MIC7400YFL [MICREL]

Configurable PMIC, Five-Channel Buck Regulator Plus One-Boost with HyperLight Load® and I2C Control;
MIC7400YFL
型号: MIC7400YFL
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

Configurable PMIC, Five-Channel Buck Regulator Plus One-Boost with HyperLight Load® and I2C Control

集成电源管理电路
文件: 总68页 (文件大小:5888K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC7400  
Configurable PMIC, Five-Channel Buck  
Regulator Plus One-Boost with  
HyperLight Load® and I2C Control  
General Description  
Features  
The MIC7400 is  
a
powerful, highly integrated,  
Input voltage: 2.4V to 5.5V  
configurable, power-management IC (PMIC) featuring five  
synchronous buck regulators, one boost regulator and  
high-speed I2C interface with an internal EEPROM.  
Five independent synchronous bucks up to 3A  
One independent non-synchronous boost 200mA  
200µA quiescent current (all regulators on)  
93% peak buck efficiency, 85% typical efficiency at 1mA  
Dual power mode: stand-by and normal mode  
I²C interface up to 3.4MHz  
The device offers two distinct modes of operation “stand-  
by mode” and “normal mode” intended to provide an  
energy optimized solution suitable for portable handheld,  
and infotainment applications.  
In normal mode, the programmable switching converters  
can be configured to support a variety of features,  
including start-up sequencing, timing, soft-start ramp,  
output voltage levels, current limit levels and output  
discharge for each channel.  
I²C on-the-fly EEPROM programmability, featuring:  
Buck and boost output voltage scaling  
Power-on-reset threshold and delay  
Power-up sequencing/sequencing delay  
Buck and boost current limit  
Buck and boost pull-down when disabled  
Individual ON, OFF, and standby modes  
Soft-start and global power-good masking  
23µA buck typical quiescent current  
In stand-by mode the PMIC can configured in a low power  
state by either disabling an output or by changing the  
output voltage to a lower level. Independent exit from  
stand-by mode can be achieved either by I2C  
communication or the external STBY pin.  
The device has five synchronous buck regulators with  
high-speed adaptive on-time control supporting even the  
challenging ultra-fast transient requirement for Core  
supplies. One boost regulator provides a flash-memory  
programming supply that delivers up to 200mA of output  
current. The boost is equipped with an output disconnect  
switch that opens if a short-to-ground fault is detected.  
70µA boost typical quiescent current  
1.5% output accuracy over temperature/line/load  
2.0MHz boost switching frequency  
1.3MHz buck operation in continuous mode  
Ultra-fast buck transient response  
15mm × 15mm × 1.25mm solution size  
Thermal-shutdown and current-limit protection  
An internal EEPROM enables a single-chip solution across  
many platforms by allowing the designer to customize the  
PMIC for their design. Modifications can be made without  
the need to re-approve a new PMIC, saving valuable  
design resources and time.  
36-pin 4.5mm × 4.5mm × 0.85mm FQFN package  
(0.4mm pitch)  
• −40°C to +125°C junction temperature range  
Applications  
All switchers provide light-load efficiency with HyperLight  
Load® mode for buck and PFM mode for boost. An  
additional benefit of this proprietary architecture is very-low  
output ripple voltage throughout the entire load range with  
the use of small output capacitors. The MIC7400 is  
designed for use with a small inductors (down to 0.47µH  
for buck, 1.5µH for boost), and an output capacitor as  
small as 10µF for buck, enabling a total solution size of  
15mm × 15mm and less than 1mm height.  
Client and enterprise solid state drives (SSD)  
Consumer and in-vehicle infotainment devices  
Multimedia devices  
Portable handheld devices  
Security camera  
Gaming machines  
Service provider gateways  
The datasheet and other support documentation can be  
found on Micrel’s website at: www.micrel.com.  
HyperLight Load is a registered trademark of Micrel, Inc.  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
Revision 2.0  
March 3, 2015  
Micrel, Inc.  
MIC7400  
Typical Application  
Ordering Information  
Lead  
Finish  
Part Number  
Marking  
Output Voltages  
Features  
Package(1)  
7400  
1.8V, 1.1V, 1.8V  
STBY – Active Low  
36-Pin  
Pb-  
Free  
MIC7400YFL  
YWWS  
1.05V, 1.25V, 12V  
Falling Edge (DEFAULT) 4.5mm × 4.5mm FQFN  
X
X 7400  
X YYWW  
X
36-Pin  
Configurable  
Pb-  
Free  
MIC7400-XXXXYFL (2)  
Configurable  
4.5mm × 4.5mm FQFN  
Notes:  
1. GREEN, RoHS-compliant package. Lead finish is Matte Tin. Mold compound is Halogen Free.  
2. Configurable options available upon request. Contact Marketing.  
Revision 2.0  
March 3, 2015  
2
Micrel, Inc.  
MIC7400  
Table of Contents  
List of Figures.......................................................................................................................................................................... 5  
List of Tables........................................................................................................................................................................... 6  
Pin Configuration..................................................................................................................................................................... 7  
Pin Description ........................................................................................................................................................................ 7  
Absolute Maximum Ratings ..................................................................................................................................................10  
Operating Ratings .................................................................................................................................................................10  
Electrical Characteristics.......................................................................................................................................................10  
Typical Characteristics..........................................................................................................................................................15  
Functional Characteristics.....................................................................................................................................................17  
MIC7400 Block Diagram .......................................................................................................................................................24  
Functional Description...........................................................................................................................................................25  
Programmable Buck Soft-Start Control.............................................................................................................................25  
Buck Digital Voltage Control (DVC)...................................................................................................................................26  
Programmable Boost Soft-Start Control............................................................................................................................27  
Boost Digital Voltage Control (DVC) .................................................................................................................................28  
Buck Current Limit.............................................................................................................................................................28  
Boost Current Limit............................................................................................................................................................29  
Global Power Good Pin.....................................................................................................................................................29  
Standard Delay..................................................................................................................................................................29  
Power-Up Sequencing.......................................................................................................................................................29  
Programmable Power-on-Reset (POR) Delay ..................................................................................................................30  
Power-Down Sequencing..................................................................................................................................................30  
Stand-By Mode..................................................................................................................................................................31  
Resistive Discharge...........................................................................................................................................................31  
STBY Pin ...........................................................................................................................................................................31  
Safe Start-Up into a Pre-Biased Output ............................................................................................................................32  
Buck Regulator Power Dissipation ....................................................................................................................................32  
Total Power Dissipation.....................................................................................................................................................32  
Power Derating..................................................................................................................................................................33  
Overtemperature Fault ......................................................................................................................................................33  
Thermal Measurements.....................................................................................................................................................34  
Timing Diagrams...................................................................................................................................................................35  
Normal Power-Up Sequence for Outputs..........................................................................................................................35  
Standby (STBY) Pin (Wake-Up)............................................................................................................................................36  
Evaluation Board Schematic.................................................................................................................................................37  
Bill of Materials......................................................................................................................................................................38  
Revision 2.0  
March 3, 2015  
3
Micrel, Inc.  
MIC7400  
Table of Contents (Continued)  
PCB Layout Guidelines  
General..............................................................................................................................................................................39  
IC .......................................................................................................................................................................................39  
Input Capacitor ..................................................................................................................................................................39  
Inductor..............................................................................................................................................................................39  
Output Capacitor ...............................................................................................................................................................39  
Proper Termination of Unused Pins......................................................................................................................................40  
PCB Layout Recommendations............................................................................................................................................41  
Package Information and Recommended Landing Pattern..................................................................................................45  
Appendix A............................................................................................................................................................................46  
I2C Control Register...........................................................................................................................................................47  
Serial Port Operation.........................................................................................................................................................47  
External Host Interface ..................................................................................................................................................47  
Special Host I2C Commands .........................................................................................................................................48  
Special Keys ..................................................................................................................................................................48  
Appendix B............................................................................................................................................................................49  
Register Settings Descriptions ..........................................................................................................................................49  
Power Good Register (00’h) ..........................................................................................................................................49  
EEPROM-Ready Register (01’h)...................................................................................................................................50  
Fault Registers (02’h).....................................................................................................................................................51  
Standby Register (03’h).....................................................................................................................................................52  
Enable/Disable Register (04’h)..........................................................................................................................................53  
Regulator Output Voltage Setting NORMAL Mode (05’h 09’h)......................................................................................54  
Boost Regulator Output Voltage Setting NORMAL Mode (0A’h) ......................................................................................55  
Regulator Voltage Setting STBY Mode (0B’h – 0F’h) .......................................................................................................56  
Boost Regulator Output Voltage Setting STBY Mode (10’h).............................................................................................57  
Sequence Register (11’h)..................................................................................................................................................58  
Delay Register (17’h).........................................................................................................................................................61  
Soft-Start Registers (18’h 1A’h)......................................................................................................................................62  
Current-Limit (Normal Mode) Registers (1B’h 1D’h) ......................................................................................................63  
Current-Limit (STBY Mode) Registers (1E 20’h)............................................................................................................65  
Power-on-Reset (POR) Threshold Voltage Setting Register (21’h and 22’h)...................................................................66  
Pull-Down when Disabled Register (23’h).........................................................................................................................67  
Revision 2.0  
March 3, 2015  
4
Micrel, Inc.  
MIC7400  
List of Figures  
Figure 1. Buck Soft-Start.....................................................................................................................................................25  
Figure 2. Buck Soft-Start.....................................................................................................................................................26  
Figure 3. Buck DVC Control Ramp.....................................................................................................................................26  
Figure 4. Buck DVC Control Ramp.....................................................................................................................................27  
Figure 5. Boost Soft-Start Ramp.........................................................................................................................................27  
Figure 6. Boost Soft-Start....................................................................................................................................................27  
Figure 7. Boost DVC Control Ramp....................................................................................................................................28  
Figure 8. Standard Delay Time...........................................................................................................................................29  
Figure 9. Hot Plug VIN Rising ...........................................................................................................................................30  
Figure 10. POR .....................................................................................................................................................................30  
Figure 11. Hot Un-Plug VIN Falling.....................................................................................................................................30  
Figure 12. I2C Stand-By Mode ..............................................................................................................................................31  
Figure 13. Output Pull-Down Resistance..............................................................................................................................31  
Figure 14. STBY-to-NORMAL Transition (DEFAULT)..........................................................................................................32  
Figure 15. Pre-Biased Output Voltage ..................................................................................................................................32  
Figure 16. Power Dissipation ................................................................................................................................................33  
Figure 17. Power Derating Curve..........................................................................................................................................33  
Figure 18. Hot Plug Input Voltage Spike...............................................................................................................................34  
Figure 19. MIC7400 Power-Up/Down...................................................................................................................................35  
Figure 20. MIC7400 STBY Function (DEFAULT) .................................................................................................................36  
Figure 21. Connections for Unused Pins ..............................................................................................................................40  
Figure 22. Read/Write Protocol.............................................................................................................................................47  
Revision 2.0  
March 3, 2015  
5
 
 
Micrel, Inc.  
MIC7400  
List of Tables  
Table 1. Buck Outputs Default Soft-Start Time (DEFAULT).................................................................................................26  
Table 2. Boost Output Default Soft-Start Time .....................................................................................................................28  
Table 3. Buck Current Limit Register Settings......................................................................................................................28  
Table 4. Summarization of Unused Pin Connections ...........................................................................................................40  
Table 5. Power Good Status Register ..................................................................................................................................49  
Table 6. EEPROM Status Register.......................................................................................................................................50  
Table 7. Overcurrent Status Fault Register ..........................................................................................................................51  
Table 8. Standby Register.....................................................................................................................................................52  
Table 9. Enable Register.......................................................................................................................................................53  
Table 10. DVC Registers for OUT[1 5] ..............................................................................................................................54  
Table 11. DVC Registers for OUT6.......................................................................................................................................55  
Table 12. Standby Registers.................................................................................................................................................56  
Table 13. Standby DVC Register for OUT6..........................................................................................................................57  
Table 14. Sequence State 1 Register ...................................................................................................................................59  
Table 15. Sequence State 2 Register...................................................................................................................................59  
Table 16. Sequence State 3 Register ...................................................................................................................................59  
Table 17. Sequence State 4 Register ...................................................................................................................................60  
Table 18. Sequence State 5 Register ...................................................................................................................................60  
Table 19. Sequence State 6 Register ...................................................................................................................................61  
Table 20. Delay Register.......................................................................................................................................................61  
Table 21. Soft-Start Register Speed Settings.......................................................................................................................62  
Table 22. Soft-Start Register OUT1 and OUT2 ....................................................................................................................62  
Table 23. Soft-Start Register OUT3 and OUT4 ....................................................................................................................62  
Table 24. Soft-Start Register OUT5 and OUT6 ....................................................................................................................63  
Table 25. Current-Limit Register IOUT1 and IOUT2 ...................................................................................................................63  
Table 26. Current-Limit Register IOUT3 and IOUT4 ...................................................................................................................64  
Table 27. Current-Limit Register IOUT 5 and IOUT6 ...................................................................................................................64  
Table 28. Standby Current-Limit Register IOUT1 and IOUT2 .....................................................................................................65  
Table 29. Standby Current-Limit Register IOUT3 and IOUT4 .....................................................................................................65  
Table 30. Standby Current-Limit Register IOUT5 and IOUT6 .....................................................................................................66  
Table 31. Rising and Falling Power-on-Reset Threshold Voltage Settings..........................................................................66  
Table 32. Power-on-Reset Rising Threshold Voltage Setting Register (21’h)......................................................................67  
Table 33. Power-on-Reset Falling Threshold Voltage Setting Register (22’h) .....................................................................67  
Table 34. Pull-Down when Disabled Register.......................................................................................................................67  
Revision 2.0  
March 3, 2015  
6
Micrel, Inc.  
MIC7400  
Pin Configuration  
36-Pin 4.5mm × 4.5mm FQFN (FL)  
(Top View)  
Pin Description  
Pin Number  
Pin Name Description  
Switch Pin 2 (Output): Inductor connection for the synchronous step-down regulator. Connect the  
inductor between the output capacitor and the SW2 pin.  
1
SW2  
Power Supply Voltage 2 (Input): Input supply to the source of the internal high-side P-channel  
MOSFET. An input capacitor between PVIN2 and the power ground PGND2 pin is required and to be  
placed as close as possible to the IC.  
2
3
PVIN2  
Output Voltage Sense 2 (Input): This pin is used to sense the output voltage. Connect OUT2 as close  
to the output capacitor as possible to sense output voltage. Also provides the path to discharge the  
output through an internal 90Ω resistor when disabled. This pull-down feature is programmed through  
the PULLD[x] register.  
OUT2  
Power Supply Voltage 3 (Input): Input supply to the source of the internal high-side P-channel  
MOSFET. An input capacitor between PVIN3 and the power ground PGND3 pin is required and to be  
placed as close as possible to the IC.  
4
5
6
PVIN3  
SW3  
Switch Pin 3 (Output): Inductor connection for the synchronous step-down regulator. Connect the  
inductor between the output capacitor and the SW3 pin.  
Power Ground 3: The power ground for the synchronous buck converter power stage. The PGND pin  
connects to the sources of the internal low-side N-Channel MOSFET, the negative terminals of input  
capacitors, and the negative terminals of output capacitors.  
PGND3  
Output Voltage Sense 3 (Input): This pin is used to sense the output voltage. Connect OUT3 as close  
to the output capacitor as possible to sense output voltage. Also provides the path to discharge the  
output through an internal 90Ω resistor when disabled. This pull-down feature is programmed through  
the PULLD[x] register.  
7
8
OUT3  
PVIN4  
Power Supply Voltage 4 (Input): Input supply to the source of the internal high-side P-channel  
MOSFET. An input capacitor between PVIN4 and the power ground PGND4 pin is required and to be  
placed as close as possible to the IC.  
Revision 2.0  
March 3, 2015  
7
 
