KSZ8081MNXCA [MICROCHIP]

10BASE-T/100BASE-TX Physical Layer Transceiver;
KSZ8081MNXCA
型号: KSZ8081MNXCA
厂家: MICROCHIP    MICROCHIP
描述:

10BASE-T/100BASE-TX Physical Layer Transceiver

文件: 总66页 (文件大小:1770K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KSZ8081MNX/RNB  
10BASE-T/100BASE-TX Physical Layer  
Transceiver  
Features  
Applications  
• Single-chip 10Base-T/100Base-TX IEEE 802.3  
compliant Ethernet transceiver  
• Game console  
• IP phone  
• IP set-top box  
• IP TV  
• MII interface support (KSZ8081MNX)  
• RMII v1.2 Interface support with a 50 MHz refer-  
ence clock output to MAC, and an option to input  
a 50 MHz reference clock (KSZ8081RNB)  
• LOM  
• Printer  
• Back-to-back mode support for a 100 Mbps  
copper repeater  
• MDC/MDIO management interface for PHY  
register configuration  
• Programmable interrupt output  
• LED outputs for link, activity, and speed status  
indication  
• On-chip termination resistors for the differential  
pairs  
• Baseline wander correction  
• HP Auto MDI/MDI-X to reliably detect and correct  
straight-through and crossover cable connections  
with disable and enable option  
• Auto-negotiation to automatically select the  
highest link-up speed (10/100 Mbps) and duplex  
(half/full)  
• Power-down and power-saving modes  
• LinkMD TDR-based cable diagnostics to identify  
faulty copper cabling  
• Parametric NAND Tree support for fault detection  
between chip I/Os and the board  
• HBM ESD rating (6 kV)  
• Loopback modes for diagnostics  
• Single 3.3V power supply with VDD I/O options  
for 1.8V, 2.5V, or 3.3V  
• Built-in 1.2V regulator for core  
• Available in 32-pin (5 mm × 5 mm) QFN package  
2016 Microchip Technology Inc.  
DS00002202A-page 1  
KSZ8081MNX/RNB  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com. We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for cur-  
rent devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the  
revision of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS00002202A-page 2  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
Table of Contents  
1.0 Introduction ..................................................................................................................................................................................... 4  
2.0 Pin Description and Configuration ................................................................................................................................................... 5  
3.0 Functional Description .................................................................................................................................................................. 15  
4.0 Register Descriptions .................................................................................................................................................................... 34  
5.0 Operational Characteristics ........................................................................................................................................................... 46  
6.0 Electrical Characteristics ............................................................................................................................................................... 47  
7.0 Timing Diagrams  
49  
8.0 Package Outline............................................................................................................................................................................. 60  
Appendix A: Data Sheet Revision History ........................................................................................................................................... 61  
The Microchip Web Site ...................................................................................................................................................................... 62  
Customer Change Notification Service ............................................................................................................................................... 62  
Customer Support ............................................................................................................................................................................... 62  
Product Identification System ............................................................................................................................................................. 63  
2016 Microchip Technology Inc.  
DS00002202A-page 3  
KSZ8081MNX/RNB  
1.0  
1.1  
INTRODUCTION  
General Description  
The KSZ8081 is a single-supply 10BASE-T/100BASE-TX Ethernet physical-layer transceiver for transmission and  
reception of data over standard CAT-5 unshielded twisted pair (UTP) cable.  
The KSZ8081 is a highly-integrated PHY solution. It reduces board cost and simplifies board layout by using on-chip  
termination resistors for the differential pairs and by integrating a low-noise regulator to supply the 1.2V core.  
The KSZ8081MNX offers the Media Independent Interface (MII) and the KSZ8081RNB offers the Reduced Media Inde-  
pendent Interface (RMII) for direct connection with MII/RMII-compliant Ethernet MAC processors and switches.  
A 25 MHz crystal is used to generate all required clocks, including the 50 MHz RMII reference clock output for the  
KSZ8081RNB.  
The KSZ8081 provides diagnostic features to facilitate system bring-up and debugging in production testing and in prod-  
uct deployment. Parametric NAND tree support enables fault detection between KSZ8081 I/Os and the board. LinkMD®  
TDR-based cable diagnostics identify faulty copper cabling.  
The KSZ8081MNX and KSZ8081RNB are available in 32-pin, lead-free QFN packages.  
FIGURE 1-1:  
FUNCTIONAL BLOCK DIAGRAM  
MDC/MDIO  
MANAGEMENT  
MEDIA TYPES:  
10BASE-T  
100BASE-TX  
KSZ8081MNX/  
MII/RMII  
RJ-45  
CONNECTOR  
10/100Mbps  
MII/RMII MAC  
KSZ8081RNB  
50MHz  
(KSZ8081RNB)  
REF_CLK  
XO  
XI  
25MHz  
XTAL  
22pF  
22pF  
DS00002202A-page 4  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
2.0  
PIN DESCRIPTION AND CONFIGURATION  
FIGURE 2-1:  
KSZ8081MNX 32-QFN PIN ASSIGNMENT (TOP VIEW)  
32 31 30 29 28 27 26 25  
1
2
24  
23  
GND  
VDD_1.2  
VDDA_3.3  
RXM  
TXD0  
TXEN  
3
4
5
22 TXC  
21  
PADDLE  
INTRP/NAND_TREE#  
RXER/ISO  
GROUND  
20  
(ON BOTTOM OF CHIP)  
RXP  
TXM  
RXC/B-CAST_OFF  
6
7
8
19  
18  
17  
TXP  
XO  
RXDV/CONFIG2  
VDDIO  
9
10 11 12 13 14 15 16  
TABLE 2-1:  
PIN DESCRIPTION — KSZ8081MNX  
Buffer  
Pin  
Number  
Name  
Type  
Description  
(Note 2-1)  
1
2
GND  
GND  
P
Ground  
1.2V core VDD (power supplied by KSZ8081MNX). Decouple with  
2.2 μF and 0.1 μF capacitors to ground.  
VDD_1.2  
3
4
5
6
7
VDDA_3.3  
RXM  
P
3.3V analog VDD.  
I/O  
I/O  
I/O  
I/O  
Physical receive or transmit signal (differential).  
Physical receive or transmit signal (+ differential).  
Physical transmit or receive signal (differential).  
Physical transmit or receive signal (+ differential).  
RXP  
TXM  
TXP  
2016 Microchip Technology Inc.  
DS00002202A-page 5  
KSZ8081MNX/RNB  
TABLE 2-1:  
PIN DESCRIPTION — KSZ8081MNX (CONTINUED)  
Buffer  
Type  
(Note 2-1)  
Pin  
Number  
Name  
Description  
Crystal feedback for 25 MHz crystal.  
8
XO  
O
This pin is a no connect if an oscillator or external clock source is  
used.  
9
XI  
I
I
Crystal / Oscillator / External Clock Input. 25 MHz ±50 ppm.  
Set PHY transmit output current. Connect a 6.49 kΩ resistor to  
ground on this pin.  
10  
REXT  
Management Interface (MII) Data I/O This pin has a weak pull-up, is  
open-drain, and requires an external 1.0 kΩ pull-up resistor.  
11  
12  
MDIO  
MDC  
Ipu/Opu  
Ipu  
Management Interface (MII) Clock Input. This clock pin is synchro-  
nous to the MDIO data pin.  
MII Mode: MII Receive Data Output[3].  
Config Mode: The pull-up/pull-down value is latched as PHY-  
ADDR[0] at the de-assertion of reset.  
See the Strap-In Options – KSZ8081MNX section for details.  
13  
14  
15  
PHYAD0  
PHYAD1  
Ipu/O  
Ipd/O  
Ipd/O  
MII Mode: MII Receive Data Output[2] (Note 2-2)  
Config Mode: The pull-up/pull-down value is latched as PHY-  
ADDR[1] at the de-assertion of reset.  
See the section Strap-In Options – KSZ8081MNX for details.  
MII Mode: MII Receive Data Output[1] (Note 2-2).  
Config Mode: The pull-up/pull-down value is latched as PHY-  
ADDR[2] at the de-assertion of reset.  
RXD1/  
PHYAD2  
See the section Strap-In Options – KSZ8081MNX for details.  
MII Mode: MII Receive Data Output[0] (Note 2-2).  
Config Mode: The pull-up/pull-down value is latched as DUPLEX at  
the de-assertion of reset.  
RXD0/  
DUPLEX  
16  
17  
18  
Ipu/O  
P
See the section Strap-In Options – KSZ8081MNX for details.  
VDDIO  
3.3V, 2.5V, or 1.8V digital VDD.  
MII Mode: MII Receive Data Valid Output.  
Config Mode: The pull-up/pull-down value is latched as CONFIG2  
at the de-assertion of reset.  
RXDV/  
CONFIG2  
Ipd/O  
See the section Strap-In Options – KSZ8081MNX for details.  
MII Mode: MII Receive Clock Output.  
RXC/  
B-CAST_OFF  
Config Mode: The pull-up/pull-down value is latched as B-  
CAST_OFF at the de-assertion of reset.  
See the section Strap-In Options – KSZ8081MNX for details.  
19  
20  
Ipd/O  
Ipd/O  
MII mode: MII Receive Error Output.  
Config Mode: The pull-up/pull-down value is latched as ISOLATE at  
the de-assertion of reset.  
RXER/  
ISO  
See the section Strap-In Options – KSZ8081MNX for details.  
DS00002202A-page 6  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
TABLE 2-1:  
PIN DESCRIPTION — KSZ8081MNX (CONTINUED)  
Buffer  
Type  
(Note 2-1)  
Pin  
Number  
Name  
Description  
Interrupt Output: Programmable Interrupt Output.  
This pin has a weak pull-up, is open-drain, and requires an external  
1.0 kpull-up resistor.  
Config Mode: The pull-up/pull-down value is latched as NAND  
Tree# at the de-assertion of reset.  
INTRP/  
21  
22  
Ipu/Opu  
Ipd/O  
NAND_Tree#  
See the section Strap-In Options – KSZ8081MNX for details.  
MII Mode: MII Transmit Clock Output.  
At the de-assertion of reset, this pin needs to latch in a pull-down  
value for normal operation. If MAC side pulls this pin high, see  
Register 16h, Bit [15] for solution. It is better having an external pull-  
down resistor to avoid MAC side pulls this pin high.  
TXC  
23  
24  
25  
26  
27  
TXEN  
TXD0  
TXD1  
TXD2  
TXD3  
I
I
I
I
I
MII Mode: MII Transmit Enable input.  
MII Mode: MII Transmit Data Input[0] (Note 2-4).  
MII Mode: MII Transmit Data Input[1] (Note 2-4).  
MII Mode: MII Transmit Data Input[2] (Note 2-4).  
MII Mode: MII Transmit Data Input[3] (Note 2-4).  
MII Mode: MII Collision Detect output.  
COL/  
Config Mode: The pull-up/pull-down value is latched as CONFIG0 at  
the de-assertion of reset.  
28  
29  
Ipd/O  
Ipd/O  
CONFIG0  
See the section Strap-In Options – KSZ8081MNX for details.  
MII mode: MII Carrier Sense output  
CRS/  
Config mode: The pull-up/pull-down value is latched as CONFIG1 at  
the de-assertion of reset.  
CONFIG1  
See the section Strap-In Options – KSZ8081MNX for details.  
LED Output: Programmable LED0 Output.  
Config Mode: Latched as auto-negotiation enable (Register 0h, Bit  
[12]) at the de-assertion of reset.  
See the Strap-In Options – KSZ8081MNX section for details.  
The LED0 pin is programmable using Register 1Fh bits [5:4], and is  
defined as follows:  
LED Mode = [00]  
Link/Activity  
No link  
Pin State  
High  
LED Definition  
OFF  
LED0/  
NWAYEN  
30  
Ipu/O  
Link  
Low  
ON  
Activity  
Toggle  
Blinking  
LED Mode = [01]  
Link  
Pin State  
High  
LED Definition  
No link  
Link  
OFF  
ON  
Low  
LED Mode = [10], [11] Reserved  
2016 Microchip Technology Inc.  
DS00002202A-page 7  
KSZ8081MNX/RNB  
TABLE 2-1:  
PIN DESCRIPTION — KSZ8081MNX (CONTINUED)  
Buffer  
Type  
(Note 2-1)  
Pin  
Number  
Name  
Description  
LED Output: Programmable LED1 Output.  
Config Mode: Latched as Speed (Register 0h, Bit [13]) at the de-  
assertion of reset.  
See the Strap-In Options – KSZ8081MNX section for details.  
The LED1 pin is programmable using Register 1Fh bits [5:4], and is  
defined as follows:  
:
LED Mode = [00]  
Speed  
Pin State  
High  
LED Definition  
LED1/  
SPEED  
31  
Ipu/O  
10Base-T  
100Base-TX  
OFF  
ON  
Low  
LED Mode = [01]  
Activity  
Pin State  
High  
LED Definition  
OFF  
No activity  
Activity  
Toggle  
Blinking  
LED Mode = [10], [11]Reserved  
Chip Reset (active low).  
Ground.  
32  
RST#  
GND  
Ipu  
PADDLE  
GND  
Note 2-1  
P = Power supply.  
GND = Ground.  
I = Input.  
O = Output.  
I/O = Bi-directional.  
Ipu = Input with internal pull-up (see Electrical Characteristics for value).  
Ipu/O = Input with internal pull-up (see Electrical Characteristics for value) during power-up/reset;  
output pin otherwise.  
Ipd/O = Input with internal pull-down (see Electrical Characteristics for value) during power-up/reset;  
output pin otherwise.  
Ipu/Opu = Input with internal pull-up (see Electrical Characteristics for value) and output with internal  
pull-up (see Electrical Characteristics for value).  
NC = Pin is not bonded to the die.  
Note 2-2  
RMII RX Mode: The RXD[1:0] bits are synchronous with the 50 MHz RMII Reference Clock. For each  
clock period in which CRS_DV is asserted, two bits of recovered data are sent by the PHY to the  
MAC.  
Note 2-3  
Note 2-4  
RMII TX Mode: The TXD[1:0] bits are synchronous with the 50 MHz RMII Reference Clock. For each  
clock period in which TXEN is asserted, two bits of data are received by the PHY from the MAC.  
MII TX Mode: The TXD[3:0] bits are synchronous with TXC. When TXEN is asserted, TXD[3:0]  
presents valid data from the MAC. TXD[3:0] has no effect on the PHY when TXEN is de-asserted.  
DS00002202A-page 8  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
STRAP-IN OPTIONS – KSZ8081MNX  
The strap-in pins are latched at the de-assertion of reset. In some systems, the MAC RMII receive input pins may drive  
high/low during power-up or reset, and consequently cause the PHY strap-in pins on the RMII signals to be latched to  
unintended high/low states. In this case, external pull-ups (4.7 k) or pull-downs (1.0 k) should be added on these  
PHY strap-in pins to ensure that the intended values are strapped-in correctly.  
TABLE 2-2:  
STRAP-IN OPTIONS – KSZ8081MNX  
Type  
Pin  
Number  
Pin Name  
