MIC49150 [MICREL]

1.5A Low Voltage LDO Regulator w/Dual Input Voltages; 1.5A低压LDO稳压器瓦特/双输入电压
MIC49150
型号: MIC49150
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
1.5A低压LDO稳压器瓦特/双输入电压

稳压器
文件: 总12页 (文件大小:97K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC49150  
1.5A Low Voltage LDO Regulator w/Dual Input Voltages  
Final Information  
General Description  
Features  
The MIC49150 is a high-bandwidth, low-dropout, 1.5A volt-  
age regulator ideal for powering core voltages of low-power  
microprocessors. The MIC49150 implements a dual supply  
configuration allowing for very low output impedance and  
very fast transient response.  
Input Voltage Range:  
V : 1.4V to 6.5V  
IN  
V
: 3.0V to 6.5V  
BIAS  
Stable with 1µF ceramic capacitor  
±1% initial tolerance  
Maximum dropout voltage (V -V  
) of 500mV over  
The MIC49150 requires a bias input supply and a main input  
supply, allowing for ultra-low input voltages on the main  
supply rail. The input supply operates from 1.4V to 6.5V and  
the bias supply requires between 3V and 6.5V for proper  
operation. The MIC49150 offers fixed output voltages from  
0.9V to 1.8V and adjustable output voltages down to 0.9V.  
IN OUT  
temperature  
Adjustable output voltage down to 0.9V  
Ultra fast transient response (Up to 10MHz bandwidth)  
Excellent line and load regulation specifications  
Logic controlled shutdown option  
Thermal shutdown and current limit protection  
Power MSO-8 and S-Pak packages  
The MIC49150 requires a minimum of output capacitance for  
stability, working optimally with small ceramic capacitors.  
Junction temperature range: 40°C to 125°C  
The MIC49150 is available in an 8-pin power MSOP package  
and a 5-pin S-Pak. Its operating temperature range is –40°C  
to +125°C.  
Applications  
Graphics processors  
PC Add-In Cards  
Microprocessor core voltage supply  
Low voltage digital ICs  
High Efficiency Linear power supplies  
SMPS post regulators  
Typical Application  
Load Transient Response  
MIC49150BR  
VIN = 1.8V  
VOUT = 1.0V  
IN  
OUT  
R1  
R2  
VBIAS = 3.3V  
VIN = 1.8V  
VOUT = 1V  
COUT = 1µF  
V
BIAS = 3.3V  
BIAS  
ADJ  
COUT = 1µF  
Ceramic  
CBIAS = 1µF  
GND  
Ceramic  
CIN = 1µF  
Ceramic  
Low Voltage,  
Fast Transient Response Regulator  
TIME (10µs/div.)  
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com  
January 2002  
1
MIC49150  
MIC49150  
Micrel  
Ordering Information  
Part Number  
Output Current Voltage Temperature Range  
Package  
Power MSOP-8  
Power MSOP-8  
Power MSOP-8  
S-Pak-5  
MIC49150-0.9BMM  
MIC49150-1.5BMM  
MIC49150BMM  
MIC49150-0.9BR  
MIC49150-1.5BR  
MIC49150BR  
1.5A  
1.5A  
1.5A  
1.5A  
1.5A  
1.5A  
0.9V  
1.5V  
ADJ.  
0.9V  
1.5V  
ADJ.  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
S-Pak-5  
S-Pak-5  
Other voltages available. Contact Micrel for details.  
Pin Configuration  
GND  
GND  
GND  
GND  
1
2
3
4
8
7
6
5
EN/ADJ.  
VBIAS  
5
VOUT  
4 VIN  
3 GND  
2
VIN  
VBIAS  
1 EN/ADJ.  
VOUT  
5-Lead S-Pak (R)  
Power MSOP-8 (MM)  
Pin Description  
MIC49150  
MSOP8  
MIC49150  
S-Pak  
Pin Name  
Pin Function  
1
1
Enable  
Enable (Input): CMOS compatible input. Logic high = enable, logic low =  
shutdown  
ADJ.  
VIN  
Adjustable regulator feedback input. Connect to resistor voltage divider.  
Input voltage which supplies current to the output power device.  
Regulator Output  
3
4
2
4
5
2
VOUT  
VBIAS  
