MIC5022BWM [MICREL]

Half-Bridge MOSFET Driver; 半桥MOSFET驱动器
MIC5022BWM
型号: MIC5022BWM
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

Half-Bridge MOSFET Driver
半桥MOSFET驱动器

驱动器 接口集成电路 光电二极管
文件: 总9页 (文件大小:133K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5022  
Half-Bridge MOSFET Driver  
General Description  
Features  
The MIC5022 half-bridge MOSFET driver is designed to  
operate at frequencies up to 100kHz (5kHz PWM for 2% to  
100% duty cycle) and is an ideal choice for high speed  
applications such as motor control and SMPS (switch mode  
power supplies).  
• 12V to 36V operation  
• 600ns rise time into 1000pF (high side)  
• TTL compatible input with internal pull-down resistor  
• Outputs interlocked to prevent cross conduction  
• TTL compatible enable  
• Fault output indication  
• Individual overcurrent limits  
• Gate protection  
• Internal charge pump (high-side)  
• Current source drive scheme reduces EMI  
A rising or falling edge on the input results in a current source  
pulse or sink pulse on the gate outputs. This output current  
pulse can turn on a 2000pF MOSFET in approximately 1µs.  
The MIC5022 then supplies a limited current (< 2mA), if  
necessary, to maintain the output states.  
Applications  
• Motor control  
• Switch-mode power supplies  
Two overcurrent comparators with nominal trip voltages of  
50mV make the MIC5022 ideal for use with current sensing  
MOSFETs. Externallowvalueresistorsmaybeusedinstead  
of sensing MOSFETs for more precise overcurrent control.  
Optional external capacitors placed on the C and C pins  
TH  
TL  
may be used to individually control the current shutdown duty  
cycles from approximately 20% to <1%. Duty cycles from  
20% to about 75% are possible with individual pull-up resis-  
tors from C and C to V . An open collector output  
Ordering Information  
TL  
TH  
DD  
provides a fault indication when either sense input is tripped.  
Part Number  
MIC5022BWM  
MIC5022BN  
Temperature Range  
–40°C to +85°C  
Package  
The MIC5022 is available in 16-pin wide SOIC and 14-pin  
plastic DIP packages.  
16-pin Wide SOIC  
14-pin Plastic DIP  
–40°C to +85°C  
Other members of the MIC502x family include the MIC5020  
low-side driver and the MIC5021 high-side driver.  
Typical Application  
+12V to +36V  
MIC5022  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VDD  
VBOOST  
Gate H  
10µF  
TTL Input  
Input  
2.7nF  
M
(PWM signal)  
Fault Sense H–  
CTH Sense H+  
Enable Gate L  
CTL Sense L–  
Gnd Sense L+  
RS1  
CTH  
CTL  
RS2  
8
DC Motor Control Application  
MIC5022  
178  
September 1999  
MIC5022  
Micrel  
Pin Configuration  
1 VDD  
VBOOST 14  
Gate H 13  
1
2
3
4
5
6
7
8
VDD  
NC  
NC 16  
VBOOST 15  
Gate H 14  
2 Input  
3 Fault Sense H– 12  
Input  
4 CTH  
Sense H+ 11  
Gate L 10  
Fault Sense H– 13  
CTH Sense H+ 12  
Enable Gate L 11  
5 Enable  
6 CTL  
Sense L– 9  
Sense L+ 8  
7 Gnd  
CTL  
Sense L– 10  
Gnd Sense L+ 9  
DIP Package  
(N)  
SOIC Package  
(WM)  
Pin Description  
DIP Pin No.  
SOIC Pin No.  
Pin Name  
VDD  
Pin Function  
Supply: +12V to +36V. Decouple with 10µF capacitor.  
1
2
1
3
Input  
TTL Compatible Input: Logic high turns the high-side external MOSFET on  
and the low-side external MOSFET off. Logic low turns the high-side  
external MOSFET off and the low-side external MOSFET on. An internal  
pull-down returns an open pin to logic low.  
3
4
4
5
Fault  
CTH  
When either sense voltage exceeds threshold, open collector output is open  
