MIC4684 [MICREL]

2A High-Efficiency SuperSwitcher Buck Regulator; 2A高效SuperSwitcher降压稳压器
MIC4684
型号: MIC4684
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

2A High-Efficiency SuperSwitcher Buck Regulator
2A高效SuperSwitcher降压稳压器

稳压器
文件: 总16页 (文件大小:215K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC4684  
2A High-Efficiency SuperSwitcher™ Buck Regulator  
Final Information  
General Description  
Features  
The MIC4684 is a high-efficiency 200kHz stepdown (buck)  
switching regulator. Power conversion efficiency of above  
85% is easily obtainable for a wide variety of applications.  
The MIC4684 achieves 2A of continuous current in an 8-lead  
SO (small outline) package at 60°C ambient temperature.  
SO-8 package with 2A continuous output current  
Over 85% efficiency  
Fixed 200kHz PWM operation  
Wide 4V to 30V input voltage range  
Output voltage adjustable to 1.235V  
All surface mount solution  
Internally compensated with fast transient response  
Over-current protection  
Frequency foldback short-circuit protection  
Thermal shutdown  
Highefficiencyismaintainedoverawideoutputcurrentrange  
byutilizingaboostcapacitortoincreasethevoltageavailable  
to saturate the internal power switch. As a result of this high  
efficiency, no external heat sink is required. The MIC4684,  
housed in an SO-8, can replace larger TO-220 and TO-263  
packages in many applications.  
Applications  
The MIC4684 allows for a high degree of safety. It has a wide  
input voltage range of 4V to 30V (34V transient), allowing it to  
beusedinapplicationswhereinputvoltagetransientsmaybe  
present. Built-in safety features include over-current protec-  
tion, frequency-foldback short-circuit protection, and thermal  
shutdown.  
Simple high-efficiency step-down regulator  
5V to 3.3V/1.7A converter (60°C ambient)  
12V to 1.8V/2A converter (60°C ambient)  
On-card switching regulator  
Dual-output ±5V converter  
Battery charger  
The MIC4684 is available in an 8-lead SO package with a  
junction temperature range of –40°C to +125°C.  
Ordering Information  
Part Number  
Voltage  
Junction Temperature Range  
Package  
MIC4684BM  
Adj  
40°C to +125°C  
SOP-8  
Typical Application  
VIN  
6.5V to 25V  
MIC4684BM  
CBS  
3
4
1
5
0.33µF/50V  
VIN  
BS  
SW  
FB  
VOUT  
2.5V/1.5A  
8
EN  
Efficiency  
68µH  
R1  
CIN  
33µF  
35V  
vs. Output Current  
3.01k  
330µF  
6.3V  
100  
R2  
3.01k  
VOUT = 3.3V  
GND  
2, 6, 7  
3A  
40V  
80  
60  
40  
20  
0
VOUT = 1.8V  
VOUT = 2.5V  
Adjustable Buck Converter  
1A, 20V Feed forward diode  
MIC4684BM  
VIN = 5.0V  
0.5  
VIN  
5V  
±10%  
0
1
1.5  
2
CBS  
3
8
4
OUTPUT CURRENT (A)  
VIN  
BS  
SW  
FB  
VOUT  
3.3V/1.7A  
0.33µF/50V  
1
5
EN  
47µH  
CIN  
68µF  
10V  
Efficiency vs. Output Current  
220µF  
10V  
GND  
2, 6, 7  
2A  
20V  
5V to 3.3V Converter  
Micrel, Inc. 1849 Fortune Drive San Jose, CA 95131 USA tel + 1 (408) 944-0800 fax + 1 (408) 944-0970 http://www.micrel.com  
July 2001  
1
MIC4684  
MIC4684  
Micrel  
Pin Configuration  
SW  
GND  
VIN  
1
2
3
4
8
7
6
5
EN  
GND  
GND  
FB  
BS  
8-Pin SOP (M)  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
1
SW  
Switch (Output): Emitter of NPN output switch. Connect to external storage  
inductor and Shottky diode.  
2, 6, 7  
GND  
IN  
Ground  
3
4
Supply (Input): Unregulated +4V to 30V supply voltage (34V transient)  
BS  
Booststrap Voltage Node (External Component): Connect to external boost  
capacitor.  
5
8
FB  
EN  
Feedback (Input): Outback voltage feedback to regulator. Connect to output  
of supply for fixed versions. Connect to 1.23V tap of resistive divider for  
adjustable versions.  
Enable (Input): Logic high = enable; logic low = shutdown  
Bootstrap (BS, pin 4)  
Detailed Pin Description  
Switch (SW, pin 1)  
The bootstrap pin in conjunction with the external bootstrap  
capacitor provides a bias voltage higher than the input  
voltage to the MIC4684s main NPN pass element. The  
bootstrap capacitor sees the dv/dt of the switching action at  
the SW pin as an AC voltage. The bootstrap capacitor then  
couples the AC voltage back to the BS pin plus the dc offset  
The switch pin is tied to the emitter of the main internal NPN  