Input Bias Voltage for powering all circuitry on the regulator with the excep-  
tion of the output power device.  
5/6/7/8  
3
GND  
Ground (TAB is connected to ground on S-Pak)  
MIC49150  
2
January 2002  
MIC49150  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Voltage (V ) .......................................................8V  
Supply Voltage (V ) ....................................... 1.4V to 6.5V  
IN  
IN  
Bias Supply Voltage (V  
)............................................8V  
Bias Supply Voltage (V  
)............................... 3V to 6.5V  
BIAS  
BIAS  
Enable Input Voltage (V ) .............................................8V  
Enable Input Voltage (V ) .................................. 0V to V  
EN  
EN IN  
Power Dissipation .................................... Internally Limited  
Junction Temperature Range............. 40°C T +125°C  
J
ESD Rating, Note 3 ...................................................... 2kV  
Package Thermal Resistance  
MSOP-8 ) ......................................................80°C/W  
JA  
S-PAK)............................................................2°C/W  
JC  
Electrical Characteristics  
TA = 25°C with VBIAS = VOUT +2.1V; VIN = VOUT + 1V; bold values indicate 40°C < TJ < +125°C, Note 4; unless otherwise specified.  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Output Voltage Accuracy  
At 25°C  
Over temperature range  
1  
2  
+1  
+2  
%
%
Line Regulation  
Load Regulation  
VIN = 3.0V to 6.5V  
IL = 0mA to 1.5A  
0.1  
0.01  
0.2  
+0.1  
%/V  
1
1.5  
%
%
Dropout Voltage (VIN - VOUT  
)
IL = 750mA  
IL = 1.5A  
130  
280  
200  
300  
400  
500  
mV  
mV  
mV  
mV  
Dropout Voltage (VBIAS - VOUT  
Note 4  
)
IL = 750mA  
IL = 1.5A  
1.3  
1.65  
V
V
V
1.9  
2.1  
Ground Pin Current, Note 5  
IL = 0mA  
IL = 1.5A  
15  
15  
mA  
mA  
mA  
25  
30  
Ground Pin Current in Shutdown  
Current thru VBIAS  
V
EN 0.6V, (IBIAS + ICC), Note 6  
0.5  
9
1
2
µA  
µA  
IL = 0mA  
15  
25  
mA  
mA  
mA  
IL = 1.5A  
32  
Current Limit  
MIC49150  
1.6  
2.3  
3.5  
4
A
A
Enable Input, Note 6  
Enable Input Threshold  
(Fixed Voltage only)  
Regulator enable  
Regulator shutdown  
1.6  
V
V
0.6  
Enable Pin Input Current  
Reference  
Independent of state  
0.1  
0.9  
1
µA  
Reference Voltage  
0.891  
0.882  
0.909  
0.918  
V
V
Note 1. Exceeding the absolute maximum rating may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.  
Note 4. For V 1V, V dropout specification does not apply due to a minimum 3V V input.  
OUT  
BIAS  
BIAS  
Note 5.  
I
= I  
+ (I I  
). At high loads, input current on V will be less than the output current, due to drive current being supplied by V  
.
GND  
BIAS  
IN  
OUT  
IN  
BIAS  
Note 6. Fixed output voltage versions only.  
January 2002  
3
MIC49150  
MIC49150  
Micrel  
Functional Diagram  
VBIAS  
VIN  
Ilimit  
VEN ADJ  
/
Fixed  
Bandgap  
Enable  
Adj.  
VOUT  
VIN Open  
Circuit  
R1  
R2  
Fixed  
MIC49150  
4
January 2002  
MIC49150  
Micrel  
Typical Characteristics  
Power Supply Rejection Ratio  
Power Supply Rejection Ratio  
Dropout Voltage  
(Input Supply)  
(Input Supply)  
(Bias Supply)  
80  
80  
300  
250  
200  
150  
100  
50  
70  
60  
50  
70  
60  
50  
40  
40  
VBIAS = 3.3V  
VBIAS = 3.3V  
30  
20  
10  
0
30  
20  
10  
0
VIN = 1.8V  
VOUT = 1.0V  
IOUT = 1.5A  
COUT = 1µF ceramic  
VIN = 1.8V  
VOUT = 1.0V  
IOUT = 1.5A  