 
Micrel, Inc.  
MIC7400  
Pin Description (Continued)  
Pin Number  
Pin Name Description  
Switch Pin 4 (Output): Inductor connection for the synchronous step-down regulator. Connect the  
inductor between the output capacitor and the SW4 pin.  
9
SW4  
Power Ground 4: The power ground for the synchronous buck converter power stage. The PGND pin  
connects to the source of the internal low-side N-Channel MOSFET, the negative terminals of input  
capacitors, and the negative terminals of output capacitors.  
10  
11  
PGND4  
Output Voltage Sense 4 (Input): This pin is used to sense the output voltage. Connect the OUT4 as  
close to the output capacitor as possible to sense output voltage. Also provides the path to discharge  
the output through an internal 90Ω resistor when disabled. This pull-down feature is programmed  
through the PULLD[x] register.  
OUT4  
Standby Reset (Input): Standby mode allows the total power consumption to be reduced by either  
lowering a supply voltage or turning it off. The IC can be placed in standby mode while operating in  
normal mode by a high-to-low transition (DEFAULT) on the STBY input. When this occurs, the  
STBY_MODEB bit will be set to logic “0”. Either a low-to-high transition on the STBY pin or an I²C  
write command to the STBY_MODEB bit sets all of the regulators to their normal mode default  
settings. This pin can be driven with either a digital signal or open collector output. Do not let this pin  
float. Connect to ground or VIN. A pull-down resistor of 100kΩ or less can also be used. There are  
both a high-to-low (DEFAULT) and low-to-high normal to standby trigger options available.  
12  
13  
STBY  
SDA  
High-Speed Mode 3.4MHz I²C Data (Input/Output): This is an open drain, bidirectional data pin. Data  
is read on the rising edge of the SCL and data is clocked out on the falling edge of the SCL. External  
pull-up resistors are required.  
Analog Ground: Internal signal ground for all low power circuits. Connect to ground plane for best  
operation.  
14  
15  
AGND  
SCL  
High-Speed Mode 3.4MHz I²C Clock (Input): I²C serial clock line open drain input. External pull-up  
resistors are required.  
Power-on-Reset (Output): This is an open drain output that goes high after the POR delay time  
elapses. The POR delay time starts as soon as the AVIN pin voltage rises above the upper threshold  
set by the PORUP register. The POR output goes low without delay when AVIN falls below the lower  
threshold set by the PORDN register.  
16  
17  
POR  
Output Voltage Sense 5 (Input): This pin is used to sense the output voltage. Connect OUT5 as close  
to the output capacitor as possible to sense output voltage. Also provides the path to discharge the  
output through an internal 90Ω resistor when disabled. This pull-down feature is programmed through  
the PULLD[x] register.  
OUT5  
Power Ground 5: The power ground for the synchronous buck converter power stage. The PGND pin  
connects to the source of the internal low-side N-Channel MOSFET, the negative terminals of input  
capacitors, and the negative terminals of output capacitors.  
18  
19  
20  
PGND5  
SW5  
Switch Pin 5 (Output): Inductor connection for the synchronous step-down regulator. Connect the  
inductor between the output capacitor and the SW5 pin.  
Power Supply Voltage 5 (Input): Input supply to the source of the internal high-side P-channel  
MOSFET. An input capacitor between PVIN5 and the power ground PGND5 pin is required and to be  
placed as close as possible to the IC.  
PVIN5  
Output Voltage 6 Sense (Input): This pin is used to sense the output voltage. Connect OUT6 as close  
to the output capacitor as possible to sense output voltage. Also provides the path to discharge the  
output through an internal programmable current source when disabled. This pull-down feature is  
programmed through the PULLD[x] register.  
21  
OUT6  
Power Ground 6: The power ground for the boost converter power stage. The PGND pin connects to  
the source of the internal low-side N-Channel MOSFET, the negative terminals of input capacitors,  
and the negative terminals of output capacitors.  
22  
23  
PGND6  
SW6  
Switch Pin 6 (Input): Inductor connection for the boost regulator. Connect the inductor between the  
PVIN6O and SW6 pin.  
Revision 2.0  
March 3, 2015  
8
Micrel, Inc.  
MIC7400  
Pin Description (Continued)  
Pin Number  
Pin Name Description  
Power Supply Voltage 6 (Output): This pin is the output of the power disconnect switch for the boost  
regulator. When the boost regulator is on, an internal switch provides a current path for the boost  
inductor. In shutdown, an internal P-channel MOSFET is turned off and disconnects the boost output  
from the input supply. This feature eliminates current draw from the input supply during shutdown. An  
input capacitor between PVIN6O and the power ground PGND6 pin is required and place as close as  
possible to the IC.  
24  
PVIN6O  
25  
26  
PVIN6  
PVIN1  
Power Supply Voltage 6 (Input): Input supply to the internal disconnect switch.  
Power Supply Voltage 1 (Input): Input supply to the source of the internal high-side P-channel  
MOSFET. An input capacitor between PVIN1 and the power ground PGND1 pin is required and to be  
placed as close as possible to the IC.  
Switch Pin 1 (Output): Inductor connection for the synchronous step-down regulator. Connect the  
inductor between the output capacitor and the SW1 pin.  
27  
28  
SW1  
Power Ground 1: The power ground for the synchronous buck converter power stage. The PGND pin  
connects to the source of the internal low-side N-Channel MOSFET, the negative terminals of input  
capacitors, and the negative terminals of output capacitors.  
PGND1  
Output Voltage Sense 1(Input): This pin is used to sense the output voltage remotely. Connect OUT1  
as close to output capacitor as possible to sense output voltage. This feature also provides the path to  
discharge the output through an internal 90Ω resistor when disabled. The pull-down feature is  
programmed through the PULLD[x] register.  
29  
30  
31  
OUT1  
VSLT  
AVIN  
POR Selection Threshold (Input): A high on this pin sets the PORUP and PORDN registers to their  
upper threshold limits and a low to their lower threshold limits. Do not leave floating.  
Analog Voltage Supply (Input): The start-up sequence begins as soon as the AVIN pin voltage rises  
above the IC’s UVLO upper threshold. The outputs do not turn off until AVIN pin voltage falls below  
the lower threshold limit. A 2.2µF ceramic capacitor from the AVIN pin to AGND pin must be placed  
next to the IC.  
Analog Ground: Internal signal ground for all low power circuits. Connect directly to the layer 2 ground  
plane. Layer 2 is the point where all the PGNDs and AGND are connected. Do not connect PGND  
and AGND together on the top layer.  
32  
AGND  
33  
34  
NC  
NC  
No Connect. Must be left floating.  
No Connect. Must be left floating.  
Global Power Good (Output): This is an open drain output that is pulled high when all the regulator  
power good flags are high. If an output falls below the power good threshold or a thermal fault occurs,  
the global power good flag is pulled low. There is a falling edge de-glitch time of 50µs to prevent false  
triggering on output voltage transients. A power good mask feature programmed through the  
PGOOD_MASK[x] registers can be used to ignore a power good fault. When masked an individual  
power good fault will not cause the global power good output to de-assert. Do not connect the power  
good pull-up resistor to a voltage higher than AVIN.  
35  
PG  
Power Ground 2: The power ground for the synchronous buck converter power stage. The PGND pin  
connects to the source of the internal low-side N-Channel MOSFET, the negative terminals of input  
capacitors, and the negative terminals of output capacitors.  
36  
PGND2  
ePad  
EP  
Exposed Pad: Must be connected to the GND plane for full output power to be realized.  
Revision 2.0  
March 3, 2015  
9
Micrel, Inc.  
MIC7400  
Operating Ratings(4)  
Absolute Maximum Ratings(3)  
Input Voltage (PVIN[1-6])..................................... 2.4V to 5.5V  
Analog Input Voltage (AVIN) ............................. 2.4V to 5.5V  
Buck Output Voltage Range (VOUT[1-5])............. 0.8V to 3.3V  
Boost Output Voltage Range (VOUT6) ................... 7V to 14V  
Power Good Voltage (VPG)...................................0V to AVIN  
Power-On Reset Output (VPOR)............................0V to AVIN  
POR Threshold Voltage (VVSLT) ...........................0V to AVIN  
Standby Voltage (VSTBY).......................................0V to AVIN  
I²C IO (VSDA, VSCL)................................................0V to AVIN  
Junction Temperature (TJ)(5) ......................-40°C to +125°C  
Junction Thermal Resistance  
Supply Voltages (PVIN[1-6]).................................. -0.3V to 6V  
Analog Supply Voltage (AVIN) ............................ -0.3V to 6V  
Buck Output Voltages (VOUT[1-5])......................... -0.3V to 6V  
Boost Output Voltage (VOUT6)........................... -0.3V to 20V  
Buck Switch Voltages (VSW[1-5]). ......................... -0.3V to 6V  
Boost Switch Voltage (VSW6). ........................... -0.3V to 20V  
Power Good Voltage (VPG).............................. -0.3V to AVIN  
Power-On Reset Output (VPOR).......................... -0.3V to 6V  
POR Threshold Voltage (VVSLT) ......................... -0.3V to 6V  
Standby Voltage (VSTBY)..................................... -0.3V to 6V  
I²C IO (VSDA, VSCL) ........................................... -0.3V to AVIN  
AGND to PGND[1-6] ....................................... -0.3V to 0.3V  
Ambient Storage Temperature (Ts) ...........-40°C to +150°C  
ESD HBM Rating(6) ........................................................2kV  
ESD MM Rating............................................................200V  
4.5mm × 4.5mm FQFN-36 (θJA) ........................30°C/W  
Electrical Characteristics(7)  
VIN = AVIN = PVIN(1-6) = 5.0V; VOUT1 = 1.8V; VOUT2 = 1.1V; VOUT3 = 1.8V; VOUT4 = 1.05V; VOUT5 = 1.25V; VOUT6 = 12V (refer to the  
Evaluation Board Schematic for component values). TA = 25°C, unless otherwise noted. Bold values indicate 40°C ≤ TJ ≤ +125°C.  
Parameter  
Conditions  
Min.  
2.4  
Typ.  
Max.  
Unit  
Input Supply (VIN)  
5.5  
Input Voltage Range (AVIN, PVIN[1-6]  
Operating Quiescent Current  
)
V
VIN = 5.0V; IOUT = 0A  
200  
0.3  
240  
μA  
(8, 9)  
into AVIN  
Operating Quiescent Current  
VIN = 5.0V; IOUT = 0A  
AVIN Rising  
1
μA  
(8)  
into PVIN  
2.15  
1.2  
2.35  
Undervoltage Lockout Threshold  
Undervoltage Lockout Hysteresis  
Standby Input (STBY)  
2.25  
150  
V
mV  
Logic Level High  
Logic Level Low  
V
V
0.4  
200  
200  
Bias Current into Pin  
Bias Current out of Pin  
Rising/Falling Edge Reset Deglitch  
Notes:  
VSTBY = VIN  
VSTBY = 0V  
nA  
nA  
μs  
100  
3. Absolute maximum ratings indicate limits beyond which damage to the component may occur.  
4. The device is not guaranteed to function outside its operating rating.  
5. The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(Max), the junction-to-ambient thermal resistance, θJA,  
and the ambient temperature, TA. The maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into  
thermal shutdown.  
6. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5kΩ in series with 100pF.  
7. Specification for packaged product only.  
8. Tested in a non-switching configuration.  
9. When all outputs are configured to the minimum programmable voltage.  
Revision 2.0  
March 3, 2015  
10  
 
 
 
 
 
 
 
 
 
 
Micrel, Inc.  
MIC7400  
Electrical Characteristics(7) (Continued)  
VIN = AVIN = PVIN(1-6) = 5.0V; VOUT1 = 1.8V; VOUT2 = 1.1V; VOUT3 = 1.8V; VOUT4 = 1.05V; VOUT5 = 1.25V; VOUT6 = 12V (refer to the  
Evaluation Board Schematic for component values). TA = 25°C, unless otherwise noted. Bold values indicate 40°C ≤ TJ ≤ +125°C.  
Parameter  
Conditions  
Min.  
1.2  
Typ.  
Max.  
Unit  
POR Threshold Input (VSLT)  
Logic Level High  
V
V
0.4  
200  
200  
Logic Level Low  
Bias Current Into Pin  
Bias Current Out of Pin  
Power-On-Reset (POR) Comparator  
VVSLT = VIN  
VVSLT = 0V  
nA  
nA  
POR Upper Comparator Range  
POR Lower Comparator Range  
POR Upper Comparator Range  
AVIN Rising, VVSLT = 0V  
AVIN Falling, VVSLT = 0V  
AVIN Rising, VVSLT = VIN  
AVIN Falling, VVSLT = VIN  
2.646  
2.548  
3.626  
3.528  
2.7  
2.6  
3.7  
3.6  
2.754  
2.652  
3.774  
3.672  
V
V
V
V
POR Lower Comparator Range  
Power Reset Output (POR) and Timer  
POR Delay  
18  
20  
50  
75  
22  
ms  
μs  
POR Deglitch Delay  
AVIN Falling  
POR Output Low Voltage  
POR Leakage Current  
IPOR = 10mA (sinking)  
VPOR = 5.5V  
400  
200  
mV  
nA  
Global Power Good Output (PG)  
Buck Power Good Threshold Voltage  
Buck Hysteresis(10)  
VOUT[1-5] Rising  
VOUT[1-5] Falling  
VOUT[6] Rising  
VOUT[6] Falling  
IPG = 10mA (sinking)  
VPG = 5.5V  
87  
87  
91  
4
95  
95  
%VOUT  
%VOUT  
%VOUT  
mV  
Boost Power Good Threshold Voltage  
Boost Hysteresis(10)  
91  
380  
75  
Power Good Output Low Voltage  
Power Good Leakage Current  
Power Good De-Glitch Delay  
Output Sequencing Delay(10)  
Thermal Protection  
400  
200  
mV  
0.01  
100  
1
nA  
VOUT[1-6] Falling  
μs  
0.96  
1.04  
ms  
Thermal Shutdown  
TJ Rising  
160  
20  
°C  
°C  
Thermal Hysteresis  
Note:  
10. Guaranteed by design.  
Revision 2.0  
March 3, 2015  
11  
 
Micrel, Inc.  
MIC7400  
Electrical Characteristics(7) (Continued)  
VIN = AVIN = PVIN(1-6) = 5.0V; VOUT1 = 1.8V; VOUT2 = 1.1V; VOUT3 = 1.8V; VOUT4 = 1.05V; VOUT5 = 1.25V; VOUT6 = 12V (refer to the  
Evaluation Board Schematic for component values). TA = 25°C, unless otherwise noted. Bold values indicate 40°C ≤ TJ ≤ +125°C.  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Synchronous Buck (VOUT1 - VOUT5  
)
Buck Output Voltage Accuracy (OUT[1-5])  
Typical Output Voltage 1 Accuracy(11)  
Typical Output Voltage 2 Accuracy(11)  
Typical Output Voltage 3 Accuracy(11)  
Typical Output Voltage 4 Accuracy(11)  
Includes Load, Line, and Reference  
1.5%  
1.5%  
1.5%  
1.5%  
%
%
%
%
1.5%  
1.5%  
1.5%  
1.5%  
Includes Load, Line, and Reference  
Includes Load, Line, and Reference  
Includes Load, Line, and Reference  
Includes Load, Line, and Reference  
Typical Output Voltage 5 Accuracy(11)  
Output Voltage 1 Accuracy(11)  
Output Voltage 2 Accuracy(11)  
Output Voltage 3 Accuracy(11)  
Output Voltage 4 Accuracy(11)  
1.5%  
1%  
1%  
1%  
1%  
1%  
%
%
%
%
%
1.5%  
1%  
1%  
1%  
1%  
1%  
Output Voltage 5 Accuracy(11)  
Load Regulation  
%
%
%
IOUT = 10mA to IOUT(MAX)  
VIN = 3.3V to 5.0V  
0.1  
Line Regulation  
0.05  
Buck Soft-Start  
Soft-Start (1-5) LSB(10, 12)  
Buck Internal MOSFETs  
High-Side On-Resistance  
High-Side On-Resistance  
Low-Side On-Resistance  
Low-Side On-Resistance  
Output Pull-Down Resistance  
Buck Controller Timing  
Fixed On-Time(13)  
3.84  
4
4.16  
µs/step  
VIN = 3.3V; ISW[1-5] = 200mA  
VIN = 5.0V; ISW[1-5] = 200mA  
VIN = 3.3V; ISW[1-5] = -200mA  
VIN = 5.0V; ISW[1-5] = -200mA  
VSW[1-5] = 0V  
54  
40  
37  
30  
90  
mΩ  
mΩ  
mΩ  
mΩ  
Ω
75  
200  
VIN = 3.3; VOUT = 1.0V; IOUT = 1.0A  
220  
80  
ns  
ns  
Minimum OFF-Time  
Note:  
11. Not tested in a closed loop configuration.  
12. The soft-start time is calculated using the following equation: tsoftstart = [(VOUT_PROGRAM – 0.15)/0.05 +1) × tRAMP  
.
13. Buck frequency is calculated using the following equation fSW = (VOUT/VIN) × (1/tON).  
Revision 2.0  
March 3, 2015  
12  
 