(Note  
2-1)  
Pin Function  
PHYAD[2:0] is latched at de-assertion of reset and is configurable to any value  
from 0 to 7 with PHY Address 1 as the default value.  
PHY Address 0 is assigned by default as the broadcast PHY address, but it can  
be assigned as a unique PHY address after pulling the  
B-CAST_OFF strap-in pin high or writing a ‘1’ to Register 16h, Bit [9].  
PHY Address bits [4:3] are set to 00 by default.  
15  
14  
13  
PHYAD2  
PHYAD1  
PHYAD0  
Ipd/O  
Ipd/O  
Ipu/O  
The CONFIG[2:0] strap-in pins are latched at the de-assertion of reset.  
CONFIG[2:0]  
Mode  
18  
29  
28  
CONFIG2  
CONFIG1  
CONFIG0  
Ipd/O  
Ipd/O  
Ipd/O  
001  
RMII  
101  
RMII back-to-back  
Reserved – not used  
000, 010 – 100, 110, 111  
Isolate mode  
Pull-up = Enable  
Pull-down (default) = Disable  
At the de-assertion of reset, this pin value is latched into Register 0h, Bit [10].  
20  
31  
ISO  
Ipd/O  
Ipu/O  
Speed Mode:  
Pull-up (default) = 100 Mbps  
Pull-down = 10 Mbps  
At the de-assertion of reset, this pin value is latched into Register 0h, Bit [13] as  
the speed select, and also is latched into Register 4h (auto-negotiation adver-  
tisement) as the speed capability support.  
SPEED  
Duplex Mode:  
Pull-up (default) = Half-duplex  
Pull-down = Full-duplex  
At the de-assertion of reset, this pin value is latched into Register 0h, Bit [8].  
16  
30  
DUPLEX  
NWAYEN  
Ipu/O  
Ipu/O  
Nway auto-negotiation enable  
Pull-up (default) = Enable auto-negotiation  
Pull-down = Disable auto-negotiation  
At the de-assertion of reset, this pin value is latched into Register 0h, Bit [12].  
Broadcast off – for PHY Address 0  
Pull-up = PHY Address 0 is set as an unique PHY address  
Pull-down (default) = PHY Address 0 is set as a broadcast PHY address  
At the de-assertion of reset, this pin value is latched by the chip.  
19  
B-CAST_OFF Ipd/O  
NAND tree mode  
Ipu/  
NAND_Tree#  
Opu  
Pull-up (default) = Disable  
Pull-down = Enable  
21  
At the de-assertion of reset, this pin value is latched by the chip.  
Note 2-1  
Ipu/O = Input with internal pull-up (see Electrical Characteristics for value) during power-up/reset;  
output pin otherwise.  
Ipd/O = Input with internal pull-down (see Electrical Characteristics for value) during power-up/reset;  
output pin otherwise.  
Ipu/Opu = Input with internal pull-up (see Electrical Characteristics for value) and output with internal  
pull-up (see Electrical Characteristics for value).  
2016 Microchip Technology Inc.  
DS00002202A-page 9  
KSZ8081MNX/RNB  
FIGURE 2-2:  
KSZ8081RNB 32-QFN PIN ASSIGNMENT (TOP VIEW)  
32 31 30 29 28 27 26 25  
1
2
24  
23  
GND  
VDD_1.2  
VDDA_3.3  
RXM  
TXD0  
TXEN  
3
4
5
22 NC  
21  
PADDLE  
INTRP/NAND_TREE#  
RXER/ISO  
GROUND  
20  
(ON BOTTOM OF CHIP)  
RXP  
TXM  
REF_CLK/B-CAST_OFF  
6
7
8
19  
18  
17  
TXP  
XO  
CRS_DV/CONFIG2  
VDDIO  
9
10 11 12 13 14 15 16  
TABLE 2-3:  
Pin Number  
1
PIN DESCRIPTION — KSZ8081RNB  
Pin Name  
Type (Note 2-1)  
Pin Function  
GND  
GND  
Ground  
1.2V core VDD (power supplied by KSZ8081RNB).  
Decouple with 2.2 μF and 0.1 μF capacitors to ground.  
2
VDD_1.2  
P
3
4
5
6
7
VDDA_3.3  
RXM  
P
3.3V analog VDD.  
I/O  
I/O  
I/O  
I/O  
Physical receive or transmit signal (differential).  
Physical receive or transmit signal (+ differential).  
Physical transmit or receive signal (differential).  
Physical transmit or receive signal (+ differential).  
RXP  
TXM  
TXP  
Crystal feedback for 25 MHz crystal. This pin is a no con-  
nect if an oscillator or external clock source is used.  
8
XO  
XI  
O
25 MHz Mode: 25 MHz ±50 ppm Crystal / Oscillator /  
External Clock Input  
50 MHz Mode: 50 MHz ±50 ppm Oscillator / External  
Clock Input  
9
I
Set PHY transmit output current. Connect a 6.49 kΩ  
resistor to ground on this pin.  
10  
11  
12  
REXT  
MDIO  
MDC  
I
Management Interface (MII) Data I/O. This pin has a  
weak pull-up, is open-drain, and requires an external  
1.0 kΩ pull-up resistor.  
Ipu/Opu  
Ipu  
Management Interface (MII) Clock Input. This clock pin is  
synchronous to the MDIO data pin.  
The pull-up/pull-down value is latched as PHYADDR[0] at  
the de-assertion of reset.  
See the Strap-in Options – KSZ8081RNB section for  
details.  
13  
PHYAD0  
Ipu/O  
DS00002202A-page 10  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
TABLE 2-3:  
Pin Number  
PIN DESCRIPTION — KSZ8081RNB  
Pin Name  
Type (Note 2-1)  
Pin Function  
The pull-up/pull-down value is latched as PHYADDR[1] at  
the de-assertion of reset.  
See the Strap-in Options – KSZ8081RNB section for  
details.  
14  
15  
PHYAD1  
Ipd/O  
RMII Mode: RMII Receive Data Output[1] (Note 2-2).  
Config Mode: The pull-up/pull-down value is latched as  
PHYADDR[2] at the de-assertion of reset.  
See the Strap-in Options – KSZ8081RNB section for  
details.  
RXD1/  
PHYAD2  
Ipd/O  
RMII Mode: RMII Receive Data Output[0] (Note 2-2).  
Config Mode: The pull-up/pull-down value is latched as  
DUPLEX at the de-assertion of reset.  
See the Strap-in Options – KSZ8081RNB section for  
details.  
RXD0/  
DUPLEX  
16  
17  
Ipu/O  
P
VDDIO  
3.3V, 2.5V, or 1.8V digital VDD.  
RMII Mode: RMII Carrier Sense/Receive Data Valid Out-  
put.  
CRS_DV/  
CONFIG2  
Config Mode: The pull-up/pull-down value is latched as  
CONFIG2 at the de-assertion of reset.  
See the Strap-in Options – KSZ8081RNB section for  
details.  
18  
Ipd/O  
RMII Mode:  
25 MHz Mode: This pin provides the 50 MHz RMII refer-  
ence clock output to the MAC. See also XI (Pin 9).  
50 MHz mode: This pin is a no connect. See also XI (Pin  
9).  
Config Mode: The pull-up/pull-down value is latched as B-  
CAST_OFF at the de-assertion of reset.  
See the Strap-in Options – KSZ8081RNB section for  
details.  
REF_CLK/  
19  
20  
Ipd/O  
Ipd/O  
B-CAST_OFF  
RMII Mode: RMII Receive Error Output.  
Config Mode: The pull-up/pull-down value is latched as  
ISOLATE at the de-assertion of reset.  
See the Strap-in Options – KSZ8081RNB section for  
details.  
RXER/  
ISO  
Interrupt Output: Programmable Interrupt Output.  
This pin has a weak pull-up, is open-drain, and requires  
an external 1.0 kpull-up resistor.  
INTRP/  
21  
22  
Ipu/Opu  
Config Mode: The pull-up/pull-down value is latched as  
NAND Tree# at the de-assertion of reset.  
See the Strap-in Options – KSZ8081RNB section for  
details.  
NAND_Tree#  
No Connect. This pin is not bonded and can be left  
floating.  
NC  
23  
24  
25  
TXEN  
TXD0  
TXD1  
I
I
I
RMII Transmit Enable input.  
RMII Transmit Data Input[0] (Note 2-3).  
RMII Transmit Data Input[1] (Note 2-3).  
No Connect. This pin is not bonded and can be left  
floating.  
26  
27  
NC  
NC  
No Connect. This pin is not bonded and can be left  
floating.  
2016 Microchip Technology Inc.  
DS00002202A-page 11  
KSZ8081MNX/RNB  
TABLE 2-3:  
Pin Number  
PIN DESCRIPTION — KSZ8081RNB  
Pin Name  
Type (Note 2-1)  
Pin Function  
The pull-up/pull-down value is latched as CONFIG0 at the  
de-assertion of reset. See the Strap-in Options –  
KSZ8081RNB section for details.  
28  
29  
CONFIG0  
Ipd/O  
The pull-up/pull-down value is latched as CONFIG1 at the  
de-assertion of reset. See the Strap-in Options –  
KSZ8081RNB section for details.  
CONFIG1  
Ipd/O  
LED Output: Programmable LED0 Output.  
Config Mode: Latched as auto-negotiation enable (Regis-  
ter 0h, Bit [12]) at the de-assertion of reset.  
See the Strap-in Options – KSZ8081RNB section for  
details.  
The LED0 pin is programmable using Register 1Fh bits  
[5:4], and is defined as follows:  
LED Mode = [00]  
Link/Activity  
No link  
Pin State  
High  
LED Definition  
OFF  
LED0/  
NWAYEN  
30  
Ipu/O  
Link  
Low  
ON  
Activity  
Toggle  
Blinking  
LED Mode = [01]  
Link  
Pin State  
High  
LED Definition  
No link  
Link  
OFF  
ON  
Low  
LED Mode = [10], [11] Reserved  
LED Output: Programmable LED1 Output.  
Config Mode: Latched as Speed (Register 0h, Bit [13]) at  
the de-assertion of reset.  
See the Strap-in Options – KSZ8081RNB section for  
details.  
The LED1 pin is programmable using Register 1Fh bits  
[5:4], and is defined as follows:  
LED Mode = [00]  
Speed  
Pin State  
High  
LED Definition  
31  
LED1/ SPEED  
Ipu/O  
10Base-T  
100Base-TX  
OFF  
ON  
Low  
LED Mode = [01]  
Activity  
Pin State  
High  
LED Definition  
OFF  
No activity  
Activity  
Toggle  
Blinking  
LED Mode = [10], [11] Reserved  
Chip Reset (active low).  
Ground.  
32  
PADDLE  
Note 2-1  
RST#  
GND  
Ipu  
GND  
P = Power supply. GND = Ground. I = Input. O = Output. I/O = Bi-directional. Ipu = Input with internal  
pull-up (see Electrical Characteristics for value). Ipu/O = Input with internal pull-up (see Electrical  
Characteristics for value) during power-up/reset; output pin otherwise. Ipd/O = Input with internal pull-  
down (see Electrical Characteristics for value) during power-up/reset; output pin otherwise. Ipu/Opu  
DS00002202A-page 12  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
= Input with internal pull-up (see Electrical Characteristics for value) and output with internal pull-up  
(see Electrical Characteristics for value). NC = Pin is not bonded to the die.  
Note 2-2  
Note 2-3  
RMII RX Mode: The RXD[1:0] bits are synchronous with the 50 MHz RMII Reference Clock. For each  
clock period in which CRS_DV is asserted, two bits of recovered data are sent by the PHY to the  
MAC.  
RMII TX Mode: The TXD[1:0] bits are synchronous with the 50MHz RMII Reference Clock. For each  
clock period in which TXEN is asserted, two bits of data are received by the PHY from the MAC.  
2016 Microchip Technology Inc.  
DS00002202A-page 13  
KSZ8081MNX/RNB  
STRAP-IN OPTIONS – KSZ8081RNB  
The strap-in pins are latched at the de-assertion of reset. In some systems, the MAC RMII receive input pins may drive  
high/low during power-up or reset, and consequently cause the PHY strap-in pins on the RMII signals to be latched to  
unintended high/low states. In this case, external pull-ups (4.7 k) or pull-downs (1.0 k) should be added on these  
PHY strap-in pins to ensure that the intended values are strapped-in correctly.  
TABLE 2-4:  
STRAP-IN OPTIONS  
Type  
Pin  
Number  
Pin Name  
(Note  
2-1)  
Pin Function  
PHYAD[2:0] is latched at de-assertion of reset and is configurable to any value  
from 0 to 7 with PHY Address 1 as the default value.  
PHY Address 0 is assigned by default as the broadcast PHY address, but it can  
be assigned as a unique PHY address after pulling the  
B-CAST_OFF strapping pin high or writing a ‘1’ to Register 16h, Bit [9].  
PHY Address bits [4:3] are set to 00 by default.  
15  
14  
13  
PHYAD2  
PHYAD1  
PHYAD0  
Ipd/O  
Ipd/O  
Ipu/O  
The CONFIG[2:0] strap-in pins are latched at the de-assertion of reset.  
CONFIG[2:0]  
Mode  
18  
29  
28  
CONFIG2  
CONFIG1  
CONFIG0  
Ipd/O  
Ipd/O  
Ipd/O  
001  
RMII  
101  
RMII back-to-back  
Reserved – not used  
000, 010 – 100, 110, 111  
Isolate mode  
Pull-up = Enable  
Pull-down (default) = Disable  
At the de-assertion of reset, this pin value is latched into Register 0h, Bit [10].  
20  
31  
ISO  
Ipd/O  
Ipu/O  
Speed mode  
Pull-up (default) = 100 Mbps  
Pull-down = 10 Mbps  
At the de-assertion of reset, this pin value is latched into Register 0h, Bit [13] as  
the speed select, and also is latched into Register 4h (auto-negotiation adver-  
tisement) as the speed capability support.  
SPEED  
Duplex mode  
Pull-up (default) = Half-duplex  
Pull-down = Full-duplex  
At the de-assertion of reset, this pin value is latched into Register 0h, Bit [8].  
16  
30  
DUPLEX  
NWAYEN  
Ipu/O  
Ipu/O  
Nway auto-negotiation enable  
Pull-up (default) = Enable auto-negotiation  
Pull-down = Disable auto-negotiation  
At the de-assertion of reset, this pin value is latched into Register 0h, Bit [12].  
Broadcast off – for PHY Address 0  
Pull-up = PHY Address 0 is set as an unique PHY address  
Pull-down (default) = PHY Address 0 is set as a broadcast PHY address  
At the de-assertion of reset, this pin value is latched by the chip.  
19  
B-CAST_OFF Ipd/O  
NAND tree mode  
Ipu/  
NAND_Tree#  
Opu  
Pull-up (default) = Disable  
Pull-down = Enable  
21  
At the de-assertion of reset, this pin value is latched by the chip.  
Note 2-1  
Ipu/O = Input with internal pull-up (see Electrical Characteristics for value) during power-up/reset;  
output pin otherwise.  
Ipd/O = Input with internal pull-down (see Electrical Characteristics for value) during power-up/reset;  
output pin otherwise.  
Ipu/Opu = Input with internal pull-up (see Electrical Characteristics for value) and output with internal  
pull-up (see Electrical Characteristics for value).  
DS00002202A-page 14  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
3.0  
3.1  
FUNCTIONAL DESCRIPTION  
10BASE-T/100BASE-TX Transceiver  
The KSZ8081 is an integrated single 3.3V supply Fast Ethernet transceiver. It is fully compliant with the IEEE 802.3  
Specification, and reduces board cost and simplifies board layout by using on-chip termination resistors for the two dif-  
ferential pairs and by integrating the regulator to supply the 1.2V core.  
On the copper media side, the KSZ8081 supports 10BASE-T and 100BASE-TX for transmission and reception of data  
over a standard CAT-5 unshielded twisted pair (UTP) cable, and HP Auto MDI/MDI–X for reliable detection of and cor-  
rection for straight-through and crossover cables.  
On the MAC processor side, the KSZ8081MNX offers the Media Independent Interface (MII) and the KSZ8081RNB  
offers the Reduced Media Independent Interface (RMII) for direct connection with MII and RMII compliant Ethernet MAC  
processors and switches, respectively.  
The MII management bus option gives the MAC processor complete access to the KSZ8081 control and status regis-  
ters. Additionally, an interrupt pin eliminates the need for the processor to poll for PHY status change.  
The KSZ8081MNX/RNB is used to refer to both KSZ8081MNX and KSZ8081RNB versions in this datasheet.  
3.1.1  
100BASE-TX TRANSMIT  
The 100BASE-TX transmit function performs parallel-to-serial conversion, 4B/5B encoding, scrambling, NRZ-to-NRZI  
conversion, and MLT3 encoding and transmission.  
The circuitry starts with a parallel-to-serial conversion, which converts the MII data from the MAC into a 125 MHz serial  