transistor. This pin is biased up to the input voltage minus the  
V
of the main NPN pass element. The emitter is also  
SAT  
driven negative when the output inductors magnetic field  
collapses at turn-off. During the OFF time the SW pin is  
clamped by the output schottky diode to a 0.5V typically.  
of V where it is rectified and used to provide additional drive  
IN  
to the main switch, in this case a NPN transistor.  
Ground (GND, pins 2,6,7)  
This additional drive reduces the NPNs saturation voltage  
There are two main areas of concern when it comes to the  
ground pin, EMI and ground current. In a buck regulator or  
any other non-isolated switching regulator the output  
capacitor(s) and diode(s) ground is referenced back to the  
switching regulators or controllers ground pin. Any resis-  
tance between these reference points causes an offset  
voltage/IR drop proportional to load current and poor load  
regulation. This is why its important to keep the output  
groundsplacedascloseaspossibletotheswitchingregulators  
groundpin. TokeepradiatedEMItoaminimumitsnecessary  
to place the input capacitor ground lead as close as possible  
to the switching regulators ground pin.  
and increases efficiency, from a V  
of 1.8V, and 75%  
SAT  
efficiency to a V  
of 0.5V and 88% efficiency respectively.  
SAT  
Feedback (FB, pin 5)  
The feedback pin is tied to the inverting side of a GM error  
amplifier. The noninverting side is tied to a 1.235V bandgap  
reference. Fixed voltage versions have an internal voltage  
divider from the feedback pin. Adjustable versions require an  
external resistor voltage divider from the output to ground,  
with the center tied to the feedback pin.  
Enable (EN, pin 8)  
The enable (EN) input is used to turn on the regulator and is  
TTL compatible. Note: connect the enable pin to the input if  
unused. A logic-high enables the regulator. A logic-low shuts  
downtheregulatorandreducesthestand-byquiescent input  
current to typically 150µA. The enable pin has an upper  
threshold of 2.0V minimum and lower threshold of 0.8V  
maximum. The hysterisis provided by the upper and lower  
thresholds acts as an UVLO and prevents unwanted turn on  
of the regulator due to noise.  
Input Voltage (V , pin 3)  
IN  
The V pin is the collector of the main NPN pass element.  
IN  
Thispinisalsoconnectedtotheinternalregulator.Theoutput  
diode or clamping diode should have its cathode as close as  
possible to this point to avoid voltage spikes adding to the  
voltage across the collector.  
MIC4684  
2
July 2001  
MIC4684  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Voltage (V ), Note 3 ......................................+34V  
Supply Voltage (V ) Note 4 ........................... +4V to +30V  
IN  
IN  
Enable Voltage (V ) .................................... 0.3V to +V  
Ambient Temperature (T ) ......................... 40°C to +85°C  
EN  
IN  
A
Steady-State Output Switch Voltage (V ) ....... 1V to V  
Junction Temperature (T ) ....................... 40°C to +125°C  
SW  
IN  
J
Feedback Voltage (V )..............................................+12V  
Package Thermal Resistance  
FB  
Storage Temperature (T ) ....................... 65°C to +150°C  
θ
θ
, Note 5 ..........................................................75°C/W  
, Note 5 ..........................................................25°C/W  
S
JA  
JC  
ESD Rating .............................................................. Note 3  
Electrical Characteristics  
VIN = VEN = 12V, VOUT = 5V; IOUT = 500mA; TA = 25°C, unless otherwise noted. Bold values indicate 40°C TJ +125°C.  
Parameter  
Condition  
Min  
1.210 1.235 1.260  
1.198 1.272  
1.186 1.235 1.284  
Typ  
Max  
Units  
Feedback Voltage  
(±2%)  
(±3%)  
V
V
8V VIN 30V, 0.1A ILOAD 1A, VOUT = 5V  
V
V
1.173  
1.297  
Feedback Bias Current  
Maximum Duty Cycle  
Output Leakage Current  
50  
94  
nA  
%
VFB = 1.0V  
VIN = 30V, VEN = 0V, VSW = 0V  
VIN = 30V, VEN = 0V, VSW = 1V  
VFB = 1.5V  
5
500  
20  
µA  
mA  
mA  
mA  
V
1.4  
6
Quiescent Current  
12  
Bootstrap Drive Current  
Bootstrap Voltage  
VFB = 1.5V, VSW = 0V  