 
 
Micrel, Inc.  
MIC7400  
Electrical Characteristics(7) (Continued)  
VIN = AVIN = PVIN(1-6) = 5.0V; VOUT1 = 1.8V; VOUT2 = 1.1V; VOUT3 = 1.8V; VOUT4 = 1.05V; VOUT5 = 1.25V; VOUT6 = 12V (refer to the  
Evaluation Board Schematic for component values). TA = 25°C, unless otherwise noted. Bold values indicate 40°C ≤ TJ ≤ +125°C.  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Buck Current Limit (OUT1-OUT5)  
Buck 1 Current Limit Threshold  
Buck 2 Current Limit Threshold  
Buck 3 Current Limit Threshold  
Buck 4 Current Limit Threshold  
Buck 5 Current Limit Threshold  
Gross High-Side Current Limit [1-5]  
Zero Cross Threshold  
3.075  
3.075  
3.075  
4.88  
4.1  
4.1  
4.1  
6.1  
4.1  
150  
0
5.125  
5.125  
5.125  
7.32  
See Table 3 for IPROG Settings  
See Table 3 for IPROG Settings  
See Table 3 for IPROG Settings  
See Table 3 for IPROG Settings  
See Table 3 for IPROG Settings  
With Respect to Buck [x] Current Limit  
Zero crossing detector  
A
A
A
A
3.075  
5.125  
A
%
mV  
Boost (VOUT6  
)
Boost Output Voltage (VOUT6  
)
Typical Output Voltage Accuracy(11)  
Output Voltage Accuracy(11)  
Load Regulation  
Includes Load, Line, and Reference  
%
%
-1.5%  
-1%  
1.5%  
1%  
IOUT6 = 1.0mA to 200mA  
0.2  
0.2  
%
Line Regulation  
VIN = 2.4V to 5.5V; IOUT6 = 10mA  
VIN = 3.3V; VOUT6 = 12V  
%
VOUT6 Discharge Current  
Boost Soft-Start Step Duration  
Soft-Start 6 LSB(10, 12)  
111  
148  
185  
mA  
3.84  
4
4.16  
µs/step  
Boost Internal MOSFETs  
Low-Side On-Resistance  
Low-Side On-Resistance  
Boost Disconnect MOSFETs  
Disconnect Switch On-Resistance  
Disconnect Switch Current Limit  
Boost Switching Frequency  
Switching Frequency (PWM Mode)  
Minimum Duty Cycle  
160  
140  
mΩ  
mΩ  
VIN = 3.3V; ISW1 = 100mA  
VIN = 5.0V; ISW1 = 100mA  
IPVIN6O = 100mA; VIN = 3.3V  
90  
5
mΩ  
A
1.92  
35  
2
2.08  
45  
MHz  
%
40  
85  
Maximum Duty Cycle  
80  
90  
%
Boost Current Limit  
NMOS Current-Limit Threshold  
2.24  
A
Revision 2.0  
March 3, 2015  
13  
Micrel, Inc.  
MIC7400  
Electrical Characteristics(7) (Continued)  
VIN = AVIN = PVIN(1-6) = 5.0V; VOUT1 = 1.8V; VOUT2 = 1.1V; VOUT3 = 1.8V; VOUT4 = 1.05V; VOUT5 = 1.25V; VOUT6 = 12V (refer to the  
Evaluation Board Schematic for component values). TA = 25°C, unless otherwise noted. Bold values indicate 40°C ≤ TJ ≤ +125°C.  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
I²C Interface  
I²C Interface (SCL, SDA)  
Low Level Input Voltage  
High Level Input Voltage  
High Level Input Current  
Low Level Input Current  
SDA Pull-Down Resistance  
SDA Logic 0 Output Voltage  
CLK, DATA Pin Capacitance  
I²C Interface Timing(10)  
0.4  
V
V
1.2  
0.01  
0.01  
20  
200  
200  
nA  
nA  
200  
200  
0.4  
ISDA = 3mA  
V
0.7  
pF  
100  
400  
3.4  
Standard Mode  
Fast Mode  
High-Speed Mode(10)  
kHz  
SCL Clock Frequency  
MHz  
Revision 2.0  
March 3, 2015  
14  
Micrel, Inc.  
MIC7400  
Typical Characteristics  
Buck Efficiency (LDCR = 0mΩ)  
Buck Efficiency (LDCR = 0mΩ)  
Boost Efficiency (12V)  
vs. Output Current  
vs. Output Current  
vs. Output Current  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
80  
70  
0.8V  
1.0V  
1.2V  
1.5V  
1.8V  
60  
50  
40  
30  
0.8V  
1.0V  
1.2V  
1.5V  
1.8V  
L = 2.2µH  
DCR = 116mΩ  
VIN = 3.3V  
L = 2.2µH  
TA = 25°C  
SAMSUNG  
CIG22H2R2MNE  
TA = 25°C  
VIN = 5.0V  
L = 2.2µH  
TA = 25°C  
3.3V  
5.0V  
2.5V  
3.3V  
3
0.0001  
0.001  
0.01  
0.1  
1
0.0001  
0.001  
0.01  
0.1  
1
3
0.0001  
0.001  
0.01  
0.1 0.2  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Buck Efficiency (LDCR = 40mΩ)  
Buck Efficiency (LDCR = 40mΩ)  
Output Voltage  
vs. Output Current  
vs. Output Current  
vs. Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
2.0%  
1.5%  
1.0%  
0.5%  
0.0%  
-0.5%  
-1.0%  
-1.5%  
-2.0%  
VIN = 3.3V  
VOUT4 = 1.05V  
0.8V  
1.0V  
0.8V  
1.2V  
VIN = 5.0V  
L = 1.0µH  
DCR = 40mΩ  
SAMSUNG  
CIGW252010GM1R0MNE  
TA = 25C  
VIN = 5.0V  
1.0V  
-40  
1.5V  
1.8V  
2.5V  
3.3V  
L = 1.0µH  
DCR = 40mΩ  
SAMSUNG  
CIGW252010GM1R0MNE  
1.2V  
25  
1.5V  
1.8V  
85  
TA = 25°C  
125  
0.0001  
0.001  
0.01  
0.1  
1
3
0.0001  
0.001  
0.01  
0.1  
1
0.0001  
0.001  
0.01  
0.1  
1
10  
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Buck Efficiency (LDCR = 116mΩ)  
Buck Efficiency (LDCR = 116mΩ)  
Output Voltage  
vs. Temperature  
vs. Output Current  
vs. Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
1.0%  
0.5%  
0.0%  
-0.5%  
-1.0%  
0.8V  
1.0V  
1.2V  
0.8V  
VIN = 5.0V  
1.5V  
L = 2.2µH  
VIN = 3.3VL = 2.2µH  
DCR = 116mΩ  
SAMSUNG  
CIG22H2R2MNE  
TA = 25°C  
1.0V  
1.2V  
1.5V  
1.8V  
DCR = 116mΩ  
SAMSUNG  
CIG22H2R2MNE  
TA = 25°C  
1.8V  
VIN = 3.3V  
VOUT4 = 1.05V  
IOUT4 = 2.5A  
2.5V  
3.3V  
0.0001  
0.001  
0.01  
0.1  
1
0.0001  
0.001  
0.01  
0.1  
1
-50  
-25  
0
25  
50  
75  
100 125  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
Revision 2.0  
March 3, 2015  
15  
 
Micrel, Inc.  
MIC7400  
Typical Characteristics (Continued)  
Buck Output Voltage Regulation  
vs. Output Current  
Buck Line Regulation  
vs. Input Voltage  
Buck Output Voltage (1.0V)  
vs. Output Current  
0.035%  
0.030%  
0.025%  
0.020%  
0.015%  
0.010%  
0.005%  
0.000%  
1.001  
1.000  
1.000  
0.999  
0.999  
0.998  
0.20%  
0.15%  
0.10%  
0.05%  
0.00%  
-0.05%  
-0.10%  
-0.15%  
-0.20%  
IOUT = 1A  
TA = 25°C  
3.3V  
5V  
3.3V  
TA = 25°C  
5V  
TA = 25°C  
0.0001  
0.001  
0.01  
0.1  
1
0.0001  
0.001  
0.01  
0.1  
1
2
3
4
5
6
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
INPUT VOLTAGE (V)  
Buck 2 Switching Frequency  
vs. Input Voltage  
VIN Operating Supply Current  
vs. Input Voltage  
Dropout Output Voltage  
vs. Output Current  
1.5  
300  
250  
200  
150  
100  
50  
3.3  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
VIN = 3.3V  
VOUT = 3.3V  
L = 2.2µH  
DCR = 116mΩ  
SAMSUNG  
CIG22H2R2MNE  
TA = 25C  
IOUT = 0A SWITCHING  
RPG = OPEN  
RPOR = OPEN  
TA = 25C  
VOUT2 = 1.1V  
IOUT2 = 0.5A  
TA = 25°C  
0
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
0
1
2
3
OUTPUT CURRENT (A)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Output Current Limit  
vs. Output Voltage  
Programmed Current Limit  
vs. Measured Current Limit  
Current-Limit Threshold  
vs. Output Voltage  
6
5
4
3
2
1
6
5
4
3
2
1
0
6
5
4
3
2
1
0
VIN = 5.0V  
VOUT = 1.05V  
5.1A  
4.6A  
4.1A  
3.6A  
3.1A  
2.6A  
2.1A  
1.6A  
1.1A  
5.1A  
4.6A  
4.1A  
3.6A  
3.1A  
2.6A  
2.1A  
1.6A  
1.1A  
0
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
1
2
3
4
5
6
OUTPUT VOLTAGE (V)  
PROGRAMMED CURRENT LIMIT (A)  
OUTPUT VOLTAGE (V)  
Revision 2.0  
March 3, 2015  
16  
Micrel, Inc.  
MIC7400  
Functional Characteristics  
Revision 2.0  
March 3, 2015  
17  
 
Micrel, Inc.  
MIC7400  
Functional Characteristics (Continued)  
Revision 2.0  
March 3, 2015  
18  
Micrel, Inc.  
MIC7400  
Functional Characteristics (Continued)  
Revision 2.0  
March 3, 2015  
19  
Micrel, Inc.  
MIC7400  
Functional Characteristics (Continued)  
Revision 2.0  
March 3, 2015  
20  
Micrel, Inc.  
MIC7400  
Functional Characteristics (Continued)  
Revision 2.0  
March 3, 2015  
21  
Micrel, Inc.  
MIC7400  
Functional Characteristics (Continued)  
Revision 2.0  
March 3, 2015  
22  
Micrel, Inc.  
MIC7400  
Functional Characteristics (Continued)  
Revision 2.0  
March 3, 2015  
23  
Micrel, Inc.  
MIC7400  
MIC7400 Block Diagram  
Revision 2.0  
March 3, 2015  
24  
 
Micrel, Inc.  
MIC7400  
Functional Description  
The MIC7400 has a current-mode boost regulator that  
can deliver up to 200mA of output current and only  
consumes 70µA of quiescent current. The 2.0MHz  
switching frequency allows small chip inductors to be  
used. Programmable overcurrent sensing protects the  
boost from overloads and an output disconnect switch  
opens to protect against a short-circuit condition. Soft-  
start is also programmable and controls both the rising  
and falling output.  
The MIC7400 is one of the industry’s most-advanced  
PMIC designed for solid state drives (SSD) on the market  
today. It is a multi-channel solution which offers software  
configurable soft-start, sequencing, and digital voltage  
control (DVC) that minimizes PC board area. These  
features usually require a pin for programming. However,  
this approach makes the IC larger by increasing pin  
count, and also increases BOM cost due to the external  
components.  
Programmable Buck Soft-Start Control  
The following is a complete list of programmable  
features:  
The MIC7400 soft-start feature forces the output voltage  
to rise gradually, which limits the inrush current during  
start-up. A slower output rise time will draw a lower input  
surge current. The soft-start time is based on the least  
significant bit (LSB) of an internal DAC and the speed of  
the ramp rate, as shown in Figure 1. This illustrates the  
soft-start waveform for all five synchronous buck  
converters. The initial step starts at 150mV and each  
subsequent step is 50mV.  
Buck output voltage (0.8V – 3.3V/50mV steps)  
Boost output voltage (7.0V – 14V/ 200mV steps)  
Power-on-reset (2.25V – 4.25V/50mV steps)  
Power-on-reset delay (5ms – 160ms/5ms steps)  
Power-up sequencing (6 time slots)  
Power-up sequencing delay (0ms – 7ms/1ms steps)  
Soft-start (4µs – 1024µs per step)  
Buck current limit threshold  
(1.1A to 6.1A/0.5A steps)  
Boost current limit threshold  
(1.76A to 2.6A/0.12A steps)  
Boost pull-down (37mA to 148mA/37mA steps)  
Buck pull-down (90Ω)  
Buck standby output voltage programmable  
Boost standby output voltage programmable  
Global power good masking  
These features give the system designer the flexibility to  
customize the MIC7400 for their application. For  
example, VOUT1 current limit can be programmed to 4.1A  
and VOUT2 can be set to 1.1A. These outputs can be  
programmed to come up at the same time or 2.0ms  
apart. In addition, in power-saving standby mode, the  
outputs can either be turned off or programmed to a  
lower voltage. With this programmability the MIC7400  
can be used in multiple platforms.  
Figure 1. Buck Soft-Start  
The output ramp rate (tRAMP) is set by the soft-start  
registers. Each output ramp rate can be individually set  
from 4µs to 1024µs, see Table 1 for details.  
The MIC7400 buck regulators are adaptive on-time  
synchronous step-down DC-to-DC regulators. They are  
designed to operate over a wide input voltage range from  
2.4V to 5.5V and provide a regulated output voltage at up  
to 3.0A of output current. An adaptive on-time control  
scheme is employed to obtain a constant switching  
frequency and to simplify the control compensation. The  
device includes an internal soft-start function which  
reduces the power supply input surge current at start-up  
by controlling the output voltage rise time.  
Revision 2.0  
March 3, 2015  
25  
 
 
 
Micrel, Inc.  
MIC7400  
The soft-start time tSS can be calculated by Equation 1:  
V
0.15V  
50mV  
OUT  
Eq. 1  
t
=
× t  
RAMP  
SS  
Where:  
SS = Output rise time  
OUT = Output voltage  
RAMP = Output dwell time  
t
V
t
For example:  
Figure 2. Buck Soft-Start  
Buck Digital Voltage Control (DVC)  
1.8V 0.15V  
t
t
=
× 8ms  
SS  
SS  
The output voltage has a 6-bit control DAC that can be  
programmed from 0.8V to 3.3V in 50mV increments. If  
the output is programmed to a higher voltage, then the  
output ramps up, as shown in Figure 3.  
50mV  
= 264ms  
Where:  
OUT = 1.8V  
tRAMP = 8.0µs  
V
Table 1. Buck Outputs Default Soft-Start Time (DEFAULT)  
VOUT  
(V)  
tRAMP  
(µs)  
tSS  
(µs)  
VOUT1  
VOUT2  
VOUT3  
VOUT4  
VOUT5  
1.8  
1.1  
8
8
8
8
8
264  
152  
264  
144  
176  
1.8  
1.05  
1.25  
Figure 3. Buck DVC Control Ramp  
Figure 2 shows the output of Buck 1 ramping up cleanly,  
starting from 0.15V to its final 1.1V value.  
Revision 2.0  
March 3, 2015  
26  
 
 
 