circuit for 5µs (tG(ON)), then pulled low for tG(OFF). tG(OFF) is adjustable from  
CT.  
Retry Trimming Capacitor, High Side: Controls the off time (tG(OFF)) of the  
overcurrent retry cycle. (Duty cycle adjustment.)  
• Open = approx. 20% duty cycle.  
• Capacitor to Ground = approx. 20% to < 1% duty cycle.  
• Pullup resistor = approx. 20% to approx. 75% duty cycle.  
• Ground = maintained shutdown upon overcurrent condition.  
5
6
Enable  
Output Enable: Disables operation of the output drivers; active high. An  
internal pull-down returns an open pin to logic low.  
6
7
8
7
8
8
CTL  
Gnd  
Retry Trimming Capacitor, Low Side: Same function as CTH  
Circuit Ground  
.
Sense L +  
Current Sense Comparator (+) Input, Low Side: Connect to source of low-  
side MOSFET. A built-in offset (nominal 50mV) in conjunction with RSENSE  
sets the load overcurrent trip point.  
9
10  
11  
Sense L –  
Gate L  
Current Sense Comparator (–) Input, Low Side: Connect to the negative  
side of the low-side sense resistor.  
10  
Gate Drive, Low Side: Drives the gate of an external power MOSFET. Also  
limits VGS to 15V max. to prevent Gate to Source damage. Will sink and  
source current.  
11  
12  
Sense H +  
Current Sense Comparator (+) Input, High Side: Connect to source of high-  
side MOSFET. A built-in offset (nominal 50mV) in conjunction with RSENSE  
sets the load overcurrent trip point.  
12  
13  
13  
14  
Source H –  
Gate H  
Current Sense Comparator (–) Input, High Side: Connect to the negative  
side of the high-side sense resistor.  
Gate Drive, High Side: Drives the gate of an external power MOSFET. Also  
limits VGS to 15V max. to prevent Gate to Source damage. Will sink and  
source current.  
14  
15  
VBOOST  
Charge Pump Boost Capacitor: A bootstrap capacitor from VBOOST to the  
MOSFET source pin supplies charge to quickly enhance the external  
MOSFET’s gate .  
September 1999  
179  
MIC5022  
MIC5022  
Micrel  
Block Diagram  
6V Internal Regulator  
I1  
Fault  
CTH  
VDD  
CINT  
2I1  
Normal  
CHARGE  
PUMP  
VBOOST  
Sense H+  
Sense H–  
Q1  
1.4V  
50mV  
15V  
ON  
OFF  
Input  
6V  
ONE-  
SHOT  
10I2  
I2  
Gate H  
6V  
I1  
Fault  
CTL  
CINT  
2I1  
Normal  
Fault  
Sense L+  
Sense L–  
Q1  
50mV  
VDD  
15V  
ON  
OFF  
1.4V  
6V  
ONE-  
SHOT  
10I2  
I2  
Gate L  
Enable  
Transistor Count: 188  
Absolute Maximum Ratings  
Operating Ratings  
Supply Voltage (V ) ..................................................+40V  
Supply Voltage (V ) .................................... +12V to +36V  
DD  
DD  
Input Voltage .................................................. –0.5V to 15V  
Sense Differential Voltage..........................................±6.5V  
Sense + or Sense – to Gnd.......................... –0.5V to +36V  
Fault Voltage ...............................................................+36V  
Current into Fault ....................................................... 50mA  
Temperature Range  
SOIC ...................................................... –40°C to +85°C  
PDIP ....................................................... –40°C to +85°C  
Timer Voltage (C ) .....................................................+5.5V  
T
V
Capacitor .................................................... 0.01µF  
BOOST  
MIC5022  
180  
September 1999  
MIC5022  
Micrel  
Electrical Characteristics  
TA = 25°C, Gnd = 0V, VDD = 12V, Gate CL = 1500pF (IRF540 MOSFET) unless otherwise specificed  
Symbol  