COUT = 1µF ceramic  
VBIAS = 5V  
VOUT = 1.0V  
0
0.01 0.1  
1
10  
100 1000  
0.01 0.1  
1
10  
100 1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
OUTPUT CURRENT (mA)  
Dropout Voltage  
vs. Temperature  
(Input Supply)  
Dropout Voltage  
vs. Temperature  
(Bias Supply)  
Dropout Voltage  
(Bias Supply)  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
400  
350  
300  
250  
200  
150  
100  
50  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
VBIAS = 5V  
IOUT = 1.5A  
VOUT = 1.5V  
VIN = 2.5V  
VIN = 2.5V  
VOUT = 1.5V  
IOUT = 1.5A  
VOUT = 1.5V  
0
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE(°C)  
TEMPERATURE(°C)  
OUTPUT CURRENT (mA)  
Dropout Characteristics  
(Input Voltage)  
Dropout Characteristics  
(Bias Voltage)  
Load Regulation  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.505  
1.504  
1.503  
1.502  
1.501  
1.500  
1.499  
1.498  
1.497  
1.496  
1.495  
IOUT = 10mA  
IOUT = 10mA  
IOUT = 1.5A  
IOUT = 1.5A  
VBIAS = 5V  
VBIAS = 5V  
VIN = 2.5V  
VIN = 2.5V  
VOUT = 1.5V  
VOUT = 1.5V  
0
0.5  
1
1.5  
2
2.5  
0
1
2
3
4
5
6
7
INPUT VOLTAGE (V)  
BIAS VOLTAGE (V)  
OUTPUT CURRENT (mA)  
Maximum Bias Current  
vs. Bias Voltage  
Bias Current  
Maximum Bias Current  
vs. Temperature  
vs. Temperature  
45  
40  
35  
30  
25  
20  
15  
10  
5
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
VIN = 2.5V  
V
OUT = 1.5V  
BIAS = 5V  
V
VADJ = 0V  
IOUT = 750mA  
IOUT = 100mA  
I
OUT = 1.5A  
IN = 2.5V  
VBIAS = 5V  
VADJ = 0V  
VIN = 2.5V  
V
IOUT = 1500mA  
*Note: Maximum bias current is bias  
current with input in dropout  
IOUT = 10mA  
20 40 60 80 100 120  
0
0
0
-40 -20  
0
3
3.5  
4
4.5  
5
5.5  
6
6.5  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
BIAS VOLTAGE (V)  
TEMPERATURE(°C)  
January 2002  
5
MIC49150  
MIC49150  
Micrel  
Bias Current  
vs. Output Current  
Ground Current  
vs. Bias Voltage  
Bias Current  
vs. Bias Voltage  
50  
40  
30  
20  
10  
0
14  
12  
10  
8
14  
12  
10  
8
IBIAS  
VBIAS = 5V  
VIN = 2.5V  
VOUT = 1.5V  
IBIAS  
6
6
IOUT = 100mA  
VIN = 2.5V  
VOUT = 1.5V  
IOUT = 0mA  
VIN = 2.5V  
VOUT = 1.5V  
4
4
2
2
0
0
3
3.5  
4
4.5  
5
5.5  
6
6.5  
6.5  
6.4  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
BIAS VOLTAGE (V)  
BIAS VOLTAGE (V)  
OUTPUT CURRENT (mA)  
Bias Current  
vs. Bias Voltage  
Bias Current  
vs. Bias Voltage  
Bias Current  
vs. Input Voltage  
20  
18  
16  
14  
12  
10  
8
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
VBIAS = 5V  
VOUT = 1.5V  
IOUT = 750mA  
VIN = 2.5V  
VOUT = 1.5V  
IBIAS  
IOUT = 100mA  
IBIAS  
IOUT = 0mA  
IOUT = 1500mA  
VIN = 2.5V  
VOUT = 1.5V  
6
4
2
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
3
3.5  
4
4.5  
5
5.5  
6
INPUT VOLTAGE (V)  
BIAS VOLTAGE (V)  
BIAS VOLTAGE (V)  
Bias Current  
vs. Input Voltage  
Reference Voltage  
vs. Input Voltage  
Reference Voltage  
vs. Bias Voltage  
300  
0.901  
0.900  
0.899  
0.901  
0.900  
0.899  
VBIAS = 5V  
1500mA  
250 VOUT = 1.5V  
VBIAS = 5V  
VIN = 2.5V  
200  
750mA  
150  
100  
50  
0
0
0.5  
1
1.5  
2
2.5  
1.4  
2.4  
3.4  
4.4  
5.4  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
BIAS VOLTAGE (V)  
Short Circuit Current  
vs. Temperature  
Enable Threshold  
vs. Bias Voltage  
Output Voltage  
vs. Temperature  
1.55  
3.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
VBIAS = 5V  
VIN = 2.5V  
1.54  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