 
Micrel, Inc.  
MIC7400  
The ramp time is determined by Equation 2:  
After the T1 period, the DAC output ramp starts, T2. The  
total soft-start time, tSS, is the sum of both periods. Figure  
6 displays the actual boost soft-start waveform.  
V
V  
OUT _ INIT  
OUT  
t =  
× t  
Eq. 2  
RAMP  
50mV  
Where:  
V
OUT_INIT = Initial output voltage  
OUT = Final output voltage  
V
tRAMP = Output dwell time  
When the regulator is set in stand-by mode or  
programmed to a lower voltage, then the output voltage  
ramps down at a rate determined by the output ramp rate  
(tRAMP), the output capacitance and the external load.  
Small loads result in slow output voltage decay and  
heavy loads cause the decay to be controlled by the DAC  
ramp rate.  
Figure 5. Boost Soft-Start Ramp  
In Figure 4, VOUT1 is switched to stand-by mode with an  
I²C command and then switched back to normal mode  
either by an I²C command or a low-to-high transition of  
the STBY pin. In this case, the rise and fall times are the  
same due to a 1A load on VOUT1  
.
Figure 6. Boost Soft-Start  
Figure 4. Buck DVC Control Ramp  
Programmable Boost Soft-Start Control  
The boost soft-start time is divided into two parts as  
shown in Figure 5. T1 is a fixed 367µs delay starting from  
when the internal enable goes high. This delay gives  
enough time for the disconnect switch to turn on and  
bring the inductor voltage to VIN before the boost is turned  
on. There is a 50µs delay which is controlled by the  
parasitic capacitance (Cgd) of the disconnect switch  
before the output starts to rise.  
Revision 2.0  
March 3, 2015  
27  
 
 
 
 
Micrel, Inc.  
tSS = T1+ T2  
MIC7400  
The ramp time can be computed using Equation 3:  
(
VOUT 1.4V  
)
T2 =  
T2 =  
× t  
RAMP  
Eq. 2  
0.2V  
V
V  
OUT _INIT  
OUT  
t =  
× t  
Eq. 3  
RAMP  
(
12V 1.4V  
)
0.2V  
×16ms  
0.2V  
Where:  
OUT_INIT = Initial output voltage  
Table 2. Boost Output Default Soft-Start Time  
Where:  
V
T1 = 367µs  
T2 = 848µs  
tSS = 367µs + 848µs = 1.215ms  
VOUT = Output voltage  
VOUT  
(V)  
tRAMP  
(µs)  
tSS  
(ms)  
tRAMP = Output dwell time = 16µs  
VOUT6  
12  
16  
1.215  
Boost Digital Voltage Control (DVC)  
Buck Current Limit  
The boost output control works the same way as the  
buck, except that the voltage steps are 200mV, see  
Figure 7. When the boost is programmed to a lower  
voltage the output ramps down at a rate determined by  
the output ramp rate (tRAMP), the output capacitance and  
the external load. During both the ramp up and down  
time, the power good output is blanked and if the power  
good mask bit is set to “1”.  
The MIC7400 buck regulators have high-side current  
limiting that can be varied by a 4-bit code. If the regulator  
remains in current limit for more than seven consecutive  
PWM cycles, the output is latched off, the over-current  
status register bit is set to 1, the power-good status  
register bit is set to 0 and the global power good (PG)  
output pin is pulled low. An overcurrent fault on one  
output will not disable the remaining outputs. Table 3  
shows the current limit register settings verses output  
current. The current limit register setting is set at twice  
the maximum output current.  
Table 3. Buck Current Limit Register Settings  
IOUT(MAX)  
IPROG  
BINARY  
HEX  
0.5A  
1.0A  
1.5A  
2.0A  
2.5A  
3.0A  
1.1A  
2.1A  
3.1A  
4.1A  
5.1A  
6.1A  
1111  
1101  
1011  
1001  
0111  
0101  
F’h  
D’h  
B'h  
9'h  
7'h  
5'h  
The output can be turned back on by recycling the input  
power or by software control. To clear the overcurrent  
fault by software control, set the enable register bit to “0”  
then clear the overcurrent fault by setting the fault  
register bit to “0”. This will clear the over-current and  
power good status registers. Now the output can be re-  
enabled by setting the enable register bit to “1”.  
Figure 7. Boost DVC Control Ramp  
Revision 2.0  
March 3, 2015  
28  
 
 
 
 
 
Micrel, Inc.  
MIC7400  
During start-up sequencing if Output 1 is still shorted,  
Outputs 2 through 4 will come up normally. Once an  
overcurrent condition is sensed, then the fault register is  
set to “1” and the start-up sequence will stop and no  
further outputs will be enabled. See Figure 9 for default  
start-up sequence.  
Standard Delay  
There is a programmable timer that is used to set the  
standard delay time between each time slot. The timer  
starts as soon as the previous time slot’s output power  
good goes high. When the delay completes, the  
regulators assigned to that time slot are enabled, see  
Figure 8.  
Boost Current Limit  
The boost current limit features cycle-by-cycle protection.  
The duty cycle is cut immediately once the current limit is  
hit. When the boost current limit is hit for five consecutive  
cycles, the FAULT signal is asserted and remains  
asserted with the boost converter keeping on running  
until the boost is powered off.  
This protects the boost in normal overload conditions, but  
not in a short-to-ground case. For a short circuit to  
ground, the boost current limit will not be able to limit the  
inductor current. This short-circuit condition is sensed by  
the current in the disconnect switch. When the disconnect  
switch current limit is hit for four consecutive master clock  
cycles (2MHz), regardless if the boost is switching or not,  
both the disconnect switch and boost are latched off  
automatically and the FAULT signal is asserted.  
The output can be turned back on by recycling the input  
power or by software control. To clear the overcurrent  
fault by software control, set the enable register bit to “0”  
then clear the overcurrent fault by setting the fault  
register bit to “0”.  
Figure 8. Standard Delay Time  
Power-Up Sequencing  
When power is first applied to the MIC7400, all I²C  
registers are loaded with their default values from the  
EEPROM. There is about a 1.5ms delay before the first  
regulator is enabled while the MIC7400 goes through the  
initialization process. The DELAY register’s STDEL bits  
set the delay between powering up each regulator at  
initial power up.  
Global Power Good Pin  
The global power-good output indicates that all the  
outputs are above the 91% limit after the power-up  
sequence is completed. Once the power-up sequence is  
complete, the global power good output stays high unless  
an output falls below its power-good limit, a thermal fault  
occurs, the input voltage drops below the lower UVLO  
threshold or an output is turned OFF by setting the  
enable register bit to “0” unless the PGOOD_MASK[x] bit  
is set to “1” (Default).  
The sequencing registers allow the outputs to come up in  
any order. There are six time slots that an output can be  
configured to power up in. Each time slot can be  
programmed for up to six regulators to be turned on at  
once or none at all.  
A power-good mask bit can be used to control the global  
power good output. The power-good mask feature is  
programmed through the PGOOD_MASK[x] registers and  
is used to ignore an individual power-good fault. When  
masked, PGOOD_MASK[x] bit is set to “1”, an individual  
power good fault will not cause the global power good  
output to de-assert.  
Figure 9 shows an example of this feature. VOUT4 is  
enabled in time slot 1. After a 1ms delay, VOUT2 and VOUT3  
are enable at the same time in time slot 2. The 1ms is the  
standard delay for all of the outputs and can be  
programmed from 0ms to 7ms in 1ms. Next, VOUT1 is  
powered up in time slot 3 and VOUT5 in time slot 4. There  
are no regulators programmed for time slot 5. Finally,  
VOUT6 is powered up in time slot 6. The global power good  
output, VPG, goes high as soon as the last output reaches  
91% of its final value.  
If all the PGOOD_MASK[x] bits are set to “1”, then the  
power good output de-asserts as soon as the first output  
starts to rise. The PGOOD_MASK[x] bit of the last output  
must be set to “0” to have the PG output stay low until the  
last output reaches 91% of its final value.  
The global power-good output is an open-drain output. A  
pull-up resistor can be connected to VIN or VOUT. Do not  
connect the pull-up resistor to a voltage higher than AVIN.  
Revision 2.0  
March 3, 2015  
29  
 
 
 
 
 
Micrel, Inc.  
MIC7400  
Figure 10. POR  
Power-Down Sequencing  
When power is removed from VIN, all the regulators try to  
maintain the output voltage until the input voltage falls  
below the UVLO limit of 2.35V as shown in Figure 11.  
Figure 9. Hot Plug VIN Rising  
VSLT Pin  
The power-on reset threshold toggles between two  
different ranges by driving the VSLT pin high or low. The  
lower range of 2.25V to 3.25V is selected when the VSLT  
pin is tied to ground. The upper range, 3.25V to 4.25V, is  
selected when the VSLT pin is tied to VIN.  
Programmable Power-on-Reset (POR) Delay  
The POR output pin provides the user with a way to let  
the SOC know that the input power is failing. If the input  
voltage falls below the power-on reset lower threshold  
level, the POR output immediately goes low. The lower  
threshold is set in the PORDN register and the upper  
threshold uses PORUP register.  
The low-to-high POR transition can be delayed from 5ms  
to 160ms in 5ms increments. This feature can be used to  
signal the SOC that the power supplies are stable. The  
PORDEL register sets the delay of the POR pin. The  
POR delay starts as soon as the AVIN pin voltage rises  
above the power-on reset upper threshold limit. Figure 10  
shows the POR operation.  
Figure 11. Hot Un-Plug VIN Falling  
Revision 2.0  
March 3, 2015  
30  
 
 
 
 
 
Micrel, Inc.  
MIC7400  
Stand-By Mode  
Resistive Discharge  
In stand-by mode, efficiency can be improved by lowering  
the output voltage to the standby mode value or turning  
an output off completely. There are two registers used for  
setting the output voltage, normal-mode register and  
stand-by mode register. The default power-up voltages  
are set in the normal-mode registers.  
To ensure a known output condition in stand-by mode,  
the output is actively discharged to ground if the output is  
disabled. Setting the buck pull down register field  
PULLD[1-5] = 1 connects a 90Ω pull down resistor from  
OUT[x] to PGND[x] when the MIC7400 is disabled. If  
PULLD[x] = 0 the output drifts to PGND at a rate  
determined by the load current and the output  
capacitance value. The boost has a programmable pull-  
down current level from 37mA to 148mA. In Figure 13,  
the top trace shows the normal pull down and the bottom  
trace is with the 90Ω pull-down.  
An I²C write command to the STBY_CTRL_REG register  
or the STBY pin can be used to set the MIC7400 into  
stand-by mode. Figure 12 shows an I²C write command  
implementation. In stand-by mode, the output can be  
programmed to a lower voltage or turned completely off.  
When disabled, the output will be soft-discharged to zero  
if the PULLD[1-6] register are set to 1. If PULLD[x] = 0  
the output drifts to PGND at a rate determined by the  
load current and output capacitance.  
In stand-by, if an output is disabled, the global power  
good output is not affected when the PGOOD_MASK[x]  
is set to logic 1. If the PGOOD_MASK[x] is set to logic 0,  
then the global power good flag is pulled low. In Figure  
12, all the PGOOD_MASK[x] bits are set to logic 1.  
Figure 13. Output Pull-Down Resistance  
STBY Pin  
A pin-selectable STBY input allows the MIC7400 to be  
placed into standby or normal mode. In standby mode,  
the individual regulator can be turned on or off or the  
output voltage can be set to a different value. If the  
regulators are turned off, standby mode cuts the  
quiescent current by 23µA for each buck regulator and  
70µA for the boost.  
Figure 14 illustrates the STBY pin operation. A low-to-  
high transition on the STBY pin switches the output from  
standby mode to normal mode. There is a 100µs STBY  
deglitch time to eliminate nuisance tripping then all the  
regulators are enabled at the same time and ramp up  
with their programmed ramp rates.  
A high-to-low  
transition on the STBY pin switches the output from  
normal mode to standby mode.  
Figure 12. I2C Stand-By Mode  
Revision 2.0  
March 3, 2015  
31  
 
 
 
 
 
Micrel, Inc.  
MIC7400  
Figure 15. Pre-Biased Output Voltage  
Buck Regulator Power Dissipation  
The total power dissipation in  
a
MIC7400 is a  
combination of the five buck regulators and the boost  
dissipation. The buck regulators (OUT1 to OUT5)  
dissipation is approximately the switcher’s input power  
minus the switcher’s output power and minus the power  
loss in the inductor:  
Figure 14. STBY-to-NORMAL Transition (DEFAULT)  
PD_BUCK VIN × IIN – VOUT × IOUT – PL_LOSS  
Eq. 4  
Safe Start-Up into a Pre-Biased Output  
The MIC7400 is designed for safe start-up into a pre-  
biased output. This prevents large negative inductor  
currents which can cause the output voltage to dip and  
excessive output voltage oscillations. A zero crossing  
comparator is used to detect a negative inductor current.  
If a negative inductor current is detected, the low-side  
synchronous MOSFET functions as a diode and is  
immediately turned off.  
While the boost power dissipation is estimated by  
Equation 5:  
PD_BOOST VIN × IIN – VOUT x IOUT – PL_LOSS – Vf ×  
IOUT  
Eq. 5  
Although the maximum output current for a single buck  
regulator can be as much as 3A, the MIC7400 will  
thermal limit and will not support this high output current  
on all outputs at the same time.  
Figure 15 shows a 1V output pre-bias at 0.5V at start-up,  
see VOUT4 trace. The inductor current, Trace IL4, is not  
allowed to go negative by more than 0.5A before the low-  
side switch is turned off. This feature prevents high  
negative inductor current flow in a pre-bias condition  
which can damage the IC.  
Total Power Dissipation  
The total power dissipation in the MIC7400 package is  
equal to the sum of the power loss of each regulator:  
PD_TOTAL ≈ SUM (PD_SWITCHERS  
)
Eq. 6  
Revision 2.0  
March 3, 2015  
32  
 
 
 
 
 
Micrel, Inc.  
MIC7400  
Once the total power dissipation is calculated, the IC  
junction temperature can be estimated using Equation 7:  
TJ(MAX) TA + PD_TOTAL × θJA  
Eq. 7  
Where:  
J(MAX) = The maximum junction temperature  
TA = The ambient temperature  
T
θJA = The junction-to-ambient thermal resistance of the  
package (30°C/W)  
Figure 17. Power Derating Curve  
Figure 16 shows the measured junction temperature  
versus power dissipation of the MIC7400 evaluation  
board. The actual junction temperature of the IC depends  
upon many factors. The significant factors influencing the  
die temperature rise are copper thickness in the PCB, the  
surface area available for convection heat transfer, air  
flow and power dissipation from other components,  
including inductors, SOCs and processor ICs. It is good  
engineering practice to measure all power components  
temperature during the final design review using a  
thermal couple or IR thermometer, see the “Thermal  
Measurements” sub-section for details.  
The maximum power dissipation of the package can be  
calculated by Equation 8:  
T
T  
A
J(MAX)  
P
Eq. 8  
D(MAX)  
θ
JA  
Where:  
J(MAX) = Maximum junction temperature (125°C)  
TA = Ambient temperature  
T
θJA = Junction-to-ambient thermal resistance of the  
package (30°C/W).  
Overtemperature Fault  
An overtemperature fault is triggered when the IC  
junction temperature reaches 160°C. When this occurs,  
both the overtemperature fault flag is set to “1”, the global  
power good output is pulled low and all the outputs are  
turned off. During the fault condition the I²C interface  
remains active and all registers values are maintained.  
When the die temperature decreases by 20°C the  
overtemperature fault bit can be cleared. To clear the  
fault, either recycle power or write a logic “0” to the over  
temperature fault register. Once the fault bit is cleared,  
the outputs power up to their default values and are  
sequenced according to the time slot settings.  
Figure 16. Power Dissipation  
Power Derating  
The MIC7400 package has a 2W power dissipation limit.  
To keep the IC junction temperature below a 125°C  
design limit, the output power has to be limited above an  
ambient temperature of 65°C. Figure 17 shows the power  
dissipation derating curve.  
Revision 2.0  
March 3, 2015  
33  
 
 
 