Parameter  
Condition  
Min  
Typ  
2.5  
6.0  
2.4  
3.0  
1.4  
0.1  
20  
Max  
5
Units  
mA  
mA  
mA  
mA  
V
D.C. Supply Current  
VDD = 12V, Input = 0V  
VDD = 36V, Input = 0V  
VDD = 12V, Input = 5V  
VDD = 36V, Input = 5V  
10  
5
25  
2.0  
Input Threshold  
0.8  
Input Hysteresis  
V
Input Pull-Down Current  
Enable Threshold  
Enable Hysteresis  
Input = 5V  
10  
40  
µA  
V
0.8  
1.4  
0.1  
0.15  
2.0  
V
Fault Output  
Fault Current = 1.6mA  
0.4  
V
Saturation Voltage  
Note 1  
Fault Output Leakage  
Fault = 36V  
–1  
30  
30  
16  
46  
10  
14  
2
0.01  
50  
+1  
70  
70  
21  
52  
µA  
mV  
mV  
V
Current Limit Thresh., Low-Side  
Current Limit Thresh., High-Side  
Gate On Voltage, High-Side  
Note 2  
Note 2  
50  
VDD = 12V, Note 3  
18  
VDD = 36V, Note 3  
49  
V
Gate On Voltage, Low-Side  
VDD = 12V, Note 3  
11  
V
VDD = 36V, Note 3  
15  
18  
10  
V
tG(ON)  
tG(OFF)  
tDLH  
tR  
Gate On Time, Fixed  
Sense Differential > 70mV  
5
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Gate Off Time, Adjustable  
Gate Turn-On Delay, High-Side  
Gate Rise Time, High-Side  
Gate Turn-Off Delay, High-Side  
Gate Fall Time, High-Side  
Gate Turn-On Delay, Low-Side  
Gate Rise Time, Low-Side  
Gate Turn-Off Delay, Low-Side  
Gate Fall Time, Low-Side  
Sense Differential > 70mV, CT = 0pF  
10  
20  
50  
Note 4  
Note 5  
Note 6  
Note 7  
Note 4  
Note 8  
Note 9  
Note 10  
1.4  
0.8  
1.2  
0.6  
1.7  
0.7  
0.5  
1.0  
2.0  
1.5  
2.0  
1.5  
2.5  
1.5  
1.0  
1.5  
tDHL  
tF  
tDLH  
tR  
tDHL  
tF  
Note 1 Voltage remains low for time affected by C .  
T
Note 2 When using sense MOSFETs, it is recommended that R  
Note 3 DC measurement.  
< 50. Higher values may affect the sense MOSFET’s current transfer ratio.  
SENSE  
Note 4 Input switched from 0.8V (TTL low) to 2.0V (TTL high), time for Gate transition from 0V to 2V.  
Note 5 Input switched from 0.8V (TTL low) to 2.0V (TTL high), time for Gate transition from 2V to 17V.  
Note 6 Input switched from 2.0V (TTL high) to 0.8V (TTL low), time for Gate transition from 20V (Gate on voltage) to 17V.  
Note 7 Input switched from 2.0V (TTL high) to 0.8V (TTL low), time for Gate transition from 17V to 2V.  
Note 8 Input switched from 0.8V (TTL low) to 2.0V (TTL high), time for Gate transition from 2V to 10V.  
Note 9 Input switched from 2.0V (TTL high) to 0.8V (TTL low), time for Gate transition from 15V (Gate on voltage) to 10V.  
Note 10 Input switched from 2.0V (TTL high) to 0.8V (TTL low), time for Gate transition from 10V to 2V.  
September 1999  
181  
MIC5022  
MIC5022  
Micrel  
Typical Characteristics  
Gate to Source Voltage  
vs. Supply Voltage  
Gate Turn-On Delay vs.  
Supply Voltage  
Supply Current vs.  
Supply Voltage  
6.0  
25  
20  
15  
10  
5
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
VIN = 0V  
VGATE = VSUPPLY + 4V  
CL = CH = 1500pF  
CBOOST = 0.01µF  
VIN = 5V  
NOTE: INCLUDES PROPAGATION  
DELAY & CROSS CONDUCTION  
LOCKOUT  
0
5
10 15 20 25 30 35 40  
(V)  
5
10 15 20 25 30 35 40  
5
10 15 20 25 30 35 40  
V
V
(V)  
V
(V)  
SUPPLY  
SUPPLY  
SUPPLY  
Gate Turn-On Delay vs.  
Supply Voltage  
Gate Turn-On/Off Delay vs.  
Gate Capacitance  
Gate Turn-On/Off Delay vs.  
Gate Capacitance  
2.5  
2
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
VGATE H = VSUPPLY + 4V  
CL = CH  
VSUPPLY = 12V  
VGATE L = 4V  
CL = CH  
VSUPPLY = 12V  
1.5  
1
LOW-SIDE  
VGATE H = VSUPPLY + 10V  
CL = CH = 1500pF  
CBOOST = 0.01µF  
HIGH-SIDE  
NOTE: INCLUDES  