bit stream. The data and control stream is then converted into 4B/5B coding and followed by a scrambler. The serialized  
data is further converted from NRZ-to-NRZI format, and then transmitted in MLT3 current output. The output current is  
set by an external 6.49 kΩ 1% resistor for the 1:1 transformer ratio.  
The output signal has a typical rise/fall time of 4 ns and complies with the ANSI TP-PMD standard regarding amplitude  
balance, overshoot, and timing jitter. The wave-shaped 10BASE-T output is also incorporated into the 100BASE-TX  
transmitter.  
3.1.2  
100BASE-TX RECEIVE  
The 100BASE-TX receiver function performs adaptive equalization, DC restoration, MLT3-to-NRZI conversion, data and  
clock recovery, NRZI-to-NRZ conversion, de-scrambling, 4B/5B decoding, and serial-to-parallel conversion.  
The receiving side starts with the equalization filter to compensate for inter-symbol interference (ISI) over the twisted  
pair cable. Because the amplitude loss and phase distortion is a function of the cable length, the equalizer must adjust  
its characteristics to optimize performance. In this design, the variable equalizer makes an initial estimation based on  
comparisons of incoming signal strength against some known cable characteristics, then tunes itself for optimization.  
This is an ongoing process and self-adjusts against environmental changes such as temperature variations.  
Next, the equalized signal goes through a DC-restoration and data-conversion block. The DC-restoration circuit com-  
pensates for the effect of baseline wander and improves the dynamic range. The differential data-conversion circuit con-  
verts MLT3 format back to NRZI. The slicing threshold is also adaptive.  
The clock-recovery circuit extracts the 125 MHz clock from the edges of the NRZI signal. This recovered clock is then  
used to convert the NRZI signal to NRZ format. This signal is sent through the de-scrambler, then the 4B/5B decoder.  
Finally, the NRZ serial data is converted to MII format and provided as the input data to the MAC.  
3.1.3  
SCRAMBLER/DE-SCRAMBLER (100BASE-TX ONLY)  
The scrambler spreads the power spectrum of the transmitted signal to reduce electromagnetic interference (EMI) and  
baseline wander. The de-scrambler recovers the scrambled signal.  
3.1.4  
10BASE-T TRANSMIT  
The 10BASE-T drivers are incorporated with the 100BASE-TX drivers to allow for transmission using the same mag-  
netic. The drivers perform internal wave shaping and pre-emphasis, and output 10BASE-T signals with a typical ampli-  
tude of 2.5V peak. The 10BASE-T signals have harmonic contents that are at least 27 dB below the fundamental  
frequency when driven by an all-ones Manchester-encoded signal.  
2016 Microchip Technology Inc.  
DS00002202A-page 15  
KSZ8081MNX/RNB  
3.1.5  
10BASE-T RECEIVE  
On the receive side, input buffer and level detecting squelch circuits are used. A differential input receiver circuit and a  
phase-locked loop (PLL) performs the decoding function. The Manchester-encoded data stream is separated into clock  
signal and NRZ data. A squelch circuit rejects signals with levels less than 400 mV, or with short pulse widths, to prevent  
noise at the RXP and RXM inputs from falsely triggering the decoder. When the input exceeds the squelch limit, the PLL  
locks onto the incoming signal and the KSZ8081MNX/RNB decodes a data frame. The receive clock is kept active  
during idle periods between data receptions.  
3.1.6  
SQE AND JABBER FUNCTION (10BASE-T ONLY)  
In 10BASE-T operation, a short pulse is put out on the COL pin after each frame is transmitted. This SQE test is needed  
to test the 10BASE-T transmit/receive path. If transmit enable (TXEN) is high for more than 20 ms (jabbering), the  
10BASE-T transmitter is disabled and COL is asserted high. If TXEN is then driven low for more than 250 ms, the  
10BASE-T transmitter is re-enabled and COL is de-asserted (returns to low).  
3.1.7  
PLL CLOCK SYNTHESIZER  
The KSZ8081MNX/RNB generates all internal clocks and all external clocks for system timing from an external 25 MHz  
crystal, oscillator, or reference clock. For the KSZ8081RNB in RMII 50 MHz clock mode, these clocks are generated  
from an external 50 MHz oscillator or system clock.  
3.1.8  
AUTO-NEGOTIATION  
The KSZ8081MNX/RNB conforms to the auto-negotiation protocol, defined in Clause 28 of the IEEE 802.3 Specification.  
Auto-negotiation allows unshielded twisted pair (UTP) link partners to select the highest common mode of operation.  
During auto-negotiation, link partners advertise capabilities across the UTP link to each other and then compare their  
own capabilities with those they received from their link partners. The highest speed and duplex setting that is common  
to the two link partners is selected as the mode of operation.  
The following list shows the speed and duplex operation mode from highest to lowest priority.  
• Priority 1: 100BASE-TX, full–duplex  
• Priority 2: 100BASE-TX, half–duplex  
• Priority 3: 10BASE-T, full–duplex  
• Priority 4: 10BASE-T, half–duplex  
If auto-negotiation is not supported or the KSZ8081MNX/RNB link partner is forced to bypass auto-negotiation, then the  
KSZ8081MNX/RNB sets its operating mode by observing the signal at its receiver. This is known as parallel detection,  
which allows the KSZ8081MNX/RNB to establish a link by listening for a fixed signal protocol in the absence of the auto-  
negotiation advertisement protocol.  
Auto-negotiation is enabled by either hardware pin strapping (NWAYEN, Pin 42) or software (Register 0h, Bit [12]).  
By default, auto-negotiation is enabled after power-up or hardware reset. After that, auto-negotiation can be enabled or  
disabled by Register 0h, Bit [12]. If auto-negotiation is disabled, the speed is set by Register 0h, Bit [13], and the duplex  
is set by Register 0h, Bit [8].  
The auto-negotiation link-up process is shown in Figure 3-1.  
DS00002202A-page 16  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
FIGURE 3-1:  
AUTO-NEGOTIATION FLOW CHART  
START AUTO-NEGOTIATION  
PARALLEL  
OPERATION  
FORCE LINK SETTING  
YES  
NO  
ATTEMPT AUTO-  
NEGOTIATION  
LISTEN FOR 100BASE-TX  
IDLES  
LISTEN FOR 10BASE-T  
LINK PULSES  
BYPASS AUTO-NEGOTIATION  
AND SET LINK MODE  
NO  
JOIN FLOW  
LINK MODE SET?  
YES  
LINK MODE SET  
3.2  
MII Interface (KSZ8081MNX Only)  
The Media Independent Interface (MII) is compliant with the IEEE 802.3 Specification. It provides a common interface  
between MII PHYs and MACs, and has the following key characteristics:  
• Pin count is 15 pins (6 pins for data transmission, 7 pins for data reception, and 2 pins for carrier and collision  
indication).  
• 10 Mbps and 100 Mbps data rates are supported at both half- and full-duplex.  
• Data transmission and reception are independent and belong to separate signal groups.  
• Transmit data and receive data are each 4 bits wide, a nibble.  
By default, the KSZ8081MNX is configured to MII mode after it is powered up or hardware reset with the following:  
A 25 MHz crystal connected to XI, XO (pins 9, 8), or an external 25 MHz clock source (oscillator) connected to XI.  
The CONFIG[2:0] strapping pins (pins 18, 29, 28) set to 000 (default setting).  
2016 Microchip Technology Inc.  
DS00002202A-page 17  
KSZ8081MNX/RNB  
3.2.1  
MII SIGNAL DEFINITION  
Table 3-1 describes the MII signals. Refer to Clause 22 of the IEEE 802.3 Specification for detailed information.  
TABLE 3-1:  
MII SIGNAL DEFINITION  
Direction  
(with respect to PHY,  
Direction  
(with respect to MAC)  
MII Signal Name  
Description  
KSZ8081MNX  
signal)  
Transmit Clock  
(2.5 MHz for 10 Mbps; 25 MHz for 100 Mbps)  
TXC  
Output  
Input  
TXEN  
Input  
Input  
Output  
Output  
Transmit Enable  
TXD[3:0]  
Transmit Data[3:0]  
Receive Clock  
(2.5 MHz for 10 Mbps; 25 MHz for 100 Mbps)  
RXC  
Output  
Input  
RXDV  
RXD[3:0]  
RXER  
CRS  
Output  
Output  
Output  
Output  
Output  
Input  
Input  
Receive Data Valid  
Receive Data[3:0]  
Input, or (not required) Receive Error  
Input  
Input  
Carrier Sense  
COL  
Collision Detection  
3.2.2  
TRANSMIT CLOCK (TXC)  
TXC is sourced by the PHY. It is a continuous clock that provides the timing reference for TXEN and TXD[3:0]. TXC is  
2.5 MHz for 10 Mbps operation and 25 MHz for 100 Mbps operation.  
3.2.3  
TRANSMIT ENABLE (TXEN)  
TXEN indicates that the MAC is presenting nibbles on TXD[3:0] for transmission. It is asserted synchronously with the  
first nibble of the preamble and remains asserted while all nibbles to be transmitted are presented on the MII. It is  
negated before the first TXC following the final nibble of a frame.  
TXEN transitions synchronously with respect to TXC.  
3.2.4  
TRANSMIT DATA[3:0] (TXD[3:0])  
TXD[3:0] transitions synchronously with respect to TXC. When TXEN is asserted, TXD[3:0] are accepted by the PHY  
for transmission. TXD[3:0] is 00 to indicate idle when TXEN is de-asserted. Values other than 00 on TXD[3:0] while  
TXEN is de-asserted are ignored by the PHY.  
3.2.5  
RECEIVE CLOCK (RXC)  
RXC provides the timing reference for RXDV, RXD[3:0], and RXER.  
• In 10 Mbps mode, RXC is recovered from the line while the carrier is active. RXC is derived from the PHY’s refer-  
ence clock when the line is idle or the link is down.  
• In 100 Mbps mode, RXC is continuously recovered from the line. If the link is down, RXC is derived from the  
PHY’s reference clock.  
RXC is 2.5 MHz for 10 Mbps operation and 25 MHz for 100 Mbps operation.  
3.2.6  
RECEIVE DATA VALID (RXDV)  
RXDV is driven by the PHY to indicate that the PHY is presenting recovered and decoded nibbles on RXD[3:0].  
• In 10 Mbps mode, RXDV is asserted with the first nibble of the start-of-frame delimiter (SFD), 5D, and remains  
asserted until the end of the frame.  
• In 100 Mbps mode, RXDV is asserted from the first nibble of the preamble to the last nibble of the frame.  
RXDV transitions synchronously with respect to RXC.  
DS00002202A-page 18  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
3.2.7  
RECEIVE DATA[3:0] (RXD[3:0])  
RXD[3:0] transitions synchronously with respect to RXC. For each clock period in which RXDV is asserted, RXD[3:0]  
transfers a nibble of recovered data from the PHY.  
3.2.8  
RECEIVE ERROR (RXER)  
RXER is asserted for one or more RXC periods to indicate that a symbol error (for example, a coding error that a PHY  
can detect that may otherwise be undetectable by the MAC sub-layer) was detected somewhere in the frame being  
transferred from the PHY.  
RXER transitions synchronously with respect to RXC. While RXDV is de-asserted, RXER has no effect on the MAC.  
3.2.9  
CARRIER SENSE (CRS)  
CRS is asserted and de-asserted as follows:  
• In 10 Mbps mode, CRS assertion is based on the reception of valid preambles. CRS de-assertion is based on the  
reception of an end-of-frame (EOF) marker.  
• In 100 Mbps mode, CRS is asserted when a start-of-stream delimiter or /J/K symbol pair is detected. CRS is de-  
asserted when an end-of-stream delimiter or /T/R symbol pair is detected. Additionally, the PMA layer de-asserts  
CRS if IDLE symbols are received without /T/R.  
3.2.10  
COLLISION (COL)  
COL is asserted in half-duplex mode whenever the transmitter and receiver are simultaneously active on the line. This  
informs the MAC that a collision has occurred during its transmission to the PHY. COL transitions asynchronously with  
respect to TXC and RXC.  
3.2.11  
MII SIGNAL DIAGRAM  
The KSZ8081MNX MII pin connections to the MAC are shown in Figure 3-2.  
FIGURE 3-2:  
KSZ8081MNX MII INTERFACE  
TXC  
TX_EN  
TXC  
TX_EN  
TXD[3:0]  
TXD[3:0]  
RXC  
RXC  
RXDV  
RXDV  
RXD[3:0]  
RXER  
RXD[3:0]  
RXER  
CRS  
COL  
CRS  
COL  
2016 Microchip Technology Inc.  
DS00002202A-page 19  
KSZ8081MNX/RNB  
3.3  
RMII Data Interface (KSZ8081RNB Only)  
The Reduced Media Independent Interface (RMII) specifies a low pin count Media Independent Interface (MII). It pro-  
vides a common interface between physical layer and MAC layer devices, and has the following key characteristics:  
• Pin count is 8 pins (3 pins for data transmission, 4 pins for data reception, and 1 pin for the 50 MHz reference  
clock).  
• 10 Mbps and 100 Mbps data rates are supported at both half- and full-duplex.  
• Data transmission and reception are independent and belong to separate signal groups.  
• Transmit data and receive data are each 2 bits wide, a dibit.  
3.3.1  
RMII – 25 MHZ CLOCK MODE  
The KSZ8081RNB is configured to RMII – 25 MHz clock mode after it is powered up or hardware reset with the following:  
• A 25 MHz crystal connected to XI, XO (pins 9, 8), or an external 25 MHz clock source (oscillator) connected to XI.  
• The CONFIG[2:0] strapping pins (pins 18, 29, 28) set to 001.  
• Register 1Fh, Bit [7] is set to 0 (default value) to select 25 MHz clock mode.  
3.3.2  
RMII – 50 MHZ CLOCK MODE  
The KSZ8081RNB is configured to RMII – 50 MHz clock mode after it is powered up or hardware reset with the following:  
• An external 50 MHz clock source (oscillator) connected to XI (Pin 9).  
• The CONFIG[2:0] strapping pins (pins 18, 29, 28) set to 001.  
• Register 1Fh, Bit [7] is set to 1 to select 50 MHz clock mode.  
3.3.3  
RMII SIGNAL DEFINITION  
Table 3-2 describes the RMII signals. Refer to RMII Specification v1.2 for detailed information.  
TABLE 3-2:  
RMII SIGNAL DEFINITION  
Direction  
Direction  
(with respect to MAC)  
MII Signal Name  
(with respect to PHY,  
KSZ8081MNX signal)  
Description  
Transmit Clock  
TXC  
Output  
Input  
(2.5 MHz for 10 Mbps;  
25 MHz for 100 Mbps)  
TXEN  
Input  
Input  
Output  
Output  
Transmit Enable  
TXD[3:0]  
Transmit Data[3:0]  
Receive Clock  
RXC  
Output  
Input  
(2.5 MHz for 10 Mbps;  
25 MHz for 100 Mbps)  
RXDV  
Output  
Output  
Input  
Input  
Receive Data Valid  
Receive Data[3:0]  
RXD[3:0]  
3.3.4  
REFERENCE CLOCK (REF_CLK)  
REF_CLK is a continuous 50 MHz clock that provides the timing reference for TXEN, TXD[1:0], CRS_DV, RXD[1:0],  
and RX_ER.  
For 25 MHz clock mode, the KSZ8081RNB generates and outputs the 50 MHz RMII REF_CLK to the MAC at REF_CLK  
(Pin 19).  
For 50 MHz clock mode, the KSZ8081RNB takes in the 50 MHz RMII REF_CLK from the MAC or system board at XI  
(Pin 9) and leaves the REF_CLK (Pin 19) as a no connect.  