 
Micrel, Inc.  
MIC7400  
Input Voltage “Hot Plug”  
Thermal Measurements  
High-voltage spikes twice the input voltage can appear  
on the MIC7401 PVIN pins if a battery pack is hot-  
plugged to the input supply voltage connection as shown  
in Figure 18 (Trace 1). These spikes are due to the  
inductance of the wires to the battery and the very low  
inductance and ESR of the ceramic input capacitors. This  
problem can be solved by placing a 150µF POS capacitor  
across the input terminals. Figure 18 (Trace 2) shows  
that the high-voltage spike is greatly reduced to a value  
below the maximum allowable input voltage rating.  
Measuring the IC’s case temperature is recommended to  
ensure it is within its operating limits. Although this might  
seem like a very elementary task, it is easy to get  
erroneous results. The most common mistake is to use  
the standard thermal couple that comes with a thermal  
meter. This thermal couple wire gauge is large (typically  
22 gauge) and behaves like a heatsink, resulting in a  
lower case measurement.  
Two reliable methods of temperature measurement are a  
smaller thermal couple wire or an infrared thermometer. If  
a thermal couple wire is used, it must be constructed of  
36 gauge wire or higher (smaller wire size) to minimize  
the wire heat-sinking effect. In addition, the thermal  
couple tip must be covered in either thermal grease or  
thermal glue to make sure that the thermal couple  
junction is making good contact with the case of the IC.  
Omega brand thermal couple (5SC-TT-K-36-36) is  
adequate for most applications.  
Whenever possible, an infrared thermometer is  
recommended. The measurement spot size of most  
infrared thermometers is too large for an accurate  
reading on a small form factor ICs. However, an IR  
thermometer from Optris has a 1mm spot size, which  
makes it a good choice for measuring the hottest point on  
the case. An optional stand makes it easy to hold the  
beam on the IC for long periods of time.  
Figure 18. Hot Plug Input Voltage Spike  
Revision 2.0  
March 3, 2015  
34  
 
 
 
Micrel, Inc.  
MIC7400  
Timing Diagrams  
Normal Power-Up Sequence for Outputs  
The STDEL register sets the delay between powering up  
of each regulator at initial power-up (see power-up  
sequencing in Figure 19). Once all the internal power  
good registers PGOOD[1-6] are all “1”, then the global  
PG pin goes high without delay if the PGOOD_MASK[6]  
bit is set to “0”.  
The PORDEL register sets the delay for the POR flag pin.  
The POR delay time starts as soon as the AVIN pin  
voltage rises above the system UVLO upper threshold  
set by the PORUP register. The POR output goes low  
without delay if AVIN falls below the lower UVLO  
threshold set by the PORDN register.  
Figure 19. MIC7400 Power-Up/Down  
Revision 2.0  
March 3, 2015  
35  
 
 
 
Micrel, Inc.  
MIC7400  
Standby (STBY) Pin (Wake-Up)  
An I²C write command to the STBY_CTRL_REG register  
or the STBY pin can be used to set the MIC7400 into  
stand-by mode. The standby (STBY) pin provides a  
hardware-specific manner in which to wake-up from  
stand-by mode and go into normal mode. Figure 20  
shows the STBY pin operation. A low-to-high transition  
on the STBY pin switches the output from stand-by mode  
to normal mode.  
There is a 100µs STBY deglitch time to eliminate  
nuisance tripping, then all the regulators are enabled at  
the same time and ramp up with their programmed ramp  
rates.  
Figure 20. MIC7400 STBY Function (DEFAULT)  
Revision 2.0  
March 3, 2015  
36  
 
 
Micrel, Inc.  
MIC7400  
Evaluation Board Schematic  
VIN  
VIN  
+
C15  
150µF  
R7  
0Ω  
PGND  
PGND  
R6  
499kΩ  
VIN  
C1  
2.2µF  
R1  
100kΩ  
VSLT  
PG  
2
VSLT  
26  
VIN  
PVIN2  
PVIN1  
VIN  
C9  
10µF  
C2  
10µF  
L2  
2.2µH  
L1  
2.2µH  
VOUT2  
1
3
27  
29  
28  
VOUT1  
SW2  
SW1  
OUT1  
1.1V/0.5A  
1.8V/0.8A  
C10  
22µF  
C3  
22µF  
OUT2  
PGND2  
36  
PGND  
VIN  
PGND1  
PGND  
VIN  
MIC7400  
4
PVIN3  
25  
PVIN6  
C11  
10µF  
L3  
D1  
L6  
2.2µH  
PMEG4002  
VOUT3  
1.8V/0.5A  
5
7
6
2.2µH  
SW3  
24  
23  
VOUT6  
12V/0.2A  
PVIN6O  
SW6  
C12  
22µF  
OUT3  
PGND3  
C6  
10µF  
C4  
10µF  
PGND  
VIN  
C5  
22µF  
22  
21  
20  
PGND6  
OUT6  
PGND  
8
PVIN4  
C13  
10µF  
L4  
1.0µH  
PVIN5  
VIN  
VOUT4  
1.05V/3.0A  
9
11  
10  
SW4  
C7  
10µF  
L5  
2.2µH  
C14  
22µF  
OUT4  
PGND4  
19  
17  
18  
VOUT5  
1.25V/1.0A  
SW5  
OUT5  
PGND  
C8  
22µF  
VIN  
PGND5  
PGND  
VIN  
R4  
VIN  
499kΩ  
TP14  
R8  
NF  
R5  
2kΩ  
R3  
2kΩ  
R2  
100kΩ  
4
3
SDA  
CLK  
VIN  
2
1
NC  
STAND-BY  
STAND-BY  
POR  
GND  
PG  
VSLT  
Revision 2.0  
March 3, 2015  
37  
 
Micrel, Inc.  
MIC7400  
Bill of Materials  
Item  
Part Number  
Manufacturer Description  
Qty.  
C1  
CL05A225KO5NQNC  
Samsung(14)  
Samsung  
Samsung  
Samsung  
2.2µF/16V, Ceramic, X5R, 0402, 0.8mm, ±10%  
1
C2, C7, C9, C11,  
C13  
CL10A106MO8NQNC  
CL21A106KAYNNNE  
CL10A226MQ8NUNE  
10µF/16V, Ceramic, X5R, 0603, 0.8mm, ±20%  
10µF/25V, Ceramic, X5R, 0805, 1.25mm, ±20%  
22µF/6.3V, Ceramic, X5R, 0603, 0.8mm, ±20%  
5
2
6
C4, C6  
C3, C5, C8, C10,  
C12, C14  
C15  
D1  
EEF-CX0J151XR  
PMEG4002EL  
Panasonic  
NXP(15)  
150µF/6.3V, POS Capacitor, SP, ±20%  
0.2A/40V, Schottky, SOD-882  
1
1
Samsung  
R1, R2  
RC1005F104CS  
100kΩ, Resistor, 0402, 1%  
3
2
1
1
5
1
Samsung  
Samsung  
Samsung  
R3, R5  
RC1005F202CS  
2.0kΩ, Resistor, 0402, 1%  
R4, R6  
RC1005F4993CS  
RC1005J000CS  
499kΩ, Resistor, 0402, 1%  
R7  
0.00Ω, Resistor, 0402, Jumper  
L1, L2, L3, L5, L6  
L4  
CIG22H2R2MNE  
CIGW252010GM1R0MNE  
Samsung  
Samsung  
2.2µH, 1.6A Inductor, 116mΩ, 2520 × 1.2mm (max)  
1.0µH, 3.3A Inductor, 40mΩ, 2520 × 1.0mm (max)  
Five-Channel Buck Regulator Plus One Boost  
with HyperLight Load® and I2C Control  
U1  
MIC7400YFL  
Micrel(16)  
1
Notes:  
14. Samsung: www.samsung.com.  
15. NXP: www.nxp.com.  
16. Micrel, Inc.: www.micrel.com.  
Revision 2.0  
March 3, 2015  
38  
 
 
 
 
Micrel, Inc.  
MIC7400  
PCB Layout Guidelines  
Input Capacitor  
Warning!!! To minimize EMI and output noise, follow  
these layout recommendations.  
A 10µF X5R or X7R dielectrics ceramic capacitor is  
recommended on each of the PVIN pins for bypassing.  
PCB layout is critical to achieve reliable, stable, and  
efficient performance. A ground plane is required to  
control EMI and minimize the inductance in power, signal,  
and return paths.  
Place the input capacitors on the same side of the  
board and as close to the IC as possible.  
Keep both the PVIN pin and PGND connections short.  
If possible, place vias to the ground plane close to the  
each input capacitor ground terminal, but not in the  
way of the high di/dit current path.  
The following guidelines should be followed to ensure  
proper operation:  
General  
Use either X7R or X5R dielectric input capacitors. Do  
Most of the heat removed from the IC is due to the  
exposed pad (EP) on the bottom of the IC conducting  
heat into the internal ground planes and the ground  
plane on the bottom side of the board. Use at least 16  
vias for the EP to ground plane connection.  
not use Y5V or Z5U type capacitors.  
Do not replace the ceramic input capacitor with any  
other type of capacitor. Any type of capacitor can be  
placed in parallel with the input capacitor.  
In “Hot-Plug” applications, a Tantalum or Electrolytic  
bypass capacitor must be used to limit the over-voltage  
spike seen on the input supply with power is suddenly  
applied.  
Do not connect the PGND and AGND traces together  
on the top layer. The single point connection is made  
on the layer 2 ground plane.  
Do not put a via directly in front of a high current pin,  
SW, PGND, or PVIN. This will increase the trace  
resistance and parasitic inductance.  
Inductor  
Keep the inductor connection to the switch node (SW)  
short.  
Do not place a via in between the input and output  
capacitor ground connection. Put it to the inside of the  
output capacitor and in the way of the high di/dt  
current path.  
Do not route any digital lines underneath or close to  
the inductor.  
To minimize noise, place a ground plane underneath  
Route all power traces on the top layer, as shown in  
the inductor.  
the example layout.  
Output Capacitor  
Place the input capacitors first and put them as close  
Use a wide trace to connect the output capacitor  
ground terminal to the input capacitor ground terminal.  
In the example layout, all input and output capacitor  
ground connections are place back-to-back.  
as possible to the IC.  
IC  
The 2.2µF ceramic capacitor, which is connected to the  
AVIN pin, must be located right at the IC. The AVIN pin  
is very noise sensitive and placement of the capacitor  
is very critical. Use wide traces to connect to the AVIN  
and AGND pins.  
The OUT[1-6] trace should be separate from the power  
trace and connected as close as possible to the output  
capacitor. Sensing a long high-current load trace can  
degrade the DC load regulation.  
The analog ground pin (AGND) must be connected  
directly to the ground planes. Do not route the SGND  
pin to the PGND Pad on the top layer.  
Use fat traces to route the input and output power  
lines.  
Use Layer 5 as an input voltage power plane.  
Layer 2 and the bottom layer (Layer 6) are ground  
planes.  
Revision 2.0  
March 3, 2015  
39  
 
 
 
 
 
 
Micrel, Inc.  
MIC7400  
Proper Termination of Unused Pins  
Many designs will not require all six DC-to-DC output  
voltages. In these cases, the unused pin must be  
connected to either VIN or GND.  
The schematic in Figure 21 shows where to tie the unused  
pins and Table  
4
summarizes the connections.  
VIN  
VIN  
+
C15  
150µF  
R7  
0Ω  
PGND  
PGND  
R6  
499kΩ  
VIN  
C1  
R1  
100kΩ  
2.2µF  
VSLT  
PG  
2
VSLT  
26  
29  
VIN  
PVIN2  
PVIN1  
VIN  
C9  
10µF  
L2  
OUT1  
2.2µH  
VOUT2  
1.1V/0.5A  
1
3
SW2  
27  
28  
SW1  
C10  
22µF  
OUT2  
PGND2  
36  
PGND  
VIN  
PGND1  
MIC7400  
4
PVIN3  
25  
PVIN6  
VIN  
C11  
10µF  
L3  
2.2µH  
VOUT3  
1.8V/0.5A  
5
7
6
SW3  
24  
23  
PVIN6O  
SW6  
C12  
22µF  
OUT3  
PGND3  
PGND  
VIN  
22  
21  
20  
PGND6  
OUT6  
8
PVIN4  
C13  
10µF  
L4  
1.0µH  
PVIN5  
VIN  
VOUT4  
1.05V/2.5A  
9
11  
10  
SW4  
C7  
L5  
2.2µH  
C14  
22µF  
10µF  
OUT4  
PGND4  
19  
17  
18  
VOUT5  
SW5  
OUT5  
1.25V/1.0A  
PGND  
C8  
22µF  
VIN  
PGND5  
PGND  
VIN  
R4  
100kΩ  
VIN  
TP14  
R8  
NF  
R5  
2kΩ  
R3  
2kΩ  
4
3
SDA  
CLK  
VIN  
2
1
NC  
STAND-BY  
STAND-BY  
POR  
GND  
PG  
VSLT  
Figure 21. Connections for Unused Pins  
Table 4. Summarization of Unused Pin Connections  
Unused  
VIN  
PGND  
Boost  
Buck  
POR  
PVIN6, PGIN6O, VOUT6  
PVIN[x], VOUT[x}  
PGND6, SW6  
PGND[6], SW[x]  
POR  
Revision 2.0  
March 3, 2015  
40  
 
 
 
Micrel, Inc.  
MIC7400  
PCB Layout Recommendations  
Evaluation Board Top Layer Power Component Placement  
Evaluation Board Top Layer Layer 1 (Power Routing Layer)  
Revision 2.0  
March 3, 2015  
41  
 
Micrel, Inc.  
MIC7400  
PCB Layout Recommendations (Continued)  
Evaluation Board Top Layer Layer 1 (Power Routing Layer)  
Evaluation Board Layer 2 (Ground Plane)  
Revision 2.0  
March 3, 2015  
42  
Micrel, Inc.  
MIC7400  
PCB Layout Recommendations (Continued)  
Evaluation Board Top Layer Layer 3 (Signal Routing Layer)  
Evaluation Board Layer 4 (Ground Plane)  
Revision 2.0  
March 3, 2015  
43  
Micrel, Inc.  
MIC7400  
PCB Layout Recommendations (Continued)  
Evaluation Board Layer Layer 5 (VIN Plane)  
Evaluation Board Bottom Later Layer 6 (Ground Plane)  
Revision 2.0  
March 3, 2015  
44  
Micrel, Inc.  
MIC7400  
Package Information(17) and Recommended Landing Pattern  
36-Pin 4.5mm × 4.5mm FQFN (FL)  
Note:  
17. Package information is correct as of the publication date. For updates and most current information, go to www.micrel.com.  
Revision 2.0  
March 3, 2015  
45  
 
 
Micrel, Inc.  
MIC7400  
Via Layout Design and Layout Constraints  
0.48  
16x, dia. 0.2  
1.80  
0.48  
1.80  
Via Layout Design  
Notes:  
Dimensions in millimeters (mm).  
This package is designed to be soldered to a thermal pad on the board. Connect all ground planes together  
Customers should contact their board fabrication site for recommended solder mask tolerance and via tenting recommendations for vias placed in the  
thermal pad.  
Revision 2.0  
March 3, 2015  
46  
 
Micrel, Inc.  
MIC7400  
Appendix A  
I2C Control Register  
The MIC7400 I²C Read/Write registers are detailed here. During normal operation, the configuration data can be saved  
into non-volatile registers in EEPROM by addressing the chip and writing to SAVECONFIG key = 66’h. Saving CONFIG  
data to EEPROM takes time so the external host should poll the MIC7400 and read the CONFIG bit[1] of EEPROM Ready  
register 01’h to determine the end of programming.  
All transactions start with a control byte sent from the I²C master device. The control byte begins with a START condition,  
followed by a 7-bit slave address. The slave address is seven bits long followed by an eighth bit which is a data direction  
bit (R/W), a “0” indicates a transmission (WRITE) and a “1” indicates a request for data (READ). A data transfer is always  
terminated by a STOP condition that is generated by the master.  
Serial Port Operation  
External Host Interface  
Bidirectional I2C port capable of Standard (up to 100kbits/s), Fast (up to 400kbits/s), Fast Plus (up to 1Mbit/s) and High  
Speed (up to 3.4Mbit/s) as defined in the I2C-Bus Specification.  
The MIC7400 acts as an I2C slave when addressed by the external host. The MIC7400 slave address uses a fixed 7-bit  
code and is followed by an R/W bit which is part of the control word that is right after the start bit as shown in Figure 22 in  
the Device Address column.  
The MIC7400 can receive multiple data bytes after a single address byte and automatically increments its register pointer  
to block fill internal volatile memory. Byte data is latched after individual bytes are received so multi-byte transfers could  
be corrupted if interrupted mid-stream.  
No system clock is required by the digital core for I2C access from the external host (only the host SCL clock is assumed).  
In order to prevent spurious operation of the I2C, if a start bit is seen, then any partial communication is aborted and new  
I2C data is allowed. Start bit is when SDA goes low when SCL is high. Stop bit is when SDA goes high when SCL is high.  
Normal I2C exchange is shown in Figure 22.  
Figure 22. Read/Write Protocol  
Revision 2.0  
March 3, 2015  
47  
 
 
 
