MIC20XX_1108 [MICREL]

Fixed and Adjustable Current Limiting Power Distribution Switches; 固定和可调电流限制配电开关
MIC20XX_1108
型号: MIC20XX_1108
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

Fixed and Adjustable Current Limiting Power Distribution Switches
固定和可调电流限制配电开关

开关
文件: 总30页 (文件大小:1314K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC20XX Family  
Fixed and Adjustable Current Limiting  
Power Distribution Switches  
General Description  
Features  
MIC20XX family of switches are current limiting, high-side  
power switches, designed for general purpose power  
distribution and control in digital televisions (DTV), printers,  
set top boxes (STB), PCs, PDAs, and other peripheral  
devices (see Functionality Table and Pin Configuration  
drawings)  
MIC20X3 – MIC20X9  
70mΩ typical on-resistance @ 5V  
MIC2005A/20X9A  
170mΩ typical on-resistance @ 5V  
Enable active high or active low  
2.5V – 5.5V operating range  
MIC20XX family’s primary functions are current limiting  
and power switching. They are thermally protected and will  
shutdown should their internal temperature reach unsafe  
levels, protecting both the device and the load, under high-  
current or fault conditions  
Pre-set current limit values of 0.5A, 0.8A, and 1.2A*  
Adjustable current limit 0.2A to 2.0A* (MIC20X7-  
MIC20X9)  
Adjustable current limit 0.1A to 0.9A* (MIC20X9A)  
Undervoltage lock-out (UVLO)  
Features include fault reporting, fault blanking to eliminate  
noise-induced false alarms, output slew rate limiting, under  
voltage detection, automatic-on output, and enable pin  
with choice of either active low or active high enable. The  
FET is self-contained, with a fixed- or user-adjustable  
current limit. The MIC20XX family is ideal for any system  
where current limiting and power control are desired.  
Variable UVLO allows adjustable UVLO thresholds*  
Automatic load discharge for capacitive loads*  
Soft-start prevents large current inrush  
Adjustable slew rate allows custom slew rates*  
Automatic-on output after fault  
The MIC201X (3 x 9) and MIC2019A switches offer a  
unique new patented feature: Kickstart™, which allows  
momentary high-current surges up to the secondary  
current limit (ILIMIT_2nd) without sacrificing overall system  
safety.  
Thermal protection  
* Available on some family members  
Applications  
The MIC20xx family is offered, depending on the desired  
features, in a space-saving 5-pin SOT-23, 6-pin SOT-23,  
and 2mm x 2mm MLF® packages.  
Digital televisions (DTV)  
Set top boxes  
PDAs  
Printers  
Datasheets and support documentation can be found on  
Micrel’s web site at: www.micrel.com.  
USB / IEEE 1394 power distribution  
Desktop and laptop PCs  
Game consoles  
Docking stations  
___________________________________________________________________________________________________________  
Typical Application  
5V Supply  
MIC2005A  
Logic  
VBUS  
120µF  
Controller  
VIN  
GND  
EN  
VOUT  
USB  
Port  
VIN  
FAULT/  
ON/OFF  
1µF  
OVERCURRENT/  
Figure 1. Typical Application Circuit  
Kickstart is a trademark of Micrel, Inc.  
MLF and MicroLeadFrame are registered trademarks of Amkor Technology, Inc.  
Protected by U.S. Patent No. 7,170,732  
CableCARD is a trademark of CableLabs.  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-080211-D  
August 2011  
Micrel, Inc.  
MIC20xx Family  
Ordering Information  
MIC2003/2013  
Part Number(1)  
Marking(2)  
Current Limit  
0.5A  
Kickstart™ Package  
MIC2003-0.5YM5  
MIC2003-0.8YM5  
MIC2003-1.2YM5  
MIC2003-0.5YML  
MIC2003-0.8YML  
MIC2003-1.2YML  
MIC2013-0.5YM5  
MIC2013-0.8YM5  
MIC2013-1.2YM5  
MIC2013-0.5YML  
MIC2013-0.8YML  
MIC2013-1.2YML  
FD05  
FD08  
FD12  
5-Pin SOT-23  
0.8A  
1.2A  
No  
0.5A  
D05  
D08  
6-Pin 2mm x 2mm MLF®  
5-Pin SOT-23  
0.8A  
1.2A  
D12  
FL05  
0.5A  
FL08  
FL12  
0.8A  
1.2A  
Yes  
0.5A  
L05  
L09  
L12  
6-Pin 2mm x 2mm MLF®  
0.8A  
1.2A  
MIC2004/2014  
Part Number(1)  
Marking(2)  
FE05  
Current Limit  
0.5A  
Kickstart™ Package  
MIC2004-0.5YM5  
MIC2004-0.8YM5  
MIC2004-1.2YM5  
MIC2004-0.5YML  
MIC2004-0.8YML  
MIC2004-1.2YML  
MIC2014-0.5YM5  
MIC2014-0.8YM5  
MIC2014-1.2YM5  
MIC2014-0.5YML  
MIC2014-0.8YML  
5-Pin SOT-23  
FE08  
0.8A  
FE12  
1.2A  
No  
0.5A  
E05  
E08  
6-Pin 2mm x 2mm MLF®  
5-Pin SOT-23  
0.8A  
1.2A  
E12  
FM05  
0.5A  
FM08  
FM12  
0.8A  
1.2A  
Yes  
0.5A  
M05  
M09  
M12  
6-Pin 2mm x 2mm MLF®  
0.8A  
MIC2014-1.2YML  
1.2A  
Notes:  
1. All MIC20XX Family parts are RoHS-compliant lead free.  
2. Over/Under-bar symbol ( ¯ / _ ) may not be to scale. On the package the over/under symbol begins above/below the first character of the  
marking.  
August 2011  
2
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
Ordering Information (Continued)  
MIC2005  
Part Number(1)  
Marking(2)  
FF05  
Current Limit  
0.5A  
Enable  
Kickstart™ Package  
MIC2005-0.5YM6  
MIC2005-0.8YM6  
MIC2005-1.2YM6  
MIC2005-0.5YML  
MIC2005-0.8YML  
MIC2005-1.2YML  
Active High  
Active High  
Active High  
Active High  
Active High  
Active High  
6-Pin SOT-23  
FF08  
0.8A  
FF12  
1.2A  
No  
0.5A  
F05  
F08  
F12  
6-Pin 2mm x 2mm MLF®  
0.8A  
1.2A  
MIC2005L  
Part Number(1)  
MIC2005-0.5LYM5  
MIC2005-0.8LYM5  
MIC2005-1.2LYM5  
Marking(2)  
5LFF  
Current Limit  
0.5A  
Enable  
Kickstart™ Package  
Active Low  
Active Low  
Active Low  
No  
5-Pin SOT-23  
8LFF  
0.8A  
4LFF  
1.2A  
MIC2005A  
Part Number(1)  
MIC2005A-1YM5  
MIC2005A-2YM5  
MIC2005A-1YM6  
MIC2005A-2YM6  
Marking(2)  
FA51  
Current Limit  
0.5A  
Enable  
Kickstart™ Package  
Active High  
Active Low  
Active High  
Active Low  
5-Pin SOT-23  
FA52  
0.5A  
No  
FA53  
0.5A  
6-Pin SOT-23  
FA54  
0.5A  
MIC2015  
Part Number(1)  
MIC2015-0.5YM6  
MIC2015-0.8YM6  
MIC2015-1.2YM6  
MIC2015-0.5YML  
MIC2015-0.8YML  
Marking(2)  
FN05  
Current Limit  
0.5A  
Enable  
Kickstart™ Package  
Active High  
Active High  
Active High  
Active High  
Active High  
Active High  
6-Pin SOT-23  
FN08  
0.8A  
FN12  
1.2A  
Yes  
0.5A  
N05  
N08  
N12  
6-Pin 2mm x 2mm MLF®  
0.8A  
MIC2015-1.2YML  
1.2A  
Notes:  
1. All MIC20XX Family parts are RoHS-compliant lead free.  
2. Over/Under-bar symbol ( ¯ / _ ) may not be to scale. On the package the over/under symbol begins above/below the first character of the  
marking.  
August 2011  
3
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
Ordering Information (Continued)  
MIC2006/2016  
Part Number(1)  
Marking(2)  
FG05  
Current Limit  
0.5A  
Kickstart™ Package  
MIC2006-0.5YM6  
MIC2006-0.8YM6  
MIC2006-1.2YM6  
MIC2006-0.5YML  
MIC2006-0.8YML  
MIC2006-1.2YML  
MIC2016-0.5YM6  
MIC2016-0.8YM6  
MIC2016-1.2YM6  
MIC2016-0.5YML  
MIC2016-0.8YML  
MIC2016-1.2YML  
6-Pin SOT-23  
FG08  
0.8A  
FG12  
1.2A  
No  
0.5A  
G05  
G08  
6-Pin 2mm x 2mm MLF®  
6-Pin SOT-23  
0.8A  
1.2A  
G12  
FP05  
FP08  
FP12  
0.5A  
0.8A  
1.2A  
Yes  
0.5A  
P05  
P09  
P12  
6-Pin 2mm x 2mm MLF®  
0.8A  
1.2A  
MIC2007/2017  
Part Number(1)  
MIC2007YM6  
MIC2007YML  
MIC2017YM6  
MIC2017YML  
Marking(2)  
Current Limit  
Kickstart™ Package  
FHAA  
6-Pin SOT-23  
6-Pin 2mm x 2mm MLF®  
No  
HAA  
0.2A – 2.0A  
FQAA  
6-Pin SOT-23  
6-Pin 2mm x 2mm MLF®  
Yes  
QAA  
MIC2008/2018  
Part Number(1)  
MIC2008YM6  
MIC2008YML  