DS00002202A-page 20  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
3.3.5  
TRANSMIT ENABLE (TXEN)  
TXEN indicates that the MAC is presenting dibits on TXD[1:0] for transmission. It is asserted synchronously with the first  
dibit of the preamble and remains asserted while all dibits to be transmitted are presented on the RMII. It is negated  
before the first REF_CLK following the final dibit of a frame.  
TXEN transitions synchronously with respect to REF_CLK.  
3.3.6  
TRANSMIT DATA[1:0] (TXD[1:0])  
TXD[1:0] transitions synchronously with respect to REF_CLK. When TXEN is asserted, the PHY accepts TXD[1:0] for  
transmission.  
TXD[1:0] is 00 to indicate idle when TXEN is de-asserted. The PHY ignores values other than 00 on TXD[1:0] while  
TXEN is de-asserted.  
3.3.7  
CARRIER SENSE/RECEIVE DATA VALID (CRS_DV)  
The PHY asserts CRS_DV when the receive medium is non-idle. It is asserted asynchronously when a carrier is  
detected. This happens when squelch is passed in 10 Mbps mode, and when two non-contiguous 0s in 10 bits are  
detected in 100 Mbps mode. Loss of carrier results in the de-assertion of CRS_DV.  
While carrier detection criteria are met, CRS_DV remains asserted continuously from the first recovered dibit of the  
frame through the final recovered dibit. It is negated before the first REF_CLK that follows the final dibit. The data on  
RXD[1:0] is considered valid after CRS_DV is asserted. However, because the assertion of CRS_DV is asynchronous  
relative to REF_CLK, the data on RXD[1:0] is 00 until receive signals are properly decoded.  
3.3.8  
RECEIVE DATA[1:0] (RXD[1:0])  
RXD[1:0] transitions synchronously with respect to REF_CLK. For each clock period in which CRS_DV is asserted,  
RXD[1:0] transfers two bits of recovered data from the PHY.  
RXD[1:0] is 00 to indicate idle when CRS_DV is de-asserted. The MAC ignores values other than 00 on RXD[1:0] while  
CRS_DV is de-asserted.  
3.3.9  
RECEIVE ERROR (RXER)  
RXER is asserted for one or more REF_CLK periods to indicate that a symbol error (for example, a coding error that a  
PHY can detect that may otherwise be undetectable by the MAC sub-layer) was detected somewhere in the frame being  
transferred from the PHY.  
RXER transitions synchronously with respect to REF_CLK. . While CRS_DV is de-asserted, RXER has no effect on the  
MAC.  
3.3.10  
COLLISION DETECTION (COL)  
The MAC regenerates the COL signal of the MII from TXEN and CRS_DV.  
3.3.11  
RMII SIGNAL DIAGRAM  
The KSZ8081RNB RMII pin connections to the MAC for 25 MHz clock mode are shown in Figure 3-3. The connections  
for 50 MHz clock mode are shown in Figure 3-4.  
2016 Microchip Technology Inc.  
DS00002202A-page 21  
KSZ8081MNX/RNB  
FIGURE 3-3:  
KSZ8081RNB RMII INTERFACE (25 MHZ CLOCK MODE)  
RMII MAC  
KSZ8081RNB  
CRS_DV  
RXD[1:0]  
RXER  
CRS_DV  
RXD[1:0]  
RX_ER  
TXEN  
TX_EN  
TXD[1:0]  
TXD[1:0]  
REF_CLK  
REF_CLK  
XI  
XO  
25MHz  
XTAL  
22pF  
22pF  
FIGURE 3-4:  
KSZ8081RNB RMII INTERFACE (50 MHZ CLOCK MODE)  
RMII MAC  
KSZ8081RNB  
CRS_DV  
RXD[1:0]  
RXER  
CRS_DV  
RXD[1:0]  
RX_ER  
TXEN  
TX_EN  
TXD[1:0]  
TXD[1:0]  
REF_CLK  
XI  
50MHz  
OSC  
DS00002202A-page 22  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
3.4  
Back-to-Back Mode – 100 Mbps Copper Repeater  
Two KSZ8081MNX/RNB devices can be connected back-to-back to form a 100BASE-TX copper repeater.  
FIGURE 3-5:  
KSZ8081MNX/RNB TO KSZ8081MNX/RNB BACK-TO-BACK COPPER  
REPEATER  
RxD  
RXP/RXM  
TXP/TXM  
KSZ8081MNX/RNB  
(COPPER MODE)  
TxD  
25MHz/  
50MHz  
XI  
OSC  
XI  
KSZ8081MNX/RNB  
(COPPER MODE)  
TXP/TXM  
RXP/RXM  
TxD  
RxD  
3.4.1  
MII BACK-TO-BACK MODE (KSZ8081MNX ONLY)  
In MII back-to-back mode, a KSZ8081MNX interfaces with another KSZ8081MNX to provide a complete 100 Mbps  
copper repeater solution.  
The KSZ8081MNX devices are configured to MII back-to-back mode after power-up or reset with the following:  
• Strapping pin CONFIG[2:0] (Pins 18, 29, 28) set to 110  
• A common 25 MHz reference clock connected to XI (Pin 9) of both KSZ8081MNX devices  
• MII signals connected as shown in Table 3-3.  
TABLE 3-3:  
MII SIGNAL CONNECTION FOR MII BACK-TO-BACK MODE (100BASE-TX COPPER  
REPEATER)  
KSZ8081MNX (100BASE-TX copper)  
KSZ8081MNX (100BASE-TX copper)  
[Device 2]  
[Device 1]  
Pin Name  
Pin Number  
Pin Type  
Pin Name  
Pin Number  
Pin Type  
RXDV  
RXD3  
RXD2  
RXD1  
RXD0  
TXEN  
TXD3  
TXD2  
TXD1  
TXD0  
18  
13  
14  
15  
16  
23  
27  
26  
25  
24  
Output  
Output  
Output  
Output  
Output  
Input  
TXEN  
TXD3  
TXD2  
TXD1  
TXD0  
RXDV  
RXD3  
RXD2  
RXD1  
RXD0  
23  
27  
26  
25  
24  
18  
13  
14  
15  
16  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Input  
Input  
Input  
Input  
2016 Microchip Technology Inc.  
DS00002202A-page 23  
KSZ8081MNX/RNB  
3.5  
MII Management (MIIM) Interface  
The KSZ8081MNX/RNB supports the IEEE 802.3 MII management interface, also known as the Management Data  
Input/Output (MDIO) interface. This interface allows an upper-layer device, such as a MAC processor, to monitor and  
control the state of the KSZ8081MNX/RNB. An external device with MIIM capability is used to read the PHY status and/  
or configure the PHY settings. More details about the MIIM interface can be found in Clause 22.2.4 of the IEEE 802.3  
Specification.  
The MIIM interface consists of the following:  
• A physical connection that incorporates the clock line (MDC) and the data line (MDIO).  
• A specific protocol that operates across the physical connection mentioned earlier, which allows the external  
controller to communicate with one or more PHY devices.  
• A set of 16-bit MDIO registers. Registers [0:8] are standard registers, and their functions are defined in the IEEE  
802.3 Specification. The additional registers are provided for expanded functionality. See the “Register Map”  
section for details.  
As the default, the KSZ8081MNX/RNB supports unique PHY addresses 1 to 7, and broadcast PHY address 0. The latter  
is defined in the IEEE 802.3 Specification, and can be used to read/write to a single KSZ8081MNX/RNB device, or write  
to multiple KSZ8081MNX/RNB devices simultaneously.  
PHY address 0 can optionally be disabled as the broadcast address by either hardware pin strapping (B-CAST_OFF,  
Pin 19) or software (Register 16h, Bit [9]), and assigned as a unique PHY address.  
The PHYAD[2:0] strapping pins are used to assign a unique PHY address between 0 and 7 to each KSZ8081MNX/RNB  
device.  
The MIIM interface can operates up to a maximum clock speed of 10 MHz MAC clock.  
Table 3-4 shows the MII management frame format for the KSZ8081MNX/RNB.  
TABLE 3-4:  
MII MANAGEMENT FRAME FORMAT FOR THE KSZ8081MNX/RNB  
Read/  
Write OP  
Code  
PHY  
Address  
Bits [4:0] Bits [4:0]  
REG  
Address TA  
Start of  
Frame  
Data  
Bits [15:0]  
Preamble  
Idle  
Read  
Write  
32 1’s  
32 1’s  
01  
01  
10  
01  
00AAA  
00AAA  
RRRRR  
RRRRR  
Z0 DDDDDDDD_DDDDDDDD  
10 DDDDDDDD_DDDDDDDD  
Z
Z
3.6  
Interrupt (INTRP)  
INTRP (Pin 21) is an optional interrupt signal that is used to inform the external controller that there has been a status  
update to the KSZ8081MNX/RNB PHY register. Bits [15:8] of Register 1Bh are the interrupt control bits to enable and  
disable the conditions for asserting the INTRP signal. Bits [7:0] of Register 1Bh are the interrupt status bits to indicate  
which interrupt conditions have occurred. The interrupt status bits are cleared after reading Register 1Bh.  
Bit [9] of Register 1Fh sets the interrupt level to active high or active low. The default is active low.  
The MII management bus option gives the MAC processor complete access to the KSZ8081MNX/RNB control and sta-  
tus registers. Additionally, an interrupt pin eliminates the need for the processor to poll the PHY for status change.  
3.7  
HP Auto MDI/MDI-X  
HP Auto MDI/MDI-X configuration eliminates the need to decide whether to use a straight cable or a crossover cable  
between the KSZ8081MNX/RNB and its link partner. This feature allows the KSZ8081MNX/RNB to use either type of  
cable to connect with a link partner that is in either MDI or MDI-X mode. The auto-sense function detects transmit and  
receive pairs from the link partner and assigns transmit and receive pairs to the KSZ8081MNX/RNB accordingly.  
HP Auto MDI/MDI-X is enabled by default. It is disabled by writing a ‘1’ to Register 1Fh, Bit [13]. MDI and MDI-X mode  
is selected by Register 1Fh, Bit [14] if HP Auto MDI/MDI-X is disabled.  
An isolation transformer with symmetrical transmit and receive data paths is recommended to support Auto MDI/MDI-X.  
Table 3-5 shows how the IEEE 802.3 Standard defines MDI and MDI-X.  
DS00002202A-page 24  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
TABLE 3-5:  
MDI/MDI-X PIN DEFINITION  
MDI  
MDI-X  
RJ-45 Pin  
Signal  
RJ-45 Pin  
Signal  
1
2
3
6
TX+  
TX–  
RX+  
RX–  
1
2
3
6
RX+  
RX–  
TX+  
TX–  
3.7.1  
STRAIGHT CABLE  
A straight cable connects an MDI device to an MDI-X device, or an MDI-X device to an MDI device. Figure 3-6 shows  
a typical straight cable connection between a NIC card (MDI device) and a switch or hub (MDI-X device).  
FIGURE 3-6:  
TYPICAL STRAIGHT CABLE CONNECTION  
10/100 ETHERNET  
MEDIA DEPENDENT INTERFACE  
10/100 ETHERNET  
MEDIA DEPENDENT INTERFACE  
1
1
TRANSMIT PAIR  
RECEIVE PAIR  
2
2
3
STRAIGHT  
CABLE  
3
4
4
RECEIVE PAIR  
5
TRANSMIT PAIR  
5
6
7
8
6
7
8
MODULAR CONNECTOR  
(RJ-45)  
MODULAR CONNECTOR  
(RJ-45)  
NIC  
HUB  
(REPEATER OR SWITCH)  
3.7.2  
CROSSOVER CABLE  
A crossover cable connects an MDI device to another MDI device, or an MDI-X device to another MDI-X device.  
Figure 3-7 shows a typical crossover cable connection between two switches or hubs (two MDI-X devices).  
FIGURE 3-7:  
TYPICAL CROSSOVER CABLE CONNECTION  
10/100 ETHERNET  
MEDIA DEPENDENT INTERFACE  
10/100 ETHERNET  
MEDIA DEPENDENT INTERFACE  
1
1
CROSSOVER  
CABLE  
RECEIVE PAIR  
2
RECEIVE PAIR  
2
3
3
4
4
TRANSMIT PAIR  
5
TRANSMIT PAIR  
5
6
7
8
6
7
8
MODULAR CONNECTOR  
MODULAR CONNECTOR  
(RJ-45)  
HUB  
(RJ-45)  
HUB  
(REPEATER OR SWITCH)  
(REPEATER OR SWITCH)  
2016 Microchip Technology Inc.  
DS00002202A-page 25  
KSZ8081MNX/RNB  
3.8  
Loopback Mode  
The KSZ8081MNX/RNB supports the following loopback operations to verify analog and/or digital data paths.  
• Local (digital) loopback  
• Remote (analog) loopback  
3.8.1  
LOCAL (DIGITAL) LOOPBACK  
This loopback mode checks the MII/RMII transmit and receive data paths between the KSZ8081MNX/RNB and the  
external MAC, and is supported for both speeds (10 Mbps/100 Mbps) at full-duplex.  
The loopback data path is shown in Figure 3-8.  
1. The MII/RMII MAC transmits frames to the KSZ8081MNX/RNB.  
2. Frames are wrapped around inside the KSZ8081MNX/RNB.  
3. The KSZ8081MNX/RNB transmits frames back to the MII/RMII MAC.  
4. Except the frames back to the RMII MAC, the transmit frames also go out from the copper port.  
FIGURE 3-8:  
LOCAL (DIGITAL) LOOPBACK  
KSZ8081MNX/RNB  
AFE  
PCS  
MII/  
RMII  
MII/RMII  
MAC  
(ANALOG)  
(DIGITAL)  
The following programming action and register settings are used for local loopback mode.  
For 10 Mbps/100 Mbps loopback,  
•Set Register 0h,  
Bit [14] = 1  
Bit [13] = 0/1  
Bit [12] = 0  
Bit [8] = 1  
// Enable local loopback mode  
// Select 10 Mbps/100 Mbps speed  
// Disable auto-negotiation  
// Select full-duplex mode  
The following steps should be applied if unwanted frames appear outside the copper port in the local feedback.  
1. Set register 1Fh bit [3] to ‘1’ to disable the transmitter.  
2. Run local loopback test as above.  
3. Set register 1Fh bit [3] to ‘0’ to enable the transmitter.  
DS00002202A-page 26  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
3.8.2  
REMOTE (ANALOG) LOOPBACK  
This loopback mode checks the line (differential pairs, transformer, RJ-45 connector, Ethernet cable) transmit and  
receive data paths between the KSZ8081MNX/RNB and its link partner, and is supported for 100BASE-TX full-duplex  
mode only.  
The loopback data path is shown in Figure 3-9.  
1. The Fast Ethernet (100BASE-TX) PHY link partner transmits frames to the KSZ8081MNX/RNB.  
2. Frames are wrapped around inside the KSZ8081MNX/RNB.  
3. The KSZ8081MNX/RNB transmits frames back to the Fast Ethernet (100BASE-TX) PHY link partner.  
FIGURE 3-9:  
REMOTE (ANALOG) LOOPBACK  
KSZ8081MNX/RNB  
AFE  
(ANALOG)  
PCS  
(DIGITAL)  
MII/  
RMII  
RJ-45  
CAT-5  
(UTP)  
100BASE-TX  
LINK PARTNER  
RJ-45  
The following programming steps and register settings are used for remote loopback mode.  
1.Set Register 0h,  
Bits [13] = 1  
Bit [12] = 0  
Bit [8] = 1  
// Select 100 Mbps speed  
// Disable auto-negotiation  
// Select full-duplex mode  
or just auto-negotiate and link up at 100BASE-TX full-duplex mode with the link partner.  
2.Set Register 1Fh,  
Bit [2] = 1  
// Enable remote loopback mode  
2016 Microchip Technology Inc.  
DS00002202A-page 27  
KSZ8081MNX/RNB  
®
3.9  
LinkMD Cable Diagnostic  
The LinkMD function uses time-domain reflectometry (TDR) to analyze the cabling plant for common cabling problems.  
These include open circuits, short circuits, and impedance mismatches.  
LinkMD works by sending a pulse of known amplitude and duration down the MDI or MDI-X pair, then analyzing the  
shape of the reflected signal to determine the type of fault. The time duration for the reflected signal to return provides  
the approximate distance to the cabling fault. The LinkMD function processes this TDR information and presents it as  
a numerical value that can be translated to a cable distance.  
LinkMD is initiated by accessing Register 1Dh, the LinkMD Control/Status register, in conjunction with Register 1Fh, the  
PHY Control 2 register. The latter register is used to disable Auto MDI/MDI-X and to select either MDI or MDI-X as the  
cable differential pair for testing.  
3.9.1  
USAGE  
The following is a sample procedure for using LinkMD with Registers 1Dh and 1Fh:  
1. Disable auto MDI/MDI-X by writing a ‘1’ to Register 1Fh, bit [13].  
2. Start cable diagnostic test by writing a ‘1’ to Register 1Dh, bit [15]. This enable bit is self-clearing.  
3. Wait (poll) for Register 1Dh, bit [15] to return a ‘0’, and indicating cable diagnostic test is completed.  