 
Micrel, Inc.  
MIC7400  
Special Host I2C Commands  
The following commands are all 2 byte communications:  
Byte1 = device address with write bit set, LSB = 0  
Byte2 = special key  
Special Keys  
SAVECONFIG Key = 66’h. Saves the shadow register configuration data into EEPROM registers 03’h thru 23’h.  
RESET Key = 6A’h. Reloads only NORMAL mode voltage and current limit settings then enables the regulator to  
NORMAL mode with no soft-start, no sequencing, and no delays. Then clears the STANDBY register bit 6 in register  
03’h.  
RELOAD Key = 6B’h. Reloads all data from EEPROM into the shadow registers. No other actions are performed,  
including soft-start, sequencing, and delay.  
REBOOT Key = 6C’h. Turns all regulators OFF, reloads EEPROM data into shadow registers, then re-sequences the  
regulators with the programmed soft-start and sequence delays.  
SEQUENCE Key = 6D’h. Turns all regulators OFF, restarts the sequencer including soft-start and sequence delays.  
Revision 2.0  
March 3, 2015  
48  
 
 
Micrel, Inc.  
MIC7400  
Appendix B  
Register Settings Descriptions  
Power Good Register (00’h)  
This register indicates when the regulators 1 6 output voltage is above 91% of the target value. The MIC7400 deglitches  
the input signal for 50µs in order to prevent false events. The global PG pin indicator is functional ‘AND’ of all the power  
good indicators during sequencing. Once the power-up sequence is complete, the global power good output stays high  
unless an output falls below its power-good limit, a thermal fault occurs, the input voltage drops below the lower UVLO  
threshold or an output is turned OFF by setting the enable register bit to “0” if the PGOOD_MASK[x] bit is set to “0”.  
Table 5. Power Good Status Register  
Register Name  
Address  
Power Good Status Register  
0x00’h  
PGOOD1-6_REG  
Field  
bit  
R/W  
Default  
Description  
Power Good indicator for Regulator 1  
PGOOD1  
PGOOD2  
PGOOD3  
PGOOD4  
PGOOD5  
PGOOD6  
0
R
0
0
0
0
0
0
0 = Buck Not Valid  
Power Good indicator for Regulator 2  
0 = Buck Not Valid 1 = Buck Valid  
Power Good indicator for regulator 3  
0 = Buck Not Valid 1 = Buck Valid  
Power Good indicator for Regulator 4  
0 = Buck Not Valid 1 = Buck Valid  
Power Good indicator for Regulator 5  
0 = Buck Not Valid 1 = Buck Valid  
Power Good indicator for Regulator 6  
0 = Boost Not Valid 1 = Boost Valid  
1 = Buck Valid  
1
2
3
4
5
R
R
R
R
R
Reserved  
Reserved  
6
7
R/W  
R/W  
0
0
Not Used  
Not Used  
Revision 2.0  
March 3, 2015  
49  
 
 
 
 
Micrel, Inc.  
MIC7400  
EEPROM-Ready Register (01’h)  
This register indicates the status of EEPROM to external I²C host.  
The READY bit = 1 when the Trim and Configuration data have been loaded into core from EEPROM after reset, reboot  
or reload and the chip is ready for operation. [If the SAVE1 bit in register 04’h is read in as logic 1, the configuration  
registers will not be loaded from the EEPROM memory and the READY bit will still get set indicating that any startup  
procedure involving the EEPROM memory is complete.] The READY bit will be set to 1 after loading or attempting to load  
Trim and Configuration data from EEPROM into volatile memory. The Trim data will always be loaded and if SAVE1 bit in  
register 04’h is set to logic 0, Configuration data is also loaded. Regardless of the SAVE1 bit being set or not, after the  
loading operation the READY bit is set to 1.  
The CONFIG bit = 1 when the Configuration data have been saved to EEPROM after the SAVECONFIG Code is issued  
from the Host. If CONFIG=1 before the SAVECONFIG code is issued, CONFIG will be cleared immediately and then will  
be set to logic 1 again once all Configuration data is written to the EEPROM memory.  
The CALIB bit = 1 when the Trim data have been saved to EEPROM after the SAVETRIM Code is issued from the Host.  
If CALIB=1 before the SAVETRIM code is issued, CALIB will be cleared immediately and then will be set to logic 1 again  
once all Trim data is written to the EEPROM memory.  
The EEPREAD and EEPWRITE bits indicate if an EEPROM read or write fault has occurred. These bits should be read  
and cleared prior to reloading data from the EEPROM memory.  
Table 6. EEPROM Status Register  
Register Name  
Address  
EEPROM Status Register  
STATUS_REG  
0x01’h  
Field  
bit  
R/W  
Default Description  
Indicate ready for operation when the trim and configuration data has been loaded  
READY  
CONFIG  
CALIB  
0
R
0
0
0
0 = Data not loaded  
1 = Chip Ready  
Indicate Configuration saved to EEPROM  
0 = Configuration not saved  
1
2
R
R
1 = Configuration Saved  
Indicate trim data have been saved to EEROM  
0 = Trim not saved  
Not Used  
1 = Trim saved  
Reserved  
Reserved  
Reserved  
3
4
5
R/W  
R/W  
R/W  
0
0
0
Not Used  
Not Used  
EEPROM Read  
0 = No Fault  
EEPROM Write  
0 = No Fault  
EEPREAD  
EEPWRITE  
6
7
R/W  
R/W  
0
0
1 = Fault  
1 = Fault  
Revision 2.0  
March 3, 2015  
50  
 
 
Micrel, Inc.  
MIC7400  
Fault Registers (02’h)  
This register indicates the over-current flag for each regulator and one global overtemperature (OT). These register bits  
are set by an over current condition and reset by writing a logic “0” to each bit by the I²C host.  
If the fault condition persists, the bit will be set to logic “1” again immediately by the MIC7400 after it is written to logic “0”  
by the host.  
Table 7. Overcurrent Status Fault Register  
Register Name  
Address  
Overcurrent Status Fault Register  
FAULT_REG  
0x02’h  
Field  
bit  
R/W  
Default Description  
Regulator 1 Overcurrent  
0 = No Fault  
REG1OC  
REG2OC  
REG3OC  
REG4OC  
REG5OC  
0
R/W  
0
0
0
0
0
1 = Fault  
1 = Fault  
1 = Fault  
1 = Fault  
1 = Fault  
1 = Fault  
Regulator 2 Overcurrent  
0 = No Fault  
1
2
3
4
R/W  
R/W  
R/W  
R/W  
Regulator 3 Overcurrent  
0 = No Fault  
Regulator 4 Overcurrent  
0 = No Fault  
Regulator 5 Overcurrent  
0 = No Fault  
Regulator 6 Overcurrent  
0 = No Fault  
REG6OC  
Reserved  
OT  
5
6
7
R/W  
R/W  
R/W  
0
0
0
Reserved  
Overtemperature  
0 = No Fault  
1 = Fault  
Revision 2.0  
March 3, 2015  
51  
 
 
Micrel, Inc.  
MIC7400  
Standby Register (03’h)  
This register controls standby mode operation. Global stand-by mode can either be enabled by I²C or by changing the  
logic state of the STBY input pin. Global stand-by is controlled by the STBY_MODEB bit. When STBY_MODEB [6] = 1  
then the regulators output voltages are set to their normal-mode output voltage settings, (05’h – 0A’h) registers. When  
STBY_MODEB [6] = 0 then regulators output voltages are set to the standby-mode output voltage settings, (0B’h – 10’h)  
registers. If STBY [1-6] register is set to logic “0”, then the output is shut off in standby mode.  
The global power good flag is asserted when an output is disabled unless the power good mask bit (PGOOD_MASK[x]) is  
set to 1.  
Table 8. Standby Register  
Register Name  
Address  
Standby Register  
STBY_CTRL_REG  
0x03’h  
Field  
bit  
R/W  
Default Description  
Regulator 1 Standby Voltage Control  
0 = OFF  
STBY1  
STBY2  
STBY3  
STBY4  
STBY5  
STBY6  
0
1
2
3
4
5
R/W  
1
1
1
1
1
1
1 = ON  
1 = ON  
1 = ON  
1 = ON  
1 = ON  
1 = ON  
Regulator 2 Standby Voltage Control  
0 = OFF  
R/W  
R/W  
R/W  
R/W  
R/W  
Regulator 3 Standby Voltage Control  
0 = OFF  
Regulator 4 Standby Voltage Control  
0 = OFF  
Regulator 5 Standby Voltage Control  
0 = OFF  
Regulator 6 Standby Voltage Control  
0 = OFF  
Global Standby Control  
0 = All regulators in Standby Mode  
1 = All regulators in Normal Mode  
Not Used  
STBY_MODEB  
Reserved  
6
7
R/W  
R/W  
1
0
Revision 2.0  
March 3, 2015  
52  
 
 
Micrel, Inc.  
MIC7400  
Enable/Disable Register (04’h)  
This register controls the enable/disable of each DC-to-DC regulators. When EN(n) bit transitions from “0” to “1”, then the  
regulator(n) is enabled with soft-start unless the STBY_MODEB register bit in register 03’h is set to logic “0”.  
The configuration save bit “SAVE1” should be cleared by customer before saving configuration data to EEPROM. This bit  
is used during power up to indicate via the Status register (00’h) that configuration data has previously been stored.  
Table 9. Enable Register  
Register Name  
Address  
Enable Register  
EN_REG  
0x04’h  
Field  
bit  
R/W  
Default Description  
Regulator 1 ON/OFF Control bit  
0 = OFF  
EN1  
EN2  
EN3  
EN4  
EN5  
0
R/W  
1
1
1
1
1
1 = ON  
1 = ON  
1 = ON  
1 = ON  
1 = ON  
1 = ON  
Regulator 2 ON/OFF Control bit  
0 = OFF  
1
2
3
4
R/W  
R/W  
R/W  
R/W  
Regulator 3 ON/OFF Control  
0 = OFF  
Regulator 4 ON/OFF Control  
0 = OFF  
Regulator 5 ON/OFF Control  
0 = OFF  
Regulator 6 ON/OFF Control  
0 = OFF  
EN6  
5
6
R/W  
R/W  
1
0
Reserved  
Not Used  
Save Configuration  
0 = Configuration Saved to EEPROM  
1 = Not Configuration Saved to EEPROM  
SAVE1  
7
R/W  
0
Revision 2.0  
March 3, 2015  
53  
 
 
Micrel, Inc.  
MIC7400  
Regulator Output Voltage Setting NORMAL Mode (05’h 09’h)  
One register for each regulator output (OUT1 – OUT5). Sets output voltage of regulator for NORMAL mode operation.  
Table 10. DVC Registers for OUT[1 5]  
Register Name  
DVC Registers for OUT[1-5]  
OUT1-5_REG  
OUT1 = 0x05’h  
OUT2 = 0x06’h  
OUT3 = 0x07’h  
OUT4 = 0x08’h  
OUT5 = 0x09’h  
Address  
Field  
bit  
R/W  
Default  
Description  
Output Voltage setting of OUT[1-5]  
DVC from 3.3 V to 0.8V in -50mV steps  
000000 = 3.30V  
000001 = 3.25V  
000010 = 3.20V  
000011 = 3.15V  
000100 = 3.10V  
000101 = 3.05V  
000110 = 3.00V  
000111 = 2.95V  
001000 = 2.90V  
001001 = 2.85V  
001010 = 2.80V  
001011 = 2.75V  
001100 = 2.70V  
001101 = 2.65V  
001110 = 2.60V  
001111 = 2.55V  
Not Used  
010000 = 2.50V  
010001 = 2.45V  
010010 = 2.40V  
010011 = 2.35V  
010100 = 2.30V  
010101 = 2.25V  
010110 = 2.20V  
010111 = 2.15V  
011000 = 2.10V  
011001 = 2.05V  
011010 = 2.00V  
011011 = 1.95V  
011100 = 1.90V  
011101 = 1.85V  
011110 = 1.80V  
011111 = 1.75V  
100000 = 1.70V  
100001 = 1.65V  
100010 = 1.60V  
100011 = 1.55V  
100100 = 1.50V  
100101 = 1.45V  
100110 = 1.40V  
100111 = 1.35V  
101000 = 1.30V  
101001 = 1.25V  
101010 = 1.20V  
101011 = 1.15V  
101100 = 1.10V  
101101 = 1.05V  
101110 = 1.00V  
101111 = 0.95V  
110000 = 0.90V  
110001 = 0.85V  
110010 = 0.80V  
110011 = 0.80V  
110100 = 0.80V  
110101 = 0.80V  
110110 = 0.80V  
110111 = 0.80V  
111000 = 0.80V  
111001 = 0.80V  
111010 = 0.80V  
111011 = 0.80V  
111100 = 0.80V  
111101 = 0.80V  
111110 = 0.80V  
111111 = 0.80V  
OUT[1-5]  
5:0  
R/W  
See Table 2  
6
7
0
0
Not Used  
Revision 2.0  
March 3, 2015  
54  
 
 
Micrel, Inc.  
MIC7400  
Boost Regulator Output Voltage Setting NORMAL Mode (0A’h)  
Sets output voltage of the boost regulator (OUT6) in NORMAL mode operation.  
Table 11. DVC Registers for OUT6  
Register Name  
Address  
DVC Registers  
OUT6_REG  
0x0A’h  
Field  
bit  
R/W  
Default  
Description  
DVC from 14V to 7V in 200mV decrements  
000000 = 14.0V  
000001 = 13.8V  
010000 = 10.8V  
010001 = 10.6V  
010010 = 10.4V  
010011 = 10.2V  
010100 = 10.0V  
010101 = 9.8V  
010110 = 9.6V  
010111 = 9.4V  
011000 = 9.2V  
011001 = 9.0V  
011010 = 8.8V  
011011 = 8.6V  
011100 = 8.4V  
011101 = 8.2V  
011110 = 8.0V  
011111 = 7.8V  
100000 = 7.6V  
100001 = 7.4V  
100010 = 7.2V  
100011 = 7.0V  
100100 = 7.0V  
100101 = 7.0V  
100110 = 7.0V  
100111 = 7.0V  
101000 = 7.0V  
101001 = 7.0V  
101010 = 7.0V  
101011 = 7.0V  
101100 = 7.0V  
101101 = 7.0V  
101110 = 7.0V  
101111 = 7.0V  
110000 = 7.0V  
110001 = 7.0V  
110010 = 7.0V  
110011 = 7.0V  
110100 = 7.0V  
110101 = 7.0V  
110110 = 7.0V  
110111 = 7.0V  
111000 = 7.0V  
111001 = 7.0V  
111010 = 7.0V  
111011 = 7.0V  
111100 = 7.0V  
111101 = 7.0V  
111110 = 7.0V  
111111 = 7.0V  
000010 = 13.6V  
000011 = 13.4V  
000100 = 13.2V  
000101 = 13.0V  
000110 = 12.8V  
OUT6  
5:0  
R/W  
See Table 2 000111 = 12.6V  
001000 = 12.4V  
001001 = 12.2V  
001010 = 12.0V  
001011 = 11.8V  
001100 = 11.6V  
001101 = 11.4V  
001110 = 11.2V  
001111 = 11.0V  
6
7
0
0
Not Used  
Not Used  
Revision 2.0  
March 3, 2015  
55  
 