1.46  
1.45  
ON  
2.5  
2.0  
1.5  
1.0  
0.5  
0
OFF  
VBIAS = 5V  
VIN = 2.5V  
VOUT = 0V  
VIN = 2.5V  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
BIAS VOLTAGE (V)  
MIC49150  
6
January 2002  
MIC49150  
Micrel  
Enable Threshold  
vs. Temperature  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
ON  
OFF  
VBIAS = 5V  
VIN = 2.5V  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
Functional Characteristics  
Bias Voltage  
Line Transient Response  
Load Transient Response  
VBIAS = 3.3V  
V
BIAS = 6.5V  
VIN = 1.8V  
VOUT = 1V  
COUT = 1µF ceramic  
VBIAS = 3.3V  
VIN = 1.8V  
VOUT = 1V  
COUT = 1µF ceramic  
IOUT = 1.5A  
TIME (10µs/div.)  
TIME (400µs/div.)  
Input Voltage  
Line Transient Response  
VIN = 6.5V  
V
IN = 1.8V  
VBIAS = 3.3V  
VOUT = 1V  
COUT = 1µF ceramic  
IOUT = 1.5A  
TIME (400µs/div.)  
January 2002  
7
MIC49150  
MIC49150  
Micrel  
Input Capacitor  
Applications Information  
An input capacitor of 1µF or greater is recommended when  
the device is more than 4 inches away from the bulk supply  
capacitance, or when the supply is a battery. Small, surface-  
mount, ceramic chip capacitors can be used for the bypass-  
ing. The capacitor should be placed within 1" of the device for  
optimal performance. Larger values will help to improve  
ripplerejectionbybypassingtheinputtotheregulator, further  
improving the integrity of the output voltage.  
The MIC49150 is an ultra-high performance, low dropout  
linear regulator designed for high current applications requir-  
ing fast transient response. The MIC49150 utilizes two input  
supplies, significantly reducing dropout voltage, perfect for  
low-voltage, DC-to-DC conversion. The MIC49150 requires  
a minimum of external components and obtains a bandwidth  
of up to 10MHz. As a µCap regulator, the output is tolerant of  
virtually any type of capacitor including ceramic type and  
tantalum type capacitors.  
Thermal Design  
Linear regulators are simple to use. The most complicated  
design parameters to consider are thermal characteristics.  
Thermal design requires the following application-specific  
parameters:  
The MIC49150 regulator is fully protected from damage due  
to fault conditions, offering linear current limiting and thermal  
shutdown.  
Bias Supply Voltage  
Maximum ambient temperature (T )  
A
V
, requiring relatively light current, provides power to the  
BIAS  
Output Current (I  
)
control portion of the MIC49150. V  
requires approxi-  
OUT  
BIAS  
mately 33mA for a 1.5A load current. Dropout conditions  
require higher currents. Most of the biasing current is used to  
supply the base current to the pass transistor. This allows the  
pass element to be driven into saturation, reducing the  
dropout to 300mVat a 1.5A load current. Bypassing on the  
bias pin is recommended to improve performance of the  
regulator during line and load transients. Small ceramic  
Output Voltage (V  
)
OUT  
Input Voltage (V )  
IN  
Ground Current (I  
)
GND  
First, calculate the power dissipation of the regulator from  
thesenumbersandthedeviceparametersfromthisdatasheet.  
P = V × I + V  
× I  
V  
× I  
D
IN  
IN  
BIAS  
BIAS  
OUT OUT  
capacitors from V  
to ground help reduce high frequency  
BIAS  
The input current will be less than the output current at high  
output currents as the load increases. The bias current is a  
