receive Data Valid (RXDV)...............................................................................................................................................23  
Receive Data[3:0] (RXD[3:0])............................................................................................................................................23  
Receive Error (RXER) .......................................................................................................................................................23  
Carrier Sense (CRS) .........................................................................................................................................................23  
Collision (COL) ..................................................................................................................................................................23  
MII Signal Diagram ............................................................................................................................................................23  
RMII Data Interface (KSZ8081RNB Only) ............................................................................................................................25  
RMII – 25MHz Clock Mode................................................................................................................................................25  
RMII – 50MHz Clock Mode................................................................................................................................................25  
RMII Signal Definition........................................................................................................................................................25  
Reference Clock (REF_CLK) ............................................................................................................................................25  
Transmit Enable (TXEN) ...................................................................................................................................................26  
Transmit Data[1:0] (TXD[1:0]) ...........................................................................................................................................26  
Carrier Sense/Receive Data Valid (CRS_DV)...................................................................................................................26  
Receive Data[1:0] (RXD[1:0])............................................................................................................................................26  
Receive Error (RXER) .......................................................................................................................................................26  
Collision Detection (COL)..................................................................................................................................................26  
RMII Signal Diagram .........................................................................................................................................................26  
Back-to-Back Mode – 100Mbps Copper Repeater ...............................................................................................................28  
MII Back-to-Back Mode (KSZ8081MNX Only) ..................................................................................................................28  
RMII Back-to-Back Mode (KSZ8081RNB Only)................................................................................................................29  
MII Management (MIIM) Interface.........................................................................................................................................29  
Interrupt (INTRP)...................................................................................................................................................................30  
HP Auto MDI/MDI-X..............................................................................................................................................................30  
Straight Cable....................................................................................................................................................................31  
Crossover Cable................................................................................................................................................................31  
Loopback Mode.....................................................................................................................................................................32  
Local (Digital) Loopback....................................................................................................................................................32  
Remote (Analog) Loopback...............................................................................................................................................33  
LinkMD® Cable Diagnostic ....................................................................................................................................................34  
Usage.............................................................................................................................................................................34  
Revision 1.4  
August 19, 2015  
4
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
NAND Tree Support..............................................................................................................................................................35  
NAND Tree I/O Testing .....................................................................................................................................................36  
Power Management..............................................................................................................................................................37  
Power-Saving Mode ..........................................................................................................................................................37  
Energy-Detect Power-Down Mode....................................................................................................................................37  
Power-Down Mode............................................................................................................................................................37  
Slow-Oscillator Mode.........................................................................................................................................................37  
Reference Circuit for Power and Ground Connections.........................................................................................................38  
Typical Current/Power Consumption ....................................................................................................................................39  
Transceiver (3.3V), Digital I/Os (3.3V) ..............................................................................................................................39  
Transceiver (3.3V), Digital I/Os (2.5V) ..............................................................................................................................39  
Transceiver (3.3V), Digital I/Os (1.8V) ..............................................................................................................................40  
Register Map.........................................................................................................................................................................41  
Register Description..............................................................................................................................................................42  
Absolute Maximum Ratings ..................................................................................................................................................52  
Operating Ratings .................................................................................................................................................................52  
Electrical Characteristics.......................................................................................................................................................52  
Timing Diagrams...................................................................................................................................................................54  
MII SQE Timing (10Base-T) ..............................................................................................................................................54  
MII Transmit Timing (10Base-T)........................................................................................................................................55  
MII Receive Timing (10Base-T).........................................................................................................................................56  
MII Transmit Timing (100Base-TX) ...................................................................................................................................57  
MII Receive Timing (100Base-TX) ....................................................................................................................................58  
RMII Timing .......................................................................................................................................................................59  
Auto-Negotiation Timing....................................................................................................................................................60  
MDC/MDIO Timing ............................................................................................................................................................61  
Power-up/Reset Timing.....................................................................................................................................................62  
Reset Circuit..........................................................................................................................................................................63  
Reference Circuits – LED Strap-In Pins................................................................................................................................64  
Reference Clock – Connection and Selection ......................................................................................................................65  
Magnetic – Connection and Selection ..................................................................................................................................66  
Package Information and Recommended Land Pattern.......................................................................................................68  
Revision 1.4  
August 19, 2015  
5
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
List of Figures  
Figure 1. Auto-Negotiation Flow Chart..................................................................................................................................21  
Figure 2. KSZ8081MNX MII Interface...................................................................................................................................24  
Figure 3. KSZ8081RNB RMII Interface (25MHz Clock Mode)..............................................................................................27  
Figure 4. KSZ8081RNB RMII Interface (50MHz Clock Mode)..............................................................................................27  
Figure 5. KSZ8081MNX/RNB to KSZ8081MNX/RNB Back-to-Back Copper Repeater .......................................................28  
Figure 6. Typical Straight Cable Connection ........................................................................................................................31  
Figure 7. Typical Crossover Cable Connection ....................................................................................................................31  
Figure 8. Local (Digital) Loopback ........................................................................................................................................32  
Figure 9. Remote (Analog) Loopback ...................................................................................................................................33  
Figure 10. KSZ8081MNX/RNB Power and Ground Connections.........................................................................................38  
Figure 11. MII SQE Timing (10Base-T) ................................................................................................................................54  
Figure 12. MII Transmit Timing (10Base-T)..........................................................................................................................55  
Figure 13. MII Receive Timing (10Base-T)...........................................................................................................................56  
Figure 14. MII Transmit Timing (100Base-TX)......................................................................................................................57  
Figure 15. MII Receive Timing (100Base-TX).......................................................................................................................58  
Figure 16. RMII Timing – Data Received from RMII.............................................................................................................59  
Figure 17. RMII Timing – Data Input to RMII ........................................................................................................................59  
Figure 18. Auto-Negotiation Fast Link Pulse (FLP) Timing ..................................................................................................60  
Figure 19. MDC/MDIO Timing...............................................................................................................................................61  
Figure 20. Power-up/Reset Timing .......................................................................................................................................62  
Figure 21. Recommended Reset Circuit...............................................................................................................................63  
Figure 22. Recommended Reset Circuit for Interfacing with CPU/FPGA Reset Output ......................................................63  
Figure 23. Reference Circuits for LED Strapping Pins .........................................................................................................64  
Figure 24. 25MHz Crystal/Oscillator Reference Clock Connection ......................................................................................65  
Figure 25. 50MHz Oscillator Reference Clock Connection ..................................................................................................65  
Figure 26. Typical Magnetic Interface Circuit........................................................................................................................66  
Revision 1.4  
August 19, 2015  
6
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
List of Tables  
Table 1. MII Signal Definition ................................................................................................................................................22  
Table 2. RMII Signal Defintion ..............................................................................................................................................25  
Table 3. MII Signal Connection for MII Back-to-Back Mode (100Base-TX Copper Repeater).............................................28  
Table 4. RMII Signal Connection for RMII Back-to-Back Mode (100Base-TX Copper Repeater) .......................................29  
Table 5. MII Management Frame Format for the KSZ8081MNX/RNB .................................................................................30  
Table 6. MDI/MDI-X Pin Definition ........................................................................................................................................30  
Table 7. NAND Tree Test Pin Order for KSZ8081MNX........................................................................................................35  
Table 8. NAND Tree Test Pin Order for KSZ8081RNB ........................................................................................................36  
Table 9. KSZ8081MNX/RNB Power Pin Descriptions ..........................................................................................................38  
Table 10. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 3.3V)...........................................................39  
Table 11. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 2.5V)...........................................................39  
Table 12. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 1.8V)...........................................................40  
Table 13. MII SQE Timing (10Base-T) Parameters..............................................................................................................54  
Table 14. MII Transmit Timing (10Base-T) Parameters........................................................................................................55  
Table 15. MII Receive Timing (10Base-T) Parameters.........................................................................................................56  
Table 16. MII Transmit Timing (100Base-TX) Parameters...................................................................................................57  
Table 17. MII Receive Timing (100Base-TX) Parameters....................................................................................................58  
Table 18. RMII Timing Parameters – KSZ8081RNB (25MHz input to XI pin, 50MHz output from REF_CLK pin) ..............59  
Table 19. RMII Timing Parameters – KSZ8081RNB (50MHz input to XI pin) ......................................................................59  
Table 20. Auto-Negotiation Fast Link Pulse (FLP) Timing Parameters................................................................................60  
Table 21. MDC/MDIO Timing Parameters............................................................................................................................61  
Table 22. Power-up/Reset Timing Parameters.....................................................................................................................62  
Table 23. 25MHz Crystal/Reference Clock Selection Criteria ..............................................................................................65  
Table 24. 50MHz Oscillator/Reference Clock Selection Criteria ..........................................................................................65  
Table 25. Magnetics Selection Criteria .................................................................................................................................67  
Table 26. Compatible Single-Port 10/100 Magnetics............................................................................................................67  
Revision 1.4  
August 19, 2015  
7
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Pin Configuration – KSZ8081MNX  
32-Pin 5mm × 5mm QFN  
Revision 1.4  
August 19, 2015  
8
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Pin Description – KSZ8081MNX  
Pin Number  
Pin Name  
Type(2)  
Pin Function  
1
GND  
GND  
Ground  
1.2V core VDD (power supplied by KSZ8081MNX). Decouple with 2.2µF and 0.1µF  
capacitors to ground.  
2
VDD_1.2  
P
3
4
5
6
7
VDDA_3.3  
RXM  
P
3.3V analog VDD.  
I/O  
I/O  
I/O  
I/O  
Physical receive or transmit signal (differential).  
RXP  
Physical receive or transmit signal (+ differential).  
TXM  
Physical transmit or receive signal (differential).  
TXP  
Physical transmit or receive signal (+ differential).  
Crystal feedback for 25MHz crystal.  
8
XO  
O
This pin is a no connect if an oscillator or external clock source is used.  
Crystal / Oscillator / External Clock Input. 25MHz ±50ppm.  
Set PHY transmit output current. Connect a 6.49kΩ resistor to ground on this pin.  
9
XI  
I
I
10  
REXT  
Management Interface (MII) Data I/O This pin has a weak pull-up, is open-drain, and  
requires an external 1.0kΩ pull-up resistor.  
11  
12  
MDIO  
MDC  
Ipu/Opu  
Ipu  
Management Interface (MII) Clock Input. This clock pin is synchronous to the MDIO  
data pin.  
MII Mode: MII Receive Data Output[3](3).  
RXD3/  
Config Mode: The pull-up/pull-down value is latched as PHYADDR[0] at the de-  
assertion of reset.  
13  
14  
15  
Ipu/O  
Ipd/O  
Ipd/O  
PHYAD0  
See the Strapping Options – KSZ8081MNX section for details.  
MII Mode: MII Receive Data Output[2](3).  
RXD2/  
Config Mode: The pull-up/pull-down value is latched as PHYADDR[1] at the de-  
assertion of reset.  
PHYAD1  
See the Strapping Options – KSZ8081MNX section for details.  
MII Mode: MII Receive Data Output[1](3).  
RXD1/  
Config Mode: The pull-up/pull-down value is latched as PHYADDR[2] at the de-  
assertion of reset.  
PHYAD2  
See the Strapping Options – KSZ8081MNX section for details.  
Notes:  
2. P = Power supply.  
GND = Ground.  
I = Input.  
O = Output.  
I/O = Bi-directional.  
Ipu = Input with internal pull-up (see Electrical Characteristics for value).  
Ipu/O = Input with internal pull-up (see Electrical Characteristics for value) during power-up/reset; output pin otherwise.  
Ipd/O = Input with internal pull-down (see Electrical Characteristics for value) during power-up/reset; output pin otherwise.  
Ipu/Opu = Input with internal pull-up (see Electrical Characteristics for value) and output with internal pull-up (see Electrical Characteristics for  
value).  
3. MII RX Mode: The RXD[3:0] bits are synchronous with RXC. When RXDV is asserted, RXD[3:0] presents valid data to the MAC. RXD[3:0] is invalid  
data from the PHY when RXDV is de-asserted.  
Revision 1.4  
August 19, 2015  
9
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Pin Description – KSZ8081MNX (Continued)  
Pin Number  
Pin Name  
Type(2)  
Ipu/O  
P
Pin Function  
MII Mode: MII Receive Data Output[0](3).  
RXD0/  
Config Mode: The pull-up/pull-down value is latched as DUPLEX at the de-assertion  
of reset.  
16  
17  
18  
DUPLEX  
See the Strapping Options – KSZ8081MNX section for details.  
3.3V, 2.5V, or 1.8V digital VDD  
VDDIO  
MII Mode: MII Receive Data Valid Output.  
RXDV/  
Config Mode: The pull-up/pull-down value is latched as CONFIG2 at the de-assertion  
of reset.  
Ipd/O  
CONFIG2  
See the Strapping Options – KSZ8081MNX section for details.  
MII Mode: MII Receive Clock Output.  
RXC/  
Config Mode: The pull-up/pull-down value is latched as B-CAST_OFF at the de-  
assertion of reset.  
19  
20  
Ipd/O  
Ipd/O  
B-CAST_OFF  
See the Strapping Options – KSZ8081MNX section for details.  
MII mode: MII Receive Error Output.  
RXER/  
ISO  
Config Mode: The pull-up/pull-down value is latched as ISOLATE at the de-assertion  
of reset.  
See the Strapping Options – KSZ8081MNX section for details.  
Interrupt Output: Programmable Interrupt Output.  
INTRP/  
This pin has a weak pull-up, is open-drain, and requires an external 1.0kΩ pull-up  
resistor.  
21  
22  
Ipu/Opu  
Ipd/O  
Config Mode: The pull-up/pull-down value is latched as NAND Tree# at the de-  
assertion of reset.  
NAND_Tree#  
TXC  
See the Strapping Options – KSZ8081MNX section for details  
MII Mode: MII Transmit Clock Output.  
At the de-assertion of reset, this pin needs to latch in a pull-down value for normal  
operation. If MAC side pulls this pin high, see Register 16h, Bit [15] for solution. It is  
better having an external pull-down resistor to avoid MAC side pulls this pin high.  
23  
24  
25  
26  
27  
TXEN  
TXD0  
TXD1  
TXD2  
TXD3  
I
I
I
I
I
MII Mode: MII Transmit Enable input.  
MII Mode: MII Transmit Data Input[0](4).  
MII Mode: MII Transmit Data Input[1](4).  
MII Mode: MII Transmit Data Input[2](4).  
MII Mode: MII Transmit Data Input[3](4).  
MII Mode: MII Collision Detect output.  
COL/  
Config Mode: The pull-up/pull-down value is latched as CONFIG0 at the de-assertion  
of reset.  
28  
29  
Ipd/O  
Ipd/O  
CONFIG0  
See the Strapping Options – KSZ8081MNX section for details.  
MII mode: MII Carrier Sense output  
CRS/  
Config mode: The pull-up/pull-down value is latched as CONFIG1 at the de-assertion  
of reset.  
CONFIG1  
See the Strapping Options – KSZ8081MNX section for details.  
Note:  
4. MII TX Mode: The TXD[3:0] bits are synchronous with TXC. When TXEN is asserted, TXD[3:0] presents valid data from the MAC. TXD[3:0] has no  
effect on the PHY when TXEN is de-asserted.  
Revision 1.4  
August 19, 2015  
10  
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Pin Description – KSZ8081MNX (Continued)  
Pin Number  
Pin Name  
Type(2)  
Pin Function  
LED Output: Programmable LED0 output.  
Config Mode: Latched as auto-negotiation enable (Register 0h, Bit [12]) at the de-  
assertion of reset.  
See the Strapping Options – KSZ8081MNX section for details.  
The LED0 pin is programmable using Register 1Fh bits [5:4], and is defined as  
follows:  
LED Mode = [00]  
Link/Activity  
No link  
Pin State  
High  
LED Definition  
OFF  
LED0/  
30  
Ipu/O  
NWAYEN  
Link  
Low  
ON  
Activity  
Toggle  
Blinking  
LED Mode = [01]  
Link  
Pin State  
High  
LED Definition  
No link  
Link  
OFF  
ON  
Low  
LED Mode = [10], [11] Reserved  
LED Output: Programmable LED1 Output.  
Config Mode: Latched as Speed (Register 0h, Bit [13]) at the de-assertion of reset.  
See the Strapping Options – KSZ8081MNX section for details.  
The LED1 pin is programmable using Register 1Fh bits [5:4], and is defined as  
follows:  
LED Mode = [00]  
Speed  
Pin State  
High  
LED Definition  
LED1/  
10Base-T  
100Base-TX  
OFF  
ON  
31  
Ipu/O  
SPEED  
Low  
LED Mode = [01]  
Activity  
Pin State  
High  
LED Definition  
OFF  
No activity  
Activity  
Toggle  
Blinking  
LED Mode = [10], [11] Reserved  
Chip Reset (active low).  
Ground  
32  
RST#  
GND  
Ipu  
PADDLE  
GND  
Revision 1.4  
August 19, 2015  
11  
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Strapping Options – KSZ8081MNX  
The strap-in pins are latched at the de-assertion of reset. In some systems, the MAC MII receive input pins may drive  
high/low during power-up or reset, and consequently cause the PHY strap-in pins on the MII signals to be latched to  
unintended high/low states. In this case, external pull-ups (4.7kΩ) or pull-downs (1.0kΩ) should be added on these PHY  
strap-in pins to ensure that the intended values are strapped-in correctly.  
Type(5)  
Pin Number  
Pin Name  
Pin Function  
PHYAD[2:0] is latched at de-assertion of reset and is configurable to any value from 0  
to 7 with PHY Address 1 as the default value.  
15  
14  
13  
PHYAD2  
PHYAD1  
PHYAD0  
Ipd/O  
Ipd/O  
Ipu/O  
PHY Address 0 is assigned by default as the broadcast PHY address, but it can be  
assigned as a unique PHY address after pulling the B-CAST_OFF strapping pin high  
or writing a ‘1’ to Register 16h, Bit [9].  
PHY Address bits [4:3] are set to 00 by default.  
The CONFIG[2:0] strap-in pins are latched at the de-assertion of reset:  
18  
29  
28  
CONFIG2  
CONFIG1  
CONFIG0  
Ipd/O  
Ipd/O  
Ipd/O  
CONFIG[2:0]  
000  
Mode  
MII (default)  
110  
MII back-to-back  
Reserved – not used  
001 – 101, 111  
Isolate Mode:  
Pull-up = Enable  
20  
31  
16  
ISO  
Ipd/O  
Ipu/O  
Ipu/O  
Pull-down (default) = Disable  
At the de-assertion of reset, this pin value is latched into Register 0h, Bit [10].  
Speed Mode:  
Pull-up (default) = 100Mbps  
Pull-down = 10Mbps  
SPEED  
DUPLEX  
At the de-assertion of reset, this pin value is latched into Register 0h, Bit [13] as the  
speed select, and also is latched into Register 4h (auto-negotiation advertisement) as  
the speed capability support.  
Duplex Mode:  
Pull-up (default) = Half-duplex  
Pull-down = Full-duplex  
At the de-assertion of reset, this pin value is latched into Register 0h, Bit [8].  
Note:  
5. Ipu/O = Input with internal pull-up (see Electrical Characteristics for value) during power-up/reset; output pin otherwise.  
Ipd/O = Input with internal pull-down (see Electrical Characteristics for value) during power-up/reset; output pin otherwise.  
Ipu/Opu = Input with internal pull-up (see Electrical Characteristics for value) and output with internal pull-up (see Electrical Characteristics for  
value).  
Revision 1.4  
August 19, 2015  
12  
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Strapping Options – KSZ8081MNX (Continued)  
Type(5)  
Pin Number  
Pin Name  
Pin Function  
Nway Auto-Negotiation Enable:  
Pull-up (default) = Enable auto-negotiation  
Pull-down = Disable auto-negotiation  
30  
NWAYEN  
Ipu/O  
At the de-assertion of reset, this pin value is latched into Register 0h, Bit [12].  
Broadcast Off – for PHY Address 0:  
Pull-up = PHY Address 0 is set as an unique PHY address  
Pull-down (default) = PHY Address 0 is set as a broadcast PHY address  
At the de-assertion of reset, this pin value is latched by the chip.  
NAND Tree Mode:  
19  
21  
B-CAST_OFF  
NAND_Tree#  
Ipd/O  
Pull-up (default) = Disable  
Ipu/Opu  
Pull-down = Enable  
At the de-assertion of reset, this pin value is latched by the chip.  
Revision 1.4  
August 19, 2015  
13  
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Pin Configuration – KSZ8081RNB  
32-Pin 5mm × 5mm QFN  
Revision 1.4  
August 19, 2015  
14  
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Pin Description – KSZ8081RNB  
Pin Number  
Pin Name  
Type(6)  
Pin Function  
1
GND  
GND  
Ground  
1.2V core VDD (power supplied by KSZ8081RNB). Decouple with 2.2µF and 0.1µF  
capacitors to ground.  
2
VDD_1.2  
P
3
4
5
6
7
VDDA_3.3  
RXM  
P
3.3V analog VDD.  
I/O  
I/O  
I/O  
I/O  
Physical receive or transmit signal (differential).  
Physical receive or transmit signal (+ differential).  
Physical transmit or receive signal (differential).  
Physical transmit or receive signal (+ differential).  
RXP  
TXM  
TXP  
Crystal feedback for 25MHz crystal. This pin is a no connect if an oscillator or external  
clock source is used.  
8
9
XO  
XI  
O
I
25MHz Mode:  
50MHz Mode:  
25MHz ±50ppm Crystal / Oscillator / External Clock Input  
50MHz ±50ppm Oscillator / External Clock Input  
10  
11  
REXT  
MDIO  
I
Set PHY transmit output current. Connect a 6.49kΩ resistor to ground on this pin.  
Management Interface (MII) Data I/O. This pin has a weak pull-up, is open-drain, and  
requires an external 1.0kΩ pull-up resistor.  
Ipu/Opu  
Management Interface (MII) Clock Input. This clock pin is synchronous to the MDIO  
data pin.  
12  
13  
MDC  
Ipu  
The pull-up/pull-down value is latched as PHYADDR[0] at the de-assertion of reset.  
See the Strapping Options – KSZ8081RNB section for details.  
PHYAD0  
Ipu/O  
The pull-up/pull-down value is latched as PHYADDR[1] at the de-assertion of reset.  
See the Strapping Options – KSZ8081RNB section for details.  
RMII Mode: RMII Receive Data Output[1](7).  
14  
15  
PHYAD1  
Ipd/O  
Ipd/O  
RXD1/  
Config Mode: The pull-up/pull-down value is latched as PHYADDR[2] at the de-  
assertion of reset.  
PHYAD2  
See the Strapping Options – KSZ8081RNB section for details.  
RMII Mode: RMII Receive Data Output[0](7).  
RXD0/  
Config Mode: The pull-up/pull-down value is latched as DUPLEX at the de-assertion  
of reset.  
16  
Ipu/O  
DUPLEX  
See the Strapping Options – KSZ8081RNB section for details.  
Notes:  
6. P = Power supply.  
GND = Ground.  
I = Input.  
O = Output.  
I/O = Bi-directional.  
Ipu = Input with internal pull-up (see Electrical Characteristics for value).  
Ipu/O = Input with internal pull-up (see Electrical Characteristics for value) during power-up/reset; output pin otherwise.  
Ipd/O = Input with internal pull-down (see Electrical Characteristics for value) during power-up/reset; output pin otherwise.  
Ipu/Opu = Input with internal pull-up (see Electrical Characteristics for value) and output with internal pull-up (see Electrical Characteristics for  
value).  
NC = Pin is not bonded to the die.  
7. RMII RX Mode: The RXD[1:0] bits are synchronous with the 50MHz RMII Reference Clock. For each clock period in which CRS_DV is asserted, two  
bits of recovered data are sent by the PHY to the MAC.  
Revision 1.4  
August 19, 2015  
15  
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Pin Description – KSZ8081RNB (Continued)  
Pin Number  
Pin Name  
Type(6)  
Pin Function  
17  
VDDIO  
P
3.3V, 2.5V, or 1.8V digital VDD.  
RMII Mode: RMII Carrier Sense/Receive Data Valid Output.  
CRS_DV/  
CONFIG2  
Config Mode: The pull-up/pull-down value is latched as CONFIG2 at the de-assertion  
of reset.  
18  
19  
20  
21  
Ipd/O  
Ipd/O  
See the Strapping Options – KSZ8081RNB section for details.  
RMII Mode: 25MHz Mode. This pin provides the 50MHz RMII reference clock output  
to the MAC. See also XI (Pin 9).  
REF_CLK/  
50MHz mode: This pin is a no connect. See also XI (Pin 9).  
Config Mode: The pull-up/pull-down value is latched as B-CAST_OFF at the de-  
assertion of reset.  
B-CAST_OFF  
See the Strapping Options – KSZ8081RNB section for details.  
RMII Mode: RMII Receive Error Output.  
RXER/  
ISO  
Config Mode: The pull-up/pull-down value is latched as ISOLATE at the de-assertion  
of reset.  
Ipd/O  
See the Strapping Options – KSZ8081RNB section for details.  
Interrupt Output: Programmable Interrupt Output.  
INTRP/  
This pin has a weak pull-up, is open-drain, and requires an external 1.0kΩ pull-up  
resistor.  
Ipu/Opu  
Config Mode: The pull-up/pull-down value is latched as NAND Tree# at the de-  
assertion of reset.  
NAND_Tree#  
See the Strapping Options – KSZ8081RNB section for details.  
No Connect. This pin is not bonded and can be left floating.  
RMII Transmit Enable input.  
RMII Transmit Data Input[0](8).  
RMII Transmit Data Input[1](8).  
22  
23  
24  
25  
26  
27  
NC  
TXEN  
TXD0  
TXD1  
NC  
-
I
I
I
-
-
No Connect. This pin is not bonded and can be left floating.  
No Connect. This pin is not bonded and can be left floating.  
NC  
The pull-up/pull-down value is latched as CONFIG0 at the de-assertion of reset. See  
the Strapping Options – KSZ8081RNB section for details.  
28  
29  
CONFIG0  
CONFIG1  
Ipd/O  
Ipd/O  
The pull-up/pull-down value is latched as CONFIG1 at the de-assertion of reset. See  
the Strapping Options – KSZ8081RNB section for details.  
Note:  
8. RMII TX Mode: The TXD[1:0] bits are synchronous with the 50MHz RMII Reference Clock. For each clock period in which TXEN is asserted, two bits  
of data are received by the PHY from the MAC.  
Revision 1.4  
August 19, 2015  
16  
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Pin Description – KSZ8081RNB (Continued)  
Pin Number  
Pin Name  
Type(6)  
Pin Function  
LED Output: Programmable LED0 Output.  
Config Mode: Latched as auto-negotiation enable (Register 0h, Bit [12]) at the de-  
assertion of reset.  
See the Strapping Options – KSZ8081RNB section for details.  
The LED0 pin is programmable using Register 1Fh bits [5:4], and is defined as  
follows:  
LED Mode = [00]  
Link/Activity  
No link  
Pin State  
High  
LED Definition  
OFF  
LED0/  
30  
Ipu/O  
NWAYEN  
Link  
Low  
ON  
Activity  
Toggle  
Blinking  
LED Mode = [01]  
Link  
Pin State  
High  
LED Definition  
No link  
Link  
OFF  
ON  
Low  
LED Mode = [10], [11] Reserved  
LED Output: Programmable LED1 Output.  
Config Mode: Latched as Speed (Register 0h, Bit [13]) at the de-assertion of reset.  
See the Strapping Options – KSZ8081RNB section for details.  
The LED1 pin is programmable using Register 1Fh bits [5:4], and is defined as  
follows:  
LED Mode = [00]  
Speed  
Pin State  
High  
LED Definition  
LED1/  
10Base-T  
100Base-TX  
OFF  
ON  
31  
Ipu/O  
SPEED  
Low  
LED Mode = [01]  
Activity  
Pin State  
High  
LED Definition  
OFF  
No activity  
Activity  
Toggle  
Blinking  
LED Mode = [10], [11] Reserved  
Chip Reset (active low).  
Ground.  
32  
RST#  
GND  
Ipu  
PADDLE  
GND  
Revision 1.4  
August 19, 2015  
17  
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Strapping Options – KSZ8081RNB  
The strap-in pins are latched at the de-assertion of reset. In some systems, the MAC RMII receive input pins may drive  
high/low during power-up or reset, and consequently cause the PHY strap-in pins on the RMII signals to be latched to  
unintended high/low states. In this case, external pull-ups (4.7kΩ) or pull-downs (1.0kΩ) should be added on these PHY  
strap-in pins to ensure that the intended values are strapped-in correctly.  
Type(9)  
Pin Number  
Pin Name  
Pin Function  
PHYAD[2:0] is latched at de-assertion of reset and is configurable to any value from 0  
to 7 with PHY Address 1 as the default value.  
15  
14  
13  
PHYAD2  
PHYAD1  
PHYAD0  
Ipd/O  
Ipd/O  
Ipu/O  
PHY Address 0 is assigned by default as the broadcast PHY address, but it can be  
assigned as a unique PHY address after pulling the B-CAST_OFF strapping pin high  
or writing a ‘1’ to Register 16h, Bit [9].  
PHY Address bits [4:3] are set to 00 by default.  
The CONFIG[2:0] strap-in pins are latched at the de-assertion of reset.  
CONFIG[2:0]  
Mode  
18  
29  
28  
CONFIG2  
CONFIG1  
CONFIG0  
Ipd/O  
Ipd/O  
Ipd/O  
001  
RMII  
101  
RMII back-to-back  
Reserved – not used  
000, 010 – 100, 110, 111  
Isolate mode  
Pull-up = Enable  
Pull-down (default) = Disable  
20  
31  
ISO  
Ipd/O  
Ipu/O  
At the de-assertion of reset, this pin value is latched into Register 0h, Bit [10].  
Speed mode  
Pull-up (default) = 100Mbps  
Pull-down = 10Mbps  
SPEED  
At the de-assertion of reset, this pin value is latched into Register 0h, Bit [13] as the  
speed select, and also is latched into Register 4h (auto-negotiation advertisement) as  
the speed capability support.  
Duplex mode  
Pull-up (default) = Half-duplex  
Pull-down = Full-duplex  
16  
30  
19  
21  
DUPLEX  
NWAYEN  
Ipu/O  
Ipu/O  
At the de-assertion of reset, this pin value is latched into Register 0h, Bit [8].  
Nway auto-negotiation enable  
Pull-up (default) = Enable auto-negotiation  
Pull-down = Disable auto-negotiation  
At the de-assertion of reset, this pin value is latched into Register 0h, Bit [12].  
Broadcast off – for PHY Address 0  
Pull-up = PHY Address 0 is set as an unique PHY address  
Pull-down (default) = PHY Address 0 is set as a broadcast PHY address  
B-CAST_OFF  
NAND_Tree#  
Ipd/O  
At the de-assertion of reset, this pin value is latched by the chip.  
NAND tree mode  
Pull-up (default) = Disable  
Pull-down = Enable  
Ipu/Opu  
At the de-assertion of reset, this pin value is latched by the chip.  
Note:  
9. Ipu/O = Input with internal pull-up (see Electrical Characteristics for value) during power-up/reset; output pin otherwise.  
Ipd/O = Input with internal pull-down (see Electrical Characteristics for value) during power-up/reset; output pin otherwise.  
Ipu/Opu = Input with internal pull-up (see Electrical Characteristics for value) and output with internal pull-up (see Electrical Characteristics for  
value).  
Revision 1.4  
August 19, 2015  
18  
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Functional Description: 10Base-T/100Base-TX Transceiver  
The KSZ8081 is an integrated single 3.3V supply Fast Ethernet transceiver. It is fully compliant with the IEEE 802.3  
Specification, and reduces board cost and simplifies board layout by using on-chip termination resistors for the two  
differential pairs and by integrating the regulator to supply the 1.2V core.  
On the copper media side, the KSZ8081 supports 10Base-T and 100Base-TX for transmission and reception of data over  
a standard CAT-5 unshielded twisted pair (UTP) cable, and HP Auto MDI/MDI-X for reliable detection of and correction for  
straight-through and crossover cables.  
On the MAC processor side, the KSZ8081MNX offers the Media Independent Interface (MII) and the KSZ8081RNB offers  
the Reduced Media Independent Interface (RMII) for direct connection with MII and RMII compliant Ethernet MAC  
processors and switches, respectively.  
The MII management bus option gives the MAC processor complete access to the KSZ8081 control and status registers.  
Additionally, an interrupt pin eliminates the need for the processor to poll for PHY status change.  
The KSZ8081MNX/RNB is used to refer to both KSZ8081MNX and KSZ8081RNB versions in this datasheet.  
100Base-TX Transmit  
The 100Base-TX transmit function performs parallel-to-serial conversion, 4B/5B encoding, scrambling, NRZ-to-NRZI  
conversion, and MLT3 encoding and transmission.  
The circuitry starts with a parallel-to-serial conversion, which converts the MII data from the MAC into a 125MHz serial bit  
stream. The data and control stream is then converted into 4B/5B coding and followed by a scrambler. The serialized data  
is further converted from NRZ-to-NRZI format, and then transmitted in MLT3 current output. The output current is set by  
an external 6.49kΩ 1% resistor for the 1:1 transformer ratio.  
The output signal has a typical rise/fall time of 4ns and complies with the ANSI TP-PMD standard regarding amplitude  
balance, overshoot, and timing jitter. The wave-shaped 10Base-T output is also incorporated into the 100Base-TX  
transmitter.  
100Base-TX Receive  
The 100Base-TX receiver function performs adaptive equalization, DC restoration, MLT3-to-NRZI conversion, data and  
clock recovery, NRZI-to-NRZ conversion, de-scrambling, 4B/5B decoding, and serial-to-parallel conversion.  
The receiving side starts with the equalization filter to compensate for inter-symbol interference (ISI) over the twisted pair  
cable. Because the amplitude loss and phase distortion is a function of the cable length, the equalizer must adjust its  
characteristics to optimize performance. In this design, the variable equalizer makes an initial estimation based on  
comparisons of incoming signal strength against some known cable characteristics, then tunes itself for optimization. This  
is an ongoing process and self-adjusts against environmental changes such as temperature variations.  
Next, the equalized signal goes through a DC-restoration and data-conversion block. The DC-restoration circuit  
compensates for the effect of baseline wander and improves the dynamic range. The differential data-conversion circuit  
converts MLT3 format back to NRZI. The slicing threshold is also adaptive.  
The clock-recovery circuit extracts the 125MHz clock from the edges of the NRZI signal. This recovered clock is then used  
to convert the NRZI signal to NRZ format. This signal is sent through the de-scrambler, then the 4B/5B decoder. Finally,  
the NRZ serial data is converted to MII format and provided as the input data to the MAC.  
Scrambler/De-Scrambler (100Base-TX Only)  
The scrambler spreads the power spectrum of the transmitted signal to reduce electromagnetic interference (EMI) and  
baseline wander. The de-scrambler recovers the scrambled signal.  
10Base-T Transmit  
The 10Base-T drivers are incorporated with the 100Base-TX drivers to allow for transmission using the same magnetic.  
The drivers perform internal wave-shaping and pre-emphasis, and output 10Base-T signals with a typical amplitude of  
2.5V peak. The 10Base-T signals have harmonic contents that are at least 27dB below the fundamental frequency when  
driven by an all-ones Manchester-encoded signal.  
Revision 1.4  
August 19, 2015  
19  
 