 
Micrel, Inc.  
MIC7400  
Regulator Voltage Setting STBY Mode (0B’h – 0F’h)  
This register is used to sets the output voltage of regulators 1 5 in STBY mode operation.  
Table 12. Standby Registers  
Register Name  
Standby DVC Registers  
STBY_ OUT1-5_REG  
OUT1 = 0x0B’h  
OUT2 = 0x0C’h  
OUT3 = 0x0D’h  
OUT4 = 0x0E’h  
OUT5 = 0x0F’h  
Address  
Field  
bit  
R/W  
Default  
Description  
Output Voltage setting of OUT[1-5]  
DVC from 3.3 V to 0.8V in -50mV steps  
000000 = 3.30V  
000001 = 3.25V  
000010 = 3.20V  
000011 = 3.15V  
000100 = 3.10V  
000101 = 3.05V  
000110 = 3.00V  
000111 = 2.95V  
001000 = 2.90V  
001001 = 2.85V  
001010 = 2.80V  
001011 = 2.75V  
001100 = 2.70V  
001101 = 2.65V  
001110 = 2.60V  
001111 = 2.55V  
Not Used  
010000 = 2.50V  
010001 = 2.45V  
010010 = 2.40V  
010011 = 2.35V  
010100 = 2.30V  
010101 = 2.25V  
010110 = 2.20V  
010111 = 2.15V  
011000 = 2.10V  
011001 = 2.05V  
011010 = 2.00V  
011011 = 1.95V  
011100 = 1.90V  
011101 = 1.85V  
011110 = 1.80V  
011111 = 1.75V  
100000 = 1.70V  
100001 = 1.65V  
100010 = 1.60V  
100011 = 1.55V  
100100 = 1.50V  
100101 = 1.45V  
100110 = 1.40V  
100111 = 1.35V  
101000 = 1.30V  
101001 = 1.25V  
101010 = 1.20V  
101011 = 1.15V  
101100 = 1.10V  
101101 = 1.05V  
101110 = 1.00V  
101111 = 0.95V  
110000 = 0.90V  
110001 = 0.85V  
110010 = 0.80V  
110011 = 0.80V  
110100 = 0.80V  
110101 = 0.80V  
110110 = 0.80V  
110111 = 0.80V  
111000 = 0.80V  
111001 = 0.80V  
111010 = 0.80V  
111011 = 0.80V  
111100 = 0.80V  
111101 = 0.80V  
111110 = 0.80V  
111111 = 0.80V  
SB_OUT[1-5]  
5:0  
R/W  
See Table 2  
6
7
0
0
Not Used  
Revision 2.0  
March 3, 2015  
56  
 
 
Micrel, Inc.  
MIC7400  
Boost Regulator Output Voltage Setting STBY Mode (10’h)  
Sets output voltage of the boost regulator (OUT6) for STBY mode operation.  
Table 13. Standby DVC Register for OUT6  
Register Name  
Address  
DVC Registers  
STBY _OUT6_REG  
0x10’h  
Field  
bit  
R/W  
Default  
Description  
DVC from 14V to 7V in 200mV decrements  
000000 = 14.0V  
000001 = 13.8V  
010000 = 10.8V  
010001 = 10.6V  
010010 = 10.4V  
010011 = 10.2V  
010100 = 10.0V  
010101 = 9.8V  
010110 = 9.6V  
010111 = 9.4V  
011000 = 9.2V  
011001 = 9.0V  
011010 = 8.8V  
011011 = 8.6V  
011100 = 8.4V  
011101 = 8.2V  
011110 = 8.0V  
011111 = 7.8V  
100000 = 7.6V  
100001 = 7.4V  
100010 = 7.2V  
100011 = 7.0V  
100100 = 7.0V  
100101 = 7.0V  
100110 = 7.0V  
100111 = 7.0V  
101000 = 7.0V  
101001 = 7.0V  
101010 = 7.0V  
101011 = 7.0V  
101100 = 7.0V  
101101 = 7.0V  
101110 = 7.0V  
101111 = 7.0V  
110000 = 7.0V  
110001 = 7.0V  
110010 = 7.0V  
110011 = 7.0V  
110100 = 7.0V  
110101 = 7.0V  
110110 = 7.0V  
110111 = 7.0V  
111000 = 7.0V  
111001 = 7.0V  
111010 = 7.0V  
111011 = 7.0V  
111100 = 7.0V  
111101 = 7.0V  
111110 = 7.0V  
111111 = 7.0V  
000010 = 13.6V  
000011 = 13.4V  
000100 = 13.2V  
000101 = 13.0V  
000110 = 12.8V  
SB_OUT6  
5:0  
R/W  
See Table 2 000111 = 12.6V  
001000 = 12.4V  
001001 = 12.2V  
001010 = 12.0V  
001011 = 11.8V  
001100 = 11.6V  
001101 = 11.4V  
001110 = 11.2V  
001111 = 11.0V  
6
7
0
0
Not Used  
Not Used  
Revision 2.0  
March 3, 2015  
57  
 
 
Micrel, Inc.  
MIC7400  
Sequence Register (11’h)  
Each regulator can be assigned to start in any one of six sequencing slots (1 to 6). If starting in slot 1, the regulator starts  
immediately. If starting in any other slot the regulator must wait for the PGOOD=1 flags of all regulators assigned to the  
preceding slot and then wait for the specified delay time (register 17’h) i.e., all PGOODs in preceding state flag then the  
delay timer is started and when delay completes the regulator is enabled.  
Each regulator must delay its startup (after the appropriate preceding PGOOD flags) by the delay set in the Delay  
Register (17’h), unless the regulator is assigned to sequence state 0.  
If all default Enable bits = 0 the IC starts up, but no outputs are enabled.  
Sequencing is only used during initial startup, and not used when outputs are enabled via I²C command. If outputs are  
enabled via I²C then soft-start is still active but start-up delays (timed from preceding PGOODs) are not.  
Table 14. Sequence State 1 Register  
Register Name  
Address  
Sequence Register  
SEQ1_REG  
0x11’h  
Field  
bit  
R/W  
Default Description  
REG1SQ1  
REG2SQ1  
REG3SQ1  
REG4SQ1  
REG5SQ1  
REG6SQ1  
0
R/W  
0
0
0
1
0
0
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
1 = Regulator 1 will Start in Sequence State 1  
1 = Regulator 2 will Start in Sequence State 1  
1 = Regulator 3 will Start in Sequence State 1  
1 = Regulator 4 will Start in Sequence State 1  
1 = Regulator 5 will Start in Sequence State 1  
1 = Regulator 6 will Start in Sequence State 1  
1
2
3
4
5
R/W  
R/W  
R/W  
R/W  
R/W  
0 = No Start  
Reserved  
Reserved  
6
7
R/W  
R/W  
0
0
Revision 2.0  
March 3, 2015  
58  
 
 
Micrel, Inc.  
MIC7400  
Table 15. Sequence State 2 Register  
Register Name  
Address  
Sequence Register  
SEQ2_REG  
0x12’h  
Field  
bit  
R/W  
Default Description  
REG1SQ2  
REG2SQ2  
REG3SQ2  
REG4SQ2  
REG5SQ2  
REG6SQ2  
0
R/W  
0
1
1
0
0
0
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
1 = Regulator 1 will Start in Sequence State 2  
1 = Regulator 2 will Start in Sequence State 2  
1 = Regulator 3 will Start in Sequence State 2  
1 = Regulator 4 will Start in Sequence State 2  
1 = Regulator 5 will Start in Sequence State 2  
1 = Regulator 6 will Start in Sequence State 2  
1
2
3
4
5
R/W  
R/W  
R/W  
R/W  
R/W  
0 = No Start  
Reserved  
Reserved  
6
7
R/W  
R/W  
0
0
Table 16. Sequence State 3 Register  
Register Name  
Address  
Sequence Register  
SEQ3_REG  
0x13’h  
Field  
bit  
R/W  
Default Description  
REG1SQ3  
REG2SQ3  
REG3SQ3  
REG4SQ3  
REG5SQ3  
REG6SQ3  
0
R/W  
1
0 = No Start  
1 = Regulator 1 will Start in Sequence State 3  
1 = Regulator 2 will Start in Sequence State 3  
1 = Regulator 3 will Start in Sequence State 3  
1 = Regulator 4 will Start in Sequence State 3  
1 = Regulator 5 will Start in Sequence State 3  
1 = Regulator 6 will Start in Sequence State 3  
1
2
3
4
5
R/W  
R/W  
R/W  
R/W  
R/W  
0
0 = No Start  
0
0 = No Start  
0
0 = No Start  
0
0 = No Start  
0
0 = No Start  
6
7
R/W  
R/W  
0
0
Reserved  
Reserved  
Revision 2.0  
March 3, 2015  
59  
 
 
Micrel, Inc.  
MIC7400  
Table 17. Sequence State 4 Register  
Register Name  
Address  
Sequence Register  
SEQ4_REG  
0x14’h  
Field  
bit  
R/W  
Default Description  
REG1SQ4  
REG2SQ4  
REG3SQ4  
REG4SQ4  
REG5SQ4  
REG6SQ4  
0
R/W  
0
0
0
0
1
0
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
1 = Regulator 1 will Start in Sequence State 4  
1 = Regulator 2 will Start in Sequence State 4  
1 = Regulator 3 will Start in Sequence State 4  
1 = Regulator 4 will Start in Sequence State 4  
1 = Regulator 5 will Start in Sequence State 4  
1 = Regulator 6 will Start in Sequence State 4  
1
2
3
4
5
R/W  
R/W  
R/W  
R/W  
R/W  
0 = No Start  
Reserved  
Reserved  
6
7
R/W  
R/W  
0
0
Table 18. Sequence State 5 Register  
Register Name  
Address  
Sequence Register  
SEQ5_REG  
0x15’h  
Field  
bit  
R/W  
Default Description  
REG1SQ5  
REG2SQ5  
REG3SQ5  
REG4SQ5  
REG5SQ5  
REG6SQ5  
0
R/W  
0
0 = No Start  
1 = Regulator 1 will Start in Sequence State 5  
1 = Regulator 2 will Start in Sequence State 5  
1 = Regulator 3 will Start in Sequence State 5  
1 = Regulator 4 will Start in Sequence State 5  
1 = Regulator 5 will Start in Sequence State 5  
1 = Regulator 6 will Start in Sequence State 5  
1
2
3
4
5
R/W  
R/W  
R/W  
R/W  
R/W  
0
0 = No Start  
0
0 = No Start  
0
0 = No Start  
0
0 = No Start  
0
0 = No Start  
6
7
R/W  
R/W  
0
0
Reserved  
Reserved  
Revision 2.0  
March 3, 2015  
60  
 
 
 
Micrel, Inc.  
MIC7400  
Table 19. Sequence State 6 Register  
Register Name  
Address  
Sequence Register  
SEQ6_REG  
0x16’h  
Field  
bit  
R/W  
Default Description  
REG1SQ6  
REG2SQ6  
REG3SQ6  
REG4SQ6  
REG5SQ6  
REG6SQ6  
0
R/W  
0
0
0
0
0
1
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
1 = Regulator 1 will Start in Sequence State 6  
1 = Regulator 2 will Start in Sequence State 6  
1 = Regulator 3 will Start in Sequence State 6  
1 = Regulator 4 will Start in Sequence State 6  
1 = Regulator 5 will Start in Sequence State 6  
1 = Regulator 6 will Start in Sequence State 6  
1
2
3
4
5
R/W  
R/W  
R/W  
R/W  
R/W  
0 = No Start  
Reserved  
Reserved  
6
7
R/W  
R/W  
0
0
Delay Register (17’h)  
The STDEL register sets the delay between powering up of each regulator at initial power up (see Figure 19). Once all the  
internal power good registers PGOOD[1-6] are all “1”, then the global PG pin goes high without delay.  
The PORDEL register sets the delay for the POR flag pin. The POR delay time starts as soon as AVIN pin voltage rises  
above the system UVLO upper threshold set by the PORUP register (21’h). The POR output goes low without delay if  
AVIN falls below the lower UVLO threshold set by the PORDN register (22’h).  
Table 20. Delay Register  
Register Name  
Address  
Delay Register  
DELAY_CNTL_REG  
0x17’h  
Field  
bit  
R/W  
Default Description  
Delay Time from 0ms to 7ms in 1ms increment  
001  
(1ms)  
STDEL  
2:0  
R/W  
000 = 0ms  
001 = 1ms  
010 = 2ms  
011 = 3ms  
100 = 4ms  
101 = 5ms  
110 = 6ms  
111 = 7ms  
Delay Time from 5ms to 160ms in 5ms increment  
00000 = 5ms  
00001 = 10ms  
00010 = 15ms  
00011 = 20ms  
00100 = 25ms  
00101 = 30ms  
00110 = 35ms  
00111 = 40ms  
01000 = 45ms  
01001 = 50ms  
01010 = 55ms  
01011 = 60ms  
01100 = 65ms  
01101 = 70ms  
01110 = 75ms  
01111 = 80ms  
10000 = 85ms  
10001 = 90ms  
10010 = 95ms  
10011 = 100ms  
10100 = 105ms  
10101 = 110ms  
10110 = 115ms  
10111 = 120ms  
11000 = 125ms  
11001 = 130ms  
11010 = 135ms  
11011 = 140ms  
11100 = 145ms  
11101 = 150ms  
11110 = 155ms  
11111 = 160ms  
00011  
(20ms)  
PORDEL  
7:3  
R/W  
Revision 2.0  
March 3, 2015  
61  
 
 
Micrel, Inc.  
MIC7400  
Soft-Start Registers (18’h 1A’h)  
When regulator(n) is turned on from either the Enable Register (04’h) in NORMAL mode or from the Standby Register  
(03’h) in STANDBY mode, then the three REG(n)SS soft-start bits are used to control both the rising and falling ramp rate  
of the outputs.  
In NORMAL mode, the outputs are stepped from the current regulator voltage settings to a newly-programmed regulator  
voltage setting or to the default value.  
On power-up, the regulator voltage output is set to the lowest possible voltage setting which is 3F’h. The voltage regulator  
will change by one step or increment at a time. The amount of time between each step is controlled by the soft-start  
registers. Table 21 details the amount of time for each encoded soft-start value.  
Table 21. Soft-Start Register Speed Settings  
R/W  
Default Description  
Soft-Start Time from 4µs to 512µs  
SS_SPEED = 0  
SS_SPEED = 1  
R/W  
000  
000  
000 = 4µs  
001 = 8µs  
010 = 16µs  
011 = 32µs  
100 = 64µs  
110 = 256µs  
111 = 512µs  
101 = 128µs  
Soft-Start Time from 8µs to 1024µs  
R/W  
000 = 8µs  
010 = 32µs  
011 = 64µs  
100 = 128µs  
101 = 256µs  
110 = 512µs  
001 = 16µs  
111 = 1024µs  
Table 22. Soft-Start Register OUT1 and OUT2  
Register Name  
Address  
Soft-Start Register for VOUT1 and VOUT2  
SS1-2_REG  
0x18’h  
Field  
bit  
R/W  
Default Description  
OUT1 Soft-Start Time  
001  
REG1SS  
REG2SS  
2:0  
R/W  
(8µs)  
See Table 19 for Soft-Start Settings  
OUT2 Soft-Start Time  
001  
5:3  
6
R/W  
R/W  
R/W  
(8µs)  
See Table 19 for Soft-Start Settings  
Reserved  
0
0
Set the speed of the clock to slow or fast for different clock division, see Table 19.  
0 = Slow Speed 1 = Fast Speed  
SS_SPEED  
7
Table 23. Soft-Start Register OUT3 and OUT4  
Register Name  
Address  
Soft-Start Register for VOUT3 and VOUT4  
SS3-4_REG  
0x19’h  
Field  
bit  
R/W  
Default Description  
OUT3 Soft-Start Time  
See Table 19 for Soft-Start Settings  
OUT4 Soft-Start Time  
See Table 19 for Soft-Start Settings  
Reserved  
001  
REG3SS  
REG4SS  
2:0  
R/W  
(8µs)  
001  
5:3  
R/W  
(8µs)  
6
7
R/W  
R/W  
0
0
Reserved  
Revision 2.0  
March 3, 2015  
62  
 
 
 
 
Micrel, Inc.  
MIC7400  
Table 24. Soft-Start Register OUT5 and OUT6  
Register Name  
Address  
Soft-Start Register for VOUT5 and VOUT6  
SS5-6_REG  
0x1A’h  
Field  
bit  
R/W  
Default Description  
OUT5 Soft-Start Time  
See Table 19 for Soft-Start Settings  
OUT6 Soft-Start Time  
See Table 19 for Soft-Start Settings  
Reserved  
001  
REG5SS  
REG6SS  
2:0  
R/W  
(8µs)  
010  
5:3  
R/W  
(16µs)  
6
7
R/W  
R/W  
0
0
Reserved  
Current-Limit (Normal Mode) Registers (1B’h 1D’h)  
This register is use to set the current limit for each DC-to-DC regulator in normal mode operation.  
Table 25. Current-Limit Register IOUT1 and IOUT2  
Register Name  
Address  
Current-Limit Register for VOUT1 and VOUT2  
ILIMIT_1-2_REG  
0x1B’h  
Field  
bit  
R/W  
Default Description  
Normal current-limit for regulator 1 from 8.6A to 1.1A in 0.5A decrements  
0000 = 8.6A  
0001 = 8.1A  
0010 = 7.6A  
0011 = 7.1A  
0100 = 6.6A  
0101 = 6.1A  
0110 = 5.6A  
0111 = 5.1A  
1000 = 4.6A  
1001 = 4.1A  
1010 = 3.6A  
1011 = 3.1A  
1100 = 2.6 A  
1101 = 2.1A  
1110 = 1.6A  
1111 = 1.1A  
1001  
REG1CL  
REG2CL  
3:0  
7:4  
R/W  
(4.1A)  
Normal current-limit for regulator 2 from 8.6A to 1.1A in 0.5A decrements  
0000 = 8.6A  
0001 = 8.1A  
0010 = 7.6A  
0011 = 7.1A  
0100 = 6.6A  
0101 = 6.1A  
0110 = 5.6A  
0111 = 5.1A  
1000 = 4.6A  
1001 = 4.1A  
1010 = 3.6A  
1011 = 3.1A  
1100 = 2.6 A  
1101 = 2.1A  
1110 = 1.6A  
1111 = 1.1A  
1001  
R/W  
(4.1A)  
Revision 2.0  
March 3, 2015  
63  
 