sum of base drive and ground current. Ground current is  
constant over load current. Then the heat sink thermal  
resistance is determined with this formula:  
noise from being injected into the control circuitry from the  
bias rail and are good design practice. Good bypass tech-  
niques typically include one larger capacitor such as a 1µF  
ceramic and smaller valued capacitors such as 0.01µF or  
0.001µF in parallel with that larger capacitor to decouple the  
bias supply. The V  
output voltage with a minimum V  
input voltage must be 1.6V above the  
BIAS  
T
T  
J(MAX)  
A
input voltage of 3 volts.  
θ
=
BIAS  
SA  
P θ + θ  
(
)
D
JC  
CS  
Input Supply Voltage  
V
provides the high current to the collector of the pass  
The heat sink may be significantly reduced in applications  
where the maximum input voltage is known and large com-  
pared with the dropout voltage. Use a series input resistor to  
drop excessive voltage and distribute the heat between this  
resistor and the regulator. The low dropout properties of the  
MIC49150 allow significant reductions in regulator power  
dissipation and the associated heat sink without compromis-  
ingperformance. Whenthistechniqueisemployed, acapaci-  
tor of at least 1µF is needed directly between the input and  
regulator ground. Refer to Application Note 9 for further  
details and examples on thermal design and heat sink speci-  
fication.  
IN  
transistor. The minimum input voltage is 1.4V, allowing  
conversion from low voltage supplies.  
Output Capacitor  
The MIC49150 requires a minimum of output capacitance to  
maintain stability. However, proper capacitor selection is  
importanttoensuredesiredtransientresponse.TheMIC49150  
is specifically designed to be stable with virtually any capaci-  
tance value and ESR. A 1µF ceramic chip capacitor should  
satisfy most applications. Output capacitance can be in-  
creased without bound. See typical characteristics for ex-  
amples of load transient response.  
Minimum Load Current  
X7R dielectric ceramic capacitors are recommended be-  
cause of their temperature performance. X7R-type capaci-  
tors change capacitance by 15% over their operating tem-  
perature range and are the most stable type of ceramic  
capacitors. Z5U and Y5V dielectric capacitors change value  
byasmuchas50%and60%respectivelyovertheiroperating  
temperature ranges. To use a ceramic chip capacitor with  
Y5V dielectric, the value must be much higher than an X7R  
ceramic or a tantalum capacitor to ensure the same capaci-  
tance value over the operating temperature range. Tantalum  
capacitors have a very stable dielectric (10% over their  
operating temperature range) and can also be used with this  
device.  
The MIC49150, unlike most other high current regulators,  
does not require a minimum load to maintain output voltage  
regulation.  
Power MSOP-8 Thermal Characteristics  
One of the secrets of the MIC49150s performance is its  
powerMSOP-8packagefeaturinghalfthethermalresistance  
of a standard MSOP-8 package. Lower thermal resistance  
means more output current or higher input voltage for a given  
package size.  
MIC49150  
8
January 2002  
MIC49150  
Micrel  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Lower thermal resistance is achieved by joining the four  
ground leads with the die attach paddle to create a single-  
piece electrical and thermal conductor. This concept has  