IBS = 10mA, VFB = 1.5V, VSW = 0V  
VFB = 0V  
250  
5.5  
30  
380  
6.2  
50  
Frequency Fold Back  
Oscillator Frequency  
Saturation Voltage  
120  
225  
kHz  
kHz  
V
180  
200  
0.59  
IOUT = 1A  
Short Circuit Current Limit  
Shutdown Current  
VFB = 0V, See Test Circuit  
VEN = 0V  
2.2  
2
A
150  
µA  
V
Enable Input Logic Level  
regulator on  
regulator off  
0.8  
50  
V
Enable Pin Input Current  
Thermal Shutdown @ TJ  
VEN = 0V (regulator off)  
VEN = 12V (regulator on)  
16  
µA  
mA  
°C  
1  
0.83  
160  
Note 1. Exceeding the absolute maximum rating may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3. Devices are ESD sensitive. Handling precautions recommended.  
Note 4. 2.5V of headroom is required between V and V  
. The headroom can be reduced by implementing a feed-forward diode a seen on the 5V  
OUT  
IN  
to 3.3V circuit on page 1.  
Note 5. Measured on 1" square of 1 oz. copper FR4 printed circuit board connected to the device ground leads.  
July 2001  
3
MIC4684  
MIC4684  
Micrel  
Test Circuit  
Device Under Test  
68µH  
+12V  
3
8
1
4
VIN  
SW  
EN  
BS  
I
GND  
FB  
5
SOP-8  
2,6,7  
Current Limit Test Circuit  
Shutdown Input Behavior  
ON  
OFF  
GUARANTEED  
GUARANTEED  
OFF  
ON  
0.8V  
1.25V  
2V  
TYPICAL  
OFF  
TYPICAL  
ON  
0V  
1.4V  
VIN(max)  
Enable Hysteresis  
MIC4684  
4
July 2001  
MIC4684  
Micrel  
Typical Characteristics  
(T = 25°C unless otherwise noted)  
A
5V  
Efficiency without Feed  
Forward Diode  
3.3V  
Efficiency without  
5V Efficiency with Feed  
IN  
OUT  
OUT  
Forward Diode  
Feed Forward Diode  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 8V  
VOUT = 3.3V  
VIN = 8V  
VOUT = 2.5V  
VIN = 12V  
VIN = 12V  
VIN = 24V  
VIN = 24V  
VOUT = 1.8V  
VIN = 5.0V  
1.5 2  
VOUT = 5V  
1.2 1.4 1.6  
VOUT = 3.3V  
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6  
0
0.2 0.4 0.6 0.8  
1
0
0.5  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Efficiency vs. Output Current  
with Feed Forward Diode  
Bootstrap Voltage  
vs. Input Voltage  
Bootstrap Drive Current  
vs. Input Voltage  
100  
7
6
5
4
3
2
1
0
350  
300  
250  
200  
150  
100  
50  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5VOUT  
3.3VOUT  
2.5VOUT  
1.8VOUT  
VIN = 12V  
VFB = 1.5V  
VIN = 12V  
VFB = 1.5V  
VIN = 12V  
2.5  
0
0
0.5  
1
1.5  
2
3
0
5
10 15 20 25 30  
INPUT VOLTAGE (V)  
0
2
4
6
8
10 12 14 16 18 20  
OUTPUT CURRENT (A)  
INPUT VOLTAGE (V)  
Minimum Duty Cycle  
vs. Input Voltage  
Reference Voltage  
vs. Input Voltage  
Quiescent Current  
vs. Input Voltage  
10.9  
10.8  
10.7  
10.6  
10.5  
10.4  
10.3  
1.255  
1.250  
1.245  
1.240  
1.235  
1.230  
1.225  
6.3  
6.2  
6.1  
6
VIN = 12V  
VOUT = 5V  
FB = 1.3V  
V
5.9  
5.8  
5.7  
VIN = 12V  
VOUT = VREF  
VEN= 5V  
IOUT = 500mA  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
Shutdown Current  
vs. Input Voltage  
Saturation Voltage  
vs. Input Voltage  
Foldback Frequency  
vs. Input Voltage  
200  
180  
160  
140  
120  
100  
80  
605  
600  
595  
590  
585  
580  
575  
570  
51.5  
51  
50.5  
50  
49.5  
49  
60  
40  
IOUT = 1A  
VOUT = 5V  
VFB = 0V  
20  
VEN = 0V  
0
48.5  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
July 2001  
5
MIC4684  
MIC4684  
Micrel  
Feedback Voltage  
vs. Temperature  
Shutdown Hysteresis vs.  
Temperature  
Load Regulation  
1.210  
6
5
5.020  
5.018  
5.016  
5.014  
5.012  
5.010  
5.008  
5.006  
5.004  
5.002  
5.000  
VIN = 12V  
1.209  
1.208  
1.207  
1.206  
1.205  
1.204  
ON  
4
3
2
1.203 VIN = 12V  
1
OFF  
VOUT = VFB  
IOUT = 100mA  
1.202  
1.201  
1.200  
0
-1  
-50  
0
50  
100 150 200  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4  
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
Enable Threshold  
vs. Temperature  
Line Regulation  
5.08  
5.07  
5.06  
5.05  
5.04  
5.03  
5.02  
5.01  
5
1.2  
1.18  
1.16  
1.14  
1.12  
1.1  
Upper Threshold  
Lower Threshold  
1.08  
1.06  
1.04  
1.02  
1
VIN = 12V  
VOUT = 5V  
IOUT = 100mA  
4.99  
4.98  
IOUT = 500mA  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
MIC4684  
6
July 2001  
MIC4684  
Micrel  
5V  
SOA with Standard  
Configuration  
3.3V  
SOA with Feed  
OUT  