PROPAGATION  
DELAY & CROSS  
CONDUCTION  
LOCKOUT  
PROP.  
DELAY  
PROP.  
DELAY  
NOTE: INCLUDES PROPAGATION  
DELAY & CROSS CONDUCTION  
LOCKOUT  
0.5  
0
NOTE: INCLUDES PROPAGATION  
DELAY & CROSS CONDUCTION  
LOCKOUT  
5
10 15 20 25 30 35 40  
0
1
2
3
4
5
0
1
2
3
4
5
1x10 1x10 1x10 1x10 1x10 1x10  
(pF)  
1x10 1x10 1x10 1x10 1x10 1x10  
V
(V)  
SUPPLY  
C
C
(pF)  
GATE  
GATE  
Overcurrent Retry Duty  
Cycle vs. Timing Capacitance  
Overcurrent Retry Duty  
Input Current vs.  
Input Voltage  
Cycle vs. Timing Capacitance  
25  
25.0  
100  
80  
60  
40  
20  
0
tON = 5µS  
VSUPPLY = 12V  
tON = 5µS  
V
SUPPLY = 12V  
V
SUPPLY = 12V  
20  
15  
10  
5
20.0  
15.0  
10.0  
5.0  
HIGH SIDE  
LOW SIDE  
NOTE:  
tON, tOFF TIME  
INDEPENDENT  
OF VSUPPLY  
0
0.0  
0
5
10  
V
15  
(V)  
20  
25  
0.1  
1
10  
C
100 1000 10000  
(pF)  
0.1  
1
10  
C
100 1000 10000  
(pF)  
TL  
IN  
TH  
Sense Threshold vs.  
Temperature  
80  
70  
60  
50  
40  
30  
20  
-60 -30  
0
30 60 90 120 150  
TEMPERATURE (°C)  
MIC5022  
182  
September 1999  
MIC5022  
Micrel  
TTL (H)  
0V  
Input  
Enable  
Gate H  
Gate L  
TTL (H)  
0V  
15V (max.)  
Source  
15V (max.)  
0V  
50mV  
0V  
Sense H+, H–  
Differential  
50mV  
0V  
Sense L+, L–  
Differential  
Off  
Fault  
On  
Timing Diagram 1. Normal Operation  
5µs  
20µs  
TTL (H)  
0V  
Input  
Enable  
Gate H  
Gate L  
TTL (H)  
0V  
15V (max.)  
0V  
15V (max.)  
0V  
Sense H+, H–  
Differential  
Sense L+, L–  
Differential  
50mV  
0V  
50mV  
0V  
Off  
Fault  
On  
Timing Diagram 2. Overcurrent Fault with Retry  
5µs  
TTL (H)  
Input  
0V  
TTL (H)  
Enable  
0V  
15V (max.)  
Gate H  
Source  
15V (max.)  
Gate L  
0V  
Sense H+, H–  
50mV  
0V  
Differential  
Sense L+, L–  
Differential  
50mV  
0V  
Off  
Fault  
On  
Timing Diagram 3. Overcurrent Fault with Maintained Off  
September 1999  
183  
MIC5022  
MIC5022  
Micrel  
pin  
Functional Description  
Refer to the MIC5022 block diagram.  
Input  
cause it is on the high side of the load) raising the V  
BOOST  
voltage. The boost capacitor charge is directed through the  
gate pin to quickly charge the FET’s gate to 15V maximum  
above V . The internal charge pump maintains the gate  
A signal greater than 1.4V (nominal) applied to the MIC5022  
INPUT causes gate enhancement on an external MOSFET  
connected to GATE H turning the high-side MOSFET on.  
DD  
voltage by supplying a small current as needed.  
Overcurrent Limiting (High or Low-Side)  
At the same time internal logic removes gate enhancement  
from an external MOSFET connected to GATE L, turning the  
low-side MOSFET off.  
Current source I charges C  
upon power up. An optional  
INT  
externalcapacitorconnectedtoC iskeptdischargedthrough  
1
T
a FET Q1.  
An internal pull-down resistor insures that an open INPUT  
remains low, keeping the external high-side MOSFET turned  
off and the low-side MOSFET turned on.  
A fault condition (> 50mV from SENSE + to SENSE –) causes  
the overcurrent comparator to enable current sink 2I which  
in about 5µs  
is discharged, the INPUT is disabled, the  
and C are ready to be  
charged. Since the INPUT is disabled the GATE output turns  
1
overcomes current source I to discharge C  
1
INT  
Enable (Active Low)  
time. When C  
INT  
A signal greater than 1.4V (nominal) applied to the MIC5022  
ENABLE keeps both GATE outputs off. An internal pull-down  
resistorinsuresthattheMIC5022isenabledifthepinisopen.  
FAULT output is enabled, and C  