 
 
Micrel, Inc.  
MIC7400  
Table 26. Current-Limit Register IOUT3 and IOUT4  
Register Name  
Address  
Current-Limit Register for VOUT3 and VOUT4  
ILIMIT_3-4_REG  
0x1C’h  
Field  
bit  
R/W  
Default Description  
Normal current-limit for regulator 3 from 8.6A to 1.1A in 0.5A decrements  
0000 = 8.6A  
0001 = 8.1A  
0010 = 7.6A  
0011 = 7.1A  
0100 = 6.6A  
0101 = 6.1A  
0110 = 5.6A  
0111 = 5.1A  
1000 = 4.6A  
1001 = 4.1A  
1010 = 3.6A  
1011 = 3.1A  
1100 = 2.6 A  
1101 = 2.1A  
1110 = 1.6A  
1111 = 1.1A  
1001  
REG3CL  
REG4CL  
3:0  
7:4  
R/W  
(4.1A)  
Normal current-limit for regulator 4 from 8.6A to 1.1A in 0.5A decrements  
0000 = 8.6A  
0001 = 8.1A  
0010 = 7.6A  
0011 = 7.1A  
0100 = 6.6A  
0101 = 6.1A  
0110 = 5.6A  
0111 = 5.1A  
1000 = 4.6A  
1001 = 4.1A  
1010 = 3.6A  
1011 = 3.1A  
1100 = 2.6 A  
1101 = 2.1A  
1110 = 1.6A  
1111 = 1.1A  
0101  
R/W  
(6.1A)  
Table 27. Current-Limit Register IOUT 5 and IOUT6  
Register Name  
Address  
Current-Limit Register for VOUT5 and VOUT6  
ILIMIT_5-6_REG  
0x1D’h  
Field  
bit  
R/W  
Default Description  
Normal current-limit for regulator 5 from 8.6A to 1.1A in 0.5A decrements  
0000 = 8.6A  
0001 = 8.1A  
0010 = 7.6A  
0011 = 7.1A  
0100 = 6.6A  
0101 = 6.1A  
0110 = 5.6A  
0111 = 5.1A  
1000 = 4.6A  
1001 = 4.1A  
1010 = 3.6A  
1011 = 3.1A  
1100 = 2.6 A  
1101 = 2.1A  
1110 = 1.6A  
1111 = 1.1A  
1001  
REG5CL  
REG6CL  
3:0  
R/W  
(4.1A)  
Current limit from 2.6A to 1.78A in 0.12A decrements  
011  
6:4  
7
R/W  
R/W  
000 = 2.6A  
010 = 2.36A  
011 = 2.24A  
100 = 2.12A  
101 = 2.00A  
110 = 1.88A  
111 = 1.76A  
(2.24A)  
001 = 2.48A  
0
0 = Current Limit On  
1 = Current Limit Off  
Revision 2.0  
March 3, 2015  
64  
 
 
Micrel, Inc.  
MIC7400  
Current-Limit (STBY Mode) Registers (1E 20’h)  
This register is used to set the current limit for each DC-to-DC regulator when in standby (STBY) mode operation.  
Table 28. Standby Current-Limit Register IOUT1 and IOUT2  
Register Name  
Address  
Standby Current-Limit Register for VOUT1 and VOUT2  
STBY_ILIMIT_1-2_REG  
0x1E’h  
Field  
bit  
R/W  
Default  
Description  
Standby current limit for regulator 1 from 8.6A to 1.1A in 0.5A decrements  
0000 = 8.6A  
0001 = 8.1A  
0010 = 7.6A  
0011 = 7.1A  
0100 = 6.6A  
0101 = 6.1A  
0110 = 5.6A  
0111 = 5.1A  
1000 = 4.6A  
1001 = 4.1A  
1010 = 3.6A  
1011 = 3.1A  
1100 = 2.6 A  
1101 = 2.1A  
1110 = 1.6A  
1111 = 1.1A  
1001  
SB1CL  
SB2CL  
3:0  
R/W  
(4.1A)  
Standby current limit for regulator 2 from 8.6A to 1.1A in 0.5A decrements  
0000 = 8.6A  
0001 = 8.1A  
0010 = 7.6A  
0011 = 7.1A  
0100 = 6.6A  
0101 = 6.1A  
0110 = 5.6A  
0111 = 5.1A  
1000 = 4.6A  
1001 = 4.1A  
1010 = 3.6A  
1011 = 3.1A  
1100 = 2.6 A  
1101 = 2.1A  
1110 = 1.6A  
1111 = 1.1A  
1001  
7:4  
R/W  
(4.1A)  
Table 29. Standby Current-Limit Register IOUT3 and IOUT4  
Register Name  
Address  
Standby Current-Limit Register for VOUT3 and VOUT4  
STBY_ILIMIT_3-4_REG  
0x1F’h  
Field  
bit  
R/W  
Default  
Description  
Standby current limit for regulator 3 from 8.6A to 1.1A in 0.5A decrements  
0000 = 8.6A  
0001 = 8.1A  
0010 = 7.6A  
0011 = 7.1A  
0100 = 6.6A  
0101 = 6.1A  
0110 = 5.6A  
0111 = 5.1A  
1000 = 4.6A  
1001 = 4.1A  
1010 = 3.6A  
1011 = 3.1A  
1100 = 2.6 A  
1101 = 2.1A  
1110 = 1.6A  
1111 = 1.1A  
1001  
SB3CL  
SB4CL  
3:0  
R/W  
(4.1A)  
Standby current limit for regulator 4 from 8.6A to 1.1A in 0.5A decrements  
0000 = 8.6A  
0001 = 8.1A  
0010 = 7.6A  
0011 = 7.1A  
0100 = 6.6A  
0101 = 6.1A  
0110 = 5.6A  
0111 = 5.1A  
1000 = 4.6A  
1001 = 4.1A  
1010 = 3.6A  
1011 = 3.1A  
1100 = 2.6 A  
1101 = 2.1A  
1110 = 1.6A  
1111 = 1.1A  
0101  
7:4  
R/W  
(6.1A)  
Revision 2.0  
March 3, 2015  
65  
 
 
 
Micrel, Inc.  
MIC7400  
Table 30. Standby Current-Limit Register IOUT5 and IOUT6  
Register Name  
Address  
Standby Current-Limit Register for VOUT5 and VOUT6  
STBY_ILIMIT_5-6_REG  
0x20’h  
Field  
bit  
R/W  
Default  
Description  
Standby current limit for regulator 5 from 8.6A to 1.1A in 0.5A decrements  
0000 = 8.6A  
0001 = 8.1A  
0010 = 7.6A  
0011 = 7.1A  
0100 = 6.6A  
0101 = 6.1A  
0110 = 5.6A  
0111 = 5.1A  
1000 = 4.6A  
1001 = 4.1A  
1010 = 3.6A  
1011 = 3.1A  
1100 = 2.6 A  
1101 = 2.1A  
1110 = 1.6A  
1111 = 1.1A  
1001  
SB5CL  
SB6CL  
3:0  
R/W  
(4.1A)  
Current limit from 2.6A to 1.78A in 0.12A decrements  
011  
6:4  
7
R/W  
R/W  
000 = 2.6A  
010 = 2.36A  
011 = 2.24A  
100 = 2.12A  
101 = 2.00A  
110 = 1.88A  
111 = 1.76A  
(2.24A)  
001 = 2.48A  
0
0 = Current Limit On  
1 = Current Limit Off  
Power-on-Reset (POR) Threshold Voltage Setting Register (21’h and 22’h)  
This register is used to set the rising and falling threshold of power-on-reset (POR) comparator. The POR threshold  
voltage setting is based on the logic level of the VSLT pin in addition to the register bits. Refer to Table 20 for POR time  
delay settings.  
Table 31. Rising and Falling Power-on-Reset Threshold Voltage Settings  
Rising and Falling Power-On-Reset Threshold Voltage Setting  
bit  
R/W  
Default  
Description  
3.3V to 2.3V in 50mV decrements  
00000 = 3.25V  
00001 = 3.20V  
00010 = 3.15V  
00011 = 3.10V  
00100 = 3.05V  
00101 = 3.00V  
00110 = 2.95V  
00111 = 2.90V  
01000 = 2.85V  
01001 = 2.80V  
01010 = 2.75V  
01011 = 2.70V  
01100 = 2.65V  
01101 = 2.60V  
01110 = 2.55V  
01111 = 2.50V  
10000 = 2.45V  
10001 = 2.40V  
10010 = 2.35V  
10011 = 2.30V  
10100 = 2.25V  
10101 = 2.25V  
10110 = 2.25V  
10111 = 2.25V  
11000 = 2.25V  
11001 = 2.25V  
11010 = 2.25V  
11011 = 2.25V  
11100 = 2.25V  
11101 = 2.25V  
11110 = 2.25V  
11111 = 2.25V  
VSCLT = 0  
4:0  
R/W  
00000  
4.3V to 3.3V in 50mV decrements  
00000 = 4.25V  
00001 = 4.20V  
00010 = 4.15V  
00011 = 4.10V  
00100 = 4.05V  
00101 = 4.00V  
00110 = 3.95V  
00111 = 3.90V  
01000 = 3.85V  
01001 = 3.80V  
01010 = 3.75V  
01011 = 3.70V  
01100 = 3.65V  
01101 = 3.60V  
01110 = 3.55V  
01111 = 3.50V  
10000 = 3.45V  
10001 = 3.40V  
10010 = 3.35V  
10011 = 3.30V  
10100 = 3.25V  
10101 = 3.25V  
10110 = 3.25V  
10111 = 3.25V  
11000 = 3.25V  
11001 = 3.25V  
11010 = 3.25V  
11011 = 3.25V  
11100 = 3.25V  
11101 = 3.25V  
11110 = 3.25V  
11111 = 3.25V  
VSCLT = 1  
4:0  
R/W  
00000  
The three most significant bits [7:5] in registers 21’h and 22’h are used to mask the output voltage power-good flag after  
the start-up sequenced is finished.  
Revision 2.0  
March 3, 2015  
66  
 
 
 
Micrel, Inc.  
MIC7400  
Table 32. Power-on-Reset Rising Threshold Voltage Setting Register (21’h)  
Register Name  
Address  
Power-on-Reset Falling Threshold  
PORUO_REG  
0x21’h  
Field  
bit  
4:0  
5
R/W  
R/W  
R/W  
R/W  
R/W  
Default  
Description  
See Table 28  
PORUP  
01011 (2.7V)  
PGOOD_MASK1  
PGOOD_MASK2  
PGOOD_MASK3  
1
1
1
0 = Do not mask PGOOD1  
1 = Mask PGOOD1  
1 = Mask PGOOD2  
1 = Mask PGOOD3  
6
0 = Do not mask PGOOD2  
0 = Do not mask PGOOD3  
7
Table 33. Power-on-Reset Falling Threshold Voltage Setting Register (22’h)  
Register Name  
Address  
Power-on-Reset Falling Threshold  
PORDN_REG  
0x22’h  
Field  
bit  
4:0  
5
R/W  
R/W  
R/W  
R/W  
R/W  
Default  
Description  
See Table 28  
PORDN  
01101 (2.6V)  
PGOOD_MASK4  
PGOOD_MASK5  
PGOOD_MASK6  
1
1
1
0 = Do not mask PGOOD4  
0 = Do not mask PGOOD5  
0 = Do not mask PGOOD6  
1 = Mask PGOOD4  
1 = Mask PGOOD5  
1 = Mask PGOOD6  
6
7
Pull-Down when Disabled Register (23’h)  
This register is used to set the preference of enabling/disabling a pull-down FET when the DC-to-DC regulators are  
disabled. The pull-down value for buck regulators 1 5 is 90Ω. The pull-down current value for the boost regulator 6 is  
programmable.  
Table 34. Pull-Down when Disabled Register  
Register Name  
Address  
Pull-Down when Disabled Register  
PULLDN1-6_REG  
0x23’h  
Field  
bit  
R/W  
Default Description  
Enable/Disable the pull-down on Regulator 1 when power down  
PULLD1  
PULLD2  
PULLD3  
PULLD4  
PULLD5  
PULLD6C  
PULLD6  
0
1
R/W  
0
0
0 = No Pull Down  
Enable/Disable the pull-down on Regulator 2 when power down  
0 = No Pull-Down 1 = Pull-Down  
Enable/Disable the pull-down on Regulator 3 when power-down  
0 = No Pull-Down 1 = Pull Down  
Enable/Disable the pull-down on Regulator 4 when power down  
0 = No Pull-Down 1 = Pull-Down  
Enable/Disable the pull-down on Regulator 5 when power-down  
1 = Pull-Down  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
2
0
3
0
4
0
0 = No Pull-Down  
1 = Pull-Down  
Sets Boost Pull-Down Current Level  
6:5  
7
00  
0
00 = 148mA  
Enable/Disable the pull-down on Regulator 6 when power-down  
0 = No Pull-Down 1 = Pull-Down  
01 = 111mA  
10 = 74mA  
11 = 37mA  
Revision 2.0  
March 3, 2015  
67  
 
 
 
 
Micrel, Inc.  
MIC7400  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com  
Micrel, Inc. is a leading global manufacturer of IC solutions for the worldwide high-performance linear and power, LAN, and timing & communications  
markets. The Company’s products include advanced mixed-signal, analog & power semiconductors; high-performance communication, clock  
management, MEMs-based clock oscillators & crystal-less clock generators, Ethernet switches, and physical layer transceiver ICs. Company  
customers include leading manufacturers of enterprise, consumer, industrial, mobile, telecommunications, automotive, and computer products.  
Corporation headquarters and state-of-the-art wafer fabrication facilities are located in San Jose, CA, with regional sales and support offices and  
advanced technology design centers situated throughout the Americas, Europe, and Asia. Additionally, the Company maintains an extensive network  
of distributors and reps worldwide.  
Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this datasheet. This  
information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry,  
specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Micrel’s terms and conditions of sale for such products, Micrel assumes no liability  
whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties  
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product  
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical  
implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A  
Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully  
indemnify Micrel for any damages resulting from such use or sale.  
© 2014 Micrel, Incorporated.  
Revision 2.0  
March 3, 2015  
68  

相关型号:

MIC7400YFL-T5

IC REG BUCK BOOST PROG SYNC
MICROCHIP

MIC7400YFL-TR

IC REG BUCK BOOST PROG SYNC
MICROCHIP

MIC7400_15

Configurable PMIC, Five-Channel Buck Regulator Plus One-Boost with HyperLight Load® and I2C Control
MICREL

MIC7401

Configurable PMIC, Five-Channel Buck Regulator plus One-Boost with HyperLight Load®, I2C Control, and Enable
MICROCHIP

MIC7401YFL

Power Supply Support Circuit
MICROCHIP

MIC7401YFL-TR

IC REG BUCK BOOST PROG SYNC
MICROCHIP

MIC74BQS

2-Wire Serial I/O Expander and Fan Controller Advance Information
MICREL

MIC74BQSTR

Micro Peripheral IC, PDSO16
MICREL

MIC74YQS

2-Wire Serial I/O Expander and Fan Controller
MICREL

MIC74YQSTR

8 I/O, PIA-GENERAL PURPOSE, PDSO16, LEAD FREE, QSOP-16
MICREL

MIC74_06

2-Wire Serial I/O Expander and Fan Controller
MICREL

MIC79050

Simple Lithium-Ion Battery Charger Preliminary Information
MICREL