been used by MOSFET manufacturers for years, proving  
very reliable and cost effective for the user.  
Thermal resistance consists of two main elements, θ  
JC  
(junction-to-casethermalresistance)andθ (case-to-ambi-  
CA  
ent thermal resistance). See Figure 1. θ is the resistance  
JC  
from the die to the leads of the package. θ is the resistance  
CA  
0
0.25 0.50 0.75 1.00 1.25 1.50  
POWER DISSIPATION (W)  
from the leads to the ambient air and it includes θ (case-to-  
CS  
sink thermal resistance) and θ  
resistance).  
(sink-to-ambient thermal  
SA  
Figure 2. Copper Area vs. Power-MSOP  
Power Dissipation (T  
)
JA  
Using the power MSOP-8 reduces the θ dramatically and  
JC  
900  
allows the user to reduce θ . The total thermal resistance,  
CA  
T
= 125°C  
85°C  
800  
700  
600  
500  
400  
300  
200  
100  
0
J
θ
(junction-to-ambient thermal resistance) is the limiting  
JA  
50°C 25°C  
factor in calculating the maximum power dissipation capabil-  
ity of the device. Typically, the power MSOP-8 has a θ of  
80°C/W, this is significantly lower than the standard MSOP-8  
JA  
which is typically 160°C/W. θ is reduced because pins 5  
CA  
through 8 can now be soldered directly to a ground plane  
which significantly reduces the case-to-sink thermal resis-  
tance and sink to ambient thermal resistance.  
0
0.25 0.50 0.75 1.00 1.25 1.50  
POWER DISSIPATION (W)  
Low-dropout linear regulators from Micrel are rated to a  
maximum junction temperature of 125°C. It is important not  
to exceed this maximum junction temperature during opera-  
tionofthedevice.Topreventthismaximumjunctiontempera-  
ture from being exceeded, the appropriate ground plane heat  
sink must be used.  
Figure 3. Copper Area vs. Power-MSOP  
Power Dissipation (T )  
A
T = T  
T  
A(max)  
J(max)  
T
T
= 125°C  
J(max)  
A(max)  
= maximum ambient operating temperature  
MSOP-8  
Forexample, themaximumambienttemperatureis50°C, the  
T is determined as follows:  
T = 125°C 50°C  
T = 75°C  
Using Figure 2, the minimum amount of required copper can  
be determined based on the required power dissipation.  
Power dissipation in a linear regulator is calculated as fol-  
lows:  
θJA  
ground plane  
heat sink area  
θJC  
θCA  
AMBIENT  
P = V × I + V  
× I  
V  
× I  
D
IN  
IN  
BIAS  
BIAS  
OUT OUT  
printed circuit board  
Using a typical application of 750mA output current, 1.2V  
output voltage, 1.8V input voltage and 3.3V bias voltage, the  
power dissipation is as follows:  
Figure 1. Thermal Resistance  
Figure 2 shows copper area versus power dissipation with  
each trace corresponding to a different temperature rise  
above ambient.  
P = (1.8V) × (730mA) + 3.3V(30mA) 1.2V(750mA)  
D
At full current, a small percentage of the output current is  
supplied from the bias supply, therefore the input current is  
less than the output current.  
From these curves, the minimum area of copper necessary  
for the part to operate safely can be determined. The maxi-  
mum allowable temperature rise must be calculated to deter-  
mine operation along which curve.  
P = 513mW  
D
From Figure 2, the minimum current of copper required to  
2
operate this application at a T of 75°C is less than 100mm .  
January 2002  
9
MIC49150  
MIC49150  
Micrel  
Quick Method  
Enable  
Determine the power dissipation requirements for the design  
along with the maximum ambient temperature at which the  