4. Read cable diagnostic test results in Register 1Dh, bits [14:13]. The results are as follows:  
00 = normal condition (valid test)  
01 = open condition detected in cable (valid test)  
10 = short condition detected in cable (valid test)  
11 = cable diagnostic test failed (invalid test)  
The ‘11’ case, invalid test, occurs when the device is unable to shut down the link partner. In this instance, the test  
is not run, since it would be impossible for the device to determine if the detected signal is a reflection of the signal  
generated or a signal from another source.  
5. Get distance to fault by concatenating Register 1Dh, bits [8:0] and multiplying the result by a constant of 0.38.  
The distance to the cable fault can be determined by the following formula:  
D (distance to cable fault) = 0.38 x (Register 1Dh, bits [8:0])  
D (distance to cable fault) is expressed in meters.  
Concatenated value of Registers 1Dh bits [8:0] should be converted to decimal before multiplying by 0.38.  
The constant (0.38) may be calibrated for different cabling conditions, including cables with a velocity of propaga-  
tion that varies significantly from the norm.  
3.10 NAND Tree Support  
The KSZ8081MNX/RNB provides parametric NAND tree support for fault detection between chip I/Os and board. The  
NAND tree is a chain of nested NAND gates in which each KSZ8081MNX/RNB digital I/O (NAND tree input) pin is an  
input to one NAND gate along the chain. At the end of the chain, the TXD1 pin provides the output for the nested NAND  
gates.  
The NAND tree test process includes:  
• Enabling NAND tree mode  
• Pulling all NAND tree input pins high  
• Driving each NAND tree input pin low, sequentially, according to the NAND tree pin order  
• Checking the NAND tree output to make sure there is a toggle high-to-low or low-to-high for each NAND tree input  
driven low  
Table 3-6 and Table 3-7 list the NAND tree pin orders for KSZ8081MNX and KSZ8081RNB, respectively.  
DS00002202A-page 28  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
TABLE 3-6:  
NAND TREE TEST PIN ORDER FOR KSZ8081MNX  
Pin Number  
Pin Name  
NAND Tree Description  
11  
12  
15  
16  
18  
19  
21  
23  
30  
24  
25  
MDIO  
MDC  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
RXD1  
RXD0  
CRS_DV  
REF_CLK  
INTRP  
TXEN  
LED0  
TXD0  
TXD1  
Note 3-1  
KS8081MNX supports partial NAND tree test pins. Table 3-6 lists partial NAND tree test pins. If full  
NAND tree testing is required, please use KSZ8091MNX device that supports all the required pins.  
TABLE 3-7:  
NAND TREE TEST PIN ORDER FOR KSZ8081RNB  
Pin Number  
Pin Name  
NAND Tree Description  
11  
12  
15  
16  
18  
19  
21  
23  
31  
30  
24  
25  
MDIO  
MDC  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
RXD1  
RXD0  
CRS_DV  
REF_CLK  
INTRP  
TXEN  
LED1  
LED0  
TXD0  
TXD1  
3.10.1  
NAND TREE I/O TESTING  
Use the following procedure to check for faults on the KSZ8081MNX/RNB digital I/O pin connections to the board:  
1. Enable NAND tree mode using either hardware (NAND_Tree#, Pin 21) or software (Register 16h, Bit [5]).  
2. Use board logic to drive all KSZ8081MNX/RNB NAND tree input pins high.  
3. Use board logic to drive each NAND tree input pin, in KSZ8081MNX/RNB NAND tree pin order, as follows:  
a) Toggle the first pin (MDIO) from high to low, and verify that the TXD1 pin switches from high to low to indicate  
that the first pin is connected properly.  
b) Leave the first pin (MDIO) low.  
c) Toggle the second pin (MDC) from high to low, and verify that the TXD1 pin switches from low to high to  
indicate that the second pin is connected properly.  
d) eave the first pin (MDIO) and the second pin (MDC) low.  
e) Continue with this sequence until all KSZ8081MNX/RNB NAND tree input pins have been toggled.  
2016 Microchip Technology Inc.  
DS00002202A-page 29  
KSZ8081MNX/RNB  
Each KSZ8081MNX/RNB NAND tree input pin must cause the TXD1 output pin to toggle high-to-low or low-to-high to  
indicate a good connection. If the TXD1 pin fails to toggle when the KSZ8081MNX/RNB input pin toggles from high to  
low, the input pin has a fault.  
3.11 Power Management  
The KSZ8081MNX/RNB incorporates a number of power-management modes and features that provide methods to  
consume less energy. These are discussed in the following sections.  
3.11.1  
POWER-SAVING MODE  
Power-saving mode is used to reduce the transceiver power consumption when the cable is unplugged. It is enabled  
by writing a ‘1’ to Register 1Fh, Bit [10], and is in effect when auto-negotiation mode is enabled and the cable is discon-  
nected (no link).  
In this mode, the KSZ8081MNX/RNB shuts down all transceiver blocks, except for the transmitter, energy detect, and  
PLL circuits.  
By default, power-saving mode is disabled after power-up.  
3.11.2  
ENERGY-DETECT POWER-DOWN MODE  
Energy-detect power-down (EDPD) mode is used to further reduce transceiver power consumption when the cable is  
unplugged. It is enabled by writing a ‘0’ to Register 18h, Bit [11], and is in effect when auto-negotiation mode is enabled  
and the cable is disconnected (no link).  
EDPD mode works with the PLL off (set by writing a ‘1’ to Register 10h, Bit [4] to automatically turn the PLL off in EDPD  
mode) to turn off all KSZ8081MNX/RNB transceiver blocks except the transmitter and energy-detect circuits.  
Power can be reduced further by extending the time interval between transmissions of link pulses to check for the pres-  
ence of a link partner. The periodic transmission of link pulses is needed to ensure the KSZ8081MNX/RNB and its link  
partner, when operating in the same low-power state and with Auto MDI/MDI-X disabled, can wake up when the cable  
is connected between them.  
By default, energy-detect power-down mode is disabled after power-up.  
3.11.3  
POWER-DOWN MODE  
Power-down mode is used to power down the KSZ8081MNX/RNB device when it is not in use after power-up. It is  
enabled by writing a ‘1’ to Register 0h, Bit [11].  
In this mode, the KSZ8081MNX/RNB disables all internal functions except the MII management interface. The  
KSZ8081MNX/RNB exits (disables) power-down mode after Register 0h, Bit [11] is set back to ‘0’.  
3.11.4  
SLOW-OSCILLATOR MODE  
Slow-oscillator mode is used to disconnect the input reference crystal/clock on XI (Pin 8) and select the on-chip slow  
oscillator when the KSZ8081MNX/RNB device is not in use after power-up. It is enabled by writing a ‘1’ to Register 11h,  
Bit [5].  
Slow-oscillator mode works in conjunction with power-down mode to put the KSZ8081MNX/RNB device in the lowest  
power state, with all internal functions disabled except the MII management interface. To properly exit this mode and  
return to normal PHY operation, use the following programming sequence:  
1. Disable slow-oscillator mode by writing a ‘0’ to Register 11h, Bit [5].  
2. Disable power-down mode by writing a ‘0’ to Register 0h, Bit [11].  
3. Initiate software reset by writing a ‘1’ to Register 0h, Bit [15].  
DS00002202A-page 30  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
3.12 Reference Circuit for Power and Ground Connections  
The KSZ8081MNX/RNB is a single 3.3V supply device with a built-in regulator to supply the 1.2V core. The power and  
ground connections are shown in Figure 3-10 and Table 3-8 for 3.3V VDDIO.  
FIGURE 3-10:  
KSZ8081MNX/RNB POWER AND GROUND CONNECTIONS  
2
2.2μF  
0.1μF  
VDD_1.2  
FERRITE  
BEAD  
3
VDDA_3.3  
22μF  
0.1μF  
KSZ8081MNX/RNB  
3.3V  
VDDIO  
17  
22μF  
0.1μF  
GND  
PADDLE  
1
TABLE 3-8:  
KSZ8081MNX/RNB POWER PIN DESCRIPTIONS  
Power Pin  
Pin Number  
Description  
Decouple with 2.2 μF and 0.1 μF capacitors to ground.  
VDD_1.2  
2
Connect to board’s 3.3V supply through a ferrite bead.  
Decouple with 22 μF and 0.1 μF capacitors to ground.  
VDDA_3.3  
VDDIO  
3
Connect to board’s 3.3V supply for 3.3V VDDIO.  
Decouple with 22 μF and 0.1 μF capacitors to ground.  
17  
2016 Microchip Technology Inc.  
DS00002202A-page 31  
KSZ8081MNX/RNB  
3.13 Typical Current/Power Consumption  
Table 3-9, Table 3-10 ,and Table 3-11 show typical values for current consumption by the transceiver (VDDA_3.3) and  
digital I/O (VDDIO) power pins and typical values for power consumption by the KSZ8081MNX/RNB device for the indi-  
cated nominal operating voltages. These current and power consumption values include the transmit driver current and  
on-chip regulator current for the 1.2V core.  
3.13.1  
TRANSCEIVER (3.3V), DIGITAL I/OS (3.3V)  
TABLE 3-9:  
TYPICAL CURRENT/POWER CONSUMPTION (VDDA_3.3 = 3.3V, VDDIO = 3.3V)  
3.3V Transceiver 3.3V Digital I/Os  
Total Chip Power  
(VDDA_3.3)  
(VDDIO)  
Condition  
mA  
mA  
mW  
100BASE-TX Link-up (no traffic)  
34  
34  
15  
27  
15  
11  
12  
12  
10  
10  
10  
10  
152  
142  
74.5  
114  
100BASE-TX Full-duplex @ 100% utilization  
10BASE-T Link-up (no traffic)  
10BASE-T Full-duplex @ 100% utilization  
Power-saving mode (Reg. 1Fh, Bit [10] = 1)  
EDPD mode (Reg. 18h, Bit [11] = 0)  
74.5  
61.3  
EDPD mode (Reg. 18h, Bit [11] = 0) and  
PLL off (Reg. 10h, Bit [4] = 1)  
3.55  
2.29  
1.15  
1.35  
1.34  
0.29  
15.1  
10.9  
4.52  
Software power-down mode (Reg. 0h, Bit [11] =1)  
Software power-down mode (Reg. 0h, Bit [11] =1) and  
slow-oscillator mode (Reg. 11h, Bit [5] =1)  
3.13.2  
TRANSCEIVER (3.3V), DIGITAL I/OS (2.5V)  
TABLE 3-10: TYPICAL CURRENT/POWER CONSUMPTION (VDDA_3.3 = 3.3V, VDDIO = 2.5V)  
3.3V Transceiver 3.3V Digital I/Os  
Total Chip Power  
(VDDA_3.3)  
(VDDIO)  
Condition  
mA  
mA  
mW  
100BASE-TX Link-up (no traffic)  
34  
34  
15  
27  
15  
11  
12  
12  
10  
10  
10  
10  
152  
142  
74.5  
114  
100BASE-TX Full-duplex @ 100% utilization  
10BASE-T Link-up (no traffic)  
10BASE-T Full-duplex @ 100% utilization  
Power-saving mode (Reg. 1Fh, Bit [10] = 1)  
EDPD mode (Reg. 18h, Bit [11] = 0)  
74.5  
61.3  
EDPD mode (Reg. 18h, Bit [11] = 0) and  
PLL off (Reg. 10h, Bit [4] = 1)  
3.55  
2.29  
1.15  
1.35  
1.34  
0.29  
15.1  
10.9  
4.52  
Software power-down mode (Reg. 0h, Bit [11] =1)  
Software power-down mode (Reg. 0h, Bit [11] =1) and  
slow-oscillator mode (Reg. 11h, Bit [5] =1)  
DS00002202A-page 32  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
3.13.3  
TRANSCEIVER (3.3V), DIGITAL I/OS (1.8V)  
TABLE 3-11: TYPICAL CURRENT/POWER CONSUMPTION (VDDA_3.3 = 3.3V, VDDIO = 1.8V)  
3.3V Transceiver 1.8V Digital I/Os  
Total Chip Power  
(VDDA_3.3)  
(VDDIO)  
Condition  
mA  
mA  
mW  
100BASE-TX Link-up (no traffic)  
34  
34  
15  
27  
15  
11  
11  
12  
132  
134  
65.7  
105  
65.7  
52.5  
100BASE-TX Full-duplex @ 100% utilization  
10BASE-T Link-up (no traffic)  
9.0  
9.0  
9.0  
9.0  
10BASE-T Full-duplex @ 100% utilization  
Power-saving mode (Reg. 1Fh, Bit [10] = 1)  
EDPD mode (Reg. 18h, Bit [11] = 0)  
EDPD mode (Reg. 18h, Bit [11] = 0) and  
PLL off (Reg. 10h, Bit [4] = 1)  
4.05  
2.79  
1.65  
1.21  
1.21  
0.19  
15.5  
11.4  
5.79  
Software power-down mode (Reg. 0h, Bit [11] =1)  
Software power-down mode (Reg. 0h, Bit [11] =1) and  
slow-oscillator mode (Reg. 11h, Bit [5] =1)  
2016 Microchip Technology Inc.  
DS00002202A-page 33  
KSZ8081MNX/RNB  
4.0  
4.1  
REGISTER DESCRIPTIONS  
Register Map  
TABLE 4-1:  
REGISTER MAP  
Register Number  
Description  
(Hex)  
0
1h  
Basic Control Register  
Basic Status  
2h  
PHY Identifier 1  
3h  
PHY Identifier 2  
4h  
Auto-Negotiation Advertisement  
Auto-Negotiation Link Partner Ability  
Auto-Negotiation Expansion  
Auto-Negotiation Next Page  
Link Partner Next Page Ability  
Reserved  
5h  
6h  
7h  
8h  
9h  
10h  
11h  
Digital Reserved Control  
AFE Control 1  
12h – 14h  
15h  
16h  
17h  
18h  
19h – 1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
Reserved  
RXER Counter  
Operation Mode Strap Override  
Operation Mode Strap Status  
Expanded Control  
Reserved  
Interrupt Control/Status  
Reserved  
LinkMD Control/Status  
PHY Control 1  
PHY Control 2  
DS00002202A-page 34  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
4.2  
Register Description  
TABLE 4-2:  
Address  
REGISTER DESCRIPTION  
Name  
Description  
Mode  
Default  
Register 0h – Basic Control  
1 = Software reset  
0 = Normal operation  
0
0
0.15  
Reset  
RW/SC  
RW  
This bit is self-cleared after a ‘1’ is  
written to it.  
1 = Loopback mode  
0 = Normal operation  
1 = 100 Mbps  
0.14  
Loopback  
Set by the SPEED strapping pin.  
See the Strap-In Options –  
KSZ8081MNX section for details.  
0 = 10 Mbps  
0.13  
0.12  
Speed Select  
RW  
RW  
This bit is ignored if auto-  
negotiation is enabled (Register  
0.12 = 1).  
1 = Enable auto-negotiation  
process  
Set by the NWAYEN strapping  
pin.  
See the Strap-In Options –  
KSZ8081MNX section for details.  
Auto-  
Negotiation  
Enable  
0 = Disable auto-negotiation  
process  
If enabled, the auto-negotiation  
result overrides the settings in  
registers 0.13 and 0.8.  
1 = Power-down mode  
0 = Normal operation  
If software reset (Register 0.15) is  
used to exit power-down mode  
(Register 0.11 = 1), two software  
reset writes (Register 0.15 = 1) are  
required. The first write clears  
power-down mode; the second  
write resets the chip and re-latches  
the pin strapping pin values.  
0
0.11  
Power-Down  
RW  
1 = Electrical isolation of PHY from  
MII/RMII  
Set by the ISO strapping pin.  
See the Strap-In Options –  
KSZ8081MNX section for details.  
0.10  
0.9  
Isolate  
RW  
0 = Normal operation  
1 = Restart auto-negotiation  
process  
Restart Auto-  
Negotiation  
0
0 = Normal operation.  
RW/SC  
This bit is self-cleared after a ‘1’ is  
written to it.  
The inverse of the DUPLEX  
strapping pin value.  
See the Strap-In Options –  
KSZ8081MNX section for details.  
1 = Full-duplex  
0 = Half-duplex  
0.8  
Duplex Mode  
RW  
1 = Enable COL test  
0 = Disable COL test  
Reserved  
0
0.7  
Collision Test  
Reserved  
RW  
RO  
000_0000  
0.6:0  
2016 Microchip Technology Inc.  
DS00002202A-page 35  
KSZ8081MNX/RNB  
TABLE 4-2:  
Address  
REGISTER DESCRIPTION (CONTINUED)  
Name  
Description  
Mode  
Default  
1 = Software reset  
0 = Normal operation  
This bit is self-cleared after a ‘1’ is  
written to it.  
0.15  
0.14  
0.13  
Reset  
0
RW/SC  
1 = Loopback mode  
0 = Normal operation  
Loopback  
0
RW  
RW  
1 = 100 Mbps  
0 = 10 Mbps  
This bit is ignored if auto-negotiation  