INT  
T
off.  
Gate Outputs  
When the GATE output turns off the FET, the overcurrent  
signal is removed from the sense inputs which deactivates  
Rapid rise and fall times on the GATE output are possible  
because each input state change triggers a one-shot which  
current sink 2I . This allows C  
and the optional capacitor  
1
INT  
activatesahigh-valuecurrentsink(10I )forashorttime. This  
connected to C to recharge. A Schmitt trigger delays the  
2
T
draws a high current though a current mirror circuit causing  
the output transistors to quickly charge or discharge the  
external FET’s gate.  
retry while the capacitor(s) recharge. Retry delay is in-  
creased by connecting a capacitor connected to C (op-  
T
tional).  
A second current sink continuously draws the lower value of  
current used to maintain the gate voltage for the selected  
state.  
The MIC5022’s low-side driver may be used without current  
sensing by grounding both SENSE + and SENSE – pins. The  
high-side driver may be used without current sensing by  
connecting SENSE + and SENSE – to the source of the  
external high-side MOSFET.  
Internal 15V Zener diodes protect the external high-side and  
low-side MOSFETs by limiting the gate to source voltage.  
Fault Output  
Charge Pump (High-Side)  
The FAULT output is an open collector transistor. FAULT is  
active at approximately the same time the output is disabled  
by a fault condition (5µs after an overcurrent condition is  
sensed). The FAULT output is open circuit (off) during each  
successive retry (5µs).  
Aninternalchargepumputilizesanexternalboostcapacitor  
connected between V  
and the source of the external  
BOOST  
FET(refertoTypicalApplication). Theboostcapacitorstores  
charge when the FET is off. As the FET begins to turn on the  
voltage on the source side of the capacitor increases (be-  
Typical Full-Bridge Application  
+12V to +20V  
MIC5022  
MIC5022  
VBOOST  
Gate H  
10µF  
10µF  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
VDD  
VBOOST  
Gate H  
VDD  
0.01µF  
0.01µF  
TTL Input  
(PWM signal)  
TTL Input  
(PWM signal)  
Input  
Input  
Fault Sense H–  
CTH Sense H+  
Enable Gate L  
CTL Sense L–  
Gnd Sense L+  
Sense H– Fault  
Sense H+ CTH  
Gate L Enable  
Load  
Sense L–  
CTL  
8
8
Sense L+ Gnd  
Figure 1. Basic Full-Bridge Circuit  
MIC5022  
184  
September 1999  
MIC5022  
Micrel  
Applications Information  
The MIC5022 MOSFET driver is designed for half-bridge  
switching applications where overcurrent limiting and high  
speedarerequired. TheMIC5022cancontrolMOSFETsthat  
switch voltages up to 36V.  
Circuits Without Current Sensing  
Current sensing may be omitted by connecting the high-side  
SENSE + and SENSE – pins to the source of the MOSFET or  
the supply and the low-side SENSE + and SENSE – pins to  
ground. Do not connect the high-side sense pins to ground.  
TheMIC5022functionallyincludestheMIC5020andMIC5021  
withadditionalcircuitrytocoordinatetheoperationofthehigh  
and low-side drivers. Since most output considerations are  
similar, refer to the MIC5020 and MIC5021 data sheets for  
additional applications information.  
Inductive Load Precautions  
Circuits controlling inductive loads require precautions when  
controlled by the MIC5022. Wire wound resistors, which are  
sometimes used to simulate other loads, can also show  
significant inductive properties.  
Supply Voltage  
The MIC5022’s supply input (V ) is rated up to 36V. The  