MIC2018YM6  
MIC2018YML  
Marking(2)  
Current Limit  
Kickstart™ Package  
FJAA  
6-Pin SOT-23  
6-Pin 2mm x 2mm MLF®  
No  
JAA  
0.2A – 2.0A  
FRAA  
6-Pin SOT-23  
6-Pin 2mm x 2mm MLF®  
Yes  
RAA  
MIC2009/2019  
Part Number(1)  
MIC2009YM6  
Marking(2)  
Current Limit  
Kickstart™ Package  
FKAA  
6-Pin SOT-23  
6-Pin 2mm x 2mm MLF®  
No  
MIC2009YML  
MIC2019YM6  
KAA  
0.2A – 2.0A  
FSAA  
6-Pin SOT-23  
Yes  
MIC2019YML  
6-Pin 2mm x 2mm MLF®  
SAA  
Notes:  
1. All MIC20XX Family parts are RoHS-compliant lead free.  
2. Over/Under-bar symbol ( ¯ / _ ) may not be to scale. On the package the over/under symbol begins above/below the first character of the  
marking.  
August 2011  
4
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
Ordering Information (Continued)  
MIC2009A/2019A  
Part Number(1)  
MIC2009A-1YM6  
MIC2009A-2YM6  
MIC2019A-1YM6  
Marking(2) Current Limit Kickstart™ Enable  
Package  
FK1  
FK2  
FS1  
FS2  
Active High  
Active Low  
Active High  
Active Low  
No  
0.1 A – 0.9 A  
6-pin SOT-23  
Yes  
MIC2019A-2YM6  
Notes:  
1. All MIC20XX Family parts are RoHS-compliant lead free.  
2. Over/Under-bar symbol ( ¯ / _ ) may not be to scale. On the package the over/under symbol begins above/below the first character of the  
marking.  
MIC20XX Family Member Functionality  
Part Number  
Pin Function  
Normal  
Limiting  
ENABLE  
High  
ENABLE  
Low  
Load  
Discharge  
Kickstart™(1)  
ILIMIT  
ILIMIT  
CSLEW FAULT/  
VUVLO(5)  
2003  
2013  
2014  
2015  
2004  
2005  
Fixed (2)  
(1)  
2005L  
2005A-1  
2005A-2  
2006  
(1)  
(6)  
(1)  
(6)  
2016  
2017  
2007  
2008  
2018  
Adj.(3)  
2009  
2019  
2009A-1  
2019A-1  
2019A-2  
2009A-2  
Notes:  
1. Kickstart™ provides an alternate start-up behavior; however, pin-outs are identical.  
2. Kickstart™ not available.  
3. Fixed = Factory-programmed current limit.  
4. Adj. = User adjustable current limit.  
5. VUVLO = Variable UVLO (Previously called DML).  
6. CSLEW not available in 5-pin package.  
August 2011  
5
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
MIC20XX Family Member Pin Configuration Table, SOT Packages  
Part Number  
Pin Number  
ILIMIT  
Normal  
Limiting  
Kickstart™  
1
2
3
4
5
6
2003  
2013  
2014  
2015  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
EN  
EN  
EN  
EN  
EN  
EN  
EN  
EN  
EN  
EN  
NC  
VOUT  
VOUT  
CSLEW  
VOUT  
2004  
2005  
NC  
FAULT/  
FAULT/  
FAULT/  
FAULT/  
VUVLO(4)  
ILIMIT  
VOUT  
Fixed(2)  
(1)  
2005L  
2005Axxx6  
2005Axxx5  
2006  
(1)  
CSLEW  
VOUT  
VOUT  
(1)  
2016  
2017  
2018  
2019  
2019A  
CSLEW  
CSLEW  
CSLEW  
ILIMIT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
2007  
2008  
ILIMIT  
Adj.(3)  
2009  
FAULT/  
FAULT/  
2009A  
ILIMIT  
Notes:  
1. Kickstart™ not available.  
2. Fixed = Factory-programmed current limit.  
3. LIMIT = User adjustable current limit.  
4. VUVLO = Variable UVLO (Previously called DLM).  
I
MIC20XX Family Member Pin Configuration Table, MLF® Packages (5)  
Part Number  
Pin Number  
3
Normal Limiting  
Kickstart™  
I Limit  
6
5
4
2
1
2003  
2004  
2005  
2006  
2007  
2008  
2013  
VIN  
GND  
NC  
NC  
NC  
NC  
VOUT  
VOUT  
VOUT  
VOUT  
2014  
2015  
2016  
2017  
2018  
2019  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
GND  
GND  
GND  
GND  
GND  
GND  
EN  
EN  
EN  
EN  
EN  
EN  
NC  
Fixed(2)  
FAULT/  
VUVLO(4)  
ILIMIT  
ILIMIT  
FAULT/  
CSLEW  
CSLEW  
CSLEW  
CSLEW  
ILIMIT  
VOUT  
VOUT  
VOUT  
Adj.(3)  
2009  
Notes:  
1.  
2.  
3.  
4.  
5.  
Kickstart™ not available.  
Fixed = Factory-programmed current limit.  
LIMIT = User adjustable current limit.  
I
VUVLO = Variable UVLO (Previously called DLM).  
Connect EP to GND.  
August 2011  
6
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
MIC20XX Family Member Pin Configuration Drawings  
Fixed Current Limit  
MIC20X3  
VIN  
GND  
NC  
1
2
3
VOUT  
NC  
5
4
5-Pin SOT-23 (M5)  
6-Pin MLF® (ML)  
(Top View)  
MIC20X4  
VIN  
GND  
1
2
3
VOUT  
NC  
5
4
ENABLE  
5-Pin SOT-23 (M5)  
6-Pin MLF® (ML)  
(Top View)  
MIC20X5  
VIN  
VIN  
GND  
1
2
3
VOUT  
1
2
3
5
4
VOUT  
6
5
4
GND  
CSLEW  
FAULT/  
ENABLE  
ENABLE  
FAULT/  
5-Pin SOT-23 (M5)  
MIC2005-X.XL  
6-Pin SOT-23 (M6)  
MIC20X5  
6-Pin MLF® (ML)  
(Top View)  
MIC20X5  
MIC20X6  
VIN  
GND  
1
2
3
VOUT  
6
5
4
CSLEW  
VUVLO  
ENABLE  
6-Pin SOT-23 (M6)  
6-Pin MLF® (ML)  
(Top View)  
August 2011  
7
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
MIC20XX Family Member Pin Configuration Drawings (Continued)  
Adjustable Current Limit  
MIC20X7/20X8  
VIN  
GND  
1
2
3
VOUT  
6
5
4
CSLEW  
ILIMIT  
ENABLE  
6-Pin SOT-23 (M6)  
6-Pin MLF® (ML)  
(Top View)  
MIC20X9  
VIN  
1
2
3
VOUT  
ILIMIT  
FAULT/  
6
5
4
GND  
ENABLE  
6-Pin SOT-23 (M6)  
6-Pin MLF® (ML)  
(Top View)  
MIC2005A  
VIN  
VIN  
1
2
3
VOUT  
1
2
3
5
4
VOUT  
6
5
4
GND  
GND  
CSLEW  
FAULT/  
ENABLE  
ENABLE  
FAULT/  
5-Pin SOT-23 (M5)  
6-Pin SOT-23 (M6)  
MIC2009A  
VIN  
GND  
1
2
3
VOUT  
ILIMIT  
FAULT/  
6
5
4
ENABLE  
6-Pin SOT-23 (M6)  
August 2011  
8
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
Descriptions  
These pin and signal descriptions aid in the  
differentiation of a pin from electrical signals and  
components connected to that pin. For example, VOUT  
is the switch’s output pin, while VOUT is the electrical  
signal output voltage present at the VOUT pin.  
Pin Descriptions  
Pin Name  
Type  
Description  
VIN  
Input  
Supply input. This pin provides power to both the output switch and the switch’s internal control circuitry.  
GND  
EN  
Ground.  
Input  
Switch Enable (Input):  
Fault status. A logic LOW on this pin indicates the switch is in current limiting, or has been shut down by  
the thermal protection circuit. This is an open-drain output allowing logical OR’ing of multiple switches.  
FAULT/  
Output  
Slew rate control. Adding a small value capacitor between this pin and VIN slows turn-ON of the power  
FET.  
CSLEW  
VOUT  
Input  
Output  
Switch output. The load being driven by the switch is connected to this pin.  
Variable Under Voltage Lockout (VUVLO): Monitors the input voltage through a resistor divider between  
VIN and GND. Shuts the switch off if voltage falls below the threshold set by the resistor divider.  
Previously called VUVLO.  
VUVLO  
Input  
Input  
ILIMIT  
EP  
Set current limit threshold via a resistor connected from ILIMIT to GND.  
Thermal On MLF packages connect EP to GND.  
Signal Descriptions  
Signal Name  
VIN  
Type  
Input  
Description  
Electrical signal input voltage present at the VIN pin.  
Ground.  
GND  
VEN  
Input  
Output  
Electrical signal input voltage present at the ENABLE pin.  
Electrical signal output voltage present at the FAULT/ pin.  
VFAULT/  
CSLEW  
VOUT  
Component Capacitance value connected to the CSLEW pin.  
Output  
Electrical signal output voltage present at the VOUT pin.  
VUVLO internal reference threshold voltage. This voltage is compared to the VUVLO pin input  
voltage to determine if the switch should be disabled. Reference threshold voltage has a typical  
value of 250mV.  
VVUVLO_TH  
Internal  
CLOAD  
IOUT  
Component Capacitance value connected in parallel with the load. Load capacitance.  
Output  
Electrical signal output current present at the VOUT pin.  