is enabled (Register 0.12 = 1).  
Set by the SPEED strapping pin.  
See the Strap-In Options –  
KSZ8081MNX section for details.  
Speed Select  
1 = Enable auto-negotiation process  
0 = Disable auto-negotiation process  
Negotiation If enabled, the auto-negotiation  
Set by the NWAYEN strapping  
pin.  
See the Strap-In Options –  
KSZ8081MNX section for details.  
Auto-  
0.12  
0.11  
RW  
RW  
Enable  
Power-Down  
Isolate  
result overrides the settings in regis-  
ters 0.13 and 0.8.  
1 = Power-down mode  
0 = Normal operation  
If software reset (Register 0.15) is  
used to exit power-down mode (Reg-  
ister 0.11 = 1), two software reset  
writes (Register 0.15 = 1) are  
required. The first write clears  
power-down mode; the second write  
resets the chip and re-latches the pin  
strapping pin values.  
0
1 = Electrical isolation of PHY from  
MII/RMII  
0 = Normal operation  
Set by the ISO strapping pin.  
See the Strap-In Options –  
KSZ8081MNX section for details.  
0.10  
0.9  
RW  
1 = Restart auto-negotiation process  
Restart Auto- 0 = Normal operation.  
Negotiation This bit is self-cleared after a ‘1’ is  
written to it.  
0
RW/SC  
The inverse of the DUPLEX  
strapping pin value.  
See the Strap-In Options –  
KSZ8081MNX section for details.  
1 = Full-duplex  
Duplex Mode  
0.8  
RW  
0 = Half-duplex  
1 = Enable COL test  
Collision Test  
0.7  
0
RW  
RO  
0 = Disable COL test  
0.6:0  
Reserved  
Reserved  
000_0000  
Register 1h – Basic Status  
1 = T4 capable  
0 = Not T4 capable  
1.15  
100BASE-T4  
RO  
RO  
0
1
1 = Capable of 100 Mbps full-duplex  
0 = Not capable of 100 Mbps  
full-duplex  
100BASE-TX  
Full-Duplex  
1.14  
1 = Capable of 100 Mbps half-duplex  
0 = Not capable of 100 Mbps  
half-duplex  
100BASE-TX  
Half-Duplex  
1.13  
1.12  
RO  
RO  
1
1
1 = Capable of 10 Mbps full-duplex  
0 = Not capable of 10 Mbps full-  
duplex  
10BASE-T  
Full-Duplex  
DS00002202A-page 36  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
TABLE 4-2:  
Address  
REGISTER DESCRIPTION (CONTINUED)  
Name  
Description  
Mode  
Default  
1 = Capable of 10 Mbps half-duplex  
0 = Not capable of 10 Mbps half-  
duplex  
10BASE-T  
Half-Duplex  
1.11  
RO  
1
1.10:7 Reserved  
Reserved  
RO  
RO  
000_0  
1
1 = Preamble suppression  
0 = Normal preamble  
1.6  
No Preamble  
1 = Auto-negotiation process  
completed  
tion Complete 0 = Auto-negotiation process not  
completed  
Auto-Negotia-  
1.5  
RO  
0
1 = Remote fault  
Remote Fault  
1.4  
1.3  
1.2  
RO/LH  
RO  
0
1
0
0 = No remote fault  
Auto-Negotia- 1 = Can perform auto-negotiation  
tion Ability  
0 = Cannot perform auto-negotiation  
1 = Link is up  
0 = Link is down  
Link Status  
RO/LL  
1 = Jabber detected  
1.1  
Jabber Detect 0 = Jabber not detected (default is  
low)  
RO/LH  
RO  
0
1
Extended  
Capability  
1 = Supports extended capability  
registers  
1.0  
Register 2h – PHY Identifier 1  
Assigned to the 3rd through 18th bits  
PHY ID Num- of the Organizationally Unique Identi-  
2.15:0  
RO  
0022h  
ber  
fier (OUI). KENDIN Communication’s  
OUI is 0010A1 (hex).  
Register 3h – PHY Identifier 2  
Assigned to the 19th through 24th  
PHY ID Num- bits of the Organizationally Unique  
RO  
0001_01  
01_0110  
ber  
Identifier (OUI). KENDIN Communi-  
cation’s OUI is 0010A1 (hex).  
3.15:10  
3.9:4  
Model Number Six-bit manufacturer’s model number  
RO  
RO  
Revision Num- Four-bit manufacturer’s revision  
Rev. A and Rev. A2=0x0.  
Rev. A3=0x1  
3.3:0  
ber  
number  
Register 4h – Auto-Negotiation Advertisement  
1 = Next page capable  
0 = No next page capability  
Note: Recommended to set this bit to  
“0”.  
4.15  
Next Page  
RW  
0
4.14  
4.13  
4.12  
Reserved  
Remote Fault  
Reserved  
Reserved  
RO  
RW  
RO  
0
0
0
1 = Remote fault supported  
0 = No remote fault  
Reserved  
[00] = No pause  
[10] = Asymmetric pause  
[01] = Symmetric pause  
[11] = Asymmetric and symmetric  
pause  
4.11:10  
4.9  
Pause  
RW  
RO  
00  
0
1 = T4 capable  
0 = No T4 capability  
100BASE-T4  
2016 Microchip Technology Inc.  
DS00002202A-page 37  
KSZ8081MNX/RNB  
TABLE 4-2:  
Address  
REGISTER DESCRIPTION (CONTINUED)  
Name  
Description  
Mode  
Default  
1 = 100 Mbps full-duplex capable  
0 = No 100 Mbps full-duplex  
capability  
Set by the SPEED strapping pin.  
See the Strap-In Options –  
KSZ8081MNX section for details.  
100BASE-TX  
Full-Duplex  
4.8  
RW  
1 = 100 Mbps half-duplex capable  
0 = No 100 Mbps half-duplex  
capability  
Set by the SPEED strapping pin.  
See the Strap-In Options –  
KSZ8081MNX section for details.  
100BASE-TX  
Half-Duplex  
4.7  
4.6  
RW  
RW  
10BASE-T  
1 = 10 Mbps full-duplex capable  
Full-Duplex 0 = No 10 Mbps full-duplex capability  
1
1 = 10 Mbps half-duplex capable  
10BASE-T  
4.5  
0 = No 10 Mbps half-duplex  
Half-Duplex  
RW  
RW  
1
capability  
4.4:0  
Selector Field [00001] = IEEE 802.3  
0_0001  
Register 5h – Auto-Negotiation Link Partner Ability  
1 = Next page capable  
0 = No next page capability  
5.15  
Next Page  
RO  
RO  
0
0
1 = Link code word received from  
partner  
5.14  
Acknowledge  
0 = Link code word not yet received  
1 = Remote fault detected  
0 = No remote fault  
5.13  
5.12  
Remote Fault  
Reserved  
RO  
RO  
0
0
Reserved  
[00] = No pause  
[10] = Asymmetric pause  
[01] = Symmetric pause  
[11] = Asymmetric and symmetric  
pause  
5.11:10  
Pause  
RO  
00  
1 = T4 capable  
0 = No T4 capability  
5.9  
5.8  
100BASE-T4  
RO  
RO  
0
0
1 = 100 Mbps full-duplex capable  
0 = No 100 Mbps full-duplex  
capability  
100BASE-TX  
Full-Duplex  
Register 5h – Auto-Negotiation Link Partner Ability  
1 = 100 Mbps half-duplex capable  
0 = No 100 Mbps half-duplex  
capability  
100BASE-TX  
5.7  
5.6  
RO  
RO  
0
0
Half-Duplex  
10BASE-T  
1 = 10 Mbps full-duplex capable  
Full-Duplex 0 = No 10 Mbps full-duplex capability  
1 = 10 Mbps half-duplex capable  
10BASE-T  
5.5  
0 = No 10 Mbps half-duplex  
Half-Duplex  
RO  
RO  
0
capability  
5.4:0  
Selector Field [00001] = IEEE 802.3  
0_0001  
Register 6h – Auto-Negotiation Expansion  
6.15:5  
6.4  
Reserved  
Reserved  
RO  
0000_0000_000  
0
1 = Fault detected by parallel  
Parallel Detec- detection  
RO/LH  
tion Fault  
0 = No fault detected by parallel  
detection  
1 = Link partner has next page  
capability  
0 = Link partner does not have next  
page capability  
Link Partner  
Next Page  
Able  
6.3  
RO  
0
DS00002202A-page 38  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
TABLE 4-2:  
Address  
REGISTER DESCRIPTION (CONTINUED)  
Name  
Description  
Mode  
Default  
1 = Local device has next page  
capability  
0 = Local device does not have next  
page capability  
Next Page  
Able  
6.2  
6.1  
RO  
1
Page  
Received  
1 = New page received  
0 = New page not received yet  
RO/LH  
RO  
0
0
1 = Link partner has auto-negotiation  
capability  
0 = Link partner does not have auto-  
negotiation capability  
Link Partner  
Auto-Negotia-  
tion Able  
6.0  
Register 7h – Auto-Negotiation Next Page  
1 = Additional next pages will follow  
0 = Last page  
7.15  
7.14  
7.13  
Next Page  
RW  
RO  
RW  
0
0
1
Reserved  
Reserved  
1 = Message page  
0 = Unformatted page  
Message  
Page  
1 = Will comply with message  
0 = Cannot comply with message  
Acknowledge  
2
7.12  
7.11  
RW  
RO  
RW  
0
1 = Previous value of the transmitted  
link code word equaled logic 1  
0 = Logic 0  
Toggle  
0
11-bit wide field to encode 2048  
messages  
Message  
Field  
7.10:0  
000_0000_0001  
Register 8h – Link Partner Next Page Ability  
1 = Additional next pages will follow  
0 = Last page  
8.15  
8.14  
8.13  
8.12  
Next Page  
RO  
RO  
RO  
RO  
0
0
0
0
1 = Successful receipt of link word  
0 = No successful receipt of link word  
Acknowledge  
Message  
Page  
1 = Message page  
0 = Unformatted page  
1 = Can act on the information  
0 = Cannot act on the information  
Acknowledge2  
1 = Previous value of transmitted link  
code word equal to logic 0  
0 = Previous value of transmitted link  
code word equal to logic 1  
8.11  
Toggle  
RO  
0
11-bit wide field to encode 2048  
messages  
8.10:0 Message Field  
RO  
RW  
000_0000_0000  
0000_0000_000  
Register 10h – Digital Reserved Control  
10.15:5  
10.4  
Reserved  
PLL Off  
Reserved  
1 = Turn PLL off automatically in  
EDPD mode  
0 = Keep PLL on in EDPD mode.  
See also Register 18h, Bit [11] for  
EDPD mode  
RW  
0
10.3:0  
Reserved  
Reserved  
RW  
RW  
0000  
Register 11h – AFE Control 1  
11.15:6 Reserved Reserved  
0000_0000_00  
2016 Microchip Technology Inc.  
DS00002202A-page 39  
KSZ8081MNX/RNB  
TABLE 4-2:  
Address  
REGISTER DESCRIPTION (CONTINUED)  
Name  
Description  
Mode  
Default  
Slow-oscillator mode is used to  
disconnect the input reference  
crystal/clock on the XI pin and select  
the on-chip slow oscillator when the  
Slow-Oscilla- KSZ8081MNX/RNB device is not in  
11.5  
tor Mode  
Enable  
use after power-up.  
1 = Enable  
RW  
0
0 = Disable  
This bit automatically sets software  
power-down to the analog side when  
enabled.  
11.4:0  
Reserved  
Reserved  
RW  
0_0000  
0000h  
Register 15h – RXER Counter  
RXER  
Counter  
Receive error counter for symbol  
error frames  
15.15:0  
RO/SC  
Register 16h – Operation Mode Strap Override  
0 = Normal operation  
1 = Factory test mode  
If TXC (Pin 22) latches in a pull-up  
value at the de-assertion of reset,  
Factory Mode write a ‘0’ to this bit to clear  
Reserved Factory Mode.  
This bit applies only to  
0
Reserved  
16.15  
RW  
Set by the pull-up/pull-down  
value of TXC (Pin 22).  
KSZ8081MNX.  
16.14:11  
16.10  
Reserved  
Reserved  
Reserved  
RW  
RO  
000_0  
0
Reserved  
1 = Override strap-in for B-  
B-CAST_OFF CAST_OFF  
16.9  
16.8  
RW  
RW  
0
0
Override  
If bit is ‘1’, PHY Address 0 is non-  
broadcast.  
Reserved  
Reserved  
1 = Override strap-in for MII back-to-  
back mode (also set Bit 0 of this reg-  
ister to ‘1’)  
This bit applies only to  
KSZ8081MNX.  
MII B-to-B  
Override  
16.7  
16.6  
RW  
RW  
0
0
1 = Override strap-in for RMII Back-  
to-Back mode (also set Bit 1 of this  
register to ‘1’)  
This bit applies only to  
KSZ8081RNB.  
RMII B-to-B  
Override  
NAND Tree 1 = Override strap-in for NAND tree  
16.5  
RW  
RW  
0
Override  
mode  
16.4:2  
Reserved  
Reserved  
0_00  
1 = Override strap-in for RMII mode  
16.1  
16.0  
RMII Override This bit applies only to  
KSZ8081RNB.  
RW  
RW  
0
1
1 = Override strap-in for MII mode  
MII Override This bit applies only to  
KSZ8081MNX.  
DS00002202A-page 40  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
TABLE 4-2:  
Address  
REGISTER DESCRIPTION (CONTINUED)  
Name  
Description  
Mode  
Default  
Register 17h – Operation Mode Strap Status  
[000] = Strap to PHY Address 0  
[001] = Strap to PHY Address 1  
[010] = Strap to PHY Address 2  
PHYAD[2:0] [011] = Strap to PHY Address 3  
Strap-InStatus [100] = Strap to PHY Address 4  
[101] = Strap to PHY Address 5  
17.15:13  
RO  
[110] = Strap to PHY Address 6  
[111] = Strap to PHY Address 7  
17.12:10  
17.9  
Reserved  
Reserved  
RO  
RO  
RO  
RO  
1 = Strap to B-CAST_OFF  
If bit is ‘1’, PHY Address 0 is non-  
broadcast.  
B-CAST_OFF  
Strap-InStatus  
17.8  
Reserved  
Reserved  
1 = Strap to MII back-to-back mode  
This bit applies only to  
KSZ8081MNX.  
MII B-to-B  
Strap-InStatus  
17.7  
1 = Strap to RMII Back-to-Back  
RMII B-to-B mode  
Strap-InStatus This bit applies only to  
KSZ8081RNB.  
17.6  
RO  
NAND Tree  
17.5  
1 = Strap to NAND tree mode  
Strap-InStatus  
RO  
RO  
17.4:2  
Reserved  
Reserved  
1 = Strap to RMII mode  
This bit applies only to  
KSZ8081RNB.  
RMII Strap-In  
Status  
17.1  
17.0  
RO  
RO  
1 = Strap to MII mode  
This bit applies only to  
KSZ8081MNX.  
MII Strap-In  
Status  
Register 18h – Expanded Control  
18.15:12  
Reserved  
Reserved  
RW  
RW  
0000  
1
Energy-detect power-down mode  
1 = Disable  
0 = Enable  
See also Register 10h, Bit [4] for PLL  
off.  
EDPD  
Disabled  
18.11  
1 = MII output is random latency  
0 = MII output is fixed latency  
For both settings, all bytes of  
received preamble are passed to the  
MII output.  
100BASE-TX  
Latency  
18.10  
18.9:7  
18.6  
RW  
RW  
RW  
0
00_0  
0
This bit applies only to  
KSZ8081MNX.  
Reserved  
Reserved  
1 = Restore received preamble to MII  
output  
0 = Remove all seven bytes of pre-  
amble before sending frame (starting  
with SFD) to MII output  
This bit applies only to  
10BASE-T  
Preamble  
Restore  
KSZ8081MNX,  
2016 Microchip Technology Inc.  
DS00002202A-page 41  
KSZ8081MNX/RNB  
TABLE 4-2:  
Address  
18.5:0  
REGISTER DESCRIPTION (CONTINUED)  
Name  
Description  
Mode  
Default  
Reserved  
Reserved  
RW  
00_0000  
Register 1Bh – Interrupt Control/Status  
Jabber  
Interrupt  
Enable  
1 = Enable jabber interrupt  
0 = Disable jabber interrupt  
1B.15  
1B.14  
RW  
RW  
0
0
Receive Error  
Interrupt  
1 = Enable receive error interrupt  
0 = Disable receive error interrupt  
Enable  
Page  
Received  
Interrupt  
Enable  
1 = Enable page received interrupt  
0 = Disable page received interrupt  
1B.13  
1B.12  
1B.11  
RW  
RW  
RW  
0
0
0
1 = Enable parallel detect fault inter-  
rupt  
0 = Disable parallel detect fault inter-  
rupt  
ParallelDetect  
Fault Interrupt  
Enable  
Link Partner 1 = Enable link partner acknowledge  
Acknowledge interrupt  
Interrupt  
Enable  
0 = Disable link partner acknowledge  
interrupt  
Link-Down  
Interrupt  
Enable  
1= Enable link-down interrupt  
0 = Disable link-down interrupt  
1B.10  
1B.9  
1B.8  
RW  
RW  
RW  
0
0
0
Remote Fault  
Interrupt  
1 = Enable remote fault interrupt  
0 = Disable remote fault interrupt  
Enable  
Link-Up  
Interrupt  
Enable  
1 = Enable link-up interrupt  
0 = Disable link-up interrupt  
Jabber  
Interrupt  
1 = Jabber occurred  
0 = Jabber did not occur  
1B.7  
1B.6  
1B.5  
1B.4  
RO/SC  
RO/SC  
RO/SC  
RO/SC  
0
0
0
0
Receive Error 1 = Receive error occurred  
Interrupt 0 = Receive error did not occur  
Page Receive 1 = Page receive occurred  
Interrupt 0 = Page receive did not occur  
ParallelDetect 1 = Parallel detect fault occurred  
Fault Interrupt 0 = Parallel detect fault did not occur  
1 = Link partner acknowledge  
occurred  
Link Partner  
Acknowledge  
1B.3  
RO/SC  
0
0 = Link partner acknowledge did not  
Interrupt  
occur  
Link-Down  
Interrupt  
1 = Link-down occurred  
0 = Link-down did not occur  
1B.2  
1B.1  
1B.0  
RO/SC  
RO/SC  
RO/SC  
0
0
0
Remote Fault 1 = Remote fault occurred  
Interrupt  
0 = Remote fault did not occur  
Link-Up  
Interrupt  
1 = Link-up occurred  
0 = Link-up did not occur  
DS00002202A-page 42  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
TABLE 4-2:  
Address  
REGISTER DESCRIPTION (CONTINUED)  
Name  
Description  
Mode  
Default  
Register 1Dh – LinkMD Control/Status  
1 = Enable cable diagnostic test.  
After test has completed, this bit is  
self-cleared.  
0 = Indicates cable diagnostic test (if  
enabled) has completed and the sta-  
tus information is valid for read.  
Cable Diag-  
nostic Test  
Enable  
1D.15  
RW/SC  
0
[00] = Normal condition  
[01] = Open condition has been  
Cable Diag- detected in cable  
1D.14:13  
nostic Test  
Result  
[10] = Short condition has been  
RO  
00  
detected in cable  
[11] = Cable diagnostic test has  
failed  
Short Cable 1 = Short cable (<10 meter) has  
1D.12  
1D.11:9  
1D.8:0  
RO  
RW  
RO  
0
Indicator  
been detected by LinkMD  
Reserved  
Reserved  
000  
Cable Fault  
Counter  
Distance to fault  
0_0000_0000  
Register 1Eh – PHY Control 1  
1E.15:1  
0000_00  
0
Reserved  
Reserved  
RO  
RO  
0
Enable  
Pause (Flow  
Control)  
1 = Flow control capable  
1E.9  
0 = No flow control capability  
1 = Link is up  
0
0
1E.8  
Link Status  
RO  
0 = Link is down  
1 = Polarity is reversed  
0 = Polarity is not reversed  
Reserved  
Polarity  
Status  
1E.7  
1E.6  
1E.5  
RO  
RO  
RO  
Reserved  
1 = MDI-X  
MDI/MDI-X  
State  
0 = MDI  
1 = Signal present on receive  
differential pair  
Energy  
Detect  
0
0
1E.4  
1E.3  
RO  
0 = No signal detected on receive  
differential pair  
1 = PHY in isolate mode  
0 = PHY in normal operation  
[000] = Still in auto-negotiation  
[001] = 10BASE-T half-duplex  
[010] = 100BASE-TX half-duplex  
[011] = Reserved  
PHY Isolate  
RW  
Operation  
Mode  
Indication  
000  
1E.2:0  
RO  
[100] = Reserved  
[101] = 10BASE-T full-duplex  
[110] = 100BASE-TX full-duplex  
[111] = Reserved  
2016 Microchip Technology Inc.  
DS00002202A-page 43  
KSZ8081MNX/RNB  
TABLE 4-2:  
Address  
REGISTER DESCRIPTION (CONTINUED)  
Name  
Description  
Mode  
Default  
Register 1Fh – PHY Control 2  
1 = HP Auto MDI/MDI-X mode  
0 = Auto MDI/MDI-X mode  
1F.15  
1F.14  
HP_MDIX  
RW  
1
When Auto MDI/MDI-X is disabled,  
1 = MDI-X mode  
Transmit on RXP,RXM (pins 5, 4)  
andReceive on TXP,TXM (pins 7, 6)  
0 = MDI mode  
MDI/MDI-X  
Select  
RW  
0
Transmit on TXP,TXM (pins 7, 6) and  
Receive on RXP,RXM (pins 5, 4)  
Pair Swap  
Disable  
1 = Disable Auto MDI/MDI-X  
0 = Enable Auto MDI/MDI-X  
1F.13  
1F.12  
RW  
RW  
0
0
Reserved  
Reserved  
1 = Force link pass  
0 = Normal link operation  
1F.11  
Force Link  
This bit bypasses the control logic  
and allows the transmitter to send a  
pattern even if there is no link.  
RW  
0
1 = Enable power saving  
0 = Disable power saving  
1F.10  
1F.9  
1F.8  
Power Saving  
Interrupt Level  
Enable Jabber  
RW  
RW  
RW  
0
0
1
1 = Interrupt pin active high  
0 = Interrupt pin active low  
1 = Enable jabber counter  
0 = Disable jabber counter  
1 = RMII 50 MHz clock mode; clock  
input to XI (Pin 9) is 50 MHz  
0 = RMII 25 MHz clock mode; clock  
input to XI (Pin 9) is 25 MHz  
This bit applies only to  
RMII Refer-  
ence Clock  
Select  
1F.7  
RW  
0
KSZ8081RNB.  
1F.6  
Reserved  
LED Mode  
Disable  
Reserved  
RW  
RW  
0
[00] =LED1: Speed  
LED0: Link/Activity  
[01] = LED1: Activity  
LED0: Link  
1F.5:4  
00  
[10], [11] = Reserved  
1 = Disable transmitter  
1F.3  
1F.2  
RW  
RW  
0
0
Transmitter 0 = Enable transmitter  
1 = Remote (analog) loopback is  
enabled  
0 = Normal mode  
Remote  
Loopback  
Enable SQE 1 = Enable SQE test  
Test 0 = Disable SQE test  
1F.1  
1F.0  
RW  
RW  
0
0
Disable Data 1 = Disable scrambler  
Scrambling 0 = Enable scrambler  
DS00002202A-page 44  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
5.0  
5.1  
OPERATIONAL CHARACTERISTICS  
Absolute Maximum Ratings*  
Supply Voltage (VIN)  
(VDD_1.2).................................................................................................................................................... –0.5V to +1.8V  
(VDDIO, VDDA_3.3)...................................................................................................................................... –0.5V to +5.0V  
Input Voltage (all inputs)............................................................................................................................ –0.5V to +5.0V  
Output Voltage (all outputs)....................................................................................................................... –0.5V to +5.0V  
Lead Temperature (soldering, 10s) .........................................................................................................................260°C  
Storage Temperature (TS)......................................................................................................................–55°C to +150°C  
* Exceeding the absolute maximum ratings can damage the device. Stresses greater than the absolute maximum rating  
can cause permanent damage to the device. Operation of the device at these or any other conditions above  
those specified in the operating sections of this specification is not implied. Maximum conditions for extended  
periods may affect reliability.  
5.2  
Operating Ratings**  
Supply Voltage  
(VDDIO_3.3, VDDA_3.3) ........................................................................................................................+3.135V to +3.465V  
(VDDIO_2.5).........................................................................................................................................+2.375V to +2.625V  
(VDDIO_1.8).........................................................................................................................................+1.710V to +1.890V  
Ambient Temperature  
(TA, Commercial)..........................................................................................................................................0°C to +70°C  
(TA, Industrial) ..........................................................................................................................................40°C to +85°C  
Maximum Junction Temperature (TJ max.) ...........................................................................................................+125°C  
Thermal Resistance (TJA) ............................................................................................................................... 45.87°C/W  
Thermal Resistance (TJC) ............................................................................................................................... 15.85°C/W  
** The device is not guaranteed to function outside its operating ratings.  
2016 Microchip Technology Inc.  
DS00002202A-page 45  
KSZ8081MNX/RNB  
6.0  
ELECTRICAL CHARACTERISTICS  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Supply Current (VDDIO, VDDA_3.3 = 3.3V)  
Full-duplex traffic @ 100%  
utilization  
IDD1_3.3V 10BASE-T  
41  
47  
20  
4
mA  
mA  
mA  
mA  
Full-duplex traffic @ 100%  
utilization  
IDD2_3.3V 100BASE-TX  
IDD3_3.3V EDPD Mode  
Ethernet cable disconnected  
(reg. 18h.11 = 0)  
Software power-down (reg.  
0h.11 = 1)  
IDD4_3.3V Power-Down Mode  
CMOS Level Inputs  
V
DDIO = 3.3V  
2.0  
1.8  
1.3  
VIH  
Input High Voltage  
VDDIO = 2.5V  
VDDIO = 1.8V  
V
VDDIO = 3.3V  
0.8  
0.7  
0.5  
10  
VIL  
Input Low Voltage  
Input Current  
VDDIO = 2.5V  
V
VDDIO = 1.8V  
|IIN|  
VIN = GND ~ VDDIO  
μA  
CMOS Level Outputs  
VDDIO = 3.3V  
VDDIO = 2.5V  
VDDIO = 1.8V  
2.4  
2.0  
1.5  
VOH  
Output High Voltage  
V
VDDIO = 3.3V  
0.4  
0.4  
0.3  
10  
VOL  
|Ioz|  
Output Low Voltage  
VDDIO = 2.5V  
VDDIO = 1.8V  
V
Output Tri-State Leakage  
μA  
mA  
LED Output  
ILED Output Drive Current  
Each LED pin (LED0, LED1)  
8
All Pull-Up/Pull-Down Pins (including Strapping Pins)  
VDDIO = 3.3V  
30  
39  
48  
26  
34  
53  
45  
61  
99  
43  
59  
99  
73  
102  
178  
79  
VDDIO = 2.5V  
VDDIO = 1.8V  
VDDIO = 3.3V  
VDDIO = 2.5V  
pu  
pd  
Internal Pull-Up Resistance  
kΩ  
kΩ  
Internal Pull-Down  
Resistance  
113  
200  
VDDIO = 1.8V  
100BASE-TX Transmit (measured differentially after 1:1 transformer)  
Peak Differential Output Volt- 100Ω termination across dif-  
VO  
0.95  
1.05  
2
V
age  
ferential output  
100Ω termination across dif-  
ferential output  
VIMB  
tr, tf  
Output Voltage Imbalance  
%
Rise/Fall Time  
3
5
0.5  
±0.25  
5
ns  
ns  
ns  
%
Rise/Fall Time Imbalance  
Duty Cycle Distortion  
Overshoot  
0
Output Jitter  
Peak-to-peak  
0.7  
ns  
DS00002202A-page 46  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
10BASE-T Transmit (measured differentially after 1:1 transformer)  
Peak Differential Output Volt- 100Ω termination across dif-  
VP  
2.2  
2.8  
V
age  
ferential output  
Peak-to-peak  
Jitter Added  
Rise/Fall Time  
3.5  
ns  
ns  
tr, tf  
25  
10BASE-T Receive  
VSQ  
Squelch Threshold  
5 MHz square wave  
400  
mV  
V
Transmitter – Drive Setting  
VSET  
Reference Voltage of ISET  
R(ISET) = 6.49 kΩ  
0.65  
REF_CLK Output  
Peak-to-peak. (Applies only to  
KSZ8081RNB in RMII –  
25 MHz clock mode)  
50 MHz RMII Clock Output  
Jitter  
300  
20  
ps  
ns  
100 Mbps Mode – Industrial Applications Parameters  
XI (25 MHz clock input) to MII  
TXC (25 MHz clock output)  
Clock Phase Delay – XI Input delay, referenced to rising  
15  
25  
to MII TXC Output  
edges of both clocks. (Applies  
only to KSZ8081MNX in MII  
mode)  
Link loss detected at receive  
differential inputs to PHY sig-  
nal indication time for each of  
the following:  
1. For LED mode 00, Speed  
LED output changes from low  
(100 Mbps) to high (10 Mbps,  
default state for link-down).  
2. For LED mode 01, Link  
LED output changes from low  
(link-up) to high (link-down).  
3. INTRP pin asserts for link-  
down status change.  
Link Loss Reaction  
(Indication) Time  
tllr  
4.4  
μs  
2016 Microchip Technology Inc.  
DS00002202A-page 47  
KSZ8081MNX/RNB  
7.0  
7.1  
TIMING DIAGRAMS  
MII SQE Timing (10BASE-T)  
FIGURE 7-1:  
MII SQE TIMING (10BASE-T)  
tWL  
TXC  
tWH  
tP  
TXEN  
tSQE  
COL  
tSQEP  
TABLE 7-1:  
MII SQE TIMING (10BASE-T) PARAMETERS  
Timing Parameters  
Description  
TXC period  
Min.  
Typ.  
Max.  
Units  
tP  
400  
200  
200  
ns  
ns  
ns  
tWL  
tWH  
TXC pulse width low  
TXC pulse width high  
COL (SQE) delay after  
TXEN de-asserted  
tSQE  
2.2  
1.0  
μs  
μs  
tSQEP  
COL (SQE) pulse duration  
7.2  
MII Transmit Timing (10BASE-T)  
FIGURE 7-2:  
MII TRANSMIT TIMING (10BASE-T)  
tP  
tWL  
TXC  
tWH  
tSU2  
TXEN  
tHD2  
TXD[3:0]  
tSU1  
tHD1  
tCRS1  
CRS  
tCRS2  
TABLE 7-2:  
MII TRANSMIT TIMING (10BASE-T) PARAMETERS  
Timing Parameters  
Description  
Min.  
Typ.  
Max.  
Units  
tP  
TXC period  
400  
200  
200  
ns  
ns  
ns  
ns  
ns  
tWL  
TXC pulse width low  
tWH  
tSU1  
tSU2  
TXC pulse width high  
TXD[3:0] setup to rising edge of TXC  
TXEN setup to rising edge of TXC  
120  
120  
DS00002202A-page 48  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
TABLE 7-2:  
MII TRANSMIT TIMING (10BASE-T) PARAMETERS  
Timing Parameters  
tHD1  
Description  
Min.  
Typ.  
Max.  
Units  
TXD[3:0] hold from rising edge of TXC  
TXEN hold from rising edge of TXC  
TXEN high to CRS asserted latency  
TXEN low to CRS de-asserted latency  
0
0
ns  
ns  
ns  
μs  
tHD2  
tCRS1  
tCRS2  
600  
1.0  
7.3  
MII Receive Timing (10BASE-T)  
FIGURE 7-3:  
MII RECEIVE TIMING (10BASE-T)  
CRS  
tRLAT  
tOD  
RXDV  
RXD[3:0]  
RXER  
tP  
tWL  
RXC  
tWH  
TABLE 7-3:  
MII RECEIVE TIMING (10BASE-T) PARAMETERS  
Timing Parameters  
Description  
RXC period  
Min.  
Typ.  
Max.  
Units  
tP  
400  
200  
200  
ns  
ns  
ns  
tWL  
tWH  
RXC pulse width low  
RXC pulse width high  
(RXDV, RXD[3:0], RXER) output  
delay from rising edge of RXC  
205  
7.2  
tOD  
ns  
tRLAT  
CRS to (RXDV, RXD[3:0]) latency  
μs  
2016 Microchip Technology Inc.  
DS00002202A-page 49  
KSZ8081MNX/RNB  
7.4  
MII Transmit Timing (BASE100BASE-TX)  
FIGURE 7-4:  
MII TRANSMIT TIMING (BASE100BASE-TX)  
tWL  
TXC  
tWH  
tHD2  
tSU2  
tP  
TXEN  
TXD[3:0]  
CRS  
tHD1  
tSU1  
DATA  
IN  
tCRS2  
tCRS1  
TABLE 7-4:  
MII TRANSMIT TIMING (BASE100BASE-TX) PARAMETERS  
Timing  
Parameter  
Description  
Min.  
Typ.  
Max.  
Units  
tP  
TXC Period  
40  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWL  
TXC pulse width low  
tWH  
TXC pulse width high  
tSU1  
tSU2  
tHD1  
tHD2  
tCRS1  
tCRS2  
TXD[3:0] setup to rising edge of TXC  
TXEN setup to rising edge of TXC  
TXD[3:0] hold from rising edge of TXC  
TXEN hold from rising edge of TXC  
TXEN high to CRS asserted latency  
TXEN low to CRS de-asserted latency  
10  
10  
0
0
72  
72  
—S  
7.5  
MII Receive Timing (BASE100BASE-TX)  
FIGURE 7-5:  
MII RECEIVE TIMING (BASE100BASE-TX)  
CRS  
tRLAT  
RXDV  
tOD  
RXD[3:0]  
RXER  
tWL  
RXC  
tWH  
tP  
DS00002202A-page 50  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
TABLE 7-5:  
MII RECEIVE TIMING (BASE100BASE-TX) PARAMETERS  
Timing  
Parameter  
Description  
Min.  
Typ.  
Max.  
Units  
tP  
RXC period  
40  
20  
20  
ns  
ns  
ns  
tWL  
tWH  
tOD  
RXC pulse width low  
RXC pulse width high  
(RXDV, RXD[3:0], RXER) output delay from ris-  
ing edge of RXC  
21  
25  
16  
ns  
ns  
tFLAT  
CRS to (RXDV, RXD[3:0] latency  
170  
7.6  
RMII Timing  
FIGURE 7-6:  
TRANSMIT TIMING  
RMII TIMING – DATA RECEIVED FROM RMII  
tCYC  
REF_CLK  
t1  
t2  
TXEN  
TXD[1:0]  
FIGURE 7-7:  
RMII TIMING – DATA INPUT TO RMII  
tCYC  
RECEIVE  
TIMING  
REF_CLK  
CRS_DV  
RXD[1:0]  
RXER  
tOD  
2016 Microchip Technology Inc.  
DS00002202A-page 51  
KSZ8081MNX/RNB  
TABLE 7-6:  
RMII TIMING PARAMETERS – KSZ8081RNB (25 MHZ INPUT TO XI PIN, 50 MHZ  
OUTPUT FROM REF_CLK PIN)  
Timing Parameter  
Description  
Clock cycle  
Min.  
Typ.  
Max  
Units  
tCYC  
t1  
4
20  
10  
13  
ns  
ns  
ns  
ns  
Setup time  
Hold time  
t2  
2
tOD  
Output delay  
7
TABLE 7-7:  
RMII TIMING PARAMETERS – KSZ8081RNB (25 MHZ INPUT TO XI PIN)  
Timing Parameter  
Description  
Clock cycle  
Min.  
Typ.  
Max  
Units  
tCYC  
t1  
4
20  
11  
13  
ns  
ns  
ns  
ns  
Setup time  
Hold time  
t2  
2
tOD  
Output delay  
8
7.7  
Auto-Negotiation Timing  
FIGURE 7-8:  
AUTO-NEGOTIATION TIMING  
AUTO -NEGOTIATION  
FAST LINK PULSE (FLP) TIMING  
FLP  
BURST  
FLP  
BURST  
TX+/TX-  
tFLPW  
tBTB  
CLOCK  
PULSE  
DATA  
PULSE  
CLOCK  
PULSE  
DATA  
PULSE  
TX+/TX-  
tPW  
tPW  
tCTD  
tCTC  
DS00002202A-page 52  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
TABLE 7-8:  
AUTO-NEGOTIATION FAST LINK PULSE (FLP) TIMING PARAMETERS  
Timing Parameter  
Description  
Min.  
Typ.  
Max.  
Units  
tBTB  
tFLPW  
tPW  
FLP burst to FLP burst  
FLP burst width  
8
16  
2
24  
ms  
ms  
ns  
Clock/Data pulse width  
Clock pulse to data pulse  
Clock pulse to clock pulse  
100  
64  
tCTD  
tCTC  
55.5  
111  
69.5  
139  
μs  
μs  
128  
Number of clock/data pulses per  
FLP burst  
17  
33  
7.8  
MDC/MDIO Timing  
FIGURE 7-9:  
MDC/MDIO TIMING  
tP  
MDC  
tMD1  
tMD2  
MDIO  
(PHY INPUT)  
VALID  
DATA  
VALID  
DATA  
tMD3  
MDIO  
(PHY OUTPUT)  
VALID  
DATA  
TABLE 7-9:  
MDC/MDIO TIMING PARAMETERS  
Description  
Timing  
Parameter  
Min.  
Typ.  
Max.  
Units  
fc  
MDC Clock Frequency  
2.5  
400  
10  
MHz  
ns  
tP  
MDC period  
tMD1  
tMD2  
tMD3  
MDIO (PHY input) setup to rising edge of MDC  
MDIO (PHY input) hold from rising edge of MDC  
MDIO (PHY output) delay from rising edge of MDC  
10  
4
ns  
ns  
5
222  
ns  
2016 Microchip Technology Inc.  
DS00002202A-page 53  
KSZ8081MNX/RNB  
7.9  
Power-up/Reset Timing  
The KSZ8081MNX/RNB reset timing requirement is summarized in Figure 7-10 and Table 7-10.  
FIGURE 7-10:  
POWER-UP/RESET TIMING  
SUPPLY  
VOLTAGES  
tSR  
tVR  
RST#  
tCS  
tCH  
STRAP-IN  
VALUE  
tRC  
STRAP-IN /  
OUTPUT PIN  
TABLE 7-10: POWER-UP/RESET TIMING PARAMETERS  
Parameter  
tVR  
Description  
Min.  
Max.  
Units  
Supply voltage (VDDIO, VDDA_3.3) rise time  
300  
μs  
Stable supply voltage (VDDIO, VDDA_3.3) to reset  
high  
tSR  
10  
ms  
tCS  
tCH  
tRC  
Configuration setup time  
Configuration hold time  
Reset to strap-in pin output  
5
5
6
ns  
ns  
ns  
The supply voltage (VDDIO and VDDA_3.3) power-up waveform should be monotonic. The 300 μs minimum rise time is  
from 10% to 90%.  
For warm reset, the reset (RST#) pin should be asserted low for a minimum of 500 μs. The strap-in pin values are read  
and updated at the de-assertion of reset.  
After the de-assertion of reset, wait a minimum of 100 μs before starting programming on the MIIM (MDC/MDIO) inter-  
face.  
DS00002202A-page 54  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
7.10 Reset Circuit  
Figure 7-11 shows a reset circuit recommended for powering up the KSZ8081MNX/RNB if reset is triggered by the  
power supply.  
FIGURE 7-11:  
RECOMMENDED RESET CIRCUIT  
VDDIO  
D1: 1N4148  
D1  
R 10K  
KSZ8081MNX/RNB  
RST#  
C 10μF  
Figure 7-12 Shows a reset circuit recommended for applications where reset is driven by another device (for example,  
the CPU or an FPGA). The reset out RST_OUT_n from CPU/FPGA provides the warm reset after power up reset. D2  
is used if using different VDDIO between the switch and CPU/FPGA, otherwise, the different VDDIO will fight each other.  
If different VDDIO have to use in a special case, a low VF (<0.3V) diode is required (For example, VISHAY’s BAT54,  
MSS1P2L and so on), or a level shifter device can be used too. If Ethernet device and CPU/FPGA use same VDDIO  
voltage, D2 can be removed to connect both devices directly. Usually, Ethernet device and CPU/FPGA should use same  
VDDIO voltage.  
FIGURE 7-12:  
RECOMMENDED RESET CIRCUIT FOR INTERFACING WITH CPU/FPGA RESET  
OUTPUT  
VDDIO  
R 10K  
D1  
KSZ8081MNX/RNB  
RST#  
CPU/FPGA  
RST_OUT_N  
D2  
C 10μF  
D1, D2: 1N4148  
2016 Microchip Technology Inc.  
DS00002202A-page 55  
KSZ8081MNX/RNB  
7.11 Reference Circuits – LED Strap-In Pins  
The pull-up, float, and pull-down reference circuits for the LED1/SPEED and LED0/NWAYEN strapping pins are shown  
in Figure 7-13 for 3.3V and 2.5V VDDIO.  
FIGURE 7-13:  
REFERENCE CIRCUITS FOR LED STRAPPING PINS  
VDDIO = 3.3V, 2.5V  
PULL_UP  
4.7kΩ  
220Ω  
KSZ8081MNX/RXB  
LED PIN  
VDDIO = 3.3V, 2.5V  
220Ω  
FLOAT  
KSZ8081MNX/RXB  
LED PIN  
VDDIO = 3.3V, 2.5V  
220Ω  
PULL-DOWN  
KSZ8081MNX/RXB  
LED PIN  
1kΩ  
For using 1.8V VDDIO, should select parts with low 1.8V operation voltage and forwarding current IF about 2 mA LED  
indicator. It is okay to use internal pull-up or external pull-up resistor for the LED pin pull-up strap function, and use an  
external 0.75 kΩ to 1 kΩ pull-down resistor for the LED pin pull-down strap function.  
Note: If using RJ45 jacks with integrated LEDs and 1.8V VDDIO, a level shifting is required from LED 3.3V to 1.8V. For  
example, use a bipolar transistor or a level shift device.  
DS00002202A-page 56  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
7.12 Reference Clock – Connection and Selection  
A crystal or external clock source, such as an oscillator, is used to provide the reference clock for the KSZ8081MNX/  
RNB. For the KSZ8081MNX in all operating modes and for the KSZ8081RNB in RMII – 25 MHz Clock Mode, the refer-  
ence clock is 25 MHz. The reference clock connections to XI (Pin 9) and XO (Pin 8), and the reference clock selection  
criteria, are provided in Figure 7-14 and Table 7-11.  
FIGURE 7-14:  
25 MHZ CRYSTAL/OSCILLATOR REFERENCE CLOCK CONNECTION  
22pF  
XI  
XI  
22pF  
25MHz OSC  
50PPM  
NC  
XO  
XO  
25MHz XTAL  
50PPM  
TABLE 7-11: 25 MHZ CRYSTAL/REFERENCE CLOCK SELECTION CRITERIA  
Characteristics  
Value  
Units  
Frequency  
25  
±50  
40  
MHz  
ppm  
Ω
Frequency tolerance (max) (Note 7-1)  
Crystal series resistance (typ)  
Crystal load capacitance (typ)  
22  
pF  
Note 7-1  
±60 ppm for overtemperature crystal.  
For the KSZ8081RNB in RMII – 50 MHz clock mode, the reference clock is 50 MHz. The reference clock connections  
to XI (Pin 9), and the reference clock selection criteria are provided in Figure 7-15 and Table 7-12.  
FIGURE 7-15:  
50 MHZ OSCILLATOR REFERENCE CLOCK CONNECTION  
XI  
50MHz OSC  
50PPM  
NC  
XO  
TABLE 7-12: 50 MHZ OSCILLATOR/REFERENCE CLOCK SELECTION CRITERIA  
Characteristics  
Frequency  
Value  
Units  
50  
MHz  
ppm  
Frequency tolerance (maximum)  
±50  
2016 Microchip Technology Inc.  
DS00002202A-page 57  
KSZ8081MNX/RNB  
7.13 Magnetic – Connection and Selection  
The KSZ8081MNX/RNB design incorporates voltage-mode transmit drivers and on-chip terminations.  
With the voltage-mode implementation, the transmit drivers supply the common-mode voltages to the two differential  
pairs. Therefore, the two transformer center tap pins on the KSZ8081MNX/RNB side should not be connected to any  
power supply source on the board; instead, the center tap pins should be separated from one another and connected  
through separate 0.1 μF common-mode capacitors to ground. Separation is required because the common-mode volt-  
age is different between transmitting and receiving differential pairs.  
Figure 7-16 shows the typical magnetic interface circuit for the KSZ8081MNX/RNB.  
FIGURE 7-16:  
TYPICAL MAGNETIC INTERFACE CIRCUIT  
1
TXP  
2
3
TXM  
RXP  
RXM  
4
5
6
7
8
4 x 75Ω  
(2 x 0.1μF)  
1000pF/2kV  
CHASSIS GROUND  
SIGNAL GROUND  
Table 7-13 lists recommended magnetic characteristics.  
TABLE 7-13: MAGNETICS SELECTION CRITERIA  
Parameter  
Value  
Test Condition  
Turns ratio  
1 CT : 1 CT  
350 μH  
Open-circuit inductance (minimum)  
Insertion loss (typical)  
100 mV, 100 kHz, 8 mA  
100 kHz to 100 MHz  
–1.1 dB  
HIPOT (minimum)  
1500 Vrms  
DS00002202A-page 58  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
Table 7-14 is a list of compatible single-port magnetics with separated transformer center tap pins on the PHY chip side  
that can be used with the KSZ8081MNX/RNB.  
TABLE 7-14: COMPATIBLE SINGLE-PORT 10/100 MAGNETICS  
Manufacturer  
Bel Fuse  
Part Number  
S558-5999-U7  
Temperature Range  
Magnetic + RJ-45  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
0°C to 70°C  
–40°C to 85°C  
No  
Yes  
Yes  
No  
Bel Fuse  
Bel Fuse  
Delta  
SI-46001-F  
SI-50170-F  
LF8505  
HALO  
HFJ11-2450E  
TG110-E055N5  
LF-H41S-1  
H1102  
Yes  
No  
HALO  
LANKom  
Pulse  
No  
No  
Pulse  
H1260  
No  
Pulse  
HX1188  
No  
Pulse  
J00-0014  
Yes  
Yes  
Yes  
No  
Pulse  
JX0011D21NL  
TLA-6T718A  
HB726  
TDK  
Transpower  
Wurth/Midcom  
000-7090-37R-LF1  
No  
2016 Microchip Technology Inc.  
DS00002202A-page 59  
KSZ8081MNX/RNB  
8.0  
PACKAGE OUTLINE  
FIGURE 8-1:  
32-LEAD QFN 5 MM × 5 MM PACKAGE AND RECOMMENDED PCB LAND  
PATTERN  
DS00002202A-page 60  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
APPENDIX A: DATA SHEET REVISION HISTORY  
TABLE A-1:  
REVISION HISTORY  
Revision  
Section/Figure/Entry  
ALL  
Correction  
DS00002202A (10-27-16)  
Converted Micrel document KSZ8081MNX/RNB to  
Microchip DS00002202A. Minor text edits through-  
out.  
2016 Microchip Technology Inc.  
DS00002202A-page 61  
KSZ8081MNX/RNB  
THE MICROCHIP WEB SITE  
Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make  
files and information easily available to customers. Accessible by using your favorite Internet browser, the web site con-  
tains the following information:  
Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s  
guides and hardware support documents, latest software releases and archived software  
General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion  
groups, Microchip consultant program member listing  
Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of semi-  
nars and events, listings of Microchip sales offices, distributors and factory representatives  
CUSTOMER CHANGE NOTIFICATION SERVICE  
Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive  
e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or  
development tool of interest.  
To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notifi-  
cation” and follow the registration instructions.  
CUSTOMER SUPPORT  
Users of Microchip products can receive assistance through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales  
offices are also available to help customers. A listing of sales offices and locations is included in the back of this docu-  
ment.  
Technical support is available through the web site at: http://microchip.com/support  
DS00002202A-page 62  
2016 Microchip Technology Inc.  
KSZ8081MNX/RNB  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
X
X
X
a)  
b)  
c)  
KSZ8081MNXCA  
10BASE-T/100BASE-TX Physical Layer  
Transceiver, MII, 32-pin QFN,  
Commercial Temperature.  
Package  
Option  
Temperature  
Range  
Interface  
Special  
Attribute  
KSZ8081MNXIA  
Device:  
KSZ8081 - 10BASE-T/100BASE-TX Physical Layer  
Transceiver  
10BASE-T/100BASE-TX Physical Layer  
Transceiver, MII, 32-pin QFN,  
Industrial Temperature.  
Interface:  
M
R
=
=
MII, GMII  
RMII, RGMII  
KSZ8081RNBCA  
10BASE-T/100BASE-TX Physical Layer  
Transceiver, RMII, 32-pin QFN,  
REF_CLK output (power-up default),  
Commercial Temperature.  
Package Option:  
Special Attribute:  
N
=
32-pin QFN  
X
B
=
=
None  
d)  
KSZ8081RNBIA  
REF_CLK output (power-up default)  
10BASE-T/100BASE-TX Physical Layer  
Transceiver, RMII, 32-pin QFN,  
REF_CLK output (power-up default),  
Industrial Temperature.  
Temperature  
Range:  
IA  
CA  
=
=
Industrial (–40°C to +85°C)  
Commercial (0°C to +70°C)  
2015 Microchip Technology Inc.  
DS00002202A-page 63  
KSZ8081MNX/RNB  
DS00002202A-page 64  
2015 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device applications and the like is provided only for your convenience and may be  
superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO  
REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Micro-  
chip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold  
harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or  
otherwise, under any Microchip intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo,  
Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC,  
SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other  
countries.  
ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,  
Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial  
Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless  
DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.  
GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in  
other countries.  
All other trademarks mentioned herein are property of their respective companies.  
© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.  
ISBN: 978-1-5224-1048-5  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
2016 Microchip Technology Inc.  
DS00002202A-page 65  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Karlsruhe  
Tel: 49-721-625370  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Dongguan  
Tel: 86-769-8702-9880  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Guangzhou  
Tel: 86-20-8755-8029  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Korea - Seoul  
Cleveland  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Poland - Warsaw  
Tel: 48-22-3325737  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Novi, MI  
Tel: 248-848-4000  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Houston, TX  
Tel: 281-894-5983  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
San Jose, CA  
Tel: 408-735-9110  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
06/23/16  
DS00002202A-page 66  
2016 Microchip Technology Inc.  

相关型号:

KSZ8081MNXIA

10Base-T/100Base-TX Physical Layer Transceiver
MICREL

KSZ8081MNXIA

10BASE-T/100BASE-TX Physical Layer Transceiver
MICROCHIP

KSZ8081RNA

10Base-T/100Base-TX PHY with RMII Support
MICREL

KSZ8081RNA

10BASE-T/100BASE-TX PHY with RMII Support
MICROCHIP

KSZ8081RNA-EVAL

10Base-T/100Base-TX PHY with RMII Support
MICREL

KSZ8081RNACA

10Base-T/100Base-TX PHY with RMII Support
MICREL

KSZ8081RNACA

10BASE-T/100BASE-TX PHY with RMII Support
MICROCHIP

KSZ8081RNACA-TR

10Base-T/100Base-TX PHY with RMII Support
MICREL

KSZ8081RNAIA

10Base-T/100Base-TX PHY with RMII Support
MICREL

KSZ8081RNAIA

10BASE-T/100BASE-TX PHY with RMII Support
MICROCHIP

KSZ8081RNB

10BASE-T/100BASE-TX Physical Layer Transceiver
MICROCHIP

KSZ8081RNB-EVAL

10Base-T/100Base-TX Physical Layer Transceiver
MICREL