supply voltage must be equal to or greater than the voltage  
applied to the drain of the external N-channel MOSFET.  
Sense Pin Considerations  
DD  
The sense pins of the MIC5022 are sensitive to negative  
voltages. If a voltage spike is too negative (below approxi-  
mately –0.5V), current will be drawn from functional sections  
of the IC resulting in unpredictable circuit behavior or dam-  
age. Resistors and Schottky diodes may be used to protect  
the sense pins from the negative spikes. Refer to the  
MIC5021 data sheet for details.  
A 16V minimum supply is recommended to produce continu-  
ous on-state, gate drive voltage for standard MOSFETs (10V  
nominal gate enhancement).  
Whenthedriverispoweredfroma12Vto16Vsupply, alogic-  
level MOSFET is recommended (5V nominal gate enhance-  
ment).  
High-Side Sensing  
PWMoperationmayproducesatisfactorygateenhancement  
at lower supply voltages. This occurs when fast switching  
repetition makes the boost capacitor a more significant  
voltage supply than the internal charge pump.  
For the high-side driver, sensing the current on the supply  
side of the high-side MOSFET locates the SENSE pins away  
from the inductive spike. Refer to the MIC5021 data sheet for  
details.  
Overcurrent Limiting  
Low-Temperature Operation  
Separate high and low-side 50mV comparators are provided  
for current sensing. The low level trip point minimizes I R  
losses when a power resistor is used for current sensing.  
As the temperature of the MIC5022AJB (extended tempera-  
ture range version—no longer available) approaches –55°C,  
the driver’s off-state, gate-output offset from ground in-  
creases. If the operating environment of the MIC5022AJB  
includes low temperatures (–40°C to –55°C), add an external  
2.2Mresistor from gate-to-source or from gate-to-ground.  
This assures that the driver’s gate-to-source voltage is far  
belowtheexternalMOSFET’sgatethresholdvoltage, forcing  
the MOSFET fully off. Refer to the MIC5020 and MIC5021  
data sheets for examples.  
2
The adjustable retry feature can be used to handle loads with  
high initial currents, such as lamps or heating elements, and  
can be adjusted from the C connection.  
T
C to ground causes maintained gate drive shutdown follow-  
T
ing an overcurrent condition.  
C open, or a capacitor to ground, causes automatic retry.  
T
The default duty cycle (C open) is approximately 20% (the  
T
The gate-to-source configuration is appropriate for resistive  
and inductive loads. This also causes the smallest decrease  
in gate output voltage.  
high side is slightly greater than the low side). Refer to the  
typical characteristics when selecting a capacitor for a re-  
duced duty cycle.  
The gate-to-ground configuration is appropriate for resistive,  
inductive, or capacitive loads. This configuration will de-  
crease the gate output voltage slightly more than the gate-to-  
source configuration.  
C through a pull-up resistor to V increases the duty cycle.  
T
DD  
Increasing the duty cycle increases the power dissipation in  
the load and MOSFET under a “fault” condition. Circuits may  
become unstable at a duty cycle of about 75% or higher,  
depending on conditions. Caution: The MIC5022 may be  
Full-Bridge Motor Control  
damaged if the voltage applied to C exceeds the absolute  
maximum voltage rating.  
An application for two MIC5022s is the full-bridge motor  
control circuit.  
T
Boost Capacitor Selection  
Two high or two low-side sense inputs may be used for  