OUT  
Forward Diode  
2.5  
2
2.5  
2
TA = 25°C  
1.5  
1
1.5  
1
VOUT = 3.3V  
TA = 60°C  
TJ = 125°C  
VOUT = 5V  
TA = 60°C  
TJ = 125°C  
0.5  
0.5  
0
0
0
5
10  
15  
20  
0
5
10 15 20 25 30 35  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
SOA Measured on the MIC4684 Evaluation Board.  
SOA Measured on the MIC4684 Evaluation Board.  
Note 1. With feed-forward diode implementation as seen in 5V to 3.3V  
circuit on page 1.  
2.5V  
SOA with Feed  
1.8V  
SOA with Feed  
OUT  
OUT  
Forward Diode  
Forward Diode  
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VOUT = 1.8V  
TA = 60°C  
VOUT = 2.5V  
TA = 60°C  
0.5  
0.5  
TJ = 125°C  
TJ = 125°C  
0
0
0
5
10  
15  
20  
0
5
10  
15  
20  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
SOA measured on the MIC4684 Evaluation Board.  
SOA measured on the MIC4684 Evaluation Board.  
July 2001  
7
MIC4684  
MIC4684  
Micrel  
Functional Characteristics  
Switching Frequency Foldback  
Load Transient  
VIN = 12V  
VOUT = 5V  
IOUT = 1.0A to 0.1A  
Normal  
5.1V  
5V  
Operation  
200kHz  
1A  
0A  
Short  
Circuit  
Operation  
70kHz  
TIME  
TIME (100ms/div.)  
Frequency Foldback  
The MIC4684 folds the switching frequency back during a hard short  
circuit condition to reduce the energy per cycle and protect the device.  
MIC4684  
8
July 2001  
MIC4684  
Micrel  
Block Diagrams  
VIN  
IN  
Bootstrap  
Charger  
Enable  
Internal  
Regulator  
R1  
R2  
V
= V  
+1  
OUT  
REF  
V
OUT  
R1= R2  
1  
200kHz  
Oscillator  
Thermal  
Shutdown  
Current  
Limit  
V
REF  
V
= 1.235V  
REF  
Com-  
parator  
VOUT  
SW  
FB  
Driver  
COUT  
Reset  
R1  
R2  
Error  
Amp  
1.235V  
Bandgap  
Reference  
MIC4684  
Adjustable Regulator  
amplifier output voltage is compared to a 200kHz sawtooth  
waveform to produce a voltage controlled variable duty cycle  
output.  
Functional Description  
The MIC4684 is a variable duty cycle switch-mode regulator  
with an internal power switch. Refer to the above block  
diagram.  
A higher feedback voltage increases the error amplifier  
output voltage. A higher error amplifier voltage (comparator  
inverting input) causes the comparator to detect only the  
peaks of the sawtooth, reducing the duty cycle of the com-  
parator output. A lower feedback voltage increases the duty  
cycle. The MIC4684 uses a voltage-mode control architec-  
ture.  
Supply Voltage  
The MIC4684 operates from a +4V to +30V (34V transient)  
unregulated input. Highest efficiency operation is from a  
supply voltage around +12V. See the efficiency curves on  
page 5.  
Enable/Shutdown  
Output Switching  
The enable (EN) input is TTL compatible. Tie the input high  
if unused. A logic-high enables the regulator. A logic-low  
shuts down the internal regulator which reduces the current  
When the internal switch is ON, an increasing current flows  
from the supply V through external storage inductor L1, to  
IN,  
output capacitor C  
and the load. Energy is stored in the  
OUT  
to typically 150µA when V = 0V.  
inductor as the current increases with time.  
EN  
Feedback  
When the internal switch is turned OFF, the collapse of the  
magnetic field in L1 forces current to flow through fast  
Fixed-voltage versions of the regulator have an internal  
resistive divider from the feedback (FB) pin. Connect FB  
directly to the output voltage.  
recovery diode D1, charging C  
.
OUT  
Output Capacitor  
Adjustable versions require an external resistive voltage  
dividerfromtheoutputvoltagetoground,centertappedtothe  
FB pin. See Table 1 and Table 2 for recommended resistor  
values.  
External output capacitor C  
reduces ripple.  
provides stabilization and  
OUT  
Return Paths  
During the ON portion of the cycle, the output capacitor and  
load currents return to the supply ground. During the OFF  
portion of the cycle, current is being supplied to the output  
capacitor and load by storage inductor L1, which means that  
D1 is part of the high-current return path.  
Duty Cycle Control  
A fixed-gain error amplifier compares the feedback signal  
with a 1.235V bandgap voltage reference. The resulting error  
July 2001  
9
MIC4684  
MIC4684  
Micrel  