Switch’s current limit. Fixed at factory or user adjustable.  
ILIMIT  
Internal  
August 2011  
9
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
VIN, VOUT.....................................................–0.3V to 6V  
All other pins...........................................–0.3V to 5.5V  
Power Dissipation (PD) ..................... Internally Limited  
Continuous Output Current  
All except MIC2005A / MIC20X9A................. 2.25A  
MIC2005A / 20X9A.......................................... 1.0A  
Maximum Junction Temperature (TJ)................ 150°C  
Storage Temperature (Ts)................. –65°C to +150°C  
Lead Temperature (Soldering 10 sec)............... 260°C  
Supply Voltage.............................................. 2.5V to 5.5V  
Continuous Output Current  
All except MIC2005A / MIC20X9A ........... 0A to 2.1A  
MIC2005A/20X9A...................................... 0A to 0.9A  
Ambient Temperature Range (TA) ............–40°C to+85°C  
Package Thermal Resistance(3)  
SOT-23-5/6 (θJA) .........................................230°C /W  
2mm × 2mm MLF® (θJA) ................................90°C /W  
2mm × 2mm MLF® (θJC)................................45°C /W  
Electrical Characteristics(4)  
VIN = 5V, TA = 25°C unless otherwise specified. Bold indicates –40°C to +85°C limits; CIN = 1µF.  
Symbol  
Parameter  
Condition  
Min.  
2.5  
Typ.  
Max.  
5.5  
Units  
VIN  
Switch Input Voltage  
V
Switch = OFF, VOUT = 0V  
Active Low Enable, VEN = 1.5V  
Active High Enable, VEN = 0V  
ILEAK  
Output Leakage Current(5)  
12  
100  
µA  
MIC2005A, MIC2009A, MIC2019A  
Switch = ON  
Active Low Enable, VEN = 0V  
Active High Enable, VEN = 1.5V  
80  
8
300  
IIN  
Supply Current(5)  
µA  
Switch = OFF  
Active Low Enable, VEN = 1.5V  
15  
5
Switch = OFF  
Active High Enable, VEN = 0V  
1
170  
220  
RDS(ON)  
Power Switch Resistance  
Fixed Current Limit  
VIN = 5V, IOUT = 100mA  
VOUT = 0.8 × VIN  
mΩ  
275  
MIC2005A  
ILIMIT  
0.5  
0.7  
0.9  
A
MIC2009A, MIC2019A  
IOUT = 0.9A, VOUT = 0.8 × VIN  
IOUT = 0.5A, VOUT = 0.8 × VIN  
IOUT = 0.2A, VOUT = 0.8 × VIN  
172  
152  
138  
121  
211  
206  
200  
192  
263  
263  
263  
263  
CLF  
Variable Current Limit Factors  
V
A
I
OUT = 0.1A, VOUT = 0.8 × VIN  
MIC2019A  
ILIMIT_2nd  
Secondary Current Limit  
VIN = 2.5V, VOUT = 0V  
1
2
3
Notes:  
1. Exceeding the absolute maximum rating may damage the device.  
2. The device is not guaranteed to function outside its operating rating.  
3. Requires proper thermal mounting to achieve this performance  
4. Specifications for packaged product only.  
5. Check the Ordering Information section to determine which parts are Active High or Active Low.  
August 2011  
10  
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
Electrical Characteristics(4) (Continued)  
VIN = 5V, TA = 25°C unless otherwise specified. Bold indicates –40°C to +85°C limits; CIN = 1µF.  
Symbol  
MIC2003-MIC2009, MIC2013-MIC2019, MIC2005-X.XL  
Switch = ON  
Parameter  
Condition  
Min.  
Typ.  
Max.  
330  
Units  
Active Low Enable, VEN = 0V  
Active High Enable, VEN = 1.5V  
80  
8
IIN  
Supply Current(5)  
µA  
Switch = OFF  
15  
5
Active Low Enable, VEN = 1.5V  
Switch = OFF  
Active High Enable, VEN = 0V  
1
70  
100  
RDS(ON)  
Power Switch Resistance  
VIN = 5V, IOUT = 100mA  
mΩ  
125  
MIC2003-X.X, MIC2004-X.X, MIC2005-X.X, MIC2006-X.X, MIC2013-X.X, MIC2014-X.X, MIC2015-X.X MIC2016-X.X, MIC2005-X.XL  
0.5  
0.8  
1.2  
0.7  
1.1  
1.6  
0.9  
1.5  
2.1  
0.5, VOUT = 0.8 × VIN  
0.8, VOUT = 0.8 × VIN  
1.2, VOUT = 0.8 × VIN  
ILIMIT  
Fixed Current Limit  
A
A
MIC2005-0.5  
ILIMIT  
Fixed Current Limit  
0.5  
0.7  
0.9  
VOUT = 0.8 × VIN  
MIC2007, MIC2008, MIC2009, MIC2017, MIC2018, MIC2019  
IOUT = 2.0A, VOUT = 0.8 × VIN  
210  
190  
168  
144  
250  
243  
235  
225  
286  
293  
298  
299  
IOUT = 1.0A, VOUT = 0.8 × VIN  
IOUT = 0.5A, VOUT = 0.8 × VIN  
IOUT = 0.2A, VOUT = 0.8 × VIN  
Variable Current Limit  
Factors  
CLF  
V
MIC2013, MIC2014, MIC2015, MIC2016, MIC2017, MIC2018, MIC2019  
ILIMIT_2nd  
Secondary Current Limit  
Variable UVLO Threshold  
Load Discharge Resistance  
VIN = 2.5V, VOUT = 0V  
2.2  
225  
70  
4
6
A
mV  
MIC2006, MIC2016  
VUVLO_TH  
250  
275  
200  
MIC20x4, MIC20x7  
RDSCHG  
VIN = 5V, ISINK = 5mA  
126  
MIC20X5, MIC20X6, MIC20X7, MIC20X8  
ICSLEW  
CSLEW Input Current  
0.175  
µA  
0V VOUT 0.8VIN  
August 2011  
11  
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
Electrical Characteristics(4) (Continued)  
VIN = 5V, TA = 25°C unless otherwise specified. Bold indicates –40°C to +85°C limits; CIN = 1µF.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
0.5  
Units  
All Parts  
VIL (MAX)  
VEN  
ENABLE Input Voltage(6)  
ENABLE Input Current  
V
µA  
V
VIH (MIN)  
1.5  
IEN  
1
5
0V VEN 5V  
VIN Rising  
2
2.25  
2.15  
2.5  
2.4  
Undervoltage Lock-Out  
Threshold  
UVLOTHRESHOLD  
VIN Falling  
1.9  
Undervoltage Lock-Out  
Hysteresis  
UVLOHYSTERESIS  
VFAULT  
0.1  
V
V
Fault Status Output Voltage  
IOL = 10mA  
0.25  
145  
135  
0.4  
TJ Increasing  
TJ Decreasing  
Over-Temperature  
Threshold  
OTTHRESHOLD  
°C  
Note:  
6. VIL(MAX) = Maximum positive voltage applied to the input which will be accepted by the device as a logic low.  
VIH(MAX) = Maximum positive voltage applied to the input which will be accepted by the device as a logic high.  
August 2011  
12  
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
AC Electrical Characteristics  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
RL = 10, CLOAD = 1µF,  
tRISE  
Output Turn-on rise time  
V
OUT = 10% to 90%  
500  
1000  
1500  
µs  
CSLEW(7) = Open  
Delay before asserting or releasing  
FAULT/  
Time from current limiting to FAULT/ state  
change  
20  
32  
49  
MIC2003 – MIC2009  
MIC2009A, MIC2005A  
tD_FAULT  
ms  
Delay before asserting or releasing  
FAULT/  
Time from IOUT continuously exceeding  
primary current limit condition to FAULT/  
state change  
77  
77  
77  
128  
128  
192  
192  
192  
MIC2013 – MIC2019  
MIC2019A  
Delay before current limiting  
tD_LIMIT  
ms  
ms  
MIC2013 – MIC2019  
MIC2019A  
Delay before resetting Kickstart™  
current limit delay, tD_LIMIT  
Out of current limit following a current limit  
event.  
tRESET  
128  
MIC2013 – MIC2019  
MIC2019A  
RL = 43, CL = 120µF,  
tON_DLY  
Output Turn-on Delay  
Output Turn-off Delay  
V
EN = 50% to VOUT = 10%  
1000  
1500  
700  
µs  
µs  
*CSLEW = Open  
RL = 43, CL = 120µF,  
VEN = 50% to VOUT = 90%  
tOFF_DLY  
*CSLEW = Open  
ESD(8)  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
VOUT and GND  
±4  
Electro Static Discharge Voltage:  
Human Body Model  
VESD_HB  
kV  
All other pins  
±2  
All pins  
Electro Static Discharge Voltage;  
Machine Model  
VESD_MCHN  
±200  
V
Machine Model  
Notes:  
7. Whenever CSLEW is present.  
8. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.  
August 2011  
13  
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
Timing Diagrams  
tRISE  
tFALL  
90%  
90%  
10%  
10%  
Rise and Fall Times  
ENABLE  
50%  
50%  
tON_DLY  
tOFF_DLY  
90%  
VOUT  
10%  
Switching Delay Times  
August 2011  
14  
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
Typical Characteristics  
Supply Current Output  
Disabled (MIC20XX)  
Switch Leakage Current  