overcurrent detection. (Low-side sensing is shown in Fig-  
ure 2). Sensing at four locations is usually unnecessary.  
For 12V to 20V operation, the boost capacitor should be  
0.01µF; and for 12V to 36V operation, the boost capacitor  
should be 2.7nF; both connected between V  
MOSFET source. The preferred configuration for 20V to 36V  
operation is a 0.1µF capacitor connected between V  
and the  
When switching inductive loads, such as motors, it is desir-  
able to place the high-side sense inputs on the supply side of  
the MOSFETs. The helps prevent the inductive spikes that  
occur upon load shutoff from affecting the sense inputs.  
BOOST  
BOOST  
and V . Refer to the MIC5021 data sheet for examples.  
DD  
DonotconnectcapacitorsbetweenV  
andtheMOSFET  
BOOST  
source and between V  
and V  
at the same time.  
BOOST  
DD  
Larger capacitors than specified may damage the MIC5022.  
September 1999  
185  
MIC5022  
MIC5022  
Micrel  
+12V to +20V  
MIC5022  
MIC5022  
VBOOST  
Gate H  
10µF  
10µF  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
VDD  
Input  
VBOOST  
Gate H  
VDD  
TTL Input  
(PWM signal)  
TTL Input  
(PWM signal)  
Input  
Fault Sense H–  
CTH Sense H+  
Enable Gate L  
CTL Sense L–  
Gnd Sense L+  
Sense H– Fault  
Sense H+ CTH  
Gate L Enable  
0.01µF  
0.01µF  
M
Sense L–  
CTL  
RS2  
RS1  
8
8
Sense L+ Gnd  
Figure 2. Full-Bridge Motor Control Application  
Synchronous Rectifier Converter  
The MIC5022 can be part of a synchronous rectifier in SMPS  
(switch mode power supply) applications.  
forced through the inductor to the output capacitor and load.  
When the pass transistor is switched off, the synchronous  
rectifier is switched on allowing current to continue to flow as  
the inductor returns stored energy.  
This circuit uses the MIC38C43 SMPS controller IC to switch  
a pass transistor (Q1) and a “synchronous rectifier” transistor  
(Q2) using the MIC5022.  
The synchronous rectifier MOSFET has a lower voltage drop  
than the forward voltage drop across a Schottky diode. This  
increases converter efficiency which extends battery life in  
portable equipment.  
The MIC38C43 controller switches the transistors at 50kHz.  
Output regulation is maintained using PWM. When the pass  
transistor is on, the synchronous rectifier is off and current is  
+12V  
10k  
0.1µF  
470µF  
25V  
SMP06N06-14  
Q1  
MIC5022  
13k  
13  
14  
10  
11  
12  
3
1
5
2
8
9
7
VOUT  
0.1µF  
V+  
Gate H  
VPP  
70µH  
5V, 8A  
300k  
5m  
0.15µF  
47k  
Enable  
Input  
S L+  
S L–  
MIC38C43  
Gate L  
S H+  
S H–  
Fault  
4.7nF  
1
2
3
4
8
7
6
5
Q2  
Comp  
VREF  
VDD  
1000µF  
Low ESR  
4.3k  
FB  
IS  
VOUT  
Gnd  
Gnd  
3.3k  
RT/CT  
2200pF  
10k  
Figure 3. 50kHz Synchronous Rectifier Converter  
MIC5022  
186  
September 1999  

相关型号:

MIC5022_05

Half-Bridge MOSFET Driver
MICREL

MIC502BM

Fan Management IC Advance Information
MICREL

MIC502BM

Brushless DC Motor Controller, 0.025A, CMOS, PDSO8, SOIC-8
MICROCHIP

MIC502BN

Fan Management IC Advance Information
MICREL

MIC502BN

Brushless DC Motor Controller, 0.025A, CMOS, PDIP8, PLASTIC, DIP-8
MICROCHIP

MIC502YM

Fan Management IC
MICREL

MIC502YM

BRUSHLESS DC MOTOR CONTROLLER, 0.025A, PDSO8
MICROCHIP

MIC502YM-TR

BRUSHLESS DC MOTOR CONTROLLER, 0.025A, PDSO8
MICROCHIP

MIC502YN

Fan Management IC
MICREL

MIC502YN

BRUSHLESS DC MOTOR CONTROLLER, 0.025A, PDIP8
MICROCHIP

MIC502_06

Fan Management IC
MICREL

MIC502_11

Fan Management IC
MICREL