 
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
10Base-T Receive  
On the receive side, input buffer and level detecting squelch circuits are used. A differential input receiver circuit and a  
phase-locked loop (PLL) performs the decoding function. The Manchester-encoded data stream is separated into clock  
signal and NRZ data. A squelch circuit rejects signals with levels less than 400mV, or with short pulse widths, to prevent  
noise at the RXP and RXM inputs from falsely triggering the decoder. When the input exceeds the squelch limit, the PLL  
locks onto the incoming signal and the KSZ8081MNX/RNB decodes a data frame. The receive clock is kept active during  
idle periods between data receptions.  
SQE and Jabber Function (10Base-T Only)  
In 10Base-T operation, a short pulse is put out on the COL pin after each frame is transmitted. This SQE test is needed to  
test the 10Base-T transmit/receive path. If transmit enable (TXEN) is high for more than 20ms (jabbering), the 10Base-T  
transmitter is disabled and COL is asserted high. If TXEN is then driven low for more than 250ms, the 10Base-T  
transmitter is re-enabled and COL is de-asserted (returns to low).  
PLL Clock Synthesizer  
The KSZ8081MNX/RNB generates all internal clocks and all external clocks for system timing from an external 25MHz  
crystal, oscillator, or reference clock. For the KSZ8081RNB in RMII 50MHz clock mode, these clocks are generated from  
an external 50MHz oscillator or system clock.  
Auto-Negotiation  
The KSZ8081MNX/RNB conforms to the auto-negotiation protocol, defined in Clause 28 of the IEEE 802.3 Specification.  
Auto-negotiation allows unshielded twisted pair (UTP) link partners to select the highest common mode of operation.  
During auto-negotiation, link partners advertise capabilities across the UTP link to each other and then compare their own  
capabilities with those they received from their link partners. The highest speed and duplex setting that is common to the  
two link partners is selected as the mode of operation.  
The following list shows the speed and duplex operation mode from highest to lowest priority.  
Priority 1: 100Base-TX, full-duplex  
Priority 2: 100Base-TX, half-duplex  
Priority 3: 10Base-T, full-duplex  
Priority 4: 10Base-T, half-duplex  
If auto-negotiation is not supported or the KSZ8081MNX/RNB link partner is forced to bypass auto-negotiation, then the  
KSZ8081MNX/RNB sets its operating mode by observing the signal at its receiver. This is known as parallel detection,  
which allows the KSZ8081MNX/RNB to establish a link by listening for a fixed signal protocol in the absence of the auto-  
negotiation advertisement protocol.  
Auto-negotiation is enabled by either hardware pin strapping (NWAYEN, Pin 42) or software (Register 0h, Bit [12]).  
By default, auto-negotiation is enabled after power-up or hardware reset. After that, auto-negotiation can be enabled or  
disabled by Register 0h, Bit [12]. If auto-negotiation is disabled, the speed is set by Register 0h, Bit [13], and the duplex is  
set by Register 0h, Bit [8].  
The auto-negotiation link-up process is shown in Figure 1.  
Revision 1.4  
August 19, 2015  
20  
 