Examining θ in more detail:  
Applications Information  
Adjustable Regulators  
JA  
θ
= (θ + θ  
)
CA  
JA  
JC  
where:  
Adjustable regulators require a 1.23V feedback signal. Rec-  
ommended voltage-divider resistor values for common out-  
put voltages are included in Table 1.  
θ
θ
= junction-to-case thermal resistance  
= case-to-ambient thermal resistance  
JC  
CA  
For other voltages, the resistor values can be determined  
using the following formulas:  
θ
θ
is a relatively constant 25°C/W for a power SOP-8.  
JC  
is dependent on layout and is primarily governed by the  
CA  
connection of pins 2, 6, and 7 to the ground plane. The  
purpose of the ground plane is to function as a heat sink.  
R1  
VOUT = VREF  
+1  
R2  
θ
is ideally 75°C/W, but will vary depending on the size of  
JA  
the ground plane to which the power SOP-8 is attached.  
VOUT  
R1= R2  
1  
Determining Ground-Plane Heat-Sink Area  
VREF  
Make sure that MIC4684 pins 2, 6, and 7 are connected to a  
2
VREF = 1.235V  
ground plane with a minimum area of 6cm . This ground  
plane should be as close to the MIC4684 as possible. The  
area may be distributed in any shape around the package or  
on any pcb layer as long as there is good thermal contact to  
pins2,6,and7.Thisgroundplaneareaismorethansufficient  
for most designs.  
Minimum Pulse Width  
The minimum duty cycle of the MIC4684 is approximately  
10%. See Minimum Duty Cycle Graph. If this input-to-output  
voltage characteristic is exceeded, the MIC4684 will skip  
cycles to maintain a regulated V  
.
OUT  
Max. V for a Given V  
for  
OUT  
IN  
Constant-Frequency Switching  
40  
SOP-8  
35  
30  
25  
20  
15  
10  
5
θJA  
ground plane  
AMBIENTheat sink area  
θJC  
θCA  
0
0
1
2
3
4
5
6
OUTPUT VOLTAGE (V)  
printed circuit board  
Figure 1. Minimum Pulse Width Characteristic  
Thermal Considerations  
Figure 2. Power SOP-8 Cross Section  
When designing with the MIC4684, it is a good practice to  
connect pins 2, 6, and 7 to the largest ground plane that is  
practical for the specific design.  
The MIC4684 SuperSwitcherfeatures the power-SOP-8.  
This package has a standard 8-lead small-outline package  
profile, but with much higher power dissipation than a stan-  
dard SOP-8. Micrel's MIC4684 SuperSwitcherfamily are  
the first dc-to-dc converters to take full advantage of this  
package.  
Checking the Maximum Junction Temperature:  
For this example, with an output power (P  
) of 5W, (5V  
OUT  
output at 1A with V = 12V) and 60°C maximum ambient  
IN  
The reason that the power SOP-8 has higher power dissipa-  
tion (lower thermal resistance) is that pins 2, 6, and 7 and the  
die-attach paddle are a single piece of metal. The die is  
attached to the paddle with thermally conductive adhesive.  
This provides a low thermal resistance path from the junction  
of the die to the ground pins. This design significantly im-  
proves package power dissipation by allowing excellent heat  
transfer through the ground leads to the printed circuit board.  
temperature, what is the junction temperature?  
Referring to the Typical Characteristics: 5V Output Effi-  
ciencygraph, read the efficiency (η) for 1A output current at  
V
= 12V or perform you own measurement.  
IN  
η = 84%  
The efficiency is used to determine how much of the output  
power (P  
) is dissipated in the regulator circuit (P ).  
OUT  
D
OnelimitationofthemaximumoutputcurrentonanyMIC4684  
P
OUT  
P =  
P  
OUT  
design is the junction-to-ambient thermal resistance (θ ) of  
D
JA  
η
the design (package and ground plane).  
5W  
PD =  
5W  
0.84  
P = 0.95W  
D
MIC4684  
10  
July 2001  
MIC4684  
Micrel  
A worst-case rule of thumb is to assume that 80% of the total  
This value is within the allowable maximum operating junc-  
tion temperature of 125°C as listed in Operating Ratings.”  
Typical thermal shutdown is 160°C and is listed in Electrical  
Characteristics. Also see SOA curves on pages 7 through 8.  
output power dissipation is in the MIC4684 (P  
is in the diode-inductor-capacitor circuit.  
) and 20%  
D(IC)  
P
P
P
= 0.8 P  
D
D(IC)  
D(IC)  
D(IC)  
Layout Considerations  
= 0.8 × 0.95W  
Layout is very important when designing any switching regu-  
lator. Rapidly changing currents through the printed circuit  
board traces and stray inductance can generate voltage  
transients which can cause problems.  
= 0.76W  
Calculate the worst-case junction temperature:  
T = P + (T T ) + T  
θ
J
D(IC) JC  
C
A
A(max)  
where:  
T = MIC4684 junction temperature  
To minimize stray inductance and ground loops, keep trace  
lengths as short as possible. For example, keep D1 close to  
pin 1 and pins 2, 6, and 7, keep L1 away from sensitive node  
J
P
= MIC4684 power dissipation  
D(IC)  
FB, and keep C close to pin 3 and pins 2, 6, and 7. See  
IN  
θ
= junction-to-case thermal resistance.  
JC  
ApplicationsInformation:ThermalConsiderationsforground  
plane layout.  
The θ for the MIC4684s power-SOP-8 is approximately  
JC  
Thefeedbackpinshouldbekeptasfarwayfromtheswitching  
elements (usually L1 and D1) as possible.  
25°C/W.  
T = pintemperature measurement taken at the  
C
A circuit with sample layouts are provided. See Figure 7.  
Gerber files are available upon request.  
entry point of pins 2, 6 or 7  
T = ambient temperature  
A
Feed Forward Diode  
T
= maximum ambient operating temperature  
A(max)  
TheFFdiode(feedforward)providesanexternalbiassource  
for the specific design.  
directly to the main pass element, this reduces V  
thus  
SAT  
Calculating the maximum junction temperature given a  
maximum ambient temperature of 60°C:  
allowing the MIC4684 to be used in very low head-room  
applications I.E. 5V to 3.3V  
IN  
OUT.  
T = 0.76 × 25°C/W + (41°C 25°C) + 60°C  
J
T = 95°C  
J
VIN  
+4V to +30V  
MIC4684BM  
(34V transient)  
3
8
4
1
IN  
EN  
BS  
L1  
VOUT  
R1  
SW  
CIN  
68µH  
COUT  
5
FB  
Power  
SOP-8  
GND  
D1  
2
6
7
R2  
GND  
Figure 5. Critical Traces for Layout  
July 2001  
11  
MIC4684  
MIC4684  
Micrel  
Recommended Components for a Given Output Voltage (Feed-Forward Configuration)  
V
= 4V to 16V (in feed-forward configuration)  
IN  
VOUT IOUT  
R1  
R2  
VIN  
CIN  
D1  
D2  
L1  
COUT  
5.0V 1.6A 3.01k 976kΩ  
6.5V16V 47µF, 20V  
2A, 30V 1A, 20V  
27µH  
120µF, 6.3V  
Vishay-Dale  
Schottky Schottky Sumida  
Vishay-Dale  
595D476X0020D2T  
SS23  
MBRX120 CDH74-270MC  
594D127X06R3C2T  
3.3V 1.7A 3.01k 1.78k 4.85V16V 47µF, 20V  
2A, 30V 1A, 20V  
27µH  
220µF, 6.3V  
Vishay-Dale  
Schottky Schottky Sumida  
Vishay-Dale  
595D476X0020D2T  
SS23  
MBRX120 CDH74-270MC  
594D227X06R3C2T  
2.5V 1.8A 3.01k 2.94k  
4.5V16V 47µF, 20V  
2A, 30V 1A, 20V  
27µH  
330µF, 6.3V  
Vishay-Dale  
Schottky Schottky Sumida  
Vishay-Dale  
595D476X0020D2T  
SS23  
MBRX120 CDH74-270MC  
594D337X06R3D2T  
1.8V  
2A  
3.01k 6.49k  
4.2V16V 47µF, 20V  
2A, 30V 1A, 20V  
27µH  
330µF, 6.3V  
Vishay-Dale  
595D476X0020D2T  
Schottky Schottky Sumida  
SS23 MBRX120 CDH74-270MC  
Vishay-Dale  
594D337X06R3D2T  
Note 1. This bill of materials assumes the use of feedforward schotty diode from V to the bootstrap pin.  
IN  
Table 1. Recommended Components for Common Ouput Voltages  
(V = 4V to 16V)  
IN  
D2  
MBRX120  
1A/20V  
J1  
VIN  
J2  
VOUT  
2A  
L1  
47µH  
U1 MIC4684BM  
4V to +16V  
3
8
1
VIN  
SW  
C6  
0.33µF  
50V  
4
5
C2  
0.1µF  
50V  
BS  
FB  
C3*  
R1  
optional  
C1  
15µF  
35V  
J3  
GND  
3.01k  
ON  
EN  
C4  
330 F  
6.3V  
C5  
OFF  
D1  
R2  
6.49k  
R3  
2.94k  
R4  
1.78k  
R5  
0.1µF  
GND  
2, 6, 7  
B340A  
or  
976Ω  
50V  
SOP-8  
1
2
3
5
SS34  
JP1a  
1.8V  
JP1b  
2.5V  
JP1c7  
JP1d  
5.0V  
3.3V  
J4  
GND  
8
4
6
* C3 can be used to provide additional stability  
and improved transient response.  
Note: optimized for 5VOUT  
Figure 6. 4V - 16V Input Evaluation Board Schematic Diagram  
MIC4684  
12  
July 2001  
MIC4684  
Micrel  
Printed Circuit Board  
Evaluation Board Optimized for Low Input Voltage by using Feed-Forward Diode Configuration (V = 4V to 16V)  
IN  
Figure 7a. Bottom Side Copper  
Figure 7b. Top Side Copper  
Figure 7c. Bottom Side Silk Screen  
Figure 7d. Top Side Silk Screen  
Abbreviated Bill of Material (Critical Components)  
Reference  
C1  
Part Number  
Manufacturer  
Vishay Sprague1  
Vitramon  
Description  
Qty  
1
594D156X0035D2T  
VJ0805Y104KXAAB  
GRM426X7R334K50  
Optional  
15µF 35V  
C2, C5  
C6  
0.1µF 50V  
2
Murata  
0.33µF, 50V ceramic capacitor  
1800pF, 50V ceramic  
330µF, 6.3V, tantalum  
Schottky 3A, 40V  
C3  
(1)  
1
C4  
594D337X06R3D2T  
B340A  
Vishay Sprague2  
Diode Inc3  
D1  
1
D2  
MBRX120  
Micro Com. Components5  
Sumida4  
Schottky 1A, 20V  
1
L1  
CDRH104R-470MC  
MIC4684BM  
47µH, 2.1A ISAT  
1
U1  
Micrel Semiconductor6  
1A 200kHz power-SO-8 buck regulator  
1
1
2
3
4
5
6
Vishay Dale, Inc., tel: 1 402-644-4218, http://www.vishay.com  
Vishay Sprague, Inc., tel: 1 207-490-7256, http://www.vishay.com  
Diodes Inc, tel: (805) 446-4800, http://www.diodes.com  
Sumida, tel: (408) 982-9960, http://www.sumida.com  
Micro Commercial Components, tel: (800) 346-3371  
Micrel, tel: (408) 944-0800, http://www.micrel.com  
July 2001  
13  
MIC4684  
MIC4684  
Micrel  
Recommended Components for a Given Output Voltage (Standard Configuration)  
V
= 4V to 30V  
IN  
VOUT IOUT  
R1  
R2  
VIN  
CIN  
D1  
L1  
COUT  
5.0V  
3.3V  
2.5V  
1.8V  
1.7A 3.01k 976kΩ  
8V30V  
33µF, 35V  
Vishay-Dale  
595D336X0035R2T  
3A, 40V  
Schotty  
SS34  
68µH  
Sumida  
CDRH104R-680MC  
120µF, 6.3V  
Vishay-Dale  
594D127X06R3C2T  
1.5A 3.01k  
1.5A 3.01k  
1.5A 3.01k  
1.78k  
2.94k  
6.49k  
7V28V  
6.5V23V  
6V17V  
33µF, 35V  
Vishay-Dale  
595D336X0035R2T  
3A, 40V  
Schotty  
SS34  
68µH  
Sumida  
CDRH104R-680MC  
220µF, 6.3V  
Vishay-Dale  
594D227X06R3C2T  
33µF, 35V  
Vishay-Dale  
595D336X0035R2T  
3A, 40V  
Schotty  
SS334  
68µH  
Sumida  
CDRH104R-680MC  
330µF, 6.3V  
Vishay-Dale  
594D337X06R3D2T  
47µF, 25V  
Vishay-Dale  
595D476X0025D2T  
3A, 40V  
Schotty  
SS334  
68µH  
Sumida  
CDRH104R-680MC  
330µF, 6.3V  
Vishay-Dale  
594D337X06R3D2T  
Table 2. Recommended Components for Common Ouput Voltages  
(V = 4V to 30V)  
IN  
J1  
VIN  
L1  
J2  
VOUT  
2A  
4V to +30V  
(34V transient)  
U1 MIC4684BM  
47µH  
3
8
1
VIN  
SW  
C6  
0.33µF  
50V  
4
5
C2  
0.1µF  
50V  
BS  
FB  
C3*  
R1  
optional  
C1  
15µF  
35V  
J3  
GND  
3.01k  
ON  
EN  
C4  
330 F  
6.3V  
C5  
0.1µF  
50V  
OFF  
D1  
R2  
6.49k  
R3  
2.94k  
R4  
1.78k  
R5  
GND  
2, 6, 7  
B340A  
or  
976Ω  
SOP-8  
1
2
3
5
SS34  
JP1a  
1.8V  
JP1b  
2.5V  
JP1c7  
JP1d  
5.0V  
3.3V  
J4  
GND  
8
4
6
* C3 can be used to provide additional stability  
and improved transient response.  
Note: optimized for 5VOUT  
Figure 6a. 4V - 30V Input Evaluation Board Schematic Diagram  
MIC4684  
14  
July 2001  
MIC4684  
Micrel  
Printed Circuit Board  
General Purpose Evaluation Board (V = 4V to 30V)  
IN  
Figure 7a. Bottom Side Copper  
Figure 7b. Top Side Copper  
Figure 7c. Bottom Side Silk Screen  
Figure 7d. Top Side Silk Screen  
Abbreviated Bill of Material (Critical Components)  
Reference  
C1  
Part Number  
Manufacturer  
Vishay Sprague1  
Vitramon  
Description  
Qty  
1
594D156X0035D2T  
VJ0805Y104KXAAB  
GRM426X7R334K50  
Optional  
15µF 35V  
C2, C5  
C6  
0.1µF 50V  
2
Murata  
0.33µF, 50V ceramic capacitor  
1800pF, 50V ceramic  
330µF, 6.3V, tantalum  
Schottky 3A 40V  
C3  
(1)  
1
C4  
594D337X06R3D2T  
B340A  
Vishay Sprague2  
Diode Inc3  
D1  
1
L1  
CDRH104R-470MC  
MIC4684BM  
Sumida4  
47µH, 2.1A ISAT  
1
U1  
Micrel Semiconductor5  
1A 200kHz power-SO-8 buck regulator  
1
1
2
3
4
5
Vishay Dale, Inc., tel: 1 402-644-4218, http://www.vishay.com  
Vishay Sprague, Inc., tel: 1 207-490-7256, http://www.vishay.com  
Diodes Inc, tel: (805) 446-4800, http://www.diodes.com  
Sumida, tel: (408) 982-9960, http://www.sumida.com  
Micrel, tel: (408) 944-0800, http://www.micrel.com  
July 2001  
15  
MIC4684  
MIC4684  
Micrel  
Package Information  
0.026 (0.65)  
MAX)  
PIN 1  
0.157 (3.99)  
0.150 (3.81)  
DIMENSIONS:  
INCHES (MM)  
0.020 (0.51)  
0.013 (0.33)  
0.050 (1.27)  
TYP  
45°  
0.0098 (0.249)  
0.0040 (0.102)  
0.010 (0.25)  
0.007 (0.18)  
0°8°  
0.197 (5.0)  
0.189 (4.8)  
0.050 (1.27)  
0.016 (0.40)  
SEATING  
PLANE  
0.064 (1.63)  
0.045 (1.14)  
0.244 (6.20)  
0.228 (5.79)  
8-Lead SOP (M)  
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or  
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.  
© 2001 Micrel Incorporated  
MIC4684  
16  
July 2001  

相关型号:

MIC4684BM

2A High-Efficiency SuperSwitcher Buck Regulator
MICREL

MIC4684BMTR

Switching Regulator, Voltage-mode, 225kHz Switching Freq-Max, PDSO8, SOP-8
MICREL

MIC4684YM

2A High-Efficiency SuperSwitcher Buck Regulator
MICREL

MIC4684YM-TR

SWITCHING REGULATOR, 225kHz SWITCHING FREQ-MAX, PDSO8
MICREL

MIC4684YMTR

SWITCHING REGULATOR, 225kHz SWITCHING FREQ-MAX, PDSO8, LEAD FREE, SOP-8
MICREL

MIC4684_10

2A High-Efficiency SuperSwitcher Buck Regulator
MICREL

MIC4685

3A SPAK SuperSwitcher⑩ Buck Regulator
MICREL

MIC4685-3.3BR

Switching Regulator, Voltage-mode, 1A, 225kHz Switching Freq-Max, PSSO7, SPAK-7
MICROCHIP

MIC4685-3.3BR

Switching Regulator, Voltage-mode, 1A, 225kHz Switching Freq-Max, PSSO7, SPAK-7
MICREL

MIC4685-3.3WR

SWITCHING REGULATOR, 225kHz SWITCHING FREQ-MAX, PSSO7
MICROCHIP

MIC4685-3.3YR

SWITCHING REGULATOR, 225kHz SWITCHING FREQ-MAX, PSSO7
MICROCHIP

MIC4685-5.0BR

Switching Regulator, Voltage-mode, 1A, 225kHz Switching Freq-Max, PSSO7, SPAK-7
MICROCHIP