(MIC20XX)  
Supply Current Output Enabled  
MIC20XX  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
100  
80  
85°C  
60  
25°C -40°C  
40  
85°C  
20  
5V  
-40°C  
25°C  
0
2.5 3.0 3.5 4.0 4.5 5.0 5.5  
VIN (V)  
-40  
-15  
10  
35  
60  
85  
85  
85  
2.5 3.0 3.5 4.0 4.5 5.0 5.5  
TEMPERATURE (°C)  
V
(V)  
IN  
ILIMIT vs. Temperature  
(MIC20XX - 1.2)  
ILIMIT vs. Temperature  
(MIC20XX - 0.5)  
ILIMIT vs. Temperature  
(MIC20XX - 0.8)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.5  
2.00  
1.90  
1.80  
1.70  
1.60  
1.50  
1.40  
1.30  
1.20  
1.10  
1.00  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
5V  
5V  
5V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
RDS(ON) vs. Temperature  
(MIC20XX)  
ILIMIT vs. Temperature  
RDS(ON) vs. VIN  
(MIC20XX)  
(MIC20X9 - 0.9A)  
RSET = 267Ohms  
200  
180  
160  
140  
120  
100  
80  
1200  
1000  
800  
600  
400  
200  
0
200  
180  
160  
140  
120  
100  
80  
25°C  
85°C  
3.3V  
2.5V  
60  
60  
5.0V  
-40°C  
2.5  
40  
40  
20  
20  
0
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
2
3
3.5  
4
4.5  
5
5.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
VIN (V)  
VDROP vs. Temperature  
VDROP vs. Temperature  
RSET vs. ILIMIT  
(MIC20X9)  
242.62  
(MIC20XX-1.2)  
VIN = 5.0V  
(MIC20XX-1.2)  
VIN = 3.3V  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
1200  
1000  
800  
600  
400  
200  
0
RSET  
=
0.9538  
ILIMIT  
85°C  
85°C  
25°C  
25°C  
60  
60  
-40°C  
1
-40°C  
40  
40  
20  
20  
0
0
0
0.2 0.4 0.6 0.8  
IOUT (A)  
1
1.2  
0
0.2 0.4 0.6 0.8  
1.2  
0
0.2 0.4 0.6 0.8  
ILIMIT (A)  
1
1.2 1.4  
IOUT (A)  
August 2011  
15  
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
Typical Characteristics (Continued)  
Supply Current Output Enabled  
(MIC20XXA)  
Supply Current Output  
Disabled (MIC20XXA)  
Switch Leakage Current  
(MIC20XXA)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
-40°C  
85°C  
25°C  
85°C  
-40°C  
3.5  
25°C  
4.5  
5V  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
4
5
5.5  
-40  
-15  
10  
35  
60  
85  
VIN (V)  
VIN (V)  
TEMPERATURE (°C)  
ILIMIT vs. Temperature  
(MIC20X9A (0.8A))  
RSET vs. ILIMIT  
(MIC20X9A)  
ILIMIT vs. Temperature  
(MIC20X5A)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
2500  
2000  
1500  
1000  
500  
RSET = 267Ohms  
212.23  
RSET  
=
5V  
0.9587  
ILIMIT  
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
0
0.2  
0.4  
0.6  
0.8  
1
TEMPERATURE (°C)  
TEMPERATURE (°C)  
ILIMIT (A)  
Flag Delay  
vs. Temperature  
RDS(ON) vs. Temperature  
(MIC20XXA)  
RDS(ON) vs. VIN  
(MIC20XXA)  
40  
35  
30  
25  
20  
15  
10  
5
3.3V  
2.5V  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
5.0V  
2.5V  
25°C  
85°C  
3.3V  
5.0V  
-40°C  
0
0
0
2.5  
3
3.5  
4
4.5  
5
5.5  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
VIN (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
VDROP vs. Temperature  
(MIC20XXA)  
VDROP vs. Temperature  
(MIC20XXA)  
UVLO Threshold  
vs. Temperature  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
2.3  
2.25  
2.2  
VIN = 3.3V  
VIN = 5.0V  
V RISING  
85°C  
25°C  
85°C  
25°C  
V FALLING  
2.15  
2.1  
60  
60  
-40°C  
-40°C  
40  
40  
20  
20  
0
0
2.05  
0
0.1 0.2 0.3 0.4 0.5 0.6  
(A)  
0
0.1 0.2 0.3 0.4 0.5 0.6  
(A)  
-50  
0
50  
100  
150  
I
I
OUT  
TEMPERATURE (°C)  
OUT  
August 2011  
16  
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
Functional Characteristics  
August 2011  
17  
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
Functional Characteristics (Continued)  
August 2011  
18  
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
Functional Characteristics (Continued)  
August 2011  
19  
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
Functional Diagram  
Figure 2. MIC20XX Family Functional Diagram  
August 2011  
20  
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
During this delay period, typically 128ms, a secondary  
current limit is in effect. If the load demands a current in  
excess the secondary limit, MIC201X acts immediately  
to restrict output current to the secondary limit for the  
duration of the Kickstart™ period. After this time the  
MIC201X reverts to its normal current limit. An example  
of Kickstart™ operation is shown in Figure 3.  
Functional Description  
VIN and VOUT  
VIN is both the power supply connection for the internal  
circuitry driving the switch and the input (Source  
connection) of the power MOSFET switch. VOUT is the  
Drain connection of the power MOSFET and supplies  
power to the load. In a typical circuit, current flows from  
VIN to VOUT toward the load. Since the switch is bi-  
directional when enabled, if VOUT is greater than VIN,  
current will flow from VOUT to VIN.  
When the switch is disabled, current will not flow to the  
load, except for a small unavoidable leakage current of  
a few microamps. However, should VOUT exceed VIN by  
more than a diode drop (~0.6 V), while the switch is  
disabled, current will flow from output to input via the  
power MOSFET’s body diode.  
If discharging CLOAD is required by your application,  
consider using MIC20X4 or MIC20X7; these MIC20XX  
family members are equipped with a discharge FET to  
insure complete discharge of CLOAD  
.
Current Sensing and Limiting  
MIC20XX protects the system power supply and load  
from damage by continuously monitoring current  
through the on-chip power MOSFET. Load current is  
monitored by means of a current mirror in parallel with  
the power MOSFET switch. Current limiting is invoked  
when the load exceeds the set over-current threshold.  
When current limiting is activated the output current is  
constrained to the limit value, and remains at this level  
until either the load/fault is removed, the load’s current  
requirement drops below the limiting value, or the  
switch goes into thermal shutdown.  
Figure 3. Kickstart™ Operation  
Figure 3 Label Key:  
A. MIC201X is enabled into an excessive load (slew  
rate limiting not visible at this time scale) The initial  
current surge is limited by either the overall circuit  
resistance and power supply compliance, or the  
secondary current limit, whichever is less.  
B. RON of the power FET increases due to internal  
heating (effect exaggerated for emphasis).  
C. Kickstart™ period.  
D. Current limiting initiated. FAULT/ goes LOW.  
E. VOUT is non-zero (load is heavy, but not a dead short  
where VOUT = 0V. Limiting response will be the same  
for dead shorts).  
Kickstart™  
2003 2004 2005X 2006 2007 2008 2009X  
2013 2014  
2015  
2016 2017 2018 2019X  
Only parts in bold have Kickstart™.  
F. Thermal shutdown followed by thermal cycling.  
G. Excessive load released, normal load remains.  
MIC201X drops out of current limiting.  
H. FAULT/ delay period followed by FAULT/ going  
HIGH.  
(Not available in 5-pin SOT-23 packages)  
The MIC201X is designed to allow momentary current  
surges (Kickstart™) before the onset of current limiting,  
which permits dynamic loads, such as small disk drives  
or portable printers to draw the energy needed to  
overcome inertial loads without sacrificing system  
safety. In this respect, the Kickstart™ parts (MIC201X)  
differs markedly from the non-Kickstart™ parts  
(MIC200X) which immediately limit load current,  
potentially starving the motor and causing the appliance  
to stall or stutter.  
Undervoltage Lock-Out  
Undervoltage lock-out insures no anomalous operation  
occurs before the device’s minimum input voltage of  
UVLOTHRESHOLD which is 2V minimum, 2.25V typical,  
and 2.5V maximum had been achieved. Prior to  
reaching this voltage, the output switch (power  
MOSFET) is OFF and no circuit functions, such as  
FAULT/ or ENABLE, are considered to be valid or  
operative.  
August 2011  
21  
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
MIC201X’s FAULT/ asserts at the end of the Kickstart™  
period which is 128ms typical. This masks initial current  
surges, such as would be seen by a motor load starting  
up. If the load current remains above the current limit  
threshold after the Kickstart™ has timed out, then the  
FAULT/ will be asserted. After a fault clears, FAULT/  
remains asserted for the delay of 128ms.  
Variable Undervoltage Lock Out (VUVLO)  
2003  
2013  
2004 2005X 2006  
2014 2015  
2016  
2007  
2017  
2008 2009X  
2018 2019X  
Only parts in bold have VUVLO.  
VUVLO functions as an input voltage monitor when the  
switch in enabled. The VIN pin is monitored for a drop in  
voltage, indicating excessive loading of the VIN supply.  
When VIN is less than the VULVO threshold voltage  
(VVUVLO_TH) for 32ms or more, the MIC20XX disables  
the switch to protect the supply and allow VIN to  
recover. After 128ms has elapsed, the MIC20X6  
enables switch. This disable and enable cycling will  
continue as long as VIN deceases below the VUVLO  
threshold voltage (VVUVLO_TH) which has a typical value  
of 250mV. The VUVLO voltage is commonly established  
by a voltage divider from VIN-to-GND.  
Because FAULT/ is an open-drain it must be pulled  
HIGH with an external resistor and it may be wire-OR’d  
with other similar outputs, sharing a single pull-up  
resistor. FAULT/ may be tied to a pull-up voltage source  
which is higher than VIN, but no greater than 5.5V.  
Soft-Start Control  
Large capacitive loads can create significant inrush  
current surges when charged through the switch. For  
this reason, the MIC20XX family of switches provides a  
built-in soft-start control to limit the initial inrush  
currents.  
Soft-start is accomplished by controlling the power  
MOSFET when the ENABLE pin enables the switch.  
ENABLE  
2003  
2013  
2004 2005X 2006  
2014 2015 2016  
2007  
2017  
2008 2009X  
2018 2019X  
CSLEW  
Only parts in bold have ENABLE pin.  
2003  
2013  
2004 2005X 2006  
2014  
2015 2016  
2007  
2017  
2008 2009X  
2018 2019X  
ENABLE pin is a logic compatible input which activates  
the main MOSFET switch thereby providing power to  
the VOUT pin. ENABLE is either an active HIGH or active  
LOW control signal. The MIC20XX can operate with  
logic running from supply voltages as low as 1.5 V.  
Only parts in bold have CSLEW pin.  
(Not available in 5-pin SOT-23 packages)  
The CSLEW pin is provided to increase control of the  
output voltage ramp at turn-on. This input allows  
designers the option of decreasing the output’s slew  
rate (slowing the voltage rise) by adding an external  
capacitance between the CSLEW and VIN pins.  
ENABLE may be driven higher than VIN, but no higher  
than 5.5V and not less than –0.3V.  
FAULT/  
Thermal Shutdown  
2003  
2013  
2004 2005X 2006  
2014 2016  
2015  
2007  
2017  
2008 2009X  
2018 2019X  
Thermal shutdown is employed to protect the MIC20XX  
family of switches from damage should the die  
temperature exceed safe operating levels. Thermal  
shutdown shuts off the output MOSFET and asserts the  
FAULT/ output if the die temperature reaches 145°C.  
Only parts in bold have FAULT/ pin.  
FAULT/ is an N-channel open-drain output, which is  
asserted (LOW true) when switch either begins current  
limiting or enters thermal shutdown.  
The switch will automatically resume operation when the  
die temperature cools down to 135°C. If resumed  
operation results in reheating of the die, another  
shutdown cycle will occur and the switch will continue  
cycling between ON and OFF states until the overcurrent  
condition has been resolved.  
FAULT/ asserts after a brief delay when events occur  
that may be considered possible faults. This delay  
insures that FAULT/ is asserted only upon valid,  
enduring, over-current conditions and that transitory  
event error reports are filtered out.  
Depending on PCB layout, package type, ambient  
temperature, etc., hundreds of milliseconds may elapse  
from the incidence of a fault to the output MOSFET  
being shut off. This delay is due to thermal time  
constants within the system itself. In no event will the  
device be damaged due to thermal overload because die  
temperature is monitored continuously by on-chip  
circuitry.  
In MIC200X FAULT/ asserts after a brief delay period,  
of 32ms typical. After a fault clears, FAULT/ remains  
asserted for the delay period of 32ms  
August 2011  
22  
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
Giving us a maximum ILIMIT variation over temperature  
of:  
Application Information  
Setting ILIMIT  
The MIC2009/2019’s current limit is user programmable  
and controlled by a resistor connected between the  
ILIMIT pin and GND. The value of this resistor is  
determined by the following equation:  
ILIMIT_MIN  
ILIMIT_TYP  
1.25A  
ILIMIT_MAX  
0.97A (-22%)  
1.5A (+20%)  
IOUT  
RSET  
ILIMIT_MIN  
ILIMIT_MAX  
0.136A  
0.265A  
0.391A  
0.515A  
0.637A  
0.759A  
0.880A  
1.001A  
1.121A  
0.1A  
0.2A  
0.3A  
0.4A  
0.5A  
0.6A  
0.7A  
0.8A  
0.9A  
1928  
993ꢀ  
673ꢀ  
511ꢀ  
413ꢀ  
346ꢀ  
299ꢀ  
263ꢀ  
235ꢀ  
0.063A  
0.137A  
0.216A  
0.296A  
0.379A  
0.463A  
0.548A  
0.634A  
0.722A  
CurrentLimitFactor(CLF)  
ILIMIT  
=
=
RSET  
or  
CurrentLimitFactor(CLF)  
ILIMIT (A)  
RSET  
For example: Set ILIMIT = 1.25A  
Looking in the Electrical specifications we will find CLF  
at ILIMIT = 1A.  
Min  
Typ  
Max  
Units  
Table 2. MIC20x9A RSET Table  
190  
243  
293  
V
IOUT  
0.2A  
0.3A  
0.4A  
0.5A  
0.6A  
0.7A  
0.8A  
0.9A  
1A  
RSET  
1125ꢀ  
765ꢀ  
582ꢀ  
470ꢀ  
395ꢀ  
341ꢀ  
300ꢀ  
268ꢀ  
243ꢀ  
222ꢀ  
204ꢀ  
189ꢀ  
176ꢀ  
165ꢀ  
ILIMIT_MIN  
0.127A  
0.202A  
0.281A  
0.361A  
0.443A  
0.526A  
0.610A  
0.695A  
0.781A  
0.868A  
0.956A  
1.044A  
1.133A  
1.222A  
ILIMIT_MAX  
0.267A  
0.390A  
0.510A  
0.629A  
0.746A  
0.861A  
0.976A  
1.089A  
1.202A  
1.314A  
1.426A  
1.537A  
1.647A  
1.757A  
Table 1. CLF at ILIMIT = 1A  
For the sake of this example, we will say the typical  
value of CLF at an IOUT of 1A is 243V. Applying the  
equation above:  
243V  
RSET (Ω) =  
= 194.4Ω  
1.25A  
R
SET = 196ꢀ  
(the closest standard 1% value)  
1.1A  
1.2A  
1.3A  
1.4A  
1.5A  
Designers should be aware that variations in the  
measured ILIMIT for a given RSET resistor, will occur  
because of small differences between individual ICs  
(inherent in silicon processing) resulting in a spread of  
ILIMIT values. In the example above we used the typical  
value of CLF to calculate RSET. We can determine  
ILIMIT’s spread by using the minimum and maximum  
Table 3. MIC20x9 RSET Table  
values of CLF and the calculated value of RSET  
.
190V  
ILIMIT_MIN  
=
= 0.97A  
= 1.5A  
196Ω  
293V  
ILIMIT_MAX  
=
196ꢀ  
August 2011  
23  
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
ILIMIT vs. IOUT Measured  
The MIC20XX’s current-limiting circuitry, during current  
limiting, is designed to act as a constant current source  
to the load. As the load tries to pull more than the  
allotted current, VOUT drops and the input to output  
voltage differential increases. When VIN - VOUT exceeds  
1V, IOUT drops below ILIMIT to reduce the drain of fault  
current on the system’s power supply and to limit  
internal heating of the switch.  
When measuring IOUT it is important to bear this voltage  
dependence in mind, otherwise the measurement data  
may appear to indicate a problem when none really  
exists. This voltage dependence is illustrated in Figures  
4 and 5.  
In Figure 4, output current is measured as VOUT is  
pulled below VIN, with the test terminating when VOUT is  
1V below VIN. Observe that once ILIMIT is reached IOUT  
remains constant throughout the remainder of the test.  
In Figure 5 this test is repeated but with VIN - VOUT  
exceeding 1V.  
Figure 5. IOUT in Current Limiting for VIN - VOUT > 1V  
This folding back of ILIMIT can be generalized by plotting  
ILIMIT as a function of VOUT, as shown below in Figures 6  
When VIN - VOUT > 1V, switch’s current limiting circuitry  
responds by decreasing IOUT, as can be seen in Figure  
5. In this demonstration, VOUT is being controlled and  
IOUT is the measured quantity. In real life applications  
VOUT is determined in accordance with ’s law by the  
load and the limiting current.  
and 7. The slope of VOUT between IOUT = 0V and IOUT  
ILIMIT (where ILIMIT = 1A) is determined by RON of the  
switch and ILIMIT  
=
.
Normalized Output Current  
vs. Output Voltage (5V)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
1
2
3
4
5
6
OUTPUT VOLTAGE (V)  
Figure 6. Normalized Output Current vs. Output Voltage  
Figure 4. IOUT in Current Limiting for VIN - VOUT < 1V  
August 2011  
24  
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
Normalized Output Current  
vs. Output Voltage (2.5V)  
CSLEW’s Effect on ILIMIT  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
An unavoidable consequence of adding CSLEW  
capacitance is a reduction in the MIC20X5 – 20X8’s  
ability to quickly limit current transients or surges. A  
sufficiently large capacitance can prevent both the  
primary and secondary current limits from acting in time  
to prevent damage to the MIC20X5 – 20X8 or the  
system from a short circuit fault. For this reason, the  
upper limit on the value of CSLEW is 4nF.  
0
0.5 1.0 1.5 2.0 2.5 3.0  
OUTPUT VOLTAGE (V)  
Variable Undervoltage Lock Out (VUVLO)  
2003  
2013  
2004 2005X 2006  
2014 2015  
2016  
2007  
2017  
2008 2009X  
2018 2019X  
Figure 7. Normalized Output Current vs. Output Voltage  
CSLEW  
Only parts in bold have VUVLO pin and functionality.  
Power-conscious systems, such as those implementing  
ACPI, will remain active even in their low-power states  
and may require the support of external devices  
through both phases of operation. Under these  
conditions, the current allowed these external devices  
may vary according to the system’s operating state and  
as such require dual current limits on their peripheral  
ports. The MIC20X6 is designed for systems  
demanding two primary current limiting levels but  
without the use of a control signal to select between  
current limits.  
2003  
2013  
2004 2005X 2006  
2014  
2015 2016  
2007  
2017  
2008 2009X  
2018 2019X  
Only parts in bold have CSLEW pin.  
(Not available in 5-pin SOT-23 packages).  
The CSLEW pin is provided to increase control of the  
output voltage ramp at turn-on. This input allows  
designers the option of decreasing the output’s slew  
rate (slowing the voltage rise) by adding an external  
capacitance between the CSLEW and VIN pins. This  
capacitance slows the rate at which the pass FET gate  
voltage increases and thus, slows both the response to  
an Enable command as well as VOUT’s ascent to its final  
value.  
To better understand how the MIC20X6 provides this,  
imagine a system whose main power supply supports  
heavy loads during normal operation, but in sleep mode  
is reduced to only few hundred milliamps of output  
current. In addition, this system has several USB ports  
which must remain active during sleep. During normal  
operation, each port can support a 500mA peripheral,  
but in sleep mode their combined output current is  
limited to what the power supply can deliver minus  
whatever the system itself is drawing.  
Figure 8 illustrates effect of CSLEW on turn-on delay and  
output rise time.  
Typical Turn-on Times  
vs. External CSLEW Capacitance  
14  
0.014  
If a peripheral device is plugged in which demands  
more current than is available, the system power supply  
will sag, or crash. The MIC20X6 prevents this by  
monitoring both the load current and VIN. During normal  
operation, when the power supply can source plenty of  
current, the MIC20X6 will support any load up to its  
factory programmed current limit. When the weaker,  
standby supply is in operation, the MIC20X6 monitors  
VIN and will shut off its output should VIN dip below a  
predetermined value. This predetermined voltage is  
user programmable and set by the selection of the  
resistor divider driving the VUVLO pin.  
TON  
12  
0.012  
TDELAY  
10  
0.01  
8
0.008  
6
0.006  
4
TRISE  
0.004  
2
0.002  
0
0
0
4
3
3.5  
0 0 0  
4.5  
0
0.5 1 1.5 2  
2.5  
0
0
0
0
0
0
CSLEW (nF)  
Figure 8. CSLEW vs. Turn-On, Delay and Rise Times  
August 2011  
25  
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
To prevent false triggering of the VUVLO feature, the  
Calculating VUVLO Resistor Divider Values  
MIC20X6 includes  
a
delay timer to blank out  
The VUVLO feature is designed to keep the internal  
switch off until the voltage on the VUVLO pin is greater  
than 0.25V. A resistor divider network connected to the  
VUVLO and VIN pins is used to set the input trip  
voltage VTRIP (see Figure 10). The value of R2 is  
chosen to minimize the load on the input supply IDIV and  
momentary excursions below the VUVLO trip point. If  
VIN stays below the VUVLO trip point for longer than  
32ms (typical), then the load is disengaged and the  
MIC20X6 will wait 128ms before reapplying power to  
the load. If VIN remains below the VUVLO trip point,  
then the load will be powered for the 32ms blanking  
period and then again disengaged. This is illustrated in  
the scope plot below. If VIN remains above the VUVLO  
trip point MIC20X6 resumes normal operation.  
the value of R1 sets the trip voltage VTRIP  
.
The value of R2 is calculated using:  
VVUVLO  
R2 =  
IDIV  
The vale of R1 is calculated using:  
VTRIP  
1  
R1 = R2×  
VVUVLO  
Where for both equations:  
VUVLO = 0.25V  
V
When working with large value resistors, a small  
amount of leakage current from the VUVLO terminal  
can cause voltage offsets that degrade system  
accuracy. Therefore, the maximum recommended  
resistor value for R2 is 100k.  
Figure 9. VUVLO Operation  
VUVLO and Kickstart™ operate independently in the  
MIC2016. If the high-current surge allowed by  
Kickstart™ causes VIN to dip below the VUVLO trip  
point for more than 32ms, VUVLO will disengage the  
load, even though the Kickstart™ timer has not timed  
out.  
Using the divider loading current IDIV of 100µA, the  
value of R2 can be estimated by:  
0.25V  
R2 =  
= 2.5kΩ  
IIN_LOAD  
100µA  
Input  
Supply  
VIN  
VOUT  
MIC20X6  
VUVLO  
Now the value of R1 can be calculated by:  
R1  
R2  
+
+
4.75V  
0.25V  
R1= 2.5kΩ×  
1 = 45k  
Figure 10. VUVLO Application Circuit  
where:  
V
TRIP = 4.75V (for a 5V supply)  
VUVLO = 0.25V  
V
August 2011  
26  
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
The VUVLO comparator uses no hysteresis. This is  
because the VUVLO blanking timer prevents any  
chattering that might otherwise occur if VIN varies about  
the trigger point. The timer is reset by upward crossings  
of the trip point such that VIN must remain below the trip  
point for the full 32ms period for load disengagement to  
occur.  
In selecting a VTRIP voltage, the designer is cautioned to  
not make this value less than 2.5V. A minimum of 2.5V  
is required for the MIC20X6’s internal circuitry to  
operate properly. VUVLO trip points below 2.5V will  
result in erratic or unpredictable operation.  
Kickstart™  
2003  
2004 2005X 2006  
2014 2015 2016  
2007  
2008 2009X  
2013  
2017  
2018 2019X  
Only parts in bold have Kickstart™.  
(Not available in 5-pin SOT-23 packages).  
Figure 11. Kickstart™  
Automatic Load Discharge  
Kickstart™ allows brief current surges to pass to the  
load before the onset of normal current limiting, which  
permits dynamic loads to draw bursts of energy without  
sacrificing system safety.  
2003  
2013  
2004 2005X 2006  
2014  
2015 2016  
2007  
2017  
2008 2009X  
2018 2019X  
Only parts in bold have automatic load discharge.  
Functionally, Kickstart™ is a forced override of the  
normal current limiting function provided by the switch.  
The Kickstart™ period is governed by an internal timer  
which allows current to pass up to the secondary  
current limit (ILIMIT_2nd) to the load for 128ms and then  
normal (primary) current limiting goes into action.  
Automatic discharge is a valuable feature when it is  
desirable to quickly remove charge from the VOUT pin.  
This allows for a quicker power-down of the load. This  
also prevents any charge from being presented to a  
device being connected to the VOUT pin, for example,  
USB, 1394, PCMCIA, and CableCARD™.  
During Kickstart™, a secondary current-limiting circuit  
is monitoring output current to prevent damage to the  
switch, as a hard short combined with a robust power  
supply can result in currents of many tens of amperes.  
This secondary current limit is nominally set at 4A and  
reacts immediately and independently of the Kickstart™  
period. Once the Kickstart™ timer has finished its count  
the primary current limiting circuit takes over and holds  
Automatic discharge is performed by a shunt MOSFET  
from VOUT pin to GND. When the switch is disabled, a  
break before make action is performed turning off the  
main power MOSFET and then enabling the shunt  
MOSFET. The total resistance of the MOSFET and  
internal resistances is typically 126.  
I
OUT to its programmed limit for as long as the excessive  
Supply Filtering  
load persists.  
A minimum 1μF bypass capacitor positioned close to  
the VIN and GND pins of the switch is both good design  
practice and required for proper operation of the switch.  
This will control supply transients and ringing. Without a  
bypass capacitor, large current surges or a short may  
cause sufficient ringing on VIN (from supply lead  
inductance) to cause erratic operation of the switch’s  
control circuitry. For best-performance good quality,  
low-ESR capacitors are recommended, preferably  
ceramic.  
Once the switch drops out of current limiting the  
Kickstart™ timer initiates a lock-out period of 128ms  
such that no further bursts of current above the primary  
current limit, will be allowed until the lock-out period has  
expired.  
Kickstart™ may be over-ridden by the thermal  
protection circuit and if sufficient internal heating  
occurs, Kickstart™ will be terminated and IOUT Æ 0A.  
Upon cooling, if the load is still present IOUT Æ ILIMIT, not  
ILIMIT_2nd  
.
When bypassing with capacitors of 10μF and up, it is  
good practice to place a smaller value capacitor in  
parallel with the larger to handle the high frequency  
components of any line transients. Values in the range  
of 0.01μF to 0.1μF are recommended. Again, good  
quality, low-ESR capacitors should be chosen.  
August 2011  
27  
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
Power Dissipation  
In Figure 12, die temperature is plotted against IOUT  
assuming a constant case temperature of 85°C. The  
plots also assume a worst case RON of 140mat a die  
temperature of 135°C. Under these conditions it is clear  
that an SOT-23 packaged device will be on the verge of  
thermal shutdown, typically 140°C die temperature,  
when operating at a load current of 1.25A. For this  
reason we recommend using MLF® packaged switches  
for any design intending to supply continuous currents  
of 1A or more.  
Power dissipation depends on several factors such as  
the load, PCB layout, ambient temperature, and supply  
voltage. Calculation of power dissipation can be  
accomplished by the following equation:  
2
PD = RDS(ON) × (IOUT  
)
To relate this to junction temperature, the following  
equation can be used:  
Die Temperature vs.  
Output Current (T  
160  
=85°C)  
CASE  
TJ = PD ×Rθ  
+ TA  
(JA)  
140  
SOT-23  
120  
100  
80  
60  
40  
20  
0
where:  
MLF  
TJ = junction temperature  
TA = ambient temperature  
Rθ(J-A) is the thermal resistance of the package  
In normal operation the switch’s RON is low enough that  
no significant I2R heating occurs. Device heating is  
most often caused by a short circuit, or very-heavy  
load, when a significant portion of the input supply  
voltage appears across the switch’s power MOSFET.  
Under these conditions the heat generated will exceed  
the package and PCB’s ability to cool the device and  
thermal limiting will be invoked.  
0.2 0.4 0.6 0.81.0 1.21.4 1.6 1.82.0  
OUTPUT CURRENT (A)  
Figure 12. Die Temperature vs. IOUT  
August 2011  
28  
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
Package Information  
5-Pin SOT-23 (M5)  
6-Pin SOT-23 (M6)  
August 2011  
29  
M9999-080211-D  
Micrel, Inc.  
MIC20xx Family  
Package Information (Continued)  
6 Pin 2mm x 2mm MLF® (ML)  
Section 1.01 MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com  
Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This  
information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry,  
specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Micrel’s terms and conditions of sale for such products, Micrel assumes no liability  
whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties  
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product  
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant  
into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A  
Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully  
indemnify Micrel for any damages resulting from such use or sale.  
© 2009 Micrel, Incorporated.  
August 2011  
30  
M9999-080211-D  

相关型号:

MIC2101

38V, Synchronous Buck Controllers Featuring Adaptive On-Time Control
MICREL

MIC2101YML

38V, Synchronous Buck Controllers Featuring Adaptive On-Time Control
MICREL

MIC2101_13

38V, Synchronous Buck Controllers Featuring Adaptive On-Time Control
MICREL

MIC2102

38V, Synchronous Buck Controllers Featuring Adaptive On-Time Control
MICREL

MIC2102YML

38V, Synchronous Buck Controllers Featuring Adaptive On-Time Control
MICREL

MIC2103

75V, Synchronous Buck Controllers featuring Adaptive On-Time Control
MICREL

MIC2103YML

75V, Synchronous Buck Controllers featuring Adaptive On-Time Control
MICREL

MIC2103YML-TR

75V Synchronous Buck Controllers Featuring Adaptive ON-Time Control
MICROCHIP

MIC2103_13

75V, Synchronous Buck Controllers featuring Adaptive On-Time Control
MICREL

MIC2104

75V, Synchronous Buck Controllers featuring Adaptive On-Time Control
MICREL

MIC2104YML

75V, Synchronous Buck Controllers featuring Adaptive On-Time Control
MICREL

MIC2104YML-TR

75V Synchronous Buck Controllers Featuring Adaptive ON-Time Control
MICROCHIP