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Figure 1. Auto-Negotiation Flow Chart  
Revision 1.4  
August 19, 2015  
21  
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
MII Interface (KSZ8081MNX Only)  
The Media Independent Interface (MII) is compliant with the IEEE 802.3 Specification. It provides a common interface  
between MII PHYs and MACs, and has the following key characteristics:  
Pin count is 15 pins (6 pins for data transmission, 7 pins for data reception, and 2 pins for carrier and collision  
indication).  
10Mbps and 100Mbps data rates are supported at both half- and full-duplex.  
Data transmission and reception are independent and belong to separate signal groups.  
Transmit data and receive data are each 4 bits wide, a nibble.  
By default, the KSZ8081MNX is configured to MII mode after it is powered up or hardware reset with the following:  
A 25MHz crystal connected to XI, XO (pins 9, 8), or an external 25MHz clock source (oscillator) connected to XI.  
The CONFIG[2:0] strapping pins (pins 18, 29, 28) set to 000 (default setting).  
MII Signal Definition  
Table 1 describes the MII signals. Refer to Clause 22 of the IEEE 802.3 Specification for detailed information.  
Table 1. MII Signal Definition  
Direction  
Direction  
MII Signal Name  
(with respect to PHY,  
KSZ8081MNX signal)  
Description  
(with respect to MAC)  
Transmit Clock  
TXC  
Output  
Input  
(2.5MHz for 10Mbps; 25MHz for 100Mbps)  
Transmit Enable  
TXEN  
Input  
Input  
Output  
Output  
TXD[3:0]  
Transmit Data[3:0]  
Receive Clock  
RXC  
Output  
Input  
(2.5MHz for 10Mbps; 25MHz for 100Mbps)  
Receive Data Valid  
RXDV  
RXD[3:0]  
RXER  
CRS  
Output  
Output  
Output  
Output  
Output  
Input  
Input  
Receive Data[3:0]  
Input, or (not required) Receive Error  
Input  
Input  
Carrier Sense  
COL  
Collision Detection  
Transmit Clock (TXC)  
TXC is sourced by the PHY. It is a continuous clock that provides the timing reference for TXEN and TXD[3:0]. TXC is  
2.5MHz for 10Mbps operation and 25MHz for 100Mbps operation.  
Transmit Enable (TXEN)  
TXEN indicates that the MAC is presenting nibbles on TXD[3:0] for transmission. It is asserted synchronously with the first  
nibble of the preamble and remains asserted while all nibbles to be transmitted are presented on the MII. It is negated  
before the first TXC following the final nibble of a frame.  
TXEN transitions synchronously with respect to TXC.  
Revision 1.4  
August 19, 2015  
22  
 
 
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Transmit Data[3:0] (TXD[3:0])  
TXD[3:0] transitions synchronously with respect to TXC. When TXEN is asserted, TXD[3:0] are accepted by the PHY for  
transmission. TXD[3:0] is 00 to indicate idle when TXEN is de-asserted. Values other than 00 on TXD[3:0] while TXEN is  
de-asserted are ignored by the PHY.  
Receive Clock (RXC)  
RXC provides the timing reference for RXDV, RXD[3:0], and RXER.  
In 10Mbps mode, RXC is recovered from the line while the carrier is active. RXC is derived from the PHY’s reference  
clock when the line is idle or the link is down.  
In 100Mbps mode, RXC is continuously recovered from the line. If the link is down, RXC is derived from the PHY’s  
reference clock.  
RXC is 2.5MHz for 10Mbps operation and 25MHz for 100Mbps operation.  
Receive Data Valid (RXDV)  
RXDV is driven by the PHY to indicate that the PHY is presenting recovered and decoded nibbles on RXD[3:0].  
In 10Mbps mode, RXDV is asserted with the first nibble of the start-of-frame delimiter (SFD), 5D, and remains asserted  
until the end of the frame.  
In 100Mbps mode, RXDV is asserted from the first nibble of the preamble to the last nibble of the frame.  
RXDV transitions synchronously with respect to RXC.  
Receive Data[3:0] (RXD[3:0])  
RXD[3:0] transitions synchronously with respect to RXC. For each clock period in which RXDV is asserted, RXD[3:0]  
transfers a nibble of recovered data from the PHY.  
Receive Error (RXER)  
RXER is asserted for one or more RXC periods to indicate that a symbol error (for example, a coding error that a PHY can  
detect that may otherwise be undetectable by the MAC sub-layer) was detected somewhere in the frame being  
transferred from the PHY.  
RXER transitions synchronously with respect to RXC. While RXDV is de-asserted, RXER has no effect on the MAC.  
Carrier Sense (CRS)  
CRS is asserted and de-asserted as follows:  
In 10Mbps mode, CRS assertion is based on the reception of valid preambles. CRS de-assertion is based on the  
reception of an end-of-frame (EOF) marker.  
In 100Mbps mode, CRS is asserted when a start-of-stream delimiter or /J/K symbol pair is detected. CRS is de-  
asserted when an end-of-stream delimiter or /T/R symbol pair is detected. Additionally, the PMA layer de-asserts CRS if  
IDLE symbols are received without /T/R.  
Collision (COL)  
COL is asserted in half-duplex mode whenever the transmitter and receiver are simultaneously active on the line. This  
informs the MAC that a collision has occurred during its transmission to the PHY. COL transitions asynchronously with  
respect to TXC and RXC.  
MII Signal Diagram  
The KSZ8081MNX MII pin connections to the MAC are shown in Figure 2.  
Revision 1.4  
August 19, 2015  
23  
 
 
 
 
 
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Figure 2. KSZ8081MNX MII Interface  
Revision 1.4  
August 19, 2015  
24  
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
RMII Data Interface (KSZ8081RNB Only)  
The Reduced Media Independent Interface (RMII) specifies a low pin count Media Independent Interface (MII). It provides  
a common interface between physical layer and MAC layer devices, and has the following key characteristics:  
Pin count is 8 pins (3 pins for data transmission, 4 pins for data reception, and 1 pin for the 50MHz reference clock).  
10Mbps and 100Mbps data rates are supported at both half- and full-duplex.  
Data transmission and reception are independent and belong to separate signal groups.  
Transmit data and receive data are each 2 bits wide, a dibit.  
RMII – 25MHz Clock Mode  
The KSZ8081RNB is configured to RMII – 25MHz clock mode after it is powered up or hardware reset with the following:  
A 25MHz crystal connected to XI, XO (pins 9, 8), or an external 25MHz clock source (oscillator) connected to XI.  
The CONFIG[2:0] strapping pins (pins 18, 29, 28) set to 001.  
Register 1Fh, Bit [7] is set to 0 (default value) to select 25MHz clock mode.  
RMII – 50MHz Clock Mode  
The KSZ8081RNB is configured to RMII – 50MHz clock mode after it is powered up or hardware reset with the following:  
An external 50MHz clock source (oscillator) connected to XI (Pin 9).  
The CONFIG[2:0] strapping pins (pins 18, 29, 28) set to 001.  
Register 1Fh, Bit [7] is set to 1 to select 50MHz clock mode.  
RMII Signal Definition  
Table 2 describes the RMII signals. Refer to RMII Specification v1.2 for detailed information.  
Table 2. RMII Signal Defintion  
Direction  
Direction  
RMII Signal Name  
(with respect to PHY,  
KSZ8081RNB signal)  
Description  
(with respect to MAC)  
REF_CLK  
Output (25MHz clock mode) /  
Input/  
Synchronous 50MHz reference clock for  
receive, transmit, and control interface  
<no connect> (50MHz clock mode) Input or <no connect>  
TXEN  
Input  
Input  
Output  
Output  
Input  
Transmit Enable  
TXD[1:0]  
CRS_DV  
RXD[1:0]  
RXER  
Transmit Data[1:0]  
Output  
Output  
Output  
Carrier Sense/Receive Data Valid  
Receive Data[1:0]  
Input  
Input, or (not required) Receive Error  
Reference Clock (REF_CLK)  
REF_CLK is a continuous 50MHz clock that provides the timing reference for TXEN, TXD[1:0], CRS_DV, RXD[1:0], and  
RX_ER.  
For 25MHz clock mode, the KSZ8081RNB generates and outputs the 50MHz RMII REF_CLK to the MAC at REF_CLK  
(Pin 19).  
For 50MHz clock mode, the KSZ8081RNB takes in the 50MHz RMII REF_CLK from the MAC or system board at XI (Pin  
9) and leaves the REF_CLK (Pin 19) as a no connect.  
Revision 1.4  
August 19, 2015  
25  
 
 
 
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Transmit Enable (TXEN)  
TXEN indicates that the MAC is presenting dibits on TXD[1:0] for transmission. It is asserted synchronously with the first  
dibit of the preamble and remains asserted while all dibits to be transmitted are presented on the RMII. It is negated  
before the first REF_CLK following the final dibit of a frame.  
TXEN transitions synchronously with respect to REF_CLK.  
Transmit Data[1:0] (TXD[1:0])  
TXD[1:0] transitions synchronously with respect to REF_CLK. When TXEN is asserted, the PHY accepts TXD[1:0] for  
transmission.  
TXD[1:0] is 00 to indicate idle when TXEN is de-asserted. The PHY ignores values other than 00 on TXD[1:0] while TXEN  
is de-asserted.  
Carrier Sense/Receive Data Valid (CRS_DV)  
The PHY asserts CRS_DV when the receive medium is non-idle. It is asserted asynchronously when a carrier is detected.  
This happens when squelch is passed in 10Mbps mode, and when two non-contiguous 0s in 10 bits are detected in  
100Mbps mode. Loss of carrier results in the de-assertion of CRS_DV.  
While carrier detection criteria are met, CRS_DV remains asserted continuously from the first recovered dibit of the frame  
through the final recovered dibit. It is negated before the first REF_CLK that follows the final dibit. The data on RXD[1:0] is  
considered valid after CRS_DV is asserted. However, because the assertion of CRS_DV is asynchronous relative to  
REF_CLK, the data on RXD[1:0] is 00 until receive signals are properly decoded.  
Receive Data[1:0] (RXD[1:0])  
RXD[1:0] transitions synchronously with respect to REF_CLK. For each clock period in which CRS_DV is asserted,  
RXD[1:0] transfers two bits of recovered data from the PHY.  
RXD[1:0] is 00 to indicate idle when CRS_DV is de-asserted. The MAC ignores values other than 00 on RXD[1:0] while  
CRS_DV is de-asserted.  
Receive Error (RXER)  
RXER is asserted for one or more REF_CLK periods to indicate that a symbol error (for example, a coding error that a  
PHY can detect that may otherwise be undetectable by the MAC sub-layer) was detected somewhere in the frame being  
transferred from the PHY.  
RXER transitions synchronously with respect to REF_CLK. . While CRS_DV is de-asserted, RXER has no effect on the  
MAC.  
Collision Detection (COL)  
The MAC regenerates the COL signal of the MII from TXEN and CRS_DV.  
RMII Signal Diagram  
The KSZ8081RNB RMII pin connections to the MAC for 25MHz clock mode are shown in Figure 3. The connections for  
50MHz clock mode are shown in Figure 4.  
Revision 1.4  
August 19, 2015  
26  
 
 
 
 
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Figure 3. KSZ8081RNB RMII Interface (25MHz Clock Mode)  
Figure 4. KSZ8081RNB RMII Interface (50MHz Clock Mode)  
Revision 1.4  
August 19, 2015  
27  
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Back-to-Back Mode – 100Mbps Copper Repeater  
Two KSZ8081MNX/RNB devices can be connected back-to-back to form a 100Base-TX copper repeater.  
Figure 5. KSZ8081MNX/RNB to KSZ8081MNX/RNB Back-to-Back Copper Repeater  
MII Back-to-Back Mode (KSZ8081MNX Only)  
In MII back-to-back mode, a KSZ8081MNX interfaces with another KSZ8081MNX to provide a complete 100Mbps copper  
repeater solution.  
The KSZ8081MNX devices are configured to MII back-to-back mode after power-up or reset with the following:  
Strapping pin CONFIG[2:0] (Pins 18, 29, 28) set to 110  
A common 25MHz reference clock connected to XI (Pin 9) of both KSZ8081MNX devices  
MII signals connected as shown in Table 3.  
Table 3. MII Signal Connection for MII Back-to-Back Mode (100Base-TX Copper Repeater)  
KSZ8081MNX (100Base-TX copper)  
[Device 1]  
KSZ8081MNX (100Base-TX copper)  
[Device 2]  
Pin Name  
Pin Number  
Pin Type  
Pin Name  
Pin Number  
Pin Type  
RXDV  
RXD3  
RXD2  
RXD1  
RXD0  
TXEN  
TXD3  
TXD2  
TXD1  
TXD0  
18  
13  
14  
15  
16  
23  
27  
26  
25  
24  
Output  
Output  
Output  
Output  
Output  
Input  
TXEN  
TXD3  
TXD2  
TXD1  
TXD0  
RXDV  
RXD3  
RXD2  
RXD1  
RXD0  
23  
27  
26  
25  
24  
18  
13  
14  
15  
16  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Input  
Input  
Input  
Input  
Revision 1.4  
August 19, 2015  
28  
 
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
RMII Back-to-Back Mode (KSZ8081RNB Only)  
In RMII back-to-back mode, a KSZ8081RNB interfaces with another KSZ8081RNB to provide a complete 100Mbps  
copper repeater solution.  
The KSZ8081RNB devices are configured to RMII back-to-back mode after power-up or reset with the following:  
Strapping pin CONFIG[2:0] (Pins 18, 29, 28) set to 101  
A common 50MHz reference clock connected to XI (Pin 9) of both KSZ8081RNB devices  
RMII signals connected as shown in Table 4.  
Table 4. RMII Signal Connection for RMII Back-to-Back Mode (100Base-TX Copper Repeater)  
KSZ8081RNB (100Base-TX copper)  
[Device 1]  
KSZ8081RNB (100Base-TX copper)  
[Device 2]  
Pin Name  
Pin Number  
Pin Type  
Pin Name  
Pin Number  
Pin Type  
Input  
CRSDV  
RXD1  
RXD0  
TXEN  
TXD1  
TXD0  
18  
15  
16  
23  
25  
24  
Output  
Output  
Output  
Input  
TXEN  
TXD1  
23  
25  
24  
18  
15  
16  
Input  
TXD0  
Input  
CRSDV  
RXD1  
RXD0  
Output  
Output  
Output  
Input  
Input  
MII Management (MIIM) Interface  
The KSZ8081MNX/RNB supports the IEEE 802.3 MII management interface, also known as the Management Data  
Input/Output (MDIO) interface. This interface allows an upper-layer device, such as a MAC processor, to monitor and  
control the state of the KSZ8081MNX/RNB. An external device with MIIM capability is used to read the PHY status and/or  
configure the PHY settings. More details about the MIIM interface can be found in Clause 22.2.4 of the IEEE 802.3  
Specification.  
The MIIM interface consists of the following:  
A physical connection that incorporates the clock line (MDC) and the data line (MDIO).  
A specific protocol that operates across the physical connection mentioned earlier, which allows the external controller  
to communicate with one or more PHY devices.  
A set of 16-bit MDIO registers. Registers [0:8] are standard registers, and their functions are defined in the IEEE 802.3  
Specification. The additional registers are provided for expanded functionality. See the Register Mapsection for  
details.  
As the default, the KSZ8081MNX/RNB supports unique PHY addresses 1 to 7, and broadcast PHY address 0. The latter  
is defined in the IEEE 802.3 Specification, and can be used to read/write to a single KSZ8081MNX/RNB device, or write  
to multiple KSZ8081MNX/RNB devices simultaneously.  
PHY address 0 can optionally be disabled as the broadcast address by either hardware pin strapping (B-CAST_OFF, Pin  
19) or software (Register 16h, Bit [9]), and assigned as a unique PHY address.  
The PHYAD[2:0] strapping pins are used to assign a unique PHY address between 0 and 7 to each KSZ8081MNX/RNB  
device.  
The MIIM interface can operates up to a maximum clock speed of 10MHz MAC clock.  
Table 5 shows the MII management frame format for the KSZ8081MNX/RNB.  
Revision 1.4  
August 19, 2015  
29  
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Table 5. MII Management Frame Format for the KSZ8081MNX/RNB  
Start of Read/Write PHY Address  
Preamble  
REG Address  
Bits [4:0]  
Data  
Bits [15:0]  
TA  
Idle  
Frame  
01  
OP Code  
Bits [4:0]  
00AAA  
Read  
Write  
32 1’s  
32 1’s  
10  
01  
RRRRR  
RRRRR  
Z0  
10  
DDDDDDDD_DDDDDDDD  
DDDDDDDD_DDDDDDDD  
Z
Z
01  
00AAA  
Interrupt (INTRP)  
INTRP (Pin 21) is an optional interrupt signal that is used to inform the external controller that there has been a status  
update to the KSZ8081MNX/RNB PHY register. Bits [15:8] of Register 1Bh are the interrupt control bits to enable and  
disable the conditions for asserting the INTRP signal. Bits [7:0] of Register 1Bh are the interrupt status bits to indicate  
which interrupt conditions have occurred. The interrupt status bits are cleared after reading Register 1Bh.  
Bit [9] of Register 1Fh sets the interrupt level to active high or active low. The default is active low.  
The MII management bus option gives the MAC processor complete access to the KSZ8081MNX/RNB control and status  
registers. Additionally, an interrupt pin eliminates the need for the processor to poll the PHY for status change.  
HP Auto MDI/MDI-X  
HP Auto MDI/MDI-X configuration eliminates the need to decide whether to use a straight cable or a crossover cable  
between the KSZ8081MNX/RNB and its link partner. This feature allows the KSZ8081MNX/RNB to use either type of  
cable to connect with a link partner that is in either MDI or MDI-X mode. The auto-sense function detects transmit and  
receive pairs from the link partner and assigns transmit and receive pairs to the KSZ8081MNX/RNB accordingly.  
HP Auto MDI/MDI-X is enabled by default. It is disabled by writing a ‘1’ to Register 1Fh, Bit [13]. MDI and MDI-X mode is  
selected by Register 1Fh, Bit [14] if HP Auto MDI/MDI-X is disabled.  
An isolation transformer with symmetrical transmit and receive data paths is recommended to support Auto MDI/MDI-X.  
Table 6 shows how the IEEE 802.3 Standard defines MDI and MDI-X.  
Table 6. MDI/MDI-X Pin Definition  
MDI  
MDI-X  
RJ-45 Pin  
Signal  
TX+  
RJ-45 Pin  
Signal  
RX+  
RX−  
TX+  
1
2
3
6
1
2
3
6
TX−  
RX+  
RX−  
TX−  
Revision 1.4  
August 19, 2015  
30  
 
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Straight Cable  
A straight cable connects an MDI device to an MDI-X device, or an MDI-X device to an MDI device. Figure 6 shows a  
typical straight cable connection between a NIC card (MDI device) and a switch or hub (MDI-X device).  
Figure 6. Typical Straight Cable Connection  
Crossover Cable  
A crossover cable connects an MDI device to another MDI device, or an MDI-X device to another MDI-X device. Figure 7  
shows a typical crossover cable connection between two switches or hubs (two MDI-X devices).  
Figure 7. Typical Crossover Cable Connection  
Revision 1.4  
August 19, 2015  
31  
 
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Loopback Mode  
The KSZ8081MNX/RNB supports the following loopback operations to verify analog and/or digital data paths.  
Local (digital) loopback  
Remote (analog) loopback  
Local (Digital) Loopback  
This loopback mode checks the MII/RMII transmit and receive data paths between the KSZ8081MNX/RNB and the  
external MAC, and is supported for both speeds (10/100Mbps) at full-duplex.  
The loopback data path is shown in Figure 8.  
1. The MII/RMII MAC transmits frames to the KSZ8081MNX/RNB.  
2. Frames are wrapped around inside the KSZ8081MNX/RNB.  
3. The KSZ8081MNX/RNB transmits frames back to the MII/RMII MAC.  
4. Except the frames back to the RMII MAC, the transmit frames also go out from the copper port.  
Figure 8. Local (Digital) Loopback  
The following programming action and register settings are used for local loopback mode.  
For 10/100Mbps loopback,  
Set Register 0h,  
Bit [14] = 1  
Bit [13] = 0/1  
Bit [12] = 0  
Bit [8] = 1  
// Enable local loopback mode  
// Select 10Mbps/100Mbps speed  
// Disable auto-negotiation  
// Select full-duplex mode  
If don’t want the frames go out from the copper port in the local loopback, please follow the steps as below.  
1. Set register 1Fh bit [3] to ‘1’ to disable the transmitter.  
2. Run local loopback test as above.  
3. Set register 1Fh bit [3] to ‘0’ to enable the transmitter.  
Revision 1.4  
August 19, 2015  
32  
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Remote (Analog) Loopback  
This loopback mode checks the line (differential pairs, transformer, RJ-45 connector, Ethernet cable) transmit and receive  
data paths between the KSZ8081MNX/RNB and its link partner, and is supported for 100Base-TX full-duplex mode only.  
The loopback data path is shown in Figure 9.  
1. The Fast Ethernet (100Base-TX) PHY link partner transmits frames to the KSZ8081MNX/RNB.  
2. Frames are wrapped around inside the KSZ8081MNX/RNB.  
3. The KSZ8081MNX/RNB transmits frames back to the Fast Ethernet (100Base-TX) PHY link partner.  
Figure 9. Remote (Analog) Loopback  
The following programming steps and register settings are used for remote loopback mode.  
1. Set Register 0h,  
Bits [13] = 1  
Bit [12] = 0  
Bit [8] = 1  
// Select 100Mbps speed  
// Disable auto-negotiation  
// Select full-duplex mode  
or just auto-negotiate and link up at 100Base-TX full-duplex mode with the link partner.  
2. Set Register 1Fh,  
Bit [2] = 1  
// Enable remote loopback mode  
Revision 1.4  
August 19, 2015  
33  
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
LinkMD® Cable Diagnostic  
The LinkMD function uses time-domain reflectometry (TDR) to analyze the cabling plant for common cabling problems.  
These include open circuits, short circuits, and impedance mismatches.  
LinkMD works by sending a pulse of known amplitude and duration down the MDI or MDI-X pair, then analyzing the shape  
of the reflected signal to determine the type of fault. The time duration for the reflected signal to return provides the  
approximate distance to the cabling fault. The LinkMD function processes this TDR information and presents it as a  
numerical value that can be translated to a cable distance.  
LinkMD is initiated by accessing Register 1Dh, the LinkMD Control/Status register, in conjunction with Register 1Fh, the  
PHY Control 2 register. The latter register is used to disable Auto MDI/MDI-X and to select either MDI or MDI-X as the  
cable differential pair for testing.  
Usage  
The following is a sample procedure for using LinkMD with Registers 1Dh and 1Fh:  
3. Disable auto MDI/MDI-X by writing a ‘1’ to Register 1Fh, bit [13].  
4. Start cable diagnostic test by writing a ‘1’ to Register 1Dh, bit [15]. This enable bit is self-clearing.  
5. Wait (poll) for Register 1Dh, bit [15] to return a ‘0’, and indicating cable diagnostic test is completed.  
6. Read cable diagnostic test results in Register 1Dh, bits [14:13]. The results are as follows:  
00 = normal condition (valid test)  
01 = open condition detected in cable (valid test)  
10 = short condition detected in cable (valid test)  
11 = cable diagnostic test failed (invalid test)  
The ‘11’ case, invalid test, occurs when the device is unable to shut down the link partner. In this instance, the test is  
not run, since it would be impossible for the device to determine if the detected signal is a reflection of the signal  
generated or a signal from another source.  
7. Get distance to fault by concatenating Register 1Dh, bits [8:0] and multiplying the result by a constant of 0.38. The  
distance to the cable fault can be determined by the following formula:  
D (distance to cable fault) = 0.38 x (Register 1Dh, bits [8:0])  
D (distance to cable fault) is expressed in meters.  
Concatenated value of Registers 1Dh bits [8:0] should be converted to decimal before multiplying by 0.38.  
The constant (0.38) may be calibrated for different cabling conditions, including cables with a velocity of propagation  
that varies significantly from the norm.  
Revision 1.4  
August 19, 2015  
34  
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
NAND Tree Support  
The KSZ8081MNX/RNB provides parametric NAND tree support for fault detection between chip I/Os and board. The  
NAND tree is a chain of nested NAND gates in which each KSZ8081MNX/RNB digital I/O (NAND tree input) pin is an  
input to one NAND gate along the chain. At the end of the chain, the TXD1 pin provides the output for the nested NAND  
gates.  
The NAND tree test process includes:  
Enabling NAND tree mode  
Pulling all NAND tree input pins high  
Driving each NAND tree input pin low, sequentially, according to the NAND tree pin order  
Checking the NAND tree output to make sure there is a toggle high-to-low or low-to-high for each NAND tree input  
driven low  
Table 7 and Table 8 list the NAND tree pin orders for KSZ8081MNX and KSZ8081RNB, respectively.  
Table 7. NAND Tree Test Pin Order for KSZ8081MNX  
Pin Number  
Pin Name  
MDIO  
NAND Tree Description  
11  
12  
15  
16  
18  
19  
21  
23  
30  
24  
25  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
MDC  
RXD1  
RXD0  
CRS_DV  
REF_CLK  
INTRP  
TXEN  
LED0  
TXD0  
TXD1  
Note: KS8081MNX supports partial NAND tree test pins. Table 7 lists partial NAND tree test pins. If full NAND tree testing  
is required, please use KSZ8091MNX device that supports all the required pins.  
Revision 1.4  
August 19, 2015  
35  
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Table 8. NAND Tree Test Pin Order for KSZ8081RNB  
Pin Number  
Pin Name  
MDIO  
NAND Tree Description  
11  
12  
15  
16  
18  
19  
21  
23  
31  
30  
24  
25  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
MDC  
RXD1  
RXD0  
CRS_DV  
REF_CLK  
INTRP  
TXEN  
LED1  
LED0  
TXD0  
TXD1  
NAND Tree I/O Testing  
Use the following procedure to check for faults on the KSZ8081MNX/RNB digital I/O pin connections to the board:  
1. Enable NAND tree mode using either hardware (NAND_Tree#, Pin 21) or software (Register 16h, Bit [5]).  
2. Use board logic to drive all KSZ8081MNX/RNB NAND tree input pins high.  
3. Use board logic to drive each NAND tree input pin, in KSZ8081MNX/RNB NAND tree pin order, as follows:  
a. Toggle the first pin (MDIO) from high to low, and verify that the TXD1 pin switches from high to low to indicate that  
the first pin is connected properly.  
b. Leave the first pin (MDIO) low.  
c. Toggle the second pin (MDC) from high to low, and verify that the TXD1 pin switches from low to high to indicate  
that the second pin is connected properly.  
d. Leave the first pin (MDIO) and the second pin (MDC) low.  
e. Continue with this sequence until all KSZ8081MNX/RNB NAND tree input pins have been toggled.  
Each KSZ8081MNX/RNB NAND tree input pin must cause the TXD1 output pin to toggle high-to-low or low-to-high to  
indicate a good connection. If the TXD1 pin fails to toggle when the KSZ8081MNX/RNB input pin toggles from high to low,  
the input pin has a fault.  
Revision 1.4  
August 19, 2015  
36  
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Power Management  
The KSZ8081MNX/RNB incorporates a number of power-management modes and features that provide methods to  
consume less energy. These are discussed in the following sections.  
Power-Saving Mode  
Power-saving mode is used to reduce the transceiver power consumption when the cable is unplugged. It is enabled by  
writing a ‘1’ to Register 1Fh, Bit [10], and is in effect when auto-negotiation mode is enabled and the cable is disconnected  
(no link).  
In this mode, the KSZ8081MNX/RNB shuts down all transceiver blocks, except for the transmitter, energy detect, and PLL  
circuits.  
By default, power-saving mode is disabled after power-up.  
Energy-Detect Power-Down Mode  
Energy-detect power-down (EDPD) mode is used to further reduce transceiver power consumption when the cable is  
unplugged. It is enabled by writing a ‘0’ to Register 18h, Bit [11], and is in effect when auto-negotiation mode is enabled  
and the cable is disconnected (no link).  
EDPD mode works with the PLL off (set by writing a ‘1’ to Register 10h, Bit [4] to automatically turn the PLL off in EDPD  
mode) to turn off all KSZ8081MNX/RNB transceiver blocks except the transmitter and energy-detect circuits.  
Power can be reduced further by extending the time interval between transmissions of link pulses to check for the  
presence of a link partner. The periodic transmission of link pulses is needed to ensure the KSZ8081MNX/RNB and its  
link partner, when operating in the same low-power state and with Auto MDI/MDI-X disabled, can wake up when the cable  
is connected between them.  
By default, energy-detect power-down mode is disabled after power-up.  
Power-Down Mode  
Power-down mode is used to power down the KSZ8081MNX/RNB device when it is not in use after power-up. It is  
enabled by writing a ‘1’ to Register 0h, Bit [11].  
In this mode, the KSZ8081MNX/RNB disables all internal functions except the MII management interface. The  
KSZ8081MNX/RNB exits (disables) power-down mode after Register 0h, Bit [11] is set back to ‘0’.  
Slow-Oscillator Mode  
Slow-oscillator mode is used to disconnect the input reference crystal/clock on XI (Pin 8) and select the on-chip slow  
oscillator when the KSZ8081MNX/RNB device is not in use after power-up. It is enabled by writing a ‘1’ to Register 11h,  
Bit [5].  
Slow-oscillator mode works in conjunction with power-down mode to put the KSZ8081MNX/RNB device in the lowest  
power state, with all internal functions disabled except the MII management interface. To properly exit this mode and  
return to normal PHY operation, use the following programming sequence:  
1. Disable slow-oscillator mode by writing a ‘0’ to Register 11h, Bit [5].  
2. Disable power-down mode by writing a ‘0’ to Register 0h, Bit [11].  
3. Initiate software reset by writing a ‘1’ to Register 0h, Bit [15].  
Revision 1.4  
August 19, 2015  
37  
 
 
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Reference Circuit for Power and Ground Connections  
The KSZ8081MNX/RNB is a single 3.3V supply device with a built-in regulator to supply the 1.2V core. The power and  
ground connections are shown in Figure 10 and Table 9 for 3.3V VDDIO.  
Figure 10. KSZ8081MNX/RNB Power and Ground Connections  
Table 9. KSZ8081MNX/RNB Power Pin Descriptions  
Power Pin  
Pin Number  
Description  
VDD_1.2  
2
Decouple with 2.2µF and 0.1µF capacitors to ground.  
Connect to board’s 3.3V supply through a ferrite bead.  
Decouple with 22µF and 0.1µF capacitors to ground.  
Connect to board’s 3.3V supply for 3.3V VDDIO.  
Decouple with 22µF and 0.1µF capacitors to ground.  
VDDA_3.3  
VDDIO  
3
17  
Revision 1.4  
August 19, 2015  
38  
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Typical Current/Power Consumption  
Table 10, Table 11, and Table 12 show typical values for current consumption by the transceiver (VDDA_3.3) and digital  
I/O (VDDIO) power pins and typical values for power consumption by the KSZ8081MNX/RNB device for the indicated  
nominal operating voltages. These current and power consumption values include the transmit driver current and on-chip  
regulator current for the 1.2V core.  
Transceiver (3.3V), Digital I/Os (3.3V)  
Table 10. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 3.3V)  
3.3V Transceiver  
(VDDA_3.3)  
3.3V Digital I/Os  
(VDDIO)  
Total Chip Power  
Condition  
mA  
34  
34  
14  
30  
14  
10  
mA  
12  
13  
11  
11  
10  
10  
mW  
152  
155  
82.5  
135  
79.2  
66.0  
100Base-TX Link-up (no traffic)  
100Base-TX Full-duplex @ 100% utilization  
10Base-T Link-up (no traffic)  
10Base-T Full-duplex @ 100% utilization  
Power-saving mode (Reg. 1Fh, Bit [10] = 1)  
EDPD mode (Reg. 18h, Bit [11] = 0)  
EDPD mode (Reg. 18h, Bit [11] = 0) and PLL off (Reg. 10h,  
Bit [4] = 1)  
3.77  
2.59  
1.36  
1.54  
1.51  
0.45  
17.5  
13.5  
5.97  
Software power-down mode (Reg. 0h, Bit [11] =1)  
Software power-down mode (Reg. 0h, Bit [11] =1) and slow-  
oscillator mode (Reg. 11h, Bit [5] =1)  
Transceiver (3.3V), Digital I/Os (2.5V)  
Table 11. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 2.5V)  
3.3V Transceiver  
2.5V Digital I/Os  
(VDDIO)  
Total Chip Power  
(VDDA_3.3)  
Condition  
mA  
mA  
11  
12  
10  
10  
10  
10  
mW  
140  
142  
74.5  
114  
74.5  
61.3  
100Base-TX Link-up (no traffic)  
34  
34  
15  
27  
15  
11  
100Base-TX Full-duplex @ 100% utilization  
10Base-T Link-up (no traffic)  
10Base-T Full-duplex @ 100% utilization  
Power-saving mode (Reg. 1Fh, Bit [10] = 1)  
EDPD mode (Reg. 18h, Bit [11] = 0)  
EDPD mode (Reg. 18h, Bit [11] = 0) and  
PLL off (Reg. 10h, Bit [4] = 1)  
3.55  
2.29  
1.15  
1.35  
1.34  
0.29  
15.1  
10.9  
4.52  
Software power-down mode (Reg. 0h, Bit [11] =1)  
Software power-down mode (Reg. 0h, Bit [11] =1) and  
slow-oscillator mode (Reg. 11h, Bit [5] =1)  
Revision 1.4  
August 19, 2015  
39  
 
 
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Transceiver (3.3V), Digital I/Os (1.8V)  
Table 12. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 1.8V)  
3.3V Transceiver  
1.8V Digital I/Os  
Total Chip Power  
(VDDA_3.3)  
(VDDIO)  
mA  
11  
Condition  
mA  
mW  
132  
134  
65.7  
105  
65.7  
52.5  
100Base-TX Link-up (no traffic)  
34  
34  
15  
27  
15  
11  
100Base-TX Full-duplex @ 100% utilization  
10Base-T Link-up (no traffic)  
12  
9.0  
10Base-T Full-duplex @ 100% utilization  
Power-saving mode (Reg. 1Fh, Bit [10] = 1)  
EDPD mode (Reg. 18h, Bit [11] = 0)  
9.0  
9.0  
9.0  
EDPD mode (Reg. 18h, Bit [11] = 0) and  
PLL off (Reg. 10h, Bit [4] = 1)  
4.05  
2.79  
1.65  
1.21  
1.21  
0.19  
15.5  
11.4  
5.79  
Software power-down mode (Reg. 0h, Bit [11] =1)  
Software power-down mode (Reg. 0h, Bit [11] =1) and  
slow-oscillator mode (Reg. 11h, Bit [5] =1)  
Revision 1.4  
August 19, 2015  
40  
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Register Map  
Register Number (Hex)  
Description  
0h  
1h  
Basic Control  
Basic Status  
2h  
PHY Identifier 1  
3h  
PHY Identifier 2  
4h  
Auto-Negotiation Advertisement  
Auto-Negotiation Link Partner Ability  
Auto-Negotiation Expansion  
Auto-Negotiation Next Page  
Link Partner Next Page Ability  
Reserved  
5h  
6h  
7h  
8h  
9h  
10h  
11h  
12h – 14h  
15h  
16h  
17h  
18h  
19h – 1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
Digital Reserved Control  
AFE Control 1  
Reserved  
RXER Counter  
Operation Mode Strap Override  
Operation Mode Strap Status  
Expanded Control  
Reserved  
Interrupt Control/Status  
Reserved  
LinkMD Control/Status  
PHY Control 1  
PHY Control 2  
Revision 1.4  
August 19, 2015  
41  
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Register Description  
Address  
Name  
Description  
Mode(10)  
Default  
Register 0h – Basic Control  
1 = Software reset  
0.15  
0.14  
Reset  
0 = Normal operation  
This bit is self-cleared after a ‘1’ is written to it.  
1 = Loopback mode  
0 = Normal operation  
1 = 100Mbps  
RW/SC  
RW  
0
Loopback  
0
Set by the SPEED strapping pin.  
0 = 10Mbps  
0.13  
0.12  
Speed Select  
RW  
RW  
See the Strapping Options –  
KSZ8081MNX section for details.  
This bit is ignored if auto-negotiation is enabled  
(Register 0.12 = 1).  
1 = Enable auto-negotiation process  
0 = Disable auto-negotiation process  
Set by the NWAYEN strapping  
pin.  
Auto-  
Negotiation  
Enable  
See the Strapping Options –  
KSZ8081MNX section for details.  
If enabled, the auto-negotiation result overrides  
the settings in registers 0.13 and 0.8.  
1 = Power-down mode  
0 = Normal operation  
If software reset (Register 0.15) is used to exit  
power-down mode (Register 0.11 = 1), two  
software reset writes (Register 0.15 = 1) are  
required. The first write clears power-down  
mode; the second write resets the chip and re-  
latches the pin strapping pin values.  
0.11  
Power-Down  
RW  
0
Set by the ISO strapping pin.  
1 = Electrical isolation of PHY from MII/RMII  
0 = Normal operation  
0.10  
0.9  
Isolate  
RW  
See the Strapping Options –  
KSZ8081MNX section for details.  
1 = Restart auto-negotiation process  
0 = Normal operation.  
Restart Auto-  
Negotiation  
RW/SC  
0
This bit is self-cleared after a ‘1’ is written to it.  
The inverse of the DUPLEX  
strapping pin value.  
1 = Full-duplex  
0 = Half-duplex  
0.8  
Duplex Mode  
RW  
See the Strapping Options –  
KSZ8081MNX section for details.  
1 = Enable COL test  
0 = Disable COL test  
Reserved  
0.7  
Collision Test  
Reserved  
RW  
RO  
0
0.6:0  
000_0000  
Note:  
10. RW = Read/Write.  
RO = Read only.  
SC = Self-cleared.  
LH = Latch high.  
LL = Latch low.  
Revision 1.4  
August 19, 2015  
42  
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Register Description (Continued)  
Address  
Name  
Description  
Mode(10)  
Default  
Register 1h – Basic Status  
1 = T4 capable  
1.15  
1.14  
1.13  
1.12  
100Base-T4  
RO  
RO  
RO  
RO  
0
1
1
1
0 = Not T4 capable  
1 = Capable of 100Mbps full-duplex  
0 = Not capable of 100Mbps full-duplex  
1 = Capable of 100Mbps half-duplex  
0 = Not capable of 100Mbps half-duplex  
1 = Capable of 10Mbps full-duplex  
0 = Not capable of 10Mbps full-duplex  
1 = Capable of 10Mbps half-duplex  
0 = Not capable of 10Mbps half-duplex  
Reserved  
100Base-TX  
Full-Duplex  
100Base-TX  
Half-Duplex  
10Base-T  
Full-Duplex  
10Base-T  
Half-Duplex  
1.11  
1.10:7  
1.6  
RO  
RO  
RO  
1
000_0  
1
Reserved  
1 = Preamble suppression  
No Preamble  
0 = Normal preamble  
Auto-  
Negotiation  
Complete  
1 = Auto-negotiation process completed  
0 = Auto-negotiation process not completed  
1.5  
1.4  
1.3  
1.2  
RO  
RO/LH  
RO  
0
0
1
0
1 = Remote fault  
Remote Fault  
0 = No remote fault  
Auto-  
Negotiation  
Ability  
1 = Can perform auto-negotiation  
0 = Cannot perform auto-negotiation  
1 = Link is up  
Link Status  
RO/LL  
0 = Link is down  
1 = Jabber detected  
1.1  
1.0  
Jabber Detect  
RO/LH  
RO  
0
1
0 = Jabber not detected (default is low)  
Extended  
Capability  
1 = Supports extended capability registers  
Register 2h – PHY Identifier 1  
Assigned to the 3rd through 18th bits of the  
Organizationally Unique Identifier (OUI).  
KENDIN Communication’s OUI is 0010A1  
(hex).  
PHY ID  
2.15:0  
RO  
0022h  
Number  
Register 3h – PHY Identifier 2  
Assigned to the 19th through 24th bits of the  
Organizationally Unique Identifier (OUI).  
KENDIN Communication’s OUI is 0010A1  
(hex).  
PHY ID  
3.15:10  
RO  
0001_01  
Number  
3.9:4  
3.3:0  
Model Number Six-bit manufacturer’s model number  
RO  
RO  
01_0110  
Revision  
Four-bit manufacturer’s revision number  
Number  
Indicates silicon revision  
Revision 1.4  
August 19, 2015  
43  
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Register Description (Continued)  
Address  
Name  
Description  
Mode(10)  
Default  
Register 4h – Auto-Negotiation Advertisement  
1 = Next page capable  
0 = No next page capability  
Reserved  
4.15  
4.14  
4.13  
4.12  
Next Page  
Reserved  
RW  
RO  
RW  
RO  
0
0
0
0
1 = Remote fault supported  
0 = No remote fault  
Remote Fault  
Reserved  
Reserved  
[00] = No pause  
[10] = Asymmetric pause  
[01] = Symmetric pause  
[11] = Asymmetric and symmetric pause  
1 = T4 capable  
4.11:10  
Pause  
RW  
00  
4.9  
4.8  
100Base-T4  
RO  
RW  
0
0 = No T4 capability  
Set by the SPEED strapping pin.  
1 = 100Mbps full-duplex capable  
100Base-TX  
Full-Duplex  
See the Strapping Options –  
KSZ8081MNX section for details.  
0 = No 100Mbps full-duplex capability  
Set by the SPEED strapping pin.  
1 = 100Mbps half-duplex capable  
100Base-TX  
Half-Duplex  
4.7  
4.6  
RW  
RW  
See the Strapping Options –  
KSZ8081MNX section for details.  
0 = No 100Mbps half-duplex capability  
1 = 10Mbps full-duplex capable  
0 = No 10Mbps full-duplex capability  
1 = 10Mbps half-duplex capable  
0 = No 10Mbps half-duplex capability  
[00001] = IEEE 802.3  
10Base-T  
Full-Duplex  
1
10Base-T  
Half-Duplex  
4.5  
RW  
RW  
1
4.4:0  
Selector Field  
0_0001  
Register 5h – Auto-Negotiation Link Partner Ability  
1 = Next page capable  
5.15  
5.14  
Next Page  
RO  
RO  
0
0
0 = No next page capability  
1 = Link code word received from partner  
0 = Link code word not yet received  
1 = Remote fault detected  
0 = No remote fault  
Acknowledge  
5.13  
5.12  
Remote Fault  
Reserved  
RO  
RO  
0
0
Reserved  
[00] = No pause  
[10] = Asymmetric pause  
[01] = Symmetric pause  
5.11:10  
Pause  
RO  
00  
[11] = Asymmetric and symmetric pause  
1 = T4 capable  
5.9  
5.8  
100Base-T4  
RO  
RO  
0
0
0 = No T4 capability  
1 = 100Mbps full-duplex capable  
0 = No 100Mbps full-duplex capability  
100Base-TX  
Full-Duplex  
Revision 1.4  
August 19, 2015  
44  
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Register Description (Continued)  
Address  
Name  
Description  
Mode(10)  
Default  
Register 5h – Auto-Negotiation Link Partner Ability  
1 = 100Mbps half-duplex capable  
100Base-TX  
Half-Duplex  
5.7  
5.6  
RO  
RO  
0
0
0 = No 100Mbps half-duplex capability  
1 = 10Mbps full-duplex capable  
0 = No 10Mbps full-duplex capability  
1 = 10Mbps half-duplex capable  
0 = No 10Mbps half-duplex capability  
[00001] = IEEE 802.3  
10Base-T  
Full-Duplex  
10Base-T  
Half-Duplex  
5.5  
RO  
RO  
0
5.4:0  
Selector Field  
0_0001  
Register 6h – Auto-Negotiation Expansion  
6.15:5  
6.4  
Reserved  
Reserved  
RO  
0000_0000_000  
0
1 = Fault detected by parallel detection  
0 = No fault detected by parallel detection  
1 = Link partner has next page capability  
Parallel  
Detection Fault  
RO/LH  
Link Partner  
Next Page  
Able  
6.3  
RO  
0
0 = Link partner does not have next page  
capability  
1 = Local device has next page capability  
Next Page  
Able  
6.2  
6.1  
RO  
1
0
0 = Local device does not have next page  
capability  
1 = New page received  
Page Received  
RO/LH  
0 = New page not received yet  
Link Partner  
Auto-  
Negotiation  
Able  
1 = Link partner has auto-negotiation capability  
6.0  
RO  
0
0 = Link partner does not have auto-negotiation  
capability  
Register 7h – Auto-Negotiation Next Page  
1 = Additional next pages will follow  
0 = Last page  
7.15  
7.14  
7.13  
Next Page  
Reserved  
RW  
RO  
RW  
0
0
1
Reserved  
1 = Message page  
Message Page  
0 = Unformatted page  
1 = Will comply with message  
0 = Cannot comply with message  
7.12  
Acknowledge2  
Toggle  
RW  
0
1 = Previous value of the transmitted link code  
word equaled logic 1  
7.11  
RO  
RW  
0
0 = Logic 0  
7.10:0  
Message Field 11-bit wide field to encode 2048 messages  
000_0000_0001  
Revision 1.4  
August 19, 2015  
45  
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Register Description (Continued)  
Address  
Name  
Description  
Mode(10)  
Default  
Register 8h – Link Partner Next Page Ability  
1 = Additional next pages will follow  
0 = Last page  
8.15  
8.14  
8.13  
8.12  
Next Page  
Acknowledge  
Message Page  
Acknowledge2  
RO  
RO  
RO  
RO  
0
0
0
0
1 = Successful receipt of link word  
0 = No successful receipt of link word  
1 = Message page  
0 = Unformatted page  
1 = Can act on the information  
0 = Cannot act on the information  
1 = Previous value of transmitted link code word  
equal to logic 0  
0 = Previous value of transmitted link code word  
equal to logic 1  
8.11  
Toggle  
RO  
RO  
0
8.10:0  
Message Field 11-bit wide field to encode 2048 messages  
000_0000_0000  
Register 10h – Digital Reserved Control  
10.15:5  
Reserved  
Reserved  
RW  
RW  
RW  
0000_0000_000  
1 = Turn PLL off automatically in EDPD mode  
0 = Keep PLL on in EDPD mode.  
See also Register 18h, Bit [11] for EDPD mode  
10.4  
PLL Off  
0
10.3:0  
Reserved  
Reserved  
0000  
Register 11h – AFE Control 1  
11.15:6  
Reserved  
Reserved  
RW  
0000_0000_00  
Slow-oscillator mode is used to disconnect the  
input reference crystal/clock on the XI pin and  
select the on-chip slow oscillator when the  
KSZ8081MNX/RNB device is not in use after  
Slow-Oscillator power-up.  
11.5  
RW  
0
Mode Enable  
1 = Enable  
0 = Disable  
This bit automatically sets software power-down  
to the analog side when enabled.  
11.4:0  
Reserved  
Reserved  
RW  
0_0000  
0000h  
Register 15h – RXER Counter  
15.15:0 RXER Counter Receive error counter for symbol error frames  
Register 16h – Operation Mode Strap Override  
0 = Normal operation  
RO/SC  
1 = Factory test mode  
0
Reserved  
16.15  
If TXC (Pin 22) latches in a pull-up value at the  
de-assertion of reset, write a ‘0’ to this bit to  
clear Reserved Factory Mode.  
RW  
Set by the pull-up/pull-down value  
of TXC (Pin 22).  
Factory Mode  
This bit applies only to KSZ8081MNX.  
16.14:11  
16.10  
Reserved  
Reserved  
Reserved  
Reserved  
RW  
RO  
000_0  
0
B-CAST_OFF 1 = Override strap-in for B-CAST_OFF  
Override If bit is ‘1’, PHY Address 0 is non-broadcast.  
16.9  
RW  
0
Revision 1.4  
August 19, 2015  
46  
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Register Description (Continued)  
Address  
Name  
Description  
Mode(10)  
Default  
Register 16h – Operation Mode Strap Override  
16.8  
16.7  
Reserved  
Reserved  
RW  
RW  
0
0
1 = Override strap-in for MII back-to-back mode  
(also set Bit 0 of this register to ‘1’)  
MII B-to-B  
Override  
This bit applies only to KSZ8081MNX.  
1 = Override strap-in for RMII Back-to-Back  
mode (also set Bit 1 of this register to ‘1’)  
RMII B-to-B  
Override  
16.6  
RW  
0
This bit applies only to KSZ8081RNB.  
NAND Tree  
Override  
16.5  
1 = Override strap-in for NAND tree mode  
RW  
RW  
0
16.4:2  
Reserved  
Reserved  
0_00  
1 = Override strap-in for RMII mode  
This bit applies only to KSZ8081RNB.  
1 = Override strap-in for MII mode  
This bit applies only to KSZ8081MNX.  
16.1  
16.0  
RMII Override  
RW  
RW  
0
1
MII Override  
Register 17h – Operation Mode Strap Status  
[000] = Strap to PHY Address 0  
[001] = Strap to PHY Address 1  
[010] = Strap to PHY Address 2  
[011] = Strap to PHY Address 3  
[100] = Strap to PHY Address 4  
[101] = Strap to PHY Address 5  
[110] = Strap to PHY Address 6  
[111] = Strap to PHY Address 7  
Reserved  
PHYAD[2:0]  
Strap-In Status  
17.15:13  
RO  
17.12:10  
17.9  
Reserved  
RO  
RO  
RO  
RO  
1 = Strap to B-CAST_OFF  
B-CAST_OFF  
Strap-In Status  
If bit is ‘1’, PHY Address 0 is non-broadcast.  
Reserved  
17.8  
Reserved  
1 = Strap to MII back-to-back mode  
This bit applies only to KSZ8081MNX.  
1 = Strap to RMII Back-to-Back mode  
This bit applies only to KSZ8081RNB.  
MII B-to-B  
Strap-In Status  
17.7  
RMII B-to-B  
Strap-In Status  
17.6  
RO  
NAND Tree  
Strap-In Status  
17.5  
1 = Strap to NAND tree mode  
RO  
RO  
17.4:2  
Reserved  
Reserved  
1 = Strap to RMII mode  
RMII Strap-In  
Status  
17.1  
17.0  
RO  
RO  
This bit applies only to KSZ8081RNB.  
1 = Strap to MII mode  
MII Strap-In  
Status  
This bit applies only to KSZ8081MNX.  
Revision 1.4  
August 19, 2015  
47  
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Register Description (Continued)  
Address  
Name  
Description  
Mode(10)  
Default  
Register 18h – Expanded Control  
18.15:12  
18.11  
Reserved  
Reserved  
RW  
0000  
Energy-detect power-down mode  
1 = Disable  
EDPD  
Disabled  
RW  
RW  
1
0
0 = Enable  
See also Register 10h, Bit [4] for PLL off.  
1 = MII output is random latency  
0 = MII output is fixed latency  
100Base-TX  
Latency  
18.10  
For both settings, all bytes of received preamble  
are passed to the MII output.  
This bit applies only to KSZ8081MNX.  
Reserved  
18.9:7  
18.6  
Reserved  
RW  
RW  
RW  
00_0  
0
1 = Restore received preamble to MII output  
10Base-T  
Preamble  
Restore  
0 = Remove all seven bytes of preamble before  
sending frame (starting with SFD) to MII output  
This bit applies only to KSZ8081MNX,  
Reserved  
18.5:0  
Reserved  
00_0000  
Register 1Bh – Interrupt Control/Status  
Jabber  
Interrupt  
Enable  
1 = Enable jabber interrupt  
0 = Disable jabber interrupt  
1B.15  
1B.14  
1B.13  
1B.12  
RW  
RW  
RW  
RW  
0
0
0
0
Receive Error  
Interrupt  
1 = Enable receive error interrupt  
0 = Disable receive error interrupt  
Enable  
Page Received  
Interrupt  
1 = Enable page received interrupt  
0 = Disable page received interrupt  
Enable  
Parallel Detect  
Fault Interrupt  
Enable  
1 = Enable parallel detect fault interrupt  
0 = Disable parallel detect fault interrupt  
Link Partner  
Acknowledge  
Interrupt  
1 = Enable link partner acknowledge interrupt  
0 = Disable link partner acknowledge interrupt  
1B.11  
RW  
0
Enable  
Link-Down  
Interrupt  
Enable  
1= Enable link-down interrupt  
0 = Disable link-down interrupt  
1B.10  
1B.9  
1B.8  
RW  
RW  
RW  
0
0
0
Remote Fault  
Interrupt  
1 = Enable remote fault interrupt  
0 = Disable remote fault interrupt  
Enable  
Link-Up  
Interrupt  
Enable  
1 = Enable link-up interrupt  
0 = Disable link-up interrupt  
Revision 1.4  
August 19, 2015  
48  
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Register Description (Continued)  
Address  
Name  
Description  
Mode(10)  
Default  
Register 1Bh – Interrupt Control/Status  
1 = Jabber occurred  
Jabber  
Interrupt  
1B.7  
1B.6  
1B.5  
1B.4  
RO/SC  
RO/SC  
RO/SC  
RO/SC  
0
0
0
0
0 = Jabber did not occur  
1 = Receive error occurred  
Receive Error  
Interrupt  
0 = Receive error did not occur  
1 = Page receive occurred  
Page Receive  
Interrupt  
0 = Page receive did not occur  
1 = Parallel detect fault occurred  
0 = Parallel detect fault did not occur  
Parallel Detect  
Fault Interrupt  
Link Partner  
Acknowledge  
Interrupt  
1 = Link partner acknowledge occurred  
1B.3  
RO/SC  
0
0 = Link partner acknowledge did not occur  
1 = Link-down occurred  
0 = Link-down did not occur  
1 = Remote fault occurred  
0 = Remote fault did not occur  
1 = Link-up occurred  
Link-Down  
Interrupt  
1B.2  
1B.1  
1B.0  
RO/SC  
RO/SC  
RO/SC  
0
0
0
Remote Fault  
Interrupt  
Link-Up  
Interrupt  
0 = Link-up did not occur  
Register 1Dh – LinkMD Control/Status  
1 = Enable cable diagnostic test. After test has  
completed, this bit is self-cleared.  
Cable  
1D.15  
Diagnostic  
Test Enable  
RW/SC  
0
0 = Indicates cable diagnostic test (if enabled)  
has completed and the status information is  
valid for read.  
[00] = Normal condition  
[01] = Open condition has been detected in  
cable  
Cable  
Diagnostic  
Test Result  
1D.14:13  
RO  
00  
[10] = Short condition has been detected in  
cable  
[11] = Cable diagnostic test has failed  
Short Cable  
Indicator  
1 = Short cable (<10 meter) has been detected  
by LinkMD  
1D.12  
1D.11:9  
1D.8:0  
RO  
RW  
RO  
0
Reserved  
Reserved  
000  
Cable Fault  
Counter  
Distance to fault  
0_0000_0000  
Revision 1.4  
August 19, 2015  
49  
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Register Description (Continued)  
Address  
Name  
Description  
Mode(10)  
Default  
Register 1Eh – PHY Control 1  
1E.15:10  
1E.9  
Reserved  
Reserved  
RO  
RO  
0000_00  
0
1 = Flow control capable  
0 = No flow control capability  
1 = Link is up  
Enable Pause  
(Flow Control)  
1E.8  
Link Status  
RO  
0
0 = Link is down  
1 = Polarity is reversed  
0 = Polarity is not reversed  
Reserved  
1E.7  
1E.6  
1E.5  
Polarity Status  
Reserved  
RO  
RO  
RO  
0
1 = MDI-X  
MDI/MDI-X  
State  
0 = MDI  
1 = Signal present on receive differential  
pair  
1E.4  
1E.3  
Energy Detect  
PHY Isolate  
RO  
RW  
0
0
0 = No signal detected on receive differential  
pair  
1 = PHY in isolate mode  
0 = PHY in normal operation  
[000] = Still in auto-negotiation  
[001] = 10Base-T half-duplex  
[010] = 100Base-TX half-duplex  
[011] = Reserved  
Operation  
Mode  
Indication  
1E.2:0  
RO  
000  
[100] = Reserved  
[101] = 10Base-T full-duplex  
[110] = 100Base-TX full-duplex  
[111] = Reserved  
Register 1Fh – PHY Control 2  
1 = HP Auto MDI/MDI-X mode  
0 = Micrel Auto MDI/MDI-X mode  
When Auto MDI/MDI-X is disabled,  
1 = MDI-X mode  
1F.15  
HP_MDIX  
RW  
RW  
1
0
Transmit on RXP,RXM (pins 5, 4) and  
Receive on TXP,TXM (pins 7, 6)  
MDI/MDI-X  
Select  
1F.14  
0 = MDI mode  
Transmit on TXP,TXM (pins 7, 6) and  
Receive on RXP,RXM (pins 5, 4)  
1 = Disable Auto MDI/MDI-X  
0 = Enable Auto MDI/MDI-X  
Reserved  
Pair Swap  
Disable  
1F.13  
1F.12  
RW  
RW  
0
0
Reserved  
Revision 1.4  
August 19, 2015  
50  
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Register Description (Continued)  
Address  
Name  
Description  
Mode(10)  
Default  
Register 1Fh – PHY Control 2  
1 = Force link pass  
0 = Normal link operation  
1F.11  
Force Link  
RW  
0
This bit bypasses the control logic and allows  
the transmitter to send a pattern even if there is  
no link.  
1 = Enable power saving  
0 = Disable power saving  
1 = Interrupt pin active high  
0 = Interrupt pin active low  
1 = Enable jabber counter  
0 = Disable jabber counter  
1F.10  
1F.9  
1F.8  
Power Saving  
Interrupt Level  
Enable Jabber  
RW  
RW  
RW  
0
0
1
1 = RMII 50MHz clock mode; clock input to XI  
(Pin 9) is 50MHz  
RMII  
1F.7  
1F.6  
Reference  
Clock Select  
0 = RMII 25MHz clock mode; clock input to XI  
(Pin 9) is 25MHz  
RW  
RW  
0
0
This bit applies only to KSZ8081RNB.  
Reserved  
Reserved  
LED Mode  
[00] = LED1: Speed  
LED0: Link/Activity  
1F.5:4  
[01] = LED1: Activity  
LED0: Link  
RW  
00  
[10], [11] = Reserved  
1 = Disable transmitter  
0 = Enable transmitter  
1 = Remote (analog) loopback is enabled  
0 = Normal mode  
Disable  
Transmitter  
1F.3  
1F.2  
1F.1  
1F.0  
RW  
RW  
RW  
RW  
0
0
0
0
Remote  
Loopback  
1 = Enable SQE test  
0 = Disable SQE test  
1 = Disable scrambler  
0 = Enable scrambler  
Enable SQE  
Test  
Disable Data  
Scrambling  
Revision 1.4  
August 19, 2015  
51  
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Absolute Maximum Ratings(11)  
Operating Ratings(12)  
Supply Voltage (VIN)  
Supply Voltage  
(VDD_1.2) .................................................. –0.5V to +1.8V  
(VDDIO, VDDA_3.3) ...................................... –0.5V to +5.0V  
Input Voltage (all inputs) .............................. –0.5V to +5.0V  
Output Voltage (all outputs) ......................... –0.5V to +5.0V  
Lead Temperature (soldering, 10s)............................ 260°C  
Storage Temperature (TS).........................55°C to +150°C  
(VDDIO_3.3, VDDA_3.3).......................... +3.135V to +3.465V  
(VDDIO_2.5)........................................ +2.375V to +2.625V  
(VDDIO_1.8)........................................ +1.710V to +1.890V  
Ambient Temperature  
(TA, Commercial) ......................................0°C to +70°C  
(TA, Industrial).......................................40°C to +85°C  
Maximum Junction Temperature (TJ(MAX)).................. 125°C  
Thermal Resistance (θJA)...................................34°C/W  
Thermal Resistance (θJC) ....................................6°C/W  
Electrical Characteristics(13)  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Supply Current (VDDIO, VDDA_3.3 = 3.3V)(14)  
IDD1_3.3V  
IDD2_3.3V  
IDD3_3.3V  
IDD4_3.3V  
10Base-T  
Full-duplex traffic @ 100% utilization  
Full-duplex traffic @ 100% utilization  
Ethernet cable disconnected (reg. 18h.11 = 0)  
Software power-down (reg. 0h.11 = 1)  
41  
47  
20  
4
mA  
mA  
mA  
mA  
100Base-TX  
EDPD Mode  
Power-Down Mode  
CMOS Level Inputs  
VDDIO = 3.3V  
VDDIO = 2.5V  
VDDIO = 1.8V  
VDDIO = 3.3V  
VDDIO = 2.5V  
VDDIO = 1.8V  
VIN = GND ~ VDDIO  
2.0  
1.8  
1.3  
VIH  
Input High Voltage  
V
0.8  
0.7  
0.5  
10  
VIL  
Input Low Voltage  
Input Current  
V
|IIN|  
µA  
CMOS Level Outputs  
VDDIO = 3.3V  
VDDIO = 2.5V  
VDDIO = 1.8V  
VDDIO = 3.3V  
VDDIO = 2.5V  
VDDIO = 1.8V  
2.4  
2.0  
1.5  
VOH  
Output High Voltage  
V
0.4  
0.4  
0.3  
10  
VOL  
Output Low Voltage  
V
|Ioz|  
Output Tri-State Leakage  
Output Drive Current  
µA  
mA  
LED Output  
ILED  
Each LED pin (LED0, LED1)  
8
Notes:  
11. Exceeding the absolute maximum ratings can damage the device. Stresses greater than the absolute maximum rating can cause permanent  
damage to the device. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is  
not implied. Maximum conditions for extended periods may affect reliability.  
12. The device is not guaranteed to function outside its operating ratings.  
13. TA = 25°C. Specification for packaged product only.  
14. Current consumption is for the single 3.3V supply KSZ8081MNX/RNB device only, and includes the transmit driver current and the 1.2V supply  
voltage (VDD_1.2) that are supplied by the KSZ8081MNX/RNB.  
Revision 1.4  
August 19, 2015  
52  
 
 
 
 
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Electrical Characteristics(13) (Continued)  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
kΩ  
All Pull-Up/Pull-Down Pins (including Strapping Pins)  
VDDIO = 3.3V  
30  
39  
48  
26  
34  
53  
45  
61  
99  
43  
59  
99  
73  
pu  
pd  
Internal Pull-Up Resistance  
VDDIO = 2.5V  
VDDIO = 1.8V  
VDDIO = 3.3V  
VDDIO = 2.5V  
VDDIO = 1.8V  
102  
178  
79  
Internal Pull-Down Resistance  
113  
200  
kΩ  
100Base-TX Transmit (measured differentially after 1:1 transformer)  
VO  
Peak Differential Output Voltage 100Ω termination across differential output  
0.95  
1.05  
2
V
VIMB  
tr, tf  
Output Voltage Imbalance  
Rise/Fall Time  
100Ω termination across differential output  
%
3
0
5
ns  
ns  
ns  
%
Rise/Fall Time Imbalance  
Duty Cycle Distortion  
Overshoot  
0.5  
±0.25  
5
Output Jitter  
Peak-to-peak  
0.7  
ns  
10Base-T Transmit (measured differentially after 1:1 transformer)  
VP  
Peak Differential Output Voltage 100Ω termination across differential output  
2.2  
2.8  
3.5  
V
Jitter Added  
Peak-to-peak  
ns  
ns  
tr, tf  
Rise/Fall Time  
25  
10Base-T Receive  
VSQ  
Squelch Threshold  
5MHz square wave  
400  
0.65  
mV  
V
Transmitter – Drive Setting  
VSET  
Reference Voltage of ISET  
R(ISET) = 6.49kΩ  
REF_CLK Output  
Peak-to-peak. (Applies only to KSZ8081RNB  
in RMII – 25MHz clock mode)  
50MHz RMII Clock Output Jitter  
300  
20  
ps  
ns  
100Mbps Mode – Industrial Applications Parameters  
XI (25MHz clock input) to MII TXC (25MHz  
Clock Phase Delay – XI Input to clock output) delay, referenced to rising edges  
15  
25  
MII TXC Output  
of both clocks. (Applies only to KSZ8081MNX  
in MII mode)  
Link loss detected at receive differential inputs  
to PHY signal indication time for each of the  
following:  
1. For LED mode 00, Speed LED output  
changes from low (100Mbps) to high (10Mbps,  
default state for link-down).  
Link Loss Reaction (Indication)  
Time  
tllr  
4.4  
µs  
2. For LED mode 01, Link LED output changes  
from low (link-up) to high (link-down).  
3. INTRP pin asserts for link-down status  
change.  
Revision 1.4  
August 19, 2015  
53  
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Timing Diagrams  
MII SQE Timing (10Base-T)  
Figure 11. MII SQE Timing (10Base-T)  
Table 13. MII SQE Timing (10Base-T) Parameters  
Timing Parameter  
Description  
Min.  
Typ.  
400  
200  
200  
2.2  
Max.  
Units  
ns  
tP  
TXC period  
tWL  
TXC pulse width low  
TXC pulse width high  
COL (SQE) delay after TXEN de-asserted  
COL (SQE) pulse duration  
ns  
tWH  
tSQE  
tSQEP  
ns  
µs  
1.0  
µs  
Revision 1.4  
August 19, 2015  
54  
 
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
MII Transmit Timing (10Base-T)  
Figure 12. MII Transmit Timing (10Base-T)  
Table 14. MII Transmit Timing (10Base-T) Parameters  
Timing Parameter  
Description  
Min.  
Typ.  
400  
200  
200  
Max.  
Units  
ns  
tP  
TXC period  
tWL  
TXC pulse width low  
ns  
tWH  
TXC pulse width high  
ns  
tSU1  
tSU2  
tHD1  
tHD2  
tCRS1  
tCRS2  
TXD[3:0] setup to rising edge of TXC  
TXEN setup to rising edge of TXC  
TXD[3:0] hold from rising edge of TXC  
TXEN hold from rising edge of TXC  
TXEN high to CRS asserted latency  
TXEN low to CRS de-asserted latency  
120  
120  
0
ns  
ns  
ns  
0
ns  
600  
1.0  
ns  
µs  
Revision 1.4  
August 19, 2015  
55  
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
MII Receive Timing (10Base-T)  
Figure 13. MII Receive Timing (10Base-T)  
Table 15. MII Receive Timing (10Base-T) Parameters  
Timing Parameter  
Description  
Min.  
Typ.  
400  
200  
200  
Max.  
Units  
ns  
tP  
RXC period  
tWL  
tWH  
RXC pulse width low  
RXC pulse width high  
ns  
ns  
(RXDV, RXD[3:0], RXER) output delay from rising  
edge of RXC  
tOD  
205  
7.2  
ns  
µs  
tRLAT  
CRS to (RXDV, RXD[3:0]) latency  
Revision 1.4  
August 19, 2015  
56  
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
MII Transmit Timing (100Base-TX)  
Figure 14. MII Transmit Timing (100Base-TX)  
Table 16. MII Transmit Timing (100Base-TX) Parameters  
Timing Parameter  
Description  
Min.  
Typ.  
40  
Max.  
Units  
ns  
tP  
TXC period  
tWL  
TXC pulse width low  
20  
ns  
tWH  
TXC pulse width high  
20  
ns  
tSU1  
tSU2  
tHD1  
tHD2  
tCRS1  
tCRS2  
TXD[3:0] setup to rising edge of TXC  
TXEN setup to rising edge of TXC  
TXD[3:0] hold from rising edge of TXC  
TXEN hold from rising edge of TXC  
TXEN high to CRS asserted latency  
TXEN low to CRS de-asserted latency  
10  
10  
0
ns  
ns  
ns  
0
ns  
72  
72  
ns  
ns  
Revision 1.4  
August 19, 2015  
57  
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
MII Receive Timing (100Base-TX)  
Figure 15. MII Receive Timing (100Base-TX)  
Table 17. MII Receive Timing (100Base-TX) Parameters  
Timing Parameter  
Description  
Min.  
Typ.  
40  
Max.  
Units  
ns  
tP  
RXC period  
tWL  
tWH  
RXC pulse width low  
RXC pulse width high  
20  
ns  
20  
ns  
(RXDV, RXD[3:0], RXER) output delay from rising  
edge of RXC  
tOD  
16  
21  
25  
ns  
ns  
tRLAT  
CRS to (RXDV, RXD[3:0] latency  
170  
Revision 1.4  
August 19, 2015  
58  
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
RMII Timing  
Figure 16. RMII Timing – Data Received from RMII  
Figure 17. RMII Timing – Data Input to RMII  
Table 18. RMII Timing Parameters – KSZ8081RNB (25MHz input to XI pin, 50MHz output from REF_CLK pin)  
Timing Parameter  
Description  
Clock cycle  
Setup time  
Hold time  
Min.  
Typ.  
Max.  
Units  
ns  
tCYC  
t1  
20  
4
2
7
ns  
t2  
ns  
tOD  
Output delay  
10  
13  
ns  
Table 19. RMII Timing Parameters – KSZ8081RNB (50MHz input to XI pin)  
Timing Parameter  
Description  
Clock cycle  
Setup time  
Hold time  
Min.  
Typ.  
Max.  
Units  
ns  
tCYC  
t1  
20  
4
2
8
ns  
t2  
ns  
tOD  
Output delay  
11  
13  
ns  
Revision 1.4  
August 19, 2015  
59  
 
 
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Auto-Negotiation Timing  
Figure 18. Auto-Negotiation Fast Link Pulse (FLP) Timing  
Table 20. Auto-Negotiation Fast Link Pulse (FLP) Timing Parameters  
Timing Parameter  
Description  
Min.  
Typ.  
16  
Max.  
Units  
ms  
ms  
ns  
tBTB  
tFLPW  
tPW  
FLP burst to FLP burst  
FLP burst width  
8
24  
2
Clock/Data pulse width  
Clock pulse to data pulse  
Clock pulse to clock pulse  
Number of clock/data pulses per FLP burst  
100  
64  
tCTD  
tCTC  
55.5  
111  
17  
69.5  
139  
33  
µs  
128  
µs  
Revision 1.4  
August 19, 2015  
60  
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
MDC/MDIO Timing  
Figure 19. MDC/MDIO Timing  
Table 21. MDC/MDIO Timing Parameters  
Timing Parameter  
Description  
Min.  
Typ.  
2.5  
Max.  
Units  
MHz  
ns  
fc  
MDC Clock Frequency  
MDC period  
10  
tP  
400  
tMD1  
tMD2  
tMD3  
MDIO (PHY input) setup to rising edge of MDC  
MDIO (PHY input) hold from rising edge of MDC  
MDIO (PHY output) delay from rising edge of MDC  
10  
4
ns  
ns  
5
222  
ns  
Revision 1.4  
August 19, 2015  
61  
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Power-up/Reset Timing  
The KSZ8081MNX/RNB reset timing requirement is summarized in Figure 20 and Table 22.  
Figure 20. Power-up/Reset Timing  
Table 22. Power-up/Reset Timing Parameters  
Parameter  
Description  
Min.  
300  
10  
5
Max.  
Units  
µs  
tVR  
tSR  
tCS  
tCH  
tRC  
Supply voltage (VDDIO, VDDA_3.3) rise time  
Stable supply voltage (VDDIO, VDDA_3.3) to reset high  
Configuration setup time  
ms  
ns  
Configuration hold time  
5
ns  
Reset to strap-in pin output  
6
ns  
The supply voltage (VDDIO and VDDA_3.3) power-up waveform should be monotonic. The 300µs minimum rise time is from  
10% to 90%.  
For warm reset, the reset (RST#) pin should be asserted low for a minimum of 500µs. The strap-in pin values are read  
and updated at the de-assertion of reset.  
After the de-assertion of reset, wait a minimum of 100µs before starting programming on the MIIM (MDC/MDIO) interface.  
Revision 1.4  
August 19, 2015  
62  
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Reset Circuit  
Figure 21 shows a reset circuit recommended for powering up the KSZ8081MNX/RNB if reset is triggered by the power  
supply.  
Figure 21. Recommended Reset Circuit  
Figure 22 Shows a reset circuit recommended for applications where reset is driven by another device (for example, the  
CPU or an FPGA). The reset out RST_OUT_n from CPU/FPGA provides the warm reset after power up reset. D2 is used  
if using different VDDIO between the switch and CPU/FPGA, otherwise, the different VDDIO will fight each other. If  
different VDDIO have to use in a special case, a low VF (<0.3V) diode is required (For example, VISHAY’s BAT54,  
MSS1P2L and so on), or a level shifter device can be used too. If Ethernet device and CPU/FPGA use same VDDIO  
voltage, D2 can be removed to connect both devices directly. Usually, Ethernet device and CPU/FPGA should use same  
VDDIO voltage.  
VDDIO  
R 10K  
D1  
CPU/FPGA  
KSZ8081MNX/RNB  
RST  
RST_OUT_n  
D2  
C 10uF  
Figure 22. Recommended Reset Circuit for Interfacing with CPU/FPGA Reset Output  
Revision 1.4  
August 19, 2015  
63  
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Reference Circuits – LED Strap-In Pins  
The pull-up, float, and pull-down reference circuits for the LED1/SPEED and LED0/NWAYEN strapping pins are shown in  
Figure 23 for 3.3V and 2.5V VDDIO.  
Figure 23. Reference Circuits for LED Strapping Pins  
For using 1.8V VDDIO, should select parts with low 1.8V operation voltage and forwarding current IF about 2mA LED  
indicator. It is ok using internal pull-up or external pull-up resistor for the LED pin pull-up strap function, and use an  
external 0.75K to 1K pull-down resistor for the LED pin pull-down strap function.  
Note: If using RJ45 jacks with integrated LEDs and 1.8V VDDIO, a level shifting is required from LED 3.3V to 1.8V. For  
example, use a bipolar transistor or a level shift device.  
Revision 1.4  
August 19, 2015  
64  
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Reference Clock – Connection and Selection  
A crystal or external clock source, such as an oscillator, is used to provide the reference clock for the KSZ8081MNX/RNB.  
For the KSZ8081MNX in all operating modes and for the KSZ8081RNB in RMII – 25MHz Clock Mode, the reference clock  
is 25MHz. The reference clock connections to XI (Pin 9) and XO (Pin 8), and the reference clock selection criteria, are  
provided in Figure 24 and Table 23.  
Figure 24. 25MHz Crystal/Oscillator Reference Clock Connection  
Table 23. 25MHz Crystal/Reference Clock Selection Criteria  
Characteristics  
Value  
25  
Units  
MHz  
ppm  
Ω
Frequency  
Frequency tolerance (max)(15)  
Crystal series resistance (typ)  
Crystal load capacitance (typ)  
±50  
40  
22  
pF  
Note:  
15. ±60ppm for overtemperature crystal.  
For the KSZ8081RNB in RMII – 50MHz clock mode, the reference clock is 50MHz. The reference clock connections to XI  
(Pin 9), and the reference clock selection criteria are provided in Figure 25 and Table 24.  
Figure 25. 50MHz Oscillator Reference Clock Connection  
Table 24. 50MHz Oscillator/Reference Clock Selection Criteria  
Characteristics  
Value  
50  
Units  
MHz  
ppm  
Frequency  
Frequency tolerance (maximum)  
±50  
Revision 1.4  
August 19, 2015  
65  
 
 
 
 
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Magnetic – Connection and Selection  
A 1:1 isolation transformer is required at the line interface. Use one with integrated common-mode chokes for designs  
exceeding FCC requirements.  
The KSZ8081MNX/RNB design incorporates voltage-mode transmit drivers and on-chip terminations.  
With the voltage-mode implementation, the transmit drivers supply the common-mode voltages to the two differential  
pairs. Therefore, the two transformer center tap pins on the KSZ8081MNX/RNB side should not be connected to any  
power supply source on the board; instead, the center tap pins should be separated from one another and connected  
through separate 0.1µF common-mode capacitors to ground. Separation is required because the common-mode voltage  
is different between transmitting and receiving differential pairs.  
Figure 26 shows the typical magnetic interface circuit for the KSZ8081MNX/RNB.  
Figure 26. Typical Magnetic Interface Circuit  
Revision 1.4  
August 19, 2015  
66  
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Table 25 lists recommended magnetic characteristics.  
Table 25. Magnetics Selection Criteria  
Parameter  
Value  
Test Condition  
Turns ratio  
1 CT : 1 CT  
350µH  
Open-circuit inductance (minimum)  
Insertion loss (typical)  
HIPOT (minimum)  
100mV, 100kHz, 8mA  
100kHz to 100MHz  
–1.1dB  
1500Vrms  
Table 26 is a list of compatible single-port magnetics with separated transformer center tap pins on the PHY chip side that  
can be used with the KSZ8081MNX/RNB.  
Table 26. Compatible Single-Port 10/100 Magnetics  
Manufacturer  
Bel Fuse  
Bel Fuse  
Bel Fuse  
Delta  
Part Number  
S558-5999-U7  
SI-46001-F  
SI-50170-F  
LF8505  
Temperature Range  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
0°C to 70°C  
–40°C to 85°C  
Magnetic + RJ-45  
No  
Yes  
Yes  
No  
HALO  
HFJ11-2450E  
TG110-E055N5  
LF-H41S-1  
H1102  
Yes  
No  
HALO  
LANKom  
Pulse  
No  
No  
Pulse  
H1260  
No  
Pulse  
HX1188  
No  
Pulse  
J00-0014  
Yes  
Yes  
Yes  
No  
Pulse  
JX0011D21NL  
TLA-6T718A  
HB726  
TDK  
Transpower  
Wurth/Midcom  
000-7090-37R-LF1  
No  
Revision 1.4  
August 19, 2015  
67  
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
Package Information and Recommended Land Pattern(16)  
32-Pin 5mm × 5mm QFN  
Note:  
16. Package information is correct as of the publication date. For updates and most current information, go to www.micrel.com.  
Revision 1.4  
August 19, 2015  
68  
 
 
Micrel, Inc.  
KSZ8081MNX/KSZ8081RNB  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com  
Micrel, Inc. is a leading global manufacturer of IC solutions for the worldwide high performance linear and power, LAN, and timing & communications  
markets. The Company’s products include advanced mixed-signal, analog & power semiconductors; high-performance communication, clock  
management, MEMs-based clock oscillators & crystal-less clock generators, Ethernet switches, and physical layer transceiver ICs. Company  
customers include leading manufacturers of enterprise, consumer, industrial, mobile, telecommunications, automotive, and computer products.  
Corporation headquarters and state-of-the-art wafer fabrication facilities are located in San Jose, CA, with regional sales and support offices and  
advanced technology design centers situated throughout the Americas, Europe, and Asia. Additionally, the Company maintains an extensive network  
of distributors and reps worldwide.  
Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this datasheet. This  
information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry,  
specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Micrel’s terms and conditions of sale for such products, Micrel assumes no liability  
whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties  
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product  
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant  
into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A  
Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully  
indemnify Micrel for any damages resulting from such use or sale.  
© 2013 Micrel, Incorporated.  
Revision 1.4  
August 19, 2015  
69  

相关型号:

KSZ8081MNXIA

10Base-T/100Base-TX Physical Layer Transceiver
MICREL

KSZ8081MNXIA

10BASE-T/100BASE-TX Physical Layer Transceiver
MICROCHIP

KSZ8081RNA

10Base-T/100Base-TX PHY with RMII Support
MICREL

KSZ8081RNA

10BASE-T/100BASE-TX PHY with RMII Support
MICROCHIP

KSZ8081RNA-EVAL

10Base-T/100Base-TX PHY with RMII Support
MICREL

KSZ8081RNACA

10Base-T/100Base-TX PHY with RMII Support
MICREL

KSZ8081RNACA

10BASE-T/100BASE-TX PHY with RMII Support
MICROCHIP

KSZ8081RNACA-TR

10Base-T/100Base-TX PHY with RMII Support
MICREL

KSZ8081RNAIA

10Base-T/100Base-TX PHY with RMII Support
MICREL

KSZ8081RNAIA

10BASE-T/100BASE-TX PHY with RMII Support
MICROCHIP

KSZ8081RNB

10BASE-T/100BASE-TX Physical Layer Transceiver
MICROCHIP

KSZ8081RNB-EVAL

10Base-T/100Base-TX Physical Layer Transceiver
MICREL