device will be operated. Refer to Figure 3, which shows safe  
operating curves for three different ambient temperatures:  
25°C, 50°C and 85°C. From these curves, the minimum  
amount of copper can be determined by knowing the maxi-  
mum power dissipation required. If the maximum ambient  
temperature is 50°C and the power dissipation is as above,  
513mW, the curve in Figure 3 shows that the required area of  
ThefixedoutputvoltageversionsoftheMIC49150featurean  
active high enable input (EN) that allows on-off control of the  
regulator. Current drain reduces to zerowhen the device is  
shutdown, with only microamperes of leakage current. The  
EN input has TTL/CMOS compatible thresholds for simple  
logic interfacing. EN may be directly tied to V and pulled up  
IN  
to the maximum supply voltage  
2
copper is less than 100mm .  
The θ of this package is ideally 80°C/W, but it will vary  
JA  
depending upon the availability of copper ground plane to  
which it is attached.  
Adjustable Regulator Design  
The MIC49150 adjustable version allows programming the  
outputvoltageanywherebetween0.9Vand5V. Tworesistors  
areused. TheresistorvaluebetweenV  
andtheadjustpin  
OUT  
should not exceed 10k. Larger values can cause instability.  
The resistor values are calculated by:  
V
OUT  
R1= R2 ×  
1  
0.9  
Where V  
is the desired output voltage.  
OUT  
MIC49150  
10  
January 2002  
MIC49150  
Micrel  
Package Information  
0.122 (3.10)  
0.112 (2.84)  
0.199 (5.05)  
0.187 (4.74)  
DIMENSIONS:  
INCH (MM)  
0.120 (3.05)  
0.116 (2.95)  
0.036 (0.90)  
0.032 (0.81)  
0.043 (1.09)  
0.038 (0.97)  
0.012 (0.30) R  
0.007 (0.18)  
0.005 (0.13)  
0.008 (0.20)  
0.004 (0.10)  
5° MAX  
0° MIN  
0.012 (0.3)  
0.012 (0.03) R  
0.039 (0.99)  
0.0256 (0.65) TYP  
0.035 (0.89)  
0.021 (0.53)  
8-Lead MSOP (MM)  
0.370±0.005  
9.395±0.125  
0.355±0.005  
9.015±0.125  
0.075±0.005  
1.905±0.125  
0.040±0.010  
1.015±0.255  
0.256  
6.50  
0.010  
0.250  
0.040±0.005  
1.015±0.125  
INCHES  
MILLIMETER  
0.315±0.005  
8.000±0.130  
0.415±0.005  
10.54±0.130  
0.003±0.002  
0.080±0.050  
0.010  
0.250  
0.067  
1.700  
0.028±0.003  
0.710±0.080  
0.036±0.005  
0.915±0.125  
0° min  
6° max  
5-Lead S-Pak (R)  
January 2002  
11  
MIC49150  
MIC49150  
Micrel  
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or  
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.  
© 2002 Micrel Incorporated  
MIC49150  
12  
January 2002  

相关型号:

MIC49150-0.9BMM

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
MICREL

MIC49150-0.9BMMTR

Fixed Positive LDO Regulator, 0.9V, 0.5V Dropout, PDSO8, MSOP-8
MICREL

MIC49150-0.9BR

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
MICREL

MIC49150-0.9WR

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
MICREL

MIC49150-0.9WR-TR

IC REG LDO 0.9V 1.5A SPAK-5
MICROCHIP

MIC49150-0.9YMM

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
MICREL

MIC49150-0.9YMMTR

0.9V FIXED POSITIVE LDO REGULATOR, 0.5V DROPOUT, PDSO8, ROHS COMPLIANT, MSOP-8
MICROCHIP

MIC49150-1.2BMM

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
MICREL

MIC49150-1.2BMMTR

Fixed Positive LDO Regulator, 1.2V, 0.5V Dropout, PDSO8, MSOP-8
MICROCHIP

MIC49150-1.2BR

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
MICREL

MIC49150-1.2BRTR

暂无描述
MICREL

MIC49150-1.2WR

